vfs_bio.c revision 1.67 1 /* $NetBSD: vfs_bio.c,v 1.67 2000/04/12 11:33:43 fvdl Exp $ */
2
3 /*-
4 * Copyright (c) 1994 Christopher G. Demetriou
5 * Copyright (c) 1982, 1986, 1989, 1993
6 * The Regents of the University of California. All rights reserved.
7 * (c) UNIX System Laboratories, Inc.
8 * All or some portions of this file are derived from material licensed
9 * to the University of California by American Telephone and Telegraph
10 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11 * the permission of UNIX System Laboratories, Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the University of
24 * California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
42 */
43
44 /*
45 * Some references:
46 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
47 * Leffler, et al.: The Design and Implementation of the 4.3BSD
48 * UNIX Operating System (Addison Welley, 1989)
49 */
50
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/proc.h>
54 #include <sys/buf.h>
55 #include <sys/vnode.h>
56 #include <sys/mount.h>
57 #include <sys/trace.h>
58 #include <sys/malloc.h>
59 #include <sys/resourcevar.h>
60 #include <sys/conf.h>
61
62 #include <vm/vm.h>
63
64 #include <miscfs/specfs/specdev.h>
65
66 /* Macros to clear/set/test flags. */
67 #define SET(t, f) (t) |= (f)
68 #define CLR(t, f) (t) &= ~(f)
69 #define ISSET(t, f) ((t) & (f))
70
71 /*
72 * Definitions for the buffer hash lists.
73 */
74 #define BUFHASH(dvp, lbn) \
75 (&bufhashtbl[((long)(dvp) / sizeof(*(dvp)) + (int)(lbn)) & bufhash])
76 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
77 u_long bufhash;
78 struct bio_ops bioops; /* I/O operation notification */
79
80 /*
81 * Insq/Remq for the buffer hash lists.
82 */
83 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash)
84 #define bremhash(bp) LIST_REMOVE(bp, b_hash)
85
86 /*
87 * Definitions for the buffer free lists.
88 */
89 #define BQUEUES 4 /* number of free buffer queues */
90
91 #define BQ_LOCKED 0 /* super-blocks &c */
92 #define BQ_LRU 1 /* lru, useful buffers */
93 #define BQ_AGE 2 /* rubbish */
94 #define BQ_EMPTY 3 /* buffer headers with no memory */
95
96 TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
97 int needbuffer;
98
99 /*
100 * Buffer pool for I/O buffers.
101 */
102 struct pool bufpool;
103
104 /*
105 * Insq/Remq for the buffer free lists.
106 */
107 #define binsheadfree(bp, dp) TAILQ_INSERT_HEAD(dp, bp, b_freelist)
108 #define binstailfree(bp, dp) TAILQ_INSERT_TAIL(dp, bp, b_freelist)
109
110 static __inline struct buf *bio_doread __P((struct vnode *, daddr_t, int,
111 struct ucred *, int));
112 int count_lock_queue __P((void));
113
114 void
115 bremfree(bp)
116 struct buf *bp;
117 {
118 int s = splbio();
119
120 struct bqueues *dp = NULL;
121
122 /*
123 * We only calculate the head of the freelist when removing
124 * the last element of the list as that is the only time that
125 * it is needed (e.g. to reset the tail pointer).
126 *
127 * NB: This makes an assumption about how tailq's are implemented.
128 */
129 if (bp->b_freelist.tqe_next == NULL) {
130 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
131 if (dp->tqh_last == &bp->b_freelist.tqe_next)
132 break;
133 if (dp == &bufqueues[BQUEUES])
134 panic("bremfree: lost tail");
135 }
136 TAILQ_REMOVE(dp, bp, b_freelist);
137
138 splx(s);
139 }
140
141 /*
142 * Initialize buffers and hash links for buffers.
143 */
144 void
145 bufinit()
146 {
147 struct buf *bp;
148 struct bqueues *dp;
149 int i;
150 int base, residual;
151
152 /*
153 * Initialize the buffer pool. This pool is used for buffers
154 * which are strictly I/O control blocks, not buffer cache
155 * buffers.
156 */
157 pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", 0,
158 NULL, NULL, M_DEVBUF);
159
160 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
161 TAILQ_INIT(dp);
162 bufhashtbl = hashinit(nbuf, M_CACHE, M_WAITOK, &bufhash);
163 base = bufpages / nbuf;
164 residual = bufpages % nbuf;
165 for (i = 0; i < nbuf; i++) {
166 bp = &buf[i];
167 memset((char *)bp, 0, sizeof(*bp));
168 bp->b_dev = NODEV;
169 bp->b_rcred = NOCRED;
170 bp->b_wcred = NOCRED;
171 bp->b_vnbufs.le_next = NOLIST;
172 LIST_INIT(&bp->b_dep);
173 bp->b_data = buffers + i * MAXBSIZE;
174 if (i < residual)
175 bp->b_bufsize = (base + 1) * NBPG;
176 else
177 bp->b_bufsize = base * NBPG;
178 bp->b_flags = B_INVAL;
179 dp = bp->b_bufsize ? &bufqueues[BQ_AGE] : &bufqueues[BQ_EMPTY];
180 binsheadfree(bp, dp);
181 binshash(bp, &invalhash);
182 }
183 }
184
185 static __inline struct buf *
186 bio_doread(vp, blkno, size, cred, async)
187 struct vnode *vp;
188 daddr_t blkno;
189 int size;
190 struct ucred *cred;
191 int async;
192 {
193 struct buf *bp;
194 struct proc *p = (curproc != NULL ? curproc : &proc0); /* XXX */
195
196 bp = getblk(vp, blkno, size, 0, 0);
197
198 /*
199 * If buffer does not have data valid, start a read.
200 * Note that if buffer is B_INVAL, getblk() won't return it.
201 * Therefore, it's valid if it's I/O has completed or been delayed.
202 */
203 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
204 /* Start I/O for the buffer (keeping credentials). */
205 SET(bp->b_flags, B_READ | async);
206 if (cred != NOCRED && bp->b_rcred == NOCRED) {
207 crhold(cred);
208 bp->b_rcred = cred;
209 }
210 VOP_STRATEGY(bp);
211
212 /* Pay for the read. */
213 p->p_stats->p_ru.ru_inblock++;
214 } else if (async) {
215 brelse(bp);
216 }
217
218 return (bp);
219 }
220
221 /*
222 * Read a disk block.
223 * This algorithm described in Bach (p.54).
224 */
225 int
226 bread(vp, blkno, size, cred, bpp)
227 struct vnode *vp;
228 daddr_t blkno;
229 int size;
230 struct ucred *cred;
231 struct buf **bpp;
232 {
233 struct buf *bp;
234
235 /* Get buffer for block. */
236 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
237
238 /*
239 * Delayed write buffers are found in the cache and have
240 * valid contents. Also, B_ERROR is not set, otherwise
241 * getblk() would not have returned them.
242 */
243 if (ISSET(bp->b_flags, B_DONE|B_DELWRI))
244 return (0);
245
246 /*
247 * Otherwise, we had to start a read for it; wait until
248 * it's valid and return the result.
249 */
250 return (biowait(bp));
251 }
252
253 /*
254 * Read-ahead multiple disk blocks. The first is sync, the rest async.
255 * Trivial modification to the breada algorithm presented in Bach (p.55).
256 */
257 int
258 breadn(vp, blkno, size, rablks, rasizes, nrablks, cred, bpp)
259 struct vnode *vp;
260 daddr_t blkno; int size;
261 daddr_t rablks[]; int rasizes[];
262 int nrablks;
263 struct ucred *cred;
264 struct buf **bpp;
265 {
266 struct buf *bp;
267 int i;
268
269 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
270
271 /*
272 * For each of the read-ahead blocks, start a read, if necessary.
273 */
274 for (i = 0; i < nrablks; i++) {
275 /* If it's in the cache, just go on to next one. */
276 if (incore(vp, rablks[i]))
277 continue;
278
279 /* Get a buffer for the read-ahead block */
280 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
281 }
282
283 /*
284 * Delayed write buffers are found in the cache and have
285 * valid contents. Also, B_ERROR is not set, otherwise
286 * getblk() would not have returned them.
287 */
288 if (ISSET(bp->b_flags, B_DONE|B_DELWRI))
289 return (0);
290
291 /*
292 * Otherwise, we had to start a read for it; wait until
293 * it's valid and return the result.
294 */
295 return (biowait(bp));
296 }
297
298 /*
299 * Read with single-block read-ahead. Defined in Bach (p.55), but
300 * implemented as a call to breadn().
301 * XXX for compatibility with old file systems.
302 */
303 int
304 breada(vp, blkno, size, rablkno, rabsize, cred, bpp)
305 struct vnode *vp;
306 daddr_t blkno; int size;
307 daddr_t rablkno; int rabsize;
308 struct ucred *cred;
309 struct buf **bpp;
310 {
311
312 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
313 }
314
315 /*
316 * Block write. Described in Bach (p.56)
317 */
318 int
319 bwrite(bp)
320 struct buf *bp;
321 {
322 int rv, sync, wasdelayed, s;
323 struct proc *p = (curproc != NULL ? curproc : &proc0); /* XXX */
324 struct vnode *vp;
325 struct mount *mp;
326
327 /*
328 * Remember buffer type, to switch on it later. If the write was
329 * synchronous, but the file system was mounted with MNT_ASYNC,
330 * convert it to a delayed write.
331 * XXX note that this relies on delayed tape writes being converted
332 * to async, not sync writes (which is safe, but ugly).
333 */
334 sync = !ISSET(bp->b_flags, B_ASYNC);
335 if (sync && bp->b_vp && bp->b_vp->v_mount &&
336 ISSET(bp->b_vp->v_mount->mnt_flag, MNT_ASYNC)) {
337 bdwrite(bp);
338 return (0);
339 }
340
341 /*
342 * Collect statistics on synchronous and asynchronous writes.
343 * Writes to block devices are charged to their associated
344 * filesystem (if any).
345 */
346 if ((vp = bp->b_vp) != NULL) {
347 if (vp->v_type == VBLK)
348 mp = vp->v_specmountpoint;
349 else
350 mp = vp->v_mount;
351 if (mp != NULL) {
352 if (sync)
353 mp->mnt_stat.f_syncwrites++;
354 else
355 mp->mnt_stat.f_asyncwrites++;
356 }
357 }
358
359 wasdelayed = ISSET(bp->b_flags, B_DELWRI);
360
361 s = splbio();
362
363 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
364
365 /*
366 * Pay for the I/O operation and make sure the buf is on the correct
367 * vnode queue.
368 */
369 if (wasdelayed)
370 reassignbuf(bp, bp->b_vp);
371 else
372 p->p_stats->p_ru.ru_oublock++;
373
374 /* Initiate disk write. Make sure the appropriate party is charged. */
375 bp->b_vp->v_numoutput++;
376 splx(s);
377
378 SET(bp->b_flags, B_WRITEINPROG);
379 VOP_STRATEGY(bp);
380
381 if (sync) {
382 /* If I/O was synchronous, wait for it to complete. */
383 rv = biowait(bp);
384
385 /* Release the buffer. */
386 brelse(bp);
387
388 return (rv);
389 } else {
390 return (0);
391 }
392 }
393
394 int
395 vn_bwrite(v)
396 void *v;
397 {
398 struct vop_bwrite_args *ap = v;
399
400 return (bwrite(ap->a_bp));
401 }
402
403 /*
404 * Delayed write.
405 *
406 * The buffer is marked dirty, but is not queued for I/O.
407 * This routine should be used when the buffer is expected
408 * to be modified again soon, typically a small write that
409 * partially fills a buffer.
410 *
411 * NB: magnetic tapes cannot be delayed; they must be
412 * written in the order that the writes are requested.
413 *
414 * Described in Leffler, et al. (pp. 208-213).
415 */
416 void
417 bdwrite(bp)
418 struct buf *bp;
419 {
420 struct proc *p = (curproc != NULL ? curproc : &proc0); /* XXX */
421 int s;
422
423 /* If this is a tape block, write the block now. */
424 /* XXX NOTE: the memory filesystem usurpes major device */
425 /* XXX number 255, which is a bad idea. */
426 if (bp->b_dev != NODEV &&
427 major(bp->b_dev) != 255 && /* XXX - MFS buffers! */
428 bdevsw[major(bp->b_dev)].d_type == D_TAPE) {
429 bawrite(bp);
430 return;
431 }
432
433 /*
434 * If the block hasn't been seen before:
435 * (1) Mark it as having been seen,
436 * (2) Charge for the write,
437 * (3) Make sure it's on its vnode's correct block list.
438 */
439 s = splbio();
440
441 if (!ISSET(bp->b_flags, B_DELWRI)) {
442 SET(bp->b_flags, B_DELWRI);
443 p->p_stats->p_ru.ru_oublock++;
444 reassignbuf(bp, bp->b_vp);
445 }
446
447 /* Otherwise, the "write" is done, so mark and release the buffer. */
448 CLR(bp->b_flags, B_NEEDCOMMIT|B_DONE);
449 splx(s);
450
451 brelse(bp);
452 }
453
454 /*
455 * Asynchronous block write; just an asynchronous bwrite().
456 */
457 void
458 bawrite(bp)
459 struct buf *bp;
460 {
461
462 SET(bp->b_flags, B_ASYNC);
463 VOP_BWRITE(bp);
464 }
465
466 /*
467 * Ordered block write; asynchronous, but I/O will occur in order queued.
468 */
469 void
470 bowrite(bp)
471 struct buf *bp;
472 {
473
474 SET(bp->b_flags, B_ASYNC | B_ORDERED);
475 VOP_BWRITE(bp);
476 }
477
478 /*
479 * Same as first half of bdwrite, mark buffer dirty, but do not release it.
480 */
481 void
482 bdirty(bp)
483 struct buf *bp;
484 {
485 struct proc *p = (curproc != NULL ? curproc : &proc0); /* XXX */
486 int s;
487
488 s = splbio();
489
490 CLR(bp->b_flags, B_AGE);
491
492 if (!ISSET(bp->b_flags, B_DELWRI)) {
493 SET(bp->b_flags, B_DELWRI);
494 p->p_stats->p_ru.ru_oublock++;
495 reassignbuf(bp, bp->b_vp);
496 }
497
498 splx(s);
499 }
500
501 /*
502 * Release a buffer on to the free lists.
503 * Described in Bach (p. 46).
504 */
505 void
506 brelse(bp)
507 struct buf *bp;
508 {
509 struct bqueues *bufq;
510 int s;
511
512 /* Wake up any processes waiting for any buffer to become free. */
513 if (needbuffer) {
514 needbuffer = 0;
515 wakeup(&needbuffer);
516 }
517
518 /* Block disk interrupts. */
519 s = splbio();
520
521 /* Wake up any proceeses waiting for _this_ buffer to become free. */
522 if (ISSET(bp->b_flags, B_WANTED)) {
523 CLR(bp->b_flags, B_WANTED|B_AGE);
524 wakeup(bp);
525 }
526
527 /*
528 * Determine which queue the buffer should be on, then put it there.
529 */
530
531 /* If it's locked, don't report an error; try again later. */
532 if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
533 CLR(bp->b_flags, B_ERROR);
534
535 /* If it's not cacheable, or an error, mark it invalid. */
536 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
537 SET(bp->b_flags, B_INVAL);
538
539 if (ISSET(bp->b_flags, B_VFLUSH)) {
540 /*
541 * This is a delayed write buffer that was just flushed to
542 * disk. It is still on the LRU queue. If it's become
543 * invalid, then we need to move it to a different queue;
544 * otherwise leave it in its current position.
545 */
546 CLR(bp->b_flags, B_VFLUSH);
547 if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE))
548 goto already_queued;
549 else
550 bremfree(bp);
551 }
552
553 if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
554 /*
555 * If it's invalid or empty, dissociate it from its vnode
556 * and put on the head of the appropriate queue.
557 */
558 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
559 (*bioops.io_deallocate)(bp);
560 CLR(bp->b_flags, B_DONE|B_DELWRI);
561 if (bp->b_vp) {
562 reassignbuf(bp, bp->b_vp);
563 brelvp(bp);
564 }
565 if (bp->b_bufsize <= 0)
566 /* no data */
567 bufq = &bufqueues[BQ_EMPTY];
568 else
569 /* invalid data */
570 bufq = &bufqueues[BQ_AGE];
571 binsheadfree(bp, bufq);
572 } else {
573 /*
574 * It has valid data. Put it on the end of the appropriate
575 * queue, so that it'll stick around for as long as possible.
576 * If buf is AGE, but has dependencies, must put it on last
577 * bufqueue to be scanned, ie LRU. This protects against the
578 * livelock where BQ_AGE only has buffers with dependencies,
579 * and we thus never get to the dependent buffers in BQ_LRU.
580 */
581 if (ISSET(bp->b_flags, B_LOCKED))
582 /* locked in core */
583 bufq = &bufqueues[BQ_LOCKED];
584 else if (!ISSET(bp->b_flags, B_AGE))
585 /* valid data */
586 bufq = &bufqueues[BQ_LRU];
587 else {
588 /* stale but valid data */
589 int has_deps;
590
591 if (LIST_FIRST(&bp->b_dep) != NULL &&
592 bioops.io_countdeps)
593 has_deps = (*bioops.io_countdeps)(bp, 0);
594 else
595 has_deps = 0;
596 bufq = has_deps ? &bufqueues[BQ_LRU] :
597 &bufqueues[BQ_AGE];
598 }
599 binstailfree(bp, bufq);
600 }
601
602 already_queued:
603 /* Unlock the buffer. */
604 CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE|B_ORDERED);
605
606 /* Allow disk interrupts. */
607 splx(s);
608 }
609
610 /*
611 * Determine if a block is in the cache.
612 * Just look on what would be its hash chain. If it's there, return
613 * a pointer to it, unless it's marked invalid. If it's marked invalid,
614 * we normally don't return the buffer, unless the caller explicitly
615 * wants us to.
616 */
617 struct buf *
618 incore(vp, blkno)
619 struct vnode *vp;
620 daddr_t blkno;
621 {
622 struct buf *bp;
623
624 bp = BUFHASH(vp, blkno)->lh_first;
625
626 /* Search hash chain */
627 for (; bp != NULL; bp = bp->b_hash.le_next) {
628 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
629 !ISSET(bp->b_flags, B_INVAL))
630 return (bp);
631 }
632
633 return (0);
634 }
635
636 /*
637 * Get a block of requested size that is associated with
638 * a given vnode and block offset. If it is found in the
639 * block cache, mark it as having been found, make it busy
640 * and return it. Otherwise, return an empty block of the
641 * correct size. It is up to the caller to insure that the
642 * cached blocks be of the correct size.
643 */
644 struct buf *
645 getblk(vp, blkno, size, slpflag, slptimeo)
646 struct vnode *vp;
647 daddr_t blkno;
648 int size, slpflag, slptimeo;
649 {
650 struct bufhashhdr *bh;
651 struct buf *bp;
652 int s, err;
653
654 /*
655 * XXX
656 * The following is an inlined version of 'incore()', but with
657 * the 'invalid' test moved to after the 'busy' test. It's
658 * necessary because there are some cases in which the NFS
659 * code sets B_INVAL prior to writing data to the server, but
660 * in which the buffers actually contain valid data. In this
661 * case, we can't allow the system to allocate a new buffer for
662 * the block until the write is finished.
663 */
664 bh = BUFHASH(vp, blkno);
665 start:
666 bp = bh->lh_first;
667 for (; bp != NULL; bp = bp->b_hash.le_next) {
668 if (bp->b_lblkno != blkno || bp->b_vp != vp)
669 continue;
670
671 s = splbio();
672 if (ISSET(bp->b_flags, B_BUSY)) {
673 SET(bp->b_flags, B_WANTED);
674 err = tsleep(bp, slpflag | (PRIBIO + 1), "getblk",
675 slptimeo);
676 splx(s);
677 if (err)
678 return (NULL);
679 goto start;
680 }
681
682 if (!ISSET(bp->b_flags, B_INVAL)) {
683 #ifdef DIAGNOSTIC
684 if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
685 bp->b_bcount < size)
686 panic("getblk: block size invariant failed");
687 #endif
688 SET(bp->b_flags, B_BUSY);
689 bremfree(bp);
690 splx(s);
691 break;
692 }
693 splx(s);
694 }
695
696 if (bp == NULL) {
697 if ((bp = getnewbuf(slpflag, slptimeo)) == NULL)
698 goto start;
699 binshash(bp, bh);
700 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
701 s = splbio();
702 bgetvp(vp, bp);
703 splx(s);
704 }
705 allocbuf(bp, size);
706 return (bp);
707 }
708
709 /*
710 * Get an empty, disassociated buffer of given size.
711 */
712 struct buf *
713 geteblk(size)
714 int size;
715 {
716 struct buf *bp;
717
718 while ((bp = getnewbuf(0, 0)) == 0)
719 ;
720 SET(bp->b_flags, B_INVAL);
721 binshash(bp, &invalhash);
722 allocbuf(bp, size);
723
724 return (bp);
725 }
726
727 /*
728 * Expand or contract the actual memory allocated to a buffer.
729 *
730 * If the buffer shrinks, data is lost, so it's up to the
731 * caller to have written it out *first*; this routine will not
732 * start a write. If the buffer grows, it's the callers
733 * responsibility to fill out the buffer's additional contents.
734 */
735 void
736 allocbuf(bp, size)
737 struct buf *bp;
738 int size;
739 {
740 struct buf *nbp;
741 vsize_t desired_size;
742 int s;
743
744 desired_size = roundup(size, NBPG);
745 if (desired_size > MAXBSIZE)
746 panic("allocbuf: buffer larger than MAXBSIZE requested");
747
748 if (bp->b_bufsize == desired_size)
749 goto out;
750
751 /*
752 * If the buffer is smaller than the desired size, we need to snarf
753 * it from other buffers. Get buffers (via getnewbuf()), and
754 * steal their pages.
755 */
756 while (bp->b_bufsize < desired_size) {
757 int amt;
758
759 /* find a buffer */
760 while ((nbp = getnewbuf(0, 0)) == NULL)
761 ;
762 SET(nbp->b_flags, B_INVAL);
763 binshash(nbp, &invalhash);
764
765 /* and steal its pages, up to the amount we need */
766 amt = min(nbp->b_bufsize, (desired_size - bp->b_bufsize));
767 pagemove((nbp->b_data + nbp->b_bufsize - amt),
768 bp->b_data + bp->b_bufsize, amt);
769 bp->b_bufsize += amt;
770 nbp->b_bufsize -= amt;
771
772 /* reduce transfer count if we stole some data */
773 if (nbp->b_bcount > nbp->b_bufsize)
774 nbp->b_bcount = nbp->b_bufsize;
775
776 #ifdef DIAGNOSTIC
777 if (nbp->b_bufsize < 0)
778 panic("allocbuf: negative bufsize");
779 #endif
780
781 brelse(nbp);
782 }
783
784 /*
785 * If we want a buffer smaller than the current size,
786 * shrink this buffer. Grab a buf head from the EMPTY queue,
787 * move a page onto it, and put it on front of the AGE queue.
788 * If there are no free buffer headers, leave the buffer alone.
789 */
790 if (bp->b_bufsize > desired_size) {
791 s = splbio();
792 if ((nbp = bufqueues[BQ_EMPTY].tqh_first) == NULL) {
793 /* No free buffer head */
794 splx(s);
795 goto out;
796 }
797 bremfree(nbp);
798 SET(nbp->b_flags, B_BUSY);
799 splx(s);
800
801 /* move the page to it and note this change */
802 pagemove(bp->b_data + desired_size,
803 nbp->b_data, bp->b_bufsize - desired_size);
804 nbp->b_bufsize = bp->b_bufsize - desired_size;
805 bp->b_bufsize = desired_size;
806 nbp->b_bcount = 0;
807 SET(nbp->b_flags, B_INVAL);
808
809 /* release the newly-filled buffer and leave */
810 brelse(nbp);
811 }
812
813 out:
814 bp->b_bcount = size;
815 }
816
817 /*
818 * Find a buffer which is available for use.
819 * Select something from a free list.
820 * Preference is to AGE list, then LRU list.
821 */
822 struct buf *
823 getnewbuf(slpflag, slptimeo)
824 int slpflag, slptimeo;
825 {
826 struct buf *bp;
827 int s;
828
829 start:
830 s = splbio();
831 if ((bp = bufqueues[BQ_AGE].tqh_first) != NULL ||
832 (bp = bufqueues[BQ_LRU].tqh_first) != NULL) {
833 bremfree(bp);
834 } else {
835 /* wait for a free buffer of any kind */
836 needbuffer = 1;
837 tsleep(&needbuffer, slpflag|(PRIBIO+1), "getnewbuf", slptimeo);
838 splx(s);
839 return (0);
840 }
841
842 if (ISSET(bp->b_flags, B_VFLUSH)) {
843 /*
844 * This is a delayed write buffer being flushed to disk. Make
845 * sure it gets aged out of the queue when it's finished, and
846 * leave it off the LRU queue.
847 */
848 CLR(bp->b_flags, B_VFLUSH);
849 SET(bp->b_flags, B_AGE);
850 splx(s);
851 goto start;
852 }
853
854 /* Buffer is no longer on free lists. */
855 SET(bp->b_flags, B_BUSY);
856
857 /* If buffer was a delayed write, start it, and go back to the top. */
858 if (ISSET(bp->b_flags, B_DELWRI)) {
859 splx(s);
860 /*
861 * This buffer has gone through the LRU, so make sure it gets
862 * reused ASAP.
863 */
864 SET(bp->b_flags, B_AGE);
865 bawrite(bp);
866 goto start;
867 }
868
869 /* disassociate us from our vnode, if we had one... */
870 if (bp->b_vp)
871 brelvp(bp);
872 splx(s);
873
874 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
875 (*bioops.io_deallocate)(bp);
876
877 /* clear out various other fields */
878 bp->b_flags = B_BUSY;
879 bp->b_dev = NODEV;
880 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
881 bp->b_iodone = 0;
882 bp->b_error = 0;
883 bp->b_resid = 0;
884 bp->b_bcount = 0;
885 bp->b_dirtyoff = bp->b_dirtyend = 0;
886 bp->b_validoff = bp->b_validend = 0;
887
888 /* nuke any credentials we were holding */
889 if (bp->b_rcred != NOCRED) {
890 crfree(bp->b_rcred);
891 bp->b_rcred = NOCRED;
892 }
893 if (bp->b_wcred != NOCRED) {
894 crfree(bp->b_wcred);
895 bp->b_wcred = NOCRED;
896 }
897
898 bremhash(bp);
899 return (bp);
900 }
901
902 /*
903 * Wait for operations on the buffer to complete.
904 * When they do, extract and return the I/O's error value.
905 */
906 int
907 biowait(bp)
908 struct buf *bp;
909 {
910 int s;
911
912 s = splbio();
913 while (!ISSET(bp->b_flags, B_DONE))
914 tsleep(bp, PRIBIO + 1, "biowait", 0);
915 splx(s);
916
917 /* check for interruption of I/O (e.g. via NFS), then errors. */
918 if (ISSET(bp->b_flags, B_EINTR)) {
919 CLR(bp->b_flags, B_EINTR);
920 return (EINTR);
921 } else if (ISSET(bp->b_flags, B_ERROR))
922 return (bp->b_error ? bp->b_error : EIO);
923 else
924 return (0);
925 }
926
927 /*
928 * Mark I/O complete on a buffer.
929 *
930 * If a callback has been requested, e.g. the pageout
931 * daemon, do so. Otherwise, awaken waiting processes.
932 *
933 * [ Leffler, et al., says on p.247:
934 * "This routine wakes up the blocked process, frees the buffer
935 * for an asynchronous write, or, for a request by the pagedaemon
936 * process, invokes a procedure specified in the buffer structure" ]
937 *
938 * In real life, the pagedaemon (or other system processes) wants
939 * to do async stuff to, and doesn't want the buffer brelse()'d.
940 * (for swap pager, that puts swap buffers on the free lists (!!!),
941 * for the vn device, that puts malloc'd buffers on the free lists!)
942 */
943 void
944 biodone(bp)
945 struct buf *bp;
946 {
947 int s = splbio();
948
949 if (ISSET(bp->b_flags, B_DONE))
950 panic("biodone already");
951 SET(bp->b_flags, B_DONE); /* note that it's done */
952
953 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
954 (*bioops.io_complete)(bp);
955
956 if (!ISSET(bp->b_flags, B_READ)) /* wake up reader */
957 vwakeup(bp);
958
959 if (ISSET(bp->b_flags, B_CALL)) { /* if necessary, call out */
960 CLR(bp->b_flags, B_CALL); /* but note callout done */
961 (*bp->b_iodone)(bp);
962 } else {
963 if (ISSET(bp->b_flags, B_ASYNC)) /* if async, release */
964 brelse(bp);
965 else { /* or just wakeup the buffer */
966 CLR(bp->b_flags, B_WANTED);
967 wakeup(bp);
968 }
969 }
970
971 splx(s);
972 }
973
974 /*
975 * Return a count of buffers on the "locked" queue.
976 */
977 int
978 count_lock_queue()
979 {
980 struct buf *bp;
981 int n = 0;
982
983 for (bp = bufqueues[BQ_LOCKED].tqh_first; bp;
984 bp = bp->b_freelist.tqe_next)
985 n++;
986 return (n);
987 }
988
989 #ifdef DEBUG
990 /*
991 * Print out statistics on the current allocation of the buffer pool.
992 * Can be enabled to print out on every ``sync'' by setting "syncprt"
993 * in vfs_syscalls.c using sysctl.
994 */
995 void
996 vfs_bufstats()
997 {
998 int s, i, j, count;
999 struct buf *bp;
1000 struct bqueues *dp;
1001 int counts[MAXBSIZE/NBPG+1];
1002 static char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE", "EMPTY" };
1003
1004 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1005 count = 0;
1006 for (j = 0; j <= MAXBSIZE/NBPG; j++)
1007 counts[j] = 0;
1008 s = splbio();
1009 for (bp = dp->tqh_first; bp; bp = bp->b_freelist.tqe_next) {
1010 counts[bp->b_bufsize/NBPG]++;
1011 count++;
1012 }
1013 splx(s);
1014 printf("%s: total-%d", bname[i], count);
1015 for (j = 0; j <= MAXBSIZE/NBPG; j++)
1016 if (counts[j] != 0)
1017 printf(", %d-%d", j * NBPG, counts[j]);
1018 printf("\n");
1019 }
1020 }
1021 #endif /* DEBUG */
1022