Home | History | Annotate | Line # | Download | only in kern
vfs_bio.c revision 1.77
      1 /*	$NetBSD: vfs_bio.c,v 1.77 2001/11/12 15:25:35 lukem Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1994 Christopher G. Demetriou
      5  * Copyright (c) 1982, 1986, 1989, 1993
      6  *	The Regents of the University of California.  All rights reserved.
      7  * (c) UNIX System Laboratories, Inc.
      8  * All or some portions of this file are derived from material licensed
      9  * to the University of California by American Telephone and Telegraph
     10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
     11  * the permission of UNIX System Laboratories, Inc.
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  * 3. All advertising materials mentioning features or use of this software
     22  *    must display the following acknowledgement:
     23  *	This product includes software developed by the University of
     24  *	California, Berkeley and its contributors.
     25  * 4. Neither the name of the University nor the names of its contributors
     26  *    may be used to endorse or promote products derived from this software
     27  *    without specific prior written permission.
     28  *
     29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     39  * SUCH DAMAGE.
     40  *
     41  *	@(#)vfs_bio.c	8.6 (Berkeley) 1/11/94
     42  */
     43 
     44 /*
     45  * Some references:
     46  *	Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
     47  *	Leffler, et al.: The Design and Implementation of the 4.3BSD
     48  *		UNIX Operating System (Addison Welley, 1989)
     49  */
     50 
     51 #include <sys/cdefs.h>
     52 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.77 2001/11/12 15:25:35 lukem Exp $");
     53 
     54 #include <sys/param.h>
     55 #include <sys/systm.h>
     56 #include <sys/proc.h>
     57 #include <sys/buf.h>
     58 #include <sys/vnode.h>
     59 #include <sys/mount.h>
     60 #include <sys/malloc.h>
     61 #include <sys/resourcevar.h>
     62 #include <sys/conf.h>
     63 
     64 #include <uvm/uvm.h>
     65 
     66 #include <miscfs/specfs/specdev.h>
     67 
     68 /* Macros to clear/set/test flags. */
     69 #define	SET(t, f)	(t) |= (f)
     70 #define	CLR(t, f)	(t) &= ~(f)
     71 #define	ISSET(t, f)	((t) & (f))
     72 
     73 /*
     74  * Definitions for the buffer hash lists.
     75  */
     76 #define	BUFHASH(dvp, lbn)	\
     77 	(&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
     78 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
     79 u_long	bufhash;
     80 struct bio_ops bioops;	/* I/O operation notification */
     81 
     82 /*
     83  * Insq/Remq for the buffer hash lists.
     84  */
     85 #define	binshash(bp, dp)	LIST_INSERT_HEAD(dp, bp, b_hash)
     86 #define	bremhash(bp)		LIST_REMOVE(bp, b_hash)
     87 
     88 /*
     89  * Definitions for the buffer free lists.
     90  */
     91 #define	BQUEUES		4		/* number of free buffer queues */
     92 
     93 #define	BQ_LOCKED	0		/* super-blocks &c */
     94 #define	BQ_LRU		1		/* lru, useful buffers */
     95 #define	BQ_AGE		2		/* rubbish */
     96 #define	BQ_EMPTY	3		/* buffer headers with no memory */
     97 
     98 TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
     99 int needbuffer;
    100 
    101 /*
    102  * Buffer pool for I/O buffers.
    103  */
    104 struct pool bufpool;
    105 
    106 /*
    107  * Insq/Remq for the buffer free lists.
    108  */
    109 #define	binsheadfree(bp, dp)	TAILQ_INSERT_HEAD(dp, bp, b_freelist)
    110 #define	binstailfree(bp, dp)	TAILQ_INSERT_TAIL(dp, bp, b_freelist)
    111 
    112 static __inline struct buf *bio_doread __P((struct vnode *, daddr_t, int,
    113 					    struct ucred *, int));
    114 int count_lock_queue __P((void));
    115 
    116 void
    117 bremfree(bp)
    118 	struct buf *bp;
    119 {
    120 	int s = splbio();
    121 
    122 	struct bqueues *dp = NULL;
    123 
    124 	/*
    125 	 * We only calculate the head of the freelist when removing
    126 	 * the last element of the list as that is the only time that
    127 	 * it is needed (e.g. to reset the tail pointer).
    128 	 *
    129 	 * NB: This makes an assumption about how tailq's are implemented.
    130 	 */
    131 	if (bp->b_freelist.tqe_next == NULL) {
    132 		for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
    133 			if (dp->tqh_last == &bp->b_freelist.tqe_next)
    134 				break;
    135 		if (dp == &bufqueues[BQUEUES])
    136 			panic("bremfree: lost tail");
    137 	}
    138 	TAILQ_REMOVE(dp, bp, b_freelist);
    139 	splx(s);
    140 }
    141 
    142 /*
    143  * Initialize buffers and hash links for buffers.
    144  */
    145 void
    146 bufinit()
    147 {
    148 	struct buf *bp;
    149 	struct bqueues *dp;
    150 	int i;
    151 	int base, residual;
    152 
    153 	/*
    154 	 * Initialize the buffer pool.  This pool is used for buffers
    155 	 * which are strictly I/O control blocks, not buffer cache
    156 	 * buffers.
    157 	 */
    158 	pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", 0,
    159 	    NULL, NULL, M_DEVBUF);
    160 
    161 	for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
    162 		TAILQ_INIT(dp);
    163 	bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
    164 	base = bufpages / nbuf;
    165 	residual = bufpages % nbuf;
    166 	for (i = 0; i < nbuf; i++) {
    167 		bp = &buf[i];
    168 		memset((char *)bp, 0, sizeof(*bp));
    169 		bp->b_dev = NODEV;
    170 		bp->b_vnbufs.le_next = NOLIST;
    171 		LIST_INIT(&bp->b_dep);
    172 		bp->b_data = buffers + i * MAXBSIZE;
    173 		if (i < residual)
    174 			bp->b_bufsize = (base + 1) * PAGE_SIZE;
    175 		else
    176 			bp->b_bufsize = base * PAGE_SIZE;
    177 		bp->b_flags = B_INVAL;
    178 		dp = bp->b_bufsize ? &bufqueues[BQ_AGE] : &bufqueues[BQ_EMPTY];
    179 		binsheadfree(bp, dp);
    180 		binshash(bp, &invalhash);
    181 	}
    182 }
    183 
    184 static __inline struct buf *
    185 bio_doread(vp, blkno, size, cred, async)
    186 	struct vnode *vp;
    187 	daddr_t blkno;
    188 	int size;
    189 	struct ucred *cred;
    190 	int async;
    191 {
    192 	struct buf *bp;
    193 	struct proc *p = (curproc != NULL ? curproc : &proc0);	/* XXX */
    194 
    195 	bp = getblk(vp, blkno, size, 0, 0);
    196 
    197 	/*
    198 	 * If buffer does not have data valid, start a read.
    199 	 * Note that if buffer is B_INVAL, getblk() won't return it.
    200 	 * Therefore, it's valid if it's I/O has completed or been delayed.
    201 	 */
    202 	if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
    203 		/* Start I/O for the buffer. */
    204 		SET(bp->b_flags, B_READ | async);
    205 		VOP_STRATEGY(bp);
    206 
    207 		/* Pay for the read. */
    208 		p->p_stats->p_ru.ru_inblock++;
    209 	} else if (async) {
    210 		brelse(bp);
    211 	}
    212 
    213 	return (bp);
    214 }
    215 
    216 /*
    217  * Read a disk block.
    218  * This algorithm described in Bach (p.54).
    219  */
    220 int
    221 bread(vp, blkno, size, cred, bpp)
    222 	struct vnode *vp;
    223 	daddr_t blkno;
    224 	int size;
    225 	struct ucred *cred;
    226 	struct buf **bpp;
    227 {
    228 	struct buf *bp;
    229 
    230 	/* Get buffer for block. */
    231 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
    232 
    233 	/*
    234 	 * Delayed write buffers are found in the cache and have
    235 	 * valid contents. Also, B_ERROR is not set, otherwise
    236 	 * getblk() would not have returned them.
    237 	 */
    238 	if (ISSET(bp->b_flags, B_DONE|B_DELWRI))
    239 		return (0);
    240 
    241 	/*
    242 	 * Otherwise, we had to start a read for it; wait until
    243 	 * it's valid and return the result.
    244 	 */
    245 	return (biowait(bp));
    246 }
    247 
    248 /*
    249  * Read-ahead multiple disk blocks. The first is sync, the rest async.
    250  * Trivial modification to the breada algorithm presented in Bach (p.55).
    251  */
    252 int
    253 breadn(vp, blkno, size, rablks, rasizes, nrablks, cred, bpp)
    254 	struct vnode *vp;
    255 	daddr_t blkno; int size;
    256 	daddr_t rablks[]; int rasizes[];
    257 	int nrablks;
    258 	struct ucred *cred;
    259 	struct buf **bpp;
    260 {
    261 	struct buf *bp;
    262 	int i;
    263 
    264 	bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
    265 
    266 	/*
    267 	 * For each of the read-ahead blocks, start a read, if necessary.
    268 	 */
    269 	for (i = 0; i < nrablks; i++) {
    270 		/* If it's in the cache, just go on to next one. */
    271 		if (incore(vp, rablks[i]))
    272 			continue;
    273 
    274 		/* Get a buffer for the read-ahead block */
    275 		(void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
    276 	}
    277 
    278 	/*
    279 	 * Delayed write buffers are found in the cache and have
    280 	 * valid contents. Also, B_ERROR is not set, otherwise
    281 	 * getblk() would not have returned them.
    282 	 */
    283 	if (ISSET(bp->b_flags, B_DONE|B_DELWRI))
    284 		return (0);
    285 
    286 	/*
    287 	 * Otherwise, we had to start a read for it; wait until
    288 	 * it's valid and return the result.
    289 	 */
    290 	return (biowait(bp));
    291 }
    292 
    293 /*
    294  * Read with single-block read-ahead.  Defined in Bach (p.55), but
    295  * implemented as a call to breadn().
    296  * XXX for compatibility with old file systems.
    297  */
    298 int
    299 breada(vp, blkno, size, rablkno, rabsize, cred, bpp)
    300 	struct vnode *vp;
    301 	daddr_t blkno; int size;
    302 	daddr_t rablkno; int rabsize;
    303 	struct ucred *cred;
    304 	struct buf **bpp;
    305 {
    306 
    307 	return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
    308 }
    309 
    310 /*
    311  * Block write.  Described in Bach (p.56)
    312  */
    313 int
    314 bwrite(bp)
    315 	struct buf *bp;
    316 {
    317 	int rv, sync, wasdelayed, s;
    318 	struct proc *p = (curproc != NULL ? curproc : &proc0);	/* XXX */
    319 	struct vnode *vp;
    320 	struct mount *mp;
    321 
    322 	vp = bp->b_vp;
    323 	if (vp != NULL) {
    324 		if (vp->v_type == VBLK)
    325 			mp = vp->v_specmountpoint;
    326 		else
    327 			mp = vp->v_mount;
    328 	} else {
    329 		mp = NULL;
    330 	}
    331 
    332 	/*
    333 	 * Remember buffer type, to switch on it later.  If the write was
    334 	 * synchronous, but the file system was mounted with MNT_ASYNC,
    335 	 * convert it to a delayed write.
    336 	 * XXX note that this relies on delayed tape writes being converted
    337 	 * to async, not sync writes (which is safe, but ugly).
    338 	 */
    339 	sync = !ISSET(bp->b_flags, B_ASYNC);
    340 	if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
    341 		bdwrite(bp);
    342 		return (0);
    343 	}
    344 
    345 	/*
    346 	 * Collect statistics on synchronous and asynchronous writes.
    347 	 * Writes to block devices are charged to their associated
    348 	 * filesystem (if any).
    349 	 */
    350 	if (mp != NULL) {
    351 		if (sync)
    352 			mp->mnt_stat.f_syncwrites++;
    353 		else
    354 			mp->mnt_stat.f_asyncwrites++;
    355 	}
    356 
    357 	wasdelayed = ISSET(bp->b_flags, B_DELWRI);
    358 
    359 	s = splbio();
    360 
    361 	CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
    362 
    363 	/*
    364 	 * Pay for the I/O operation and make sure the buf is on the correct
    365 	 * vnode queue.
    366 	 */
    367 	if (wasdelayed)
    368 		reassignbuf(bp, bp->b_vp);
    369 	else
    370 		p->p_stats->p_ru.ru_oublock++;
    371 
    372 	/* Initiate disk write.  Make sure the appropriate party is charged. */
    373 	bp->b_vp->v_numoutput++;
    374 	splx(s);
    375 
    376 	VOP_STRATEGY(bp);
    377 
    378 	if (sync) {
    379 		/* If I/O was synchronous, wait for it to complete. */
    380 		rv = biowait(bp);
    381 
    382 		/* Release the buffer. */
    383 		brelse(bp);
    384 
    385 		return (rv);
    386 	} else {
    387 		return (0);
    388 	}
    389 }
    390 
    391 int
    392 vn_bwrite(v)
    393 	void *v;
    394 {
    395 	struct vop_bwrite_args *ap = v;
    396 
    397 	return (bwrite(ap->a_bp));
    398 }
    399 
    400 /*
    401  * Delayed write.
    402  *
    403  * The buffer is marked dirty, but is not queued for I/O.
    404  * This routine should be used when the buffer is expected
    405  * to be modified again soon, typically a small write that
    406  * partially fills a buffer.
    407  *
    408  * NB: magnetic tapes cannot be delayed; they must be
    409  * written in the order that the writes are requested.
    410  *
    411  * Described in Leffler, et al. (pp. 208-213).
    412  */
    413 void
    414 bdwrite(bp)
    415 	struct buf *bp;
    416 {
    417 	struct proc *p = (curproc != NULL ? curproc : &proc0);	/* XXX */
    418 	int s;
    419 
    420 	/* If this is a tape block, write the block now. */
    421 	/* XXX NOTE: the memory filesystem usurpes major device */
    422 	/* XXX       number 255, which is a bad idea.		*/
    423 	if (bp->b_dev != NODEV &&
    424 	    major(bp->b_dev) != 255 &&	/* XXX - MFS buffers! */
    425 	    bdevsw[major(bp->b_dev)].d_type == D_TAPE) {
    426 		bawrite(bp);
    427 		return;
    428 	}
    429 
    430 	/*
    431 	 * If the block hasn't been seen before:
    432 	 *	(1) Mark it as having been seen,
    433 	 *	(2) Charge for the write,
    434 	 *	(3) Make sure it's on its vnode's correct block list.
    435 	 */
    436 	s = splbio();
    437 
    438 	if (!ISSET(bp->b_flags, B_DELWRI)) {
    439 		SET(bp->b_flags, B_DELWRI);
    440 		p->p_stats->p_ru.ru_oublock++;
    441 		reassignbuf(bp, bp->b_vp);
    442 	}
    443 
    444 	/* Otherwise, the "write" is done, so mark and release the buffer. */
    445 	CLR(bp->b_flags, B_NEEDCOMMIT|B_DONE);
    446 	splx(s);
    447 
    448 	brelse(bp);
    449 }
    450 
    451 /*
    452  * Asynchronous block write; just an asynchronous bwrite().
    453  */
    454 void
    455 bawrite(bp)
    456 	struct buf *bp;
    457 {
    458 
    459 	SET(bp->b_flags, B_ASYNC);
    460 	VOP_BWRITE(bp);
    461 }
    462 
    463 /*
    464  * Ordered block write; asynchronous, but I/O will occur in order queued.
    465  */
    466 void
    467 bowrite(bp)
    468 	struct buf *bp;
    469 {
    470 
    471 	SET(bp->b_flags, B_ASYNC | B_ORDERED);
    472 	VOP_BWRITE(bp);
    473 }
    474 
    475 /*
    476  * Same as first half of bdwrite, mark buffer dirty, but do not release it.
    477  */
    478 void
    479 bdirty(bp)
    480 	struct buf *bp;
    481 {
    482 	struct proc *p = (curproc != NULL ? curproc : &proc0);	/* XXX */
    483 	int s;
    484 
    485 	s = splbio();
    486 
    487 	CLR(bp->b_flags, B_AGE);
    488 
    489 	if (!ISSET(bp->b_flags, B_DELWRI)) {
    490 		SET(bp->b_flags, B_DELWRI);
    491 		p->p_stats->p_ru.ru_oublock++;
    492 		reassignbuf(bp, bp->b_vp);
    493 	}
    494 
    495 	splx(s);
    496 }
    497 
    498 /*
    499  * Release a buffer on to the free lists.
    500  * Described in Bach (p. 46).
    501  */
    502 void
    503 brelse(bp)
    504 	struct buf *bp;
    505 {
    506 	struct bqueues *bufq;
    507 	int s;
    508 
    509 	KASSERT(ISSET(bp->b_flags, B_BUSY));
    510 
    511 	/* Wake up any processes waiting for any buffer to become free. */
    512 	if (needbuffer) {
    513 		needbuffer = 0;
    514 		wakeup(&needbuffer);
    515 	}
    516 
    517 	/* Block disk interrupts. */
    518 	s = splbio();
    519 
    520 	/* Wake up any proceeses waiting for _this_ buffer to become free. */
    521 	if (ISSET(bp->b_flags, B_WANTED)) {
    522 		CLR(bp->b_flags, B_WANTED|B_AGE);
    523 		wakeup(bp);
    524 	}
    525 
    526 	/*
    527 	 * Determine which queue the buffer should be on, then put it there.
    528 	 */
    529 
    530 	/* If it's locked, don't report an error; try again later. */
    531 	if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
    532 		CLR(bp->b_flags, B_ERROR);
    533 
    534 	/* If it's not cacheable, or an error, mark it invalid. */
    535 	if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
    536 		SET(bp->b_flags, B_INVAL);
    537 
    538 	if (ISSET(bp->b_flags, B_VFLUSH)) {
    539 		/*
    540 		 * This is a delayed write buffer that was just flushed to
    541 		 * disk.  It is still on the LRU queue.  If it's become
    542 		 * invalid, then we need to move it to a different queue;
    543 		 * otherwise leave it in its current position.
    544 		 */
    545 		CLR(bp->b_flags, B_VFLUSH);
    546 		if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE))
    547 			goto already_queued;
    548 		else
    549 			bremfree(bp);
    550 	}
    551 
    552 	if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
    553 		/*
    554 		 * If it's invalid or empty, dissociate it from its vnode
    555 		 * and put on the head of the appropriate queue.
    556 		 */
    557 		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
    558 			(*bioops.io_deallocate)(bp);
    559 		CLR(bp->b_flags, B_DONE|B_DELWRI);
    560 		if (bp->b_vp) {
    561 			reassignbuf(bp, bp->b_vp);
    562 			brelvp(bp);
    563 		}
    564 		if (bp->b_bufsize <= 0)
    565 			/* no data */
    566 			bufq = &bufqueues[BQ_EMPTY];
    567 		else
    568 			/* invalid data */
    569 			bufq = &bufqueues[BQ_AGE];
    570 		binsheadfree(bp, bufq);
    571 	} else {
    572 		/*
    573 		 * It has valid data.  Put it on the end of the appropriate
    574 		 * queue, so that it'll stick around for as long as possible.
    575 		 * If buf is AGE, but has dependencies, must put it on last
    576 		 * bufqueue to be scanned, ie LRU. This protects against the
    577 		 * livelock where BQ_AGE only has buffers with dependencies,
    578 		 * and we thus never get to the dependent buffers in BQ_LRU.
    579 		 */
    580 		if (ISSET(bp->b_flags, B_LOCKED))
    581 			/* locked in core */
    582 			bufq = &bufqueues[BQ_LOCKED];
    583 		else if (!ISSET(bp->b_flags, B_AGE))
    584 			/* valid data */
    585 			bufq = &bufqueues[BQ_LRU];
    586 		else {
    587 			/* stale but valid data */
    588 			int has_deps;
    589 
    590 			if (LIST_FIRST(&bp->b_dep) != NULL &&
    591 			    bioops.io_countdeps)
    592 				has_deps = (*bioops.io_countdeps)(bp, 0);
    593 			else
    594 				has_deps = 0;
    595 			bufq = has_deps ? &bufqueues[BQ_LRU] :
    596 			    &bufqueues[BQ_AGE];
    597 		}
    598 		binstailfree(bp, bufq);
    599 	}
    600 
    601 already_queued:
    602 	/* Unlock the buffer. */
    603 	CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE|B_ORDERED);
    604 	SET(bp->b_flags, B_CACHE);
    605 
    606 	/* Allow disk interrupts. */
    607 	splx(s);
    608 }
    609 
    610 /*
    611  * Determine if a block is in the cache.
    612  * Just look on what would be its hash chain.  If it's there, return
    613  * a pointer to it, unless it's marked invalid.  If it's marked invalid,
    614  * we normally don't return the buffer, unless the caller explicitly
    615  * wants us to.
    616  */
    617 struct buf *
    618 incore(vp, blkno)
    619 	struct vnode *vp;
    620 	daddr_t blkno;
    621 {
    622 	struct buf *bp;
    623 
    624 	bp = BUFHASH(vp, blkno)->lh_first;
    625 
    626 	/* Search hash chain */
    627 	for (; bp != NULL; bp = bp->b_hash.le_next) {
    628 		if (bp->b_lblkno == blkno && bp->b_vp == vp &&
    629 		    !ISSET(bp->b_flags, B_INVAL))
    630 		return (bp);
    631 	}
    632 
    633 	return (NULL);
    634 }
    635 
    636 /*
    637  * Get a block of requested size that is associated with
    638  * a given vnode and block offset. If it is found in the
    639  * block cache, mark it as having been found, make it busy
    640  * and return it. Otherwise, return an empty block of the
    641  * correct size. It is up to the caller to insure that the
    642  * cached blocks be of the correct size.
    643  */
    644 struct buf *
    645 getblk(vp, blkno, size, slpflag, slptimeo)
    646 	struct vnode *vp;
    647 	daddr_t blkno;
    648 	int size, slpflag, slptimeo;
    649 {
    650 	struct buf *bp;
    651 	int s, err;
    652 
    653 start:
    654 	bp = incore(vp, blkno);
    655 	if (bp != NULL) {
    656 		s = splbio();
    657 		if (ISSET(bp->b_flags, B_BUSY)) {
    658 			if (curproc == uvm.pagedaemon_proc) {
    659 				splx(s);
    660 				return NULL;
    661 			}
    662 			SET(bp->b_flags, B_WANTED);
    663 			err = tsleep(bp, slpflag | (PRIBIO + 1), "getblk",
    664 				     slptimeo);
    665 			splx(s);
    666 			if (err)
    667 				return (NULL);
    668 			goto start;
    669 		}
    670 #ifdef DIAGNOSTIC
    671 		if (ISSET(bp->b_flags, B_DONE|B_DELWRI) && bp->b_bcount < size)
    672 			panic("getblk: block size invariant failed");
    673 #endif
    674 		SET(bp->b_flags, B_BUSY);
    675 		bremfree(bp);
    676 		splx(s);
    677 	} else {
    678 		if ((bp = getnewbuf(slpflag, slptimeo)) == NULL)
    679 			goto start;
    680 
    681 		binshash(bp, BUFHASH(vp, blkno));
    682 		bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
    683 		s = splbio();
    684 		bgetvp(vp, bp);
    685 		splx(s);
    686 	}
    687 	allocbuf(bp, size);
    688 	return (bp);
    689 }
    690 
    691 /*
    692  * Get an empty, disassociated buffer of given size.
    693  */
    694 struct buf *
    695 geteblk(size)
    696 	int size;
    697 {
    698 	struct buf *bp;
    699 
    700 	while ((bp = getnewbuf(0, 0)) == 0)
    701 		;
    702 	SET(bp->b_flags, B_INVAL);
    703 	binshash(bp, &invalhash);
    704 	allocbuf(bp, size);
    705 	return (bp);
    706 }
    707 
    708 /*
    709  * Expand or contract the actual memory allocated to a buffer.
    710  *
    711  * If the buffer shrinks, data is lost, so it's up to the
    712  * caller to have written it out *first*; this routine will not
    713  * start a write.  If the buffer grows, it's the callers
    714  * responsibility to fill out the buffer's additional contents.
    715  */
    716 void
    717 allocbuf(bp, size)
    718 	struct buf *bp;
    719 	int size;
    720 {
    721 	struct buf *nbp;
    722 	vsize_t desired_size;
    723 	int s;
    724 
    725 	desired_size = round_page((vsize_t)size);
    726 	if (desired_size > MAXBSIZE)
    727 		panic("allocbuf: buffer larger than MAXBSIZE requested");
    728 
    729 	if (bp->b_bufsize == desired_size)
    730 		goto out;
    731 
    732 	/*
    733 	 * If the buffer is smaller than the desired size, we need to snarf
    734 	 * it from other buffers.  Get buffers (via getnewbuf()), and
    735 	 * steal their pages.
    736 	 */
    737 	while (bp->b_bufsize < desired_size) {
    738 		int amt;
    739 
    740 		/* find a buffer */
    741 		while ((nbp = getnewbuf(0, 0)) == NULL)
    742 			;
    743 
    744 		SET(nbp->b_flags, B_INVAL);
    745 		binshash(nbp, &invalhash);
    746 
    747 		/* and steal its pages, up to the amount we need */
    748 		amt = min(nbp->b_bufsize, (desired_size - bp->b_bufsize));
    749 		pagemove((nbp->b_data + nbp->b_bufsize - amt),
    750 			 bp->b_data + bp->b_bufsize, amt);
    751 		bp->b_bufsize += amt;
    752 		nbp->b_bufsize -= amt;
    753 
    754 		/* reduce transfer count if we stole some data */
    755 		if (nbp->b_bcount > nbp->b_bufsize)
    756 			nbp->b_bcount = nbp->b_bufsize;
    757 
    758 #ifdef DIAGNOSTIC
    759 		if (nbp->b_bufsize < 0)
    760 			panic("allocbuf: negative bufsize");
    761 #endif
    762 
    763 		brelse(nbp);
    764 	}
    765 
    766 	/*
    767 	 * If we want a buffer smaller than the current size,
    768 	 * shrink this buffer.  Grab a buf head from the EMPTY queue,
    769 	 * move a page onto it, and put it on front of the AGE queue.
    770 	 * If there are no free buffer headers, leave the buffer alone.
    771 	 */
    772 	if (bp->b_bufsize > desired_size) {
    773 		s = splbio();
    774 		if ((nbp = bufqueues[BQ_EMPTY].tqh_first) == NULL) {
    775 			/* No free buffer head */
    776 			splx(s);
    777 			goto out;
    778 		}
    779 		bremfree(nbp);
    780 		SET(nbp->b_flags, B_BUSY);
    781 		splx(s);
    782 
    783 		/* move the page to it and note this change */
    784 		pagemove(bp->b_data + desired_size,
    785 		    nbp->b_data, bp->b_bufsize - desired_size);
    786 		nbp->b_bufsize = bp->b_bufsize - desired_size;
    787 		bp->b_bufsize = desired_size;
    788 		nbp->b_bcount = 0;
    789 		SET(nbp->b_flags, B_INVAL);
    790 
    791 		/* release the newly-filled buffer and leave */
    792 		brelse(nbp);
    793 	}
    794 
    795 out:
    796 	bp->b_bcount = size;
    797 }
    798 
    799 /*
    800  * Find a buffer which is available for use.
    801  * Select something from a free list.
    802  * Preference is to AGE list, then LRU list.
    803  */
    804 struct buf *
    805 getnewbuf(slpflag, slptimeo)
    806 	int slpflag, slptimeo;
    807 {
    808 	struct buf *bp;
    809 	int s;
    810 
    811 start:
    812 	s = splbio();
    813 	if ((bp = bufqueues[BQ_AGE].tqh_first) != NULL ||
    814 	    (bp = bufqueues[BQ_LRU].tqh_first) != NULL) {
    815 		bremfree(bp);
    816 	} else {
    817 		/* wait for a free buffer of any kind */
    818 		needbuffer = 1;
    819 		tsleep(&needbuffer, slpflag|(PRIBIO+1), "getnewbuf", slptimeo);
    820 		splx(s);
    821 		return (NULL);
    822 	}
    823 
    824 	if (ISSET(bp->b_flags, B_VFLUSH)) {
    825 		/*
    826 		 * This is a delayed write buffer being flushed to disk.  Make
    827 		 * sure it gets aged out of the queue when it's finished, and
    828 		 * leave it off the LRU queue.
    829 		 */
    830 		CLR(bp->b_flags, B_VFLUSH);
    831 		SET(bp->b_flags, B_AGE);
    832 		splx(s);
    833 		goto start;
    834 	}
    835 
    836 	/* Buffer is no longer on free lists. */
    837 	SET(bp->b_flags, B_BUSY);
    838 
    839 	/*
    840 	 * If buffer was a delayed write, start it and return NULL
    841 	 * (since we might sleep while starting the write).
    842 	 */
    843 	if (ISSET(bp->b_flags, B_DELWRI)) {
    844 		splx(s);
    845 		/*
    846 		 * This buffer has gone through the LRU, so make sure it gets
    847 		 * reused ASAP.
    848 		 */
    849 		SET(bp->b_flags, B_AGE);
    850 		bawrite(bp);
    851 		return (NULL);
    852 	}
    853 
    854 	/* disassociate us from our vnode, if we had one... */
    855 	if (bp->b_vp)
    856 		brelvp(bp);
    857 	splx(s);
    858 
    859 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
    860 		(*bioops.io_deallocate)(bp);
    861 
    862 	/* clear out various other fields */
    863 	bp->b_flags = B_BUSY;
    864 	bp->b_dev = NODEV;
    865 	bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
    866 	bp->b_iodone = 0;
    867 	bp->b_error = 0;
    868 	bp->b_resid = 0;
    869 	bp->b_bcount = 0;
    870 
    871 	bremhash(bp);
    872 	return (bp);
    873 }
    874 
    875 /*
    876  * Wait for operations on the buffer to complete.
    877  * When they do, extract and return the I/O's error value.
    878  */
    879 int
    880 biowait(bp)
    881 	struct buf *bp;
    882 {
    883 	int s;
    884 
    885 	s = splbio();
    886 	while (!ISSET(bp->b_flags, B_DONE))
    887 		tsleep(bp, PRIBIO + 1, "biowait", 0);
    888 	splx(s);
    889 
    890 	/* check for interruption of I/O (e.g. via NFS), then errors. */
    891 	if (ISSET(bp->b_flags, B_EINTR)) {
    892 		CLR(bp->b_flags, B_EINTR);
    893 		return (EINTR);
    894 	} else if (ISSET(bp->b_flags, B_ERROR))
    895 		return (bp->b_error ? bp->b_error : EIO);
    896 	else
    897 		return (0);
    898 }
    899 
    900 /*
    901  * Mark I/O complete on a buffer.
    902  *
    903  * If a callback has been requested, e.g. the pageout
    904  * daemon, do so. Otherwise, awaken waiting processes.
    905  *
    906  * [ Leffler, et al., says on p.247:
    907  *	"This routine wakes up the blocked process, frees the buffer
    908  *	for an asynchronous write, or, for a request by the pagedaemon
    909  *	process, invokes a procedure specified in the buffer structure" ]
    910  *
    911  * In real life, the pagedaemon (or other system processes) wants
    912  * to do async stuff to, and doesn't want the buffer brelse()'d.
    913  * (for swap pager, that puts swap buffers on the free lists (!!!),
    914  * for the vn device, that puts malloc'd buffers on the free lists!)
    915  */
    916 void
    917 biodone(bp)
    918 	struct buf *bp;
    919 {
    920 	int s = splbio();
    921 
    922 	if (ISSET(bp->b_flags, B_DONE))
    923 		panic("biodone already");
    924 	SET(bp->b_flags, B_DONE);		/* note that it's done */
    925 
    926 	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
    927 		(*bioops.io_complete)(bp);
    928 
    929 	if (!ISSET(bp->b_flags, B_READ))	/* wake up reader */
    930 		vwakeup(bp);
    931 
    932 	if (ISSET(bp->b_flags, B_CALL)) {	/* if necessary, call out */
    933 		CLR(bp->b_flags, B_CALL);	/* but note callout done */
    934 		(*bp->b_iodone)(bp);
    935 	} else {
    936 		if (ISSET(bp->b_flags, B_ASYNC))	/* if async, release */
    937 			brelse(bp);
    938 		else {				/* or just wakeup the buffer */
    939 			CLR(bp->b_flags, B_WANTED);
    940 			wakeup(bp);
    941 		}
    942 	}
    943 
    944 	splx(s);
    945 }
    946 
    947 /*
    948  * Return a count of buffers on the "locked" queue.
    949  */
    950 int
    951 count_lock_queue()
    952 {
    953 	struct buf *bp;
    954 	int n = 0;
    955 
    956 	for (bp = bufqueues[BQ_LOCKED].tqh_first; bp;
    957 	    bp = bp->b_freelist.tqe_next)
    958 		n++;
    959 	return (n);
    960 }
    961 
    962 #ifdef DEBUG
    963 /*
    964  * Print out statistics on the current allocation of the buffer pool.
    965  * Can be enabled to print out on every ``sync'' by setting "syncprt"
    966  * in vfs_syscalls.c using sysctl.
    967  */
    968 void
    969 vfs_bufstats()
    970 {
    971 	int s, i, j, count;
    972 	struct buf *bp;
    973 	struct bqueues *dp;
    974 	int counts[(MAXBSIZE / PAGE_SIZE) + 1];
    975 	static char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE", "EMPTY" };
    976 
    977 	for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
    978 		count = 0;
    979 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
    980 			counts[j] = 0;
    981 		s = splbio();
    982 		for (bp = dp->tqh_first; bp; bp = bp->b_freelist.tqe_next) {
    983 			counts[bp->b_bufsize/PAGE_SIZE]++;
    984 			count++;
    985 		}
    986 		splx(s);
    987 		printf("%s: total-%d", bname[i], count);
    988 		for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
    989 			if (counts[j] != 0)
    990 				printf(", %d-%d", j * PAGE_SIZE, counts[j]);
    991 		printf("\n");
    992 	}
    993 }
    994 #endif /* DEBUG */
    995