vfs_bio.c revision 1.62 1 /* $NetBSD: vfs_bio.c,v 1.62 1999/12/03 21:43:20 ragge Exp $ */
2
3 /*-
4 * Copyright (c) 1994 Christopher G. Demetriou
5 * Copyright (c) 1982, 1986, 1989, 1993
6 * The Regents of the University of California. All rights reserved.
7 * (c) UNIX System Laboratories, Inc.
8 * All or some portions of this file are derived from material licensed
9 * to the University of California by American Telephone and Telegraph
10 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11 * the permission of UNIX System Laboratories, Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the University of
24 * California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
42 */
43
44 /*
45 * Some references:
46 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
47 * Leffler, et al.: The Design and Implementation of the 4.3BSD
48 * UNIX Operating System (Addison Welley, 1989)
49 */
50
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/proc.h>
54 #include <sys/buf.h>
55 #include <sys/vnode.h>
56 #include <sys/mount.h>
57 #include <sys/trace.h>
58 #include <sys/malloc.h>
59 #include <sys/resourcevar.h>
60 #include <sys/conf.h>
61
62 #include <vm/vm.h>
63
64 #include <miscfs/specfs/specdev.h>
65
66 /* Macros to clear/set/test flags. */
67 #define SET(t, f) (t) |= (f)
68 #define CLR(t, f) (t) &= ~(f)
69 #define ISSET(t, f) ((t) & (f))
70
71 /*
72 * Definitions for the buffer hash lists.
73 */
74 #define BUFHASH(dvp, lbn) \
75 (&bufhashtbl[((long)(dvp) / sizeof(*(dvp)) + (int)(lbn)) & bufhash])
76 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
77 u_long bufhash;
78 struct bio_ops bioops; /* I/O operation notification */
79
80 /*
81 * Insq/Remq for the buffer hash lists.
82 */
83 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash)
84 #define bremhash(bp) LIST_REMOVE(bp, b_hash)
85
86 /*
87 * Definitions for the buffer free lists.
88 */
89 #define BQUEUES 4 /* number of free buffer queues */
90
91 #define BQ_LOCKED 0 /* super-blocks &c */
92 #define BQ_LRU 1 /* lru, useful buffers */
93 #define BQ_AGE 2 /* rubbish */
94 #define BQ_EMPTY 3 /* buffer headers with no memory */
95
96 TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
97 int needbuffer;
98
99 /*
100 * Insq/Remq for the buffer free lists.
101 */
102 #define binsheadfree(bp, dp) TAILQ_INSERT_HEAD(dp, bp, b_freelist)
103 #define binstailfree(bp, dp) TAILQ_INSERT_TAIL(dp, bp, b_freelist)
104
105 static __inline struct buf *bio_doread __P((struct vnode *, daddr_t, int,
106 struct ucred *, int));
107 int count_lock_queue __P((void));
108
109 void
110 bremfree(bp)
111 struct buf *bp;
112 {
113 int s = splbio();
114
115 struct bqueues *dp = NULL;
116
117 /*
118 * We only calculate the head of the freelist when removing
119 * the last element of the list as that is the only time that
120 * it is needed (e.g. to reset the tail pointer).
121 *
122 * NB: This makes an assumption about how tailq's are implemented.
123 */
124 if (bp->b_freelist.tqe_next == NULL) {
125 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
126 if (dp->tqh_last == &bp->b_freelist.tqe_next)
127 break;
128 if (dp == &bufqueues[BQUEUES])
129 panic("bremfree: lost tail");
130 }
131 TAILQ_REMOVE(dp, bp, b_freelist);
132
133 splx(s);
134 }
135
136 /*
137 * Initialize buffers and hash links for buffers.
138 */
139 void
140 bufinit()
141 {
142 register struct buf *bp;
143 struct bqueues *dp;
144 register int i;
145 int base, residual;
146
147 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
148 TAILQ_INIT(dp);
149 bufhashtbl = hashinit(nbuf, M_CACHE, M_WAITOK, &bufhash);
150 base = bufpages / nbuf;
151 residual = bufpages % nbuf;
152 for (i = 0; i < nbuf; i++) {
153 bp = &buf[i];
154 memset((char *)bp, 0, sizeof(*bp));
155 bp->b_dev = NODEV;
156 bp->b_rcred = NOCRED;
157 bp->b_wcred = NOCRED;
158 bp->b_vnbufs.le_next = NOLIST;
159 LIST_INIT(&bp->b_dep);
160 bp->b_data = buffers + i * MAXBSIZE;
161 if (i < residual)
162 bp->b_bufsize = (base + 1) * NBPG;
163 else
164 bp->b_bufsize = base * NBPG;
165 bp->b_flags = B_INVAL;
166 dp = bp->b_bufsize ? &bufqueues[BQ_AGE] : &bufqueues[BQ_EMPTY];
167 binsheadfree(bp, dp);
168 binshash(bp, &invalhash);
169 }
170 }
171
172 static __inline struct buf *
173 bio_doread(vp, blkno, size, cred, async)
174 struct vnode *vp;
175 daddr_t blkno;
176 int size;
177 struct ucred *cred;
178 int async;
179 {
180 register struct buf *bp;
181 struct proc *p = (curproc != NULL ? curproc : &proc0); /* XXX */
182
183 bp = getblk(vp, blkno, size, 0, 0);
184
185 /*
186 * If buffer does not have data valid, start a read.
187 * Note that if buffer is B_INVAL, getblk() won't return it.
188 * Therefore, it's valid if it's I/O has completed or been delayed.
189 */
190 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
191 /* Start I/O for the buffer (keeping credentials). */
192 SET(bp->b_flags, B_READ | async);
193 if (cred != NOCRED && bp->b_rcred == NOCRED) {
194 crhold(cred);
195 bp->b_rcred = cred;
196 }
197 VOP_STRATEGY(bp);
198
199 /* Pay for the read. */
200 p->p_stats->p_ru.ru_inblock++;
201 } else if (async) {
202 brelse(bp);
203 }
204
205 return (bp);
206 }
207
208 /*
209 * Read a disk block.
210 * This algorithm described in Bach (p.54).
211 */
212 int
213 bread(vp, blkno, size, cred, bpp)
214 struct vnode *vp;
215 daddr_t blkno;
216 int size;
217 struct ucred *cred;
218 struct buf **bpp;
219 {
220 register struct buf *bp;
221
222 /* Get buffer for block. */
223 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
224
225 /*
226 * Delayed write buffers are found in the cache and have
227 * valid contents. Also, B_ERROR is not set, otherwise
228 * getblk() would not have returned them.
229 */
230 if (ISSET(bp->b_flags, B_DONE|B_DELWRI))
231 return (0);
232
233 /*
234 * Otherwise, we had to start a read for it; wait until
235 * it's valid and return the result.
236 */
237 return (biowait(bp));
238 }
239
240 /*
241 * Read-ahead multiple disk blocks. The first is sync, the rest async.
242 * Trivial modification to the breada algorithm presented in Bach (p.55).
243 */
244 int
245 breadn(vp, blkno, size, rablks, rasizes, nrablks, cred, bpp)
246 struct vnode *vp;
247 daddr_t blkno; int size;
248 daddr_t rablks[]; int rasizes[];
249 int nrablks;
250 struct ucred *cred;
251 struct buf **bpp;
252 {
253 register struct buf *bp;
254 int i;
255
256 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
257
258 /*
259 * For each of the read-ahead blocks, start a read, if necessary.
260 */
261 for (i = 0; i < nrablks; i++) {
262 /* If it's in the cache, just go on to next one. */
263 if (incore(vp, rablks[i]))
264 continue;
265
266 /* Get a buffer for the read-ahead block */
267 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
268 }
269
270 /*
271 * Delayed write buffers are found in the cache and have
272 * valid contents. Also, B_ERROR is not set, otherwise
273 * getblk() would not have returned them.
274 */
275 if (ISSET(bp->b_flags, B_DONE|B_DELWRI))
276 return (0);
277
278 /*
279 * Otherwise, we had to start a read for it; wait until
280 * it's valid and return the result.
281 */
282 return (biowait(bp));
283 }
284
285 /*
286 * Read with single-block read-ahead. Defined in Bach (p.55), but
287 * implemented as a call to breadn().
288 * XXX for compatibility with old file systems.
289 */
290 int
291 breada(vp, blkno, size, rablkno, rabsize, cred, bpp)
292 struct vnode *vp;
293 daddr_t blkno; int size;
294 daddr_t rablkno; int rabsize;
295 struct ucred *cred;
296 struct buf **bpp;
297 {
298
299 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
300 }
301
302 /*
303 * Block write. Described in Bach (p.56)
304 */
305 int
306 bwrite(bp)
307 struct buf *bp;
308 {
309 int rv, sync, wasdelayed, s;
310 struct proc *p = (curproc != NULL ? curproc : &proc0); /* XXX */
311 struct vnode *vp;
312 struct mount *mp;
313
314 /*
315 * Remember buffer type, to switch on it later. If the write was
316 * synchronous, but the file system was mounted with MNT_ASYNC,
317 * convert it to a delayed write.
318 * XXX note that this relies on delayed tape writes being converted
319 * to async, not sync writes (which is safe, but ugly).
320 */
321 sync = !ISSET(bp->b_flags, B_ASYNC);
322 if (sync && bp->b_vp && bp->b_vp->v_mount &&
323 ISSET(bp->b_vp->v_mount->mnt_flag, MNT_ASYNC)) {
324 bdwrite(bp);
325 return (0);
326 }
327
328 /*
329 * Collect statistics on synchronous and asynchronous writes.
330 * Writes to block devices are charged to their associated
331 * filesystem (if any).
332 */
333 if ((vp = bp->b_vp) != NULL) {
334 if (vp->v_type == VBLK)
335 mp = vp->v_specmountpoint;
336 else
337 mp = vp->v_mount;
338 if (mp != NULL) {
339 if (sync)
340 mp->mnt_stat.f_syncwrites++;
341 else
342 mp->mnt_stat.f_asyncwrites++;
343 }
344 }
345
346 wasdelayed = ISSET(bp->b_flags, B_DELWRI);
347
348 s = splbio();
349
350 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
351
352 /*
353 * Pay for the I/O operation and make sure the buf is on the correct
354 * vnode queue.
355 */
356 if (wasdelayed)
357 reassignbuf(bp, bp->b_vp);
358 else
359 p->p_stats->p_ru.ru_oublock++;
360
361 /* Initiate disk write. Make sure the appropriate party is charged. */
362 bp->b_vp->v_numoutput++;
363 splx(s);
364
365 SET(bp->b_flags, B_WRITEINPROG);
366 VOP_STRATEGY(bp);
367
368 if (sync) {
369 /* If I/O was synchronous, wait for it to complete. */
370 rv = biowait(bp);
371
372 /* Release the buffer. */
373 brelse(bp);
374
375 return (rv);
376 } else {
377 return (0);
378 }
379 }
380
381 int
382 vn_bwrite(v)
383 void *v;
384 {
385 struct vop_bwrite_args *ap = v;
386
387 return (bwrite(ap->a_bp));
388 }
389
390 /*
391 * Delayed write.
392 *
393 * The buffer is marked dirty, but is not queued for I/O.
394 * This routine should be used when the buffer is expected
395 * to be modified again soon, typically a small write that
396 * partially fills a buffer.
397 *
398 * NB: magnetic tapes cannot be delayed; they must be
399 * written in the order that the writes are requested.
400 *
401 * Described in Leffler, et al. (pp. 208-213).
402 */
403 void
404 bdwrite(bp)
405 struct buf *bp;
406 {
407 struct proc *p = (curproc != NULL ? curproc : &proc0); /* XXX */
408 int s;
409
410 /* If this is a tape block, write the block now. */
411 /* XXX NOTE: the memory filesystem usurpes major device */
412 /* XXX number 255, which is a bad idea. */
413 if (bp->b_dev != NODEV &&
414 major(bp->b_dev) != 255 && /* XXX - MFS buffers! */
415 bdevsw[major(bp->b_dev)].d_type == D_TAPE) {
416 bawrite(bp);
417 return;
418 }
419
420 /*
421 * If the block hasn't been seen before:
422 * (1) Mark it as having been seen,
423 * (2) Charge for the write,
424 * (3) Make sure it's on its vnode's correct block list.
425 */
426 s = splbio();
427
428 if (!ISSET(bp->b_flags, B_DELWRI)) {
429 SET(bp->b_flags, B_DELWRI);
430 p->p_stats->p_ru.ru_oublock++;
431 reassignbuf(bp, bp->b_vp);
432 }
433
434 /* Otherwise, the "write" is done, so mark and release the buffer. */
435 CLR(bp->b_flags, B_NEEDCOMMIT|B_DONE);
436 splx(s);
437
438 brelse(bp);
439 }
440
441 /*
442 * Asynchronous block write; just an asynchronous bwrite().
443 */
444 void
445 bawrite(bp)
446 struct buf *bp;
447 {
448
449 SET(bp->b_flags, B_ASYNC);
450 VOP_BWRITE(bp);
451 }
452
453 /*
454 * Same as first half of bdwrite, mark buffer dirty, but do not release it.
455 */
456 void
457 bdirty(bp)
458 struct buf *bp;
459 {
460 struct proc *p = (curproc != NULL ? curproc : &proc0); /* XXX */
461 int s;
462
463 s = splbio();
464
465 CLR(bp->b_flags, B_AGE);
466
467 if (!ISSET(bp->b_flags, B_DELWRI)) {
468 SET(bp->b_flags, B_DELWRI);
469 p->p_stats->p_ru.ru_oublock++;
470 reassignbuf(bp, bp->b_vp);
471 }
472
473 splx(s);
474 }
475
476 /*
477 * Release a buffer on to the free lists.
478 * Described in Bach (p. 46).
479 */
480 void
481 brelse(bp)
482 struct buf *bp;
483 {
484 struct bqueues *bufq;
485 int s;
486
487 /* Wake up any processes waiting for any buffer to become free. */
488 if (needbuffer) {
489 needbuffer = 0;
490 wakeup(&needbuffer);
491 }
492
493 /* Block disk interrupts. */
494 s = splbio();
495
496 /* Wake up any proceeses waiting for _this_ buffer to become free. */
497 if (ISSET(bp->b_flags, B_WANTED)) {
498 CLR(bp->b_flags, B_WANTED|B_AGE);
499 wakeup(bp);
500 }
501
502 /*
503 * Determine which queue the buffer should be on, then put it there.
504 */
505
506 /* If it's locked, don't report an error; try again later. */
507 if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
508 CLR(bp->b_flags, B_ERROR);
509
510 /* If it's not cacheable, or an error, mark it invalid. */
511 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
512 SET(bp->b_flags, B_INVAL);
513
514 if (ISSET(bp->b_flags, B_VFLUSH)) {
515 /*
516 * This is a delayed write buffer that was just flushed to
517 * disk. It is still on the LRU queue. If it's become
518 * invalid, then we need to move it to a different queue;
519 * otherwise leave it in its current position.
520 */
521 CLR(bp->b_flags, B_VFLUSH);
522 if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE))
523 goto already_queued;
524 else
525 bremfree(bp);
526 }
527
528 if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
529 /*
530 * If it's invalid or empty, dissociate it from its vnode
531 * and put on the head of the appropriate queue.
532 */
533 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
534 (*bioops.io_deallocate)(bp);
535 CLR(bp->b_flags, B_DONE|B_DELWRI);
536 if (bp->b_vp) {
537 reassignbuf(bp, bp->b_vp);
538 brelvp(bp);
539 }
540 if (bp->b_bufsize <= 0)
541 /* no data */
542 bufq = &bufqueues[BQ_EMPTY];
543 else
544 /* invalid data */
545 bufq = &bufqueues[BQ_AGE];
546 binsheadfree(bp, bufq);
547 } else {
548 /*
549 * It has valid data. Put it on the end of the appropriate
550 * queue, so that it'll stick around for as long as possible.
551 */
552 if (ISSET(bp->b_flags, B_LOCKED))
553 /* locked in core */
554 bufq = &bufqueues[BQ_LOCKED];
555 else if (ISSET(bp->b_flags, B_AGE))
556 /* stale but valid data */
557 bufq = &bufqueues[BQ_AGE];
558 else
559 /* valid data */
560 bufq = &bufqueues[BQ_LRU];
561 binstailfree(bp, bufq);
562 }
563
564 already_queued:
565 /* Unlock the buffer. */
566 CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE);
567
568 /* Allow disk interrupts. */
569 splx(s);
570 }
571
572 /*
573 * Determine if a block is in the cache.
574 * Just look on what would be its hash chain. If it's there, return
575 * a pointer to it, unless it's marked invalid. If it's marked invalid,
576 * we normally don't return the buffer, unless the caller explicitly
577 * wants us to.
578 */
579 struct buf *
580 incore(vp, blkno)
581 struct vnode *vp;
582 daddr_t blkno;
583 {
584 struct buf *bp;
585
586 bp = BUFHASH(vp, blkno)->lh_first;
587
588 /* Search hash chain */
589 for (; bp != NULL; bp = bp->b_hash.le_next) {
590 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
591 !ISSET(bp->b_flags, B_INVAL))
592 return (bp);
593 }
594
595 return (0);
596 }
597
598 /*
599 * Get a block of requested size that is associated with
600 * a given vnode and block offset. If it is found in the
601 * block cache, mark it as having been found, make it busy
602 * and return it. Otherwise, return an empty block of the
603 * correct size. It is up to the caller to insure that the
604 * cached blocks be of the correct size.
605 */
606 struct buf *
607 getblk(vp, blkno, size, slpflag, slptimeo)
608 register struct vnode *vp;
609 daddr_t blkno;
610 int size, slpflag, slptimeo;
611 {
612 struct bufhashhdr *bh;
613 struct buf *bp;
614 int s, err;
615
616 /*
617 * XXX
618 * The following is an inlined version of 'incore()', but with
619 * the 'invalid' test moved to after the 'busy' test. It's
620 * necessary because there are some cases in which the NFS
621 * code sets B_INVAL prior to writing data to the server, but
622 * in which the buffers actually contain valid data. In this
623 * case, we can't allow the system to allocate a new buffer for
624 * the block until the write is finished.
625 */
626 bh = BUFHASH(vp, blkno);
627 start:
628 bp = bh->lh_first;
629 for (; bp != NULL; bp = bp->b_hash.le_next) {
630 if (bp->b_lblkno != blkno || bp->b_vp != vp)
631 continue;
632
633 s = splbio();
634 if (ISSET(bp->b_flags, B_BUSY)) {
635 SET(bp->b_flags, B_WANTED);
636 err = tsleep(bp, slpflag | (PRIBIO + 1), "getblk",
637 slptimeo);
638 splx(s);
639 if (err)
640 return (NULL);
641 goto start;
642 }
643
644 if (!ISSET(bp->b_flags, B_INVAL)) {
645 #ifdef DIAGNOSTIC
646 if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
647 bp->b_bcount < size)
648 panic("getblk: block size invariant failed");
649 #endif
650 SET(bp->b_flags, B_BUSY);
651 bremfree(bp);
652 splx(s);
653 break;
654 }
655 splx(s);
656 }
657
658 if (bp == NULL) {
659 if ((bp = getnewbuf(slpflag, slptimeo)) == NULL)
660 goto start;
661 binshash(bp, bh);
662 bp->b_blkno = bp->b_lblkno = blkno;
663 s = splbio();
664 bgetvp(vp, bp);
665 splx(s);
666 }
667 allocbuf(bp, size);
668 return (bp);
669 }
670
671 /*
672 * Get an empty, disassociated buffer of given size.
673 */
674 struct buf *
675 geteblk(size)
676 int size;
677 {
678 struct buf *bp;
679
680 while ((bp = getnewbuf(0, 0)) == 0)
681 ;
682 SET(bp->b_flags, B_INVAL);
683 binshash(bp, &invalhash);
684 allocbuf(bp, size);
685
686 return (bp);
687 }
688
689 /*
690 * Expand or contract the actual memory allocated to a buffer.
691 *
692 * If the buffer shrinks, data is lost, so it's up to the
693 * caller to have written it out *first*; this routine will not
694 * start a write. If the buffer grows, it's the callers
695 * responsibility to fill out the buffer's additional contents.
696 */
697 void
698 allocbuf(bp, size)
699 struct buf *bp;
700 int size;
701 {
702 struct buf *nbp;
703 vsize_t desired_size;
704 int s;
705
706 desired_size = roundup(size, NBPG);
707 if (desired_size > MAXBSIZE)
708 panic("allocbuf: buffer larger than MAXBSIZE requested");
709
710 if (bp->b_bufsize == desired_size)
711 goto out;
712
713 /*
714 * If the buffer is smaller than the desired size, we need to snarf
715 * it from other buffers. Get buffers (via getnewbuf()), and
716 * steal their pages.
717 */
718 while (bp->b_bufsize < desired_size) {
719 int amt;
720
721 /* find a buffer */
722 while ((nbp = getnewbuf(0, 0)) == NULL)
723 ;
724 SET(nbp->b_flags, B_INVAL);
725 binshash(nbp, &invalhash);
726
727 /* and steal its pages, up to the amount we need */
728 amt = min(nbp->b_bufsize, (desired_size - bp->b_bufsize));
729 pagemove((nbp->b_data + nbp->b_bufsize - amt),
730 bp->b_data + bp->b_bufsize, amt);
731 bp->b_bufsize += amt;
732 nbp->b_bufsize -= amt;
733
734 /* reduce transfer count if we stole some data */
735 if (nbp->b_bcount > nbp->b_bufsize)
736 nbp->b_bcount = nbp->b_bufsize;
737
738 #ifdef DIAGNOSTIC
739 if (nbp->b_bufsize < 0)
740 panic("allocbuf: negative bufsize");
741 #endif
742
743 brelse(nbp);
744 }
745
746 /*
747 * If we want a buffer smaller than the current size,
748 * shrink this buffer. Grab a buf head from the EMPTY queue,
749 * move a page onto it, and put it on front of the AGE queue.
750 * If there are no free buffer headers, leave the buffer alone.
751 */
752 if (bp->b_bufsize > desired_size) {
753 s = splbio();
754 if ((nbp = bufqueues[BQ_EMPTY].tqh_first) == NULL) {
755 /* No free buffer head */
756 splx(s);
757 goto out;
758 }
759 bremfree(nbp);
760 SET(nbp->b_flags, B_BUSY);
761 splx(s);
762
763 /* move the page to it and note this change */
764 pagemove(bp->b_data + desired_size,
765 nbp->b_data, bp->b_bufsize - desired_size);
766 nbp->b_bufsize = bp->b_bufsize - desired_size;
767 bp->b_bufsize = desired_size;
768 nbp->b_bcount = 0;
769 SET(nbp->b_flags, B_INVAL);
770
771 /* release the newly-filled buffer and leave */
772 brelse(nbp);
773 }
774
775 out:
776 bp->b_bcount = size;
777 }
778
779 /*
780 * Find a buffer which is available for use.
781 * Select something from a free list.
782 * Preference is to AGE list, then LRU list.
783 */
784 struct buf *
785 getnewbuf(slpflag, slptimeo)
786 int slpflag, slptimeo;
787 {
788 register struct buf *bp;
789 int s;
790
791 start:
792 s = splbio();
793 if ((bp = bufqueues[BQ_AGE].tqh_first) != NULL ||
794 (bp = bufqueues[BQ_LRU].tqh_first) != NULL) {
795 bremfree(bp);
796 } else {
797 /* wait for a free buffer of any kind */
798 needbuffer = 1;
799 tsleep(&needbuffer, slpflag|(PRIBIO+1), "getnewbuf", slptimeo);
800 splx(s);
801 return (0);
802 }
803
804 if (ISSET(bp->b_flags, B_VFLUSH)) {
805 /*
806 * This is a delayed write buffer being flushed to disk. Make
807 * sure it gets aged out of the queue when it's finished, and
808 * leave it off the LRU queue.
809 */
810 CLR(bp->b_flags, B_VFLUSH);
811 SET(bp->b_flags, B_AGE);
812 splx(s);
813 goto start;
814 }
815
816 /* Buffer is no longer on free lists. */
817 SET(bp->b_flags, B_BUSY);
818
819 /* If buffer was a delayed write, start it, and go back to the top. */
820 if (ISSET(bp->b_flags, B_DELWRI)) {
821 splx(s);
822 /*
823 * This buffer has gone through the LRU, so make sure it gets
824 * reused ASAP.
825 */
826 SET(bp->b_flags, B_AGE);
827 bawrite(bp);
828 goto start;
829 }
830
831 /* disassociate us from our vnode, if we had one... */
832 if (bp->b_vp)
833 brelvp(bp);
834 splx(s);
835
836 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
837 (*bioops.io_deallocate)(bp);
838
839 /* clear out various other fields */
840 bp->b_flags = B_BUSY;
841 bp->b_dev = NODEV;
842 bp->b_blkno = bp->b_lblkno = 0;
843 bp->b_iodone = 0;
844 bp->b_error = 0;
845 bp->b_resid = 0;
846 bp->b_bcount = 0;
847 bp->b_dirtyoff = bp->b_dirtyend = 0;
848 bp->b_validoff = bp->b_validend = 0;
849
850 /* nuke any credentials we were holding */
851 if (bp->b_rcred != NOCRED) {
852 crfree(bp->b_rcred);
853 bp->b_rcred = NOCRED;
854 }
855 if (bp->b_wcred != NOCRED) {
856 crfree(bp->b_wcred);
857 bp->b_wcred = NOCRED;
858 }
859
860 bremhash(bp);
861 return (bp);
862 }
863
864 /*
865 * Wait for operations on the buffer to complete.
866 * When they do, extract and return the I/O's error value.
867 */
868 int
869 biowait(bp)
870 struct buf *bp;
871 {
872 int s;
873
874 s = splbio();
875 while (!ISSET(bp->b_flags, B_DONE))
876 tsleep(bp, PRIBIO + 1, "biowait", 0);
877 splx(s);
878
879 /* check for interruption of I/O (e.g. via NFS), then errors. */
880 if (ISSET(bp->b_flags, B_EINTR)) {
881 CLR(bp->b_flags, B_EINTR);
882 return (EINTR);
883 } else if (ISSET(bp->b_flags, B_ERROR))
884 return (bp->b_error ? bp->b_error : EIO);
885 else
886 return (0);
887 }
888
889 /*
890 * Mark I/O complete on a buffer.
891 *
892 * If a callback has been requested, e.g. the pageout
893 * daemon, do so. Otherwise, awaken waiting processes.
894 *
895 * [ Leffler, et al., says on p.247:
896 * "This routine wakes up the blocked process, frees the buffer
897 * for an asynchronous write, or, for a request by the pagedaemon
898 * process, invokes a procedure specified in the buffer structure" ]
899 *
900 * In real life, the pagedaemon (or other system processes) wants
901 * to do async stuff to, and doesn't want the buffer brelse()'d.
902 * (for swap pager, that puts swap buffers on the free lists (!!!),
903 * for the vn device, that puts malloc'd buffers on the free lists!)
904 */
905 void
906 biodone(bp)
907 struct buf *bp;
908 {
909 int s = splbio();
910
911 if (ISSET(bp->b_flags, B_DONE))
912 panic("biodone already");
913 SET(bp->b_flags, B_DONE); /* note that it's done */
914
915 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
916 (*bioops.io_complete)(bp);
917
918 if (!ISSET(bp->b_flags, B_READ)) /* wake up reader */
919 vwakeup(bp);
920
921 if (ISSET(bp->b_flags, B_CALL)) { /* if necessary, call out */
922 CLR(bp->b_flags, B_CALL); /* but note callout done */
923 (*bp->b_iodone)(bp);
924 } else {
925 if (ISSET(bp->b_flags, B_ASYNC)) /* if async, release */
926 brelse(bp);
927 else { /* or just wakeup the buffer */
928 CLR(bp->b_flags, B_WANTED);
929 wakeup(bp);
930 }
931 }
932
933 splx(s);
934 }
935
936 /*
937 * Return a count of buffers on the "locked" queue.
938 */
939 int
940 count_lock_queue()
941 {
942 register struct buf *bp;
943 register int n = 0;
944
945 for (bp = bufqueues[BQ_LOCKED].tqh_first; bp;
946 bp = bp->b_freelist.tqe_next)
947 n++;
948 return (n);
949 }
950
951 #ifdef DEBUG
952 /*
953 * Print out statistics on the current allocation of the buffer pool.
954 * Can be enabled to print out on every ``sync'' by setting "syncprt"
955 * in vfs_syscalls.c using sysctl.
956 */
957 void
958 vfs_bufstats()
959 {
960 int s, i, j, count;
961 register struct buf *bp;
962 register struct bqueues *dp;
963 int counts[MAXBSIZE/NBPG+1];
964 static char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE", "EMPTY" };
965
966 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
967 count = 0;
968 for (j = 0; j <= MAXBSIZE/NBPG; j++)
969 counts[j] = 0;
970 s = splbio();
971 for (bp = dp->tqh_first; bp; bp = bp->b_freelist.tqe_next) {
972 counts[bp->b_bufsize/NBPG]++;
973 count++;
974 }
975 splx(s);
976 printf("%s: total-%d", bname[i], count);
977 for (j = 0; j <= MAXBSIZE/NBPG; j++)
978 if (counts[j] != 0)
979 printf(", %d-%d", j * NBPG, counts[j]);
980 printf("\n");
981 }
982 }
983 #endif /* DEBUG */
984