vfs_bio.c revision 1.81 1 /* $NetBSD: vfs_bio.c,v 1.81 2002/05/12 23:06:27 matt Exp $ */
2
3 /*-
4 * Copyright (c) 1994 Christopher G. Demetriou
5 * Copyright (c) 1982, 1986, 1989, 1993
6 * The Regents of the University of California. All rights reserved.
7 * (c) UNIX System Laboratories, Inc.
8 * All or some portions of this file are derived from material licensed
9 * to the University of California by American Telephone and Telegraph
10 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11 * the permission of UNIX System Laboratories, Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the University of
24 * California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
42 */
43
44 /*
45 * Some references:
46 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
47 * Leffler, et al.: The Design and Implementation of the 4.3BSD
48 * UNIX Operating System (Addison Welley, 1989)
49 */
50
51 #include "opt_softdep.h"
52
53 #include <sys/cdefs.h>
54 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.81 2002/05/12 23:06:27 matt Exp $");
55
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/proc.h>
59 #include <sys/buf.h>
60 #include <sys/vnode.h>
61 #include <sys/mount.h>
62 #include <sys/malloc.h>
63 #include <sys/resourcevar.h>
64 #include <sys/conf.h>
65
66 #include <uvm/uvm.h>
67
68 #include <miscfs/specfs/specdev.h>
69
70 /* Macros to clear/set/test flags. */
71 #define SET(t, f) (t) |= (f)
72 #define CLR(t, f) (t) &= ~(f)
73 #define ISSET(t, f) ((t) & (f))
74
75 /*
76 * Definitions for the buffer hash lists.
77 */
78 #define BUFHASH(dvp, lbn) \
79 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
80 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
81 u_long bufhash;
82 #ifndef SOFTDEP
83 struct bio_ops bioops; /* I/O operation notification */
84 #endif
85
86 /*
87 * Insq/Remq for the buffer hash lists.
88 */
89 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash)
90 #define bremhash(bp) LIST_REMOVE(bp, b_hash)
91
92 /*
93 * Definitions for the buffer free lists.
94 */
95 #define BQUEUES 4 /* number of free buffer queues */
96
97 #define BQ_LOCKED 0 /* super-blocks &c */
98 #define BQ_LRU 1 /* lru, useful buffers */
99 #define BQ_AGE 2 /* rubbish */
100 #define BQ_EMPTY 3 /* buffer headers with no memory */
101
102 TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
103 int needbuffer;
104
105 /*
106 * Buffer pool for I/O buffers.
107 */
108 struct pool bufpool;
109
110 /*
111 * Insq/Remq for the buffer free lists.
112 */
113 #define binsheadfree(bp, dp) TAILQ_INSERT_HEAD(dp, bp, b_freelist)
114 #define binstailfree(bp, dp) TAILQ_INSERT_TAIL(dp, bp, b_freelist)
115
116 static __inline struct buf *bio_doread __P((struct vnode *, daddr_t, int,
117 struct ucred *, int));
118 int count_lock_queue __P((void));
119
120 void
121 bremfree(bp)
122 struct buf *bp;
123 {
124 int s = splbio();
125
126 struct bqueues *dp = NULL;
127
128 /*
129 * We only calculate the head of the freelist when removing
130 * the last element of the list as that is the only time that
131 * it is needed (e.g. to reset the tail pointer).
132 *
133 * NB: This makes an assumption about how tailq's are implemented.
134 */
135 if (bp->b_freelist.tqe_next == NULL) {
136 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
137 if (dp->tqh_last == &bp->b_freelist.tqe_next)
138 break;
139 if (dp == &bufqueues[BQUEUES])
140 panic("bremfree: lost tail");
141 }
142 TAILQ_REMOVE(dp, bp, b_freelist);
143 splx(s);
144 }
145
146 /*
147 * Initialize buffers and hash links for buffers.
148 */
149 void
150 bufinit()
151 {
152 struct buf *bp;
153 struct bqueues *dp;
154 int i;
155 int base, residual;
156
157 /*
158 * Initialize the buffer pool. This pool is used for buffers
159 * which are strictly I/O control blocks, not buffer cache
160 * buffers.
161 */
162 pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL);
163
164 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
165 TAILQ_INIT(dp);
166 bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
167 base = bufpages / nbuf;
168 residual = bufpages % nbuf;
169 for (i = 0; i < nbuf; i++) {
170 bp = &buf[i];
171 memset((char *)bp, 0, sizeof(*bp));
172 bp->b_dev = NODEV;
173 bp->b_vnbufs.le_next = NOLIST;
174 LIST_INIT(&bp->b_dep);
175 bp->b_data = buffers + i * MAXBSIZE;
176 if (i < residual)
177 bp->b_bufsize = (base + 1) * PAGE_SIZE;
178 else
179 bp->b_bufsize = base * PAGE_SIZE;
180 bp->b_flags = B_INVAL;
181 dp = bp->b_bufsize ? &bufqueues[BQ_AGE] : &bufqueues[BQ_EMPTY];
182 binsheadfree(bp, dp);
183 binshash(bp, &invalhash);
184 }
185 }
186
187 static __inline struct buf *
188 bio_doread(vp, blkno, size, cred, async)
189 struct vnode *vp;
190 daddr_t blkno;
191 int size;
192 struct ucred *cred;
193 int async;
194 {
195 struct buf *bp;
196 struct proc *p = (curproc != NULL ? curproc : &proc0); /* XXX */
197
198 bp = getblk(vp, blkno, size, 0, 0);
199
200 /*
201 * If buffer does not have data valid, start a read.
202 * Note that if buffer is B_INVAL, getblk() won't return it.
203 * Therefore, it's valid if it's I/O has completed or been delayed.
204 */
205 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
206 /* Start I/O for the buffer. */
207 SET(bp->b_flags, B_READ | async);
208 VOP_STRATEGY(bp);
209
210 /* Pay for the read. */
211 p->p_stats->p_ru.ru_inblock++;
212 } else if (async) {
213 brelse(bp);
214 }
215
216 return (bp);
217 }
218
219 /*
220 * Read a disk block.
221 * This algorithm described in Bach (p.54).
222 */
223 int
224 bread(vp, blkno, size, cred, bpp)
225 struct vnode *vp;
226 daddr_t blkno;
227 int size;
228 struct ucred *cred;
229 struct buf **bpp;
230 {
231 struct buf *bp;
232
233 /* Get buffer for block. */
234 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
235
236 /* Wait for the read to complete, and return result. */
237 return (biowait(bp));
238 }
239
240 /*
241 * Read-ahead multiple disk blocks. The first is sync, the rest async.
242 * Trivial modification to the breada algorithm presented in Bach (p.55).
243 */
244 int
245 breadn(vp, blkno, size, rablks, rasizes, nrablks, cred, bpp)
246 struct vnode *vp;
247 daddr_t blkno; int size;
248 daddr_t rablks[]; int rasizes[];
249 int nrablks;
250 struct ucred *cred;
251 struct buf **bpp;
252 {
253 struct buf *bp;
254 int i;
255
256 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
257
258 /*
259 * For each of the read-ahead blocks, start a read, if necessary.
260 */
261 for (i = 0; i < nrablks; i++) {
262 /* If it's in the cache, just go on to next one. */
263 if (incore(vp, rablks[i]))
264 continue;
265
266 /* Get a buffer for the read-ahead block */
267 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
268 }
269
270 /* Otherwise, we had to start a read for it; wait until it's valid. */
271 return (biowait(bp));
272 }
273
274 /*
275 * Read with single-block read-ahead. Defined in Bach (p.55), but
276 * implemented as a call to breadn().
277 * XXX for compatibility with old file systems.
278 */
279 int
280 breada(vp, blkno, size, rablkno, rabsize, cred, bpp)
281 struct vnode *vp;
282 daddr_t blkno; int size;
283 daddr_t rablkno; int rabsize;
284 struct ucred *cred;
285 struct buf **bpp;
286 {
287
288 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
289 }
290
291 /*
292 * Block write. Described in Bach (p.56)
293 */
294 int
295 bwrite(bp)
296 struct buf *bp;
297 {
298 int rv, sync, wasdelayed, s;
299 struct proc *p = (curproc != NULL ? curproc : &proc0); /* XXX */
300 struct vnode *vp;
301 struct mount *mp;
302
303 vp = bp->b_vp;
304 if (vp != NULL) {
305 if (vp->v_type == VBLK)
306 mp = vp->v_specmountpoint;
307 else
308 mp = vp->v_mount;
309 } else {
310 mp = NULL;
311 }
312
313 /*
314 * Remember buffer type, to switch on it later. If the write was
315 * synchronous, but the file system was mounted with MNT_ASYNC,
316 * convert it to a delayed write.
317 * XXX note that this relies on delayed tape writes being converted
318 * to async, not sync writes (which is safe, but ugly).
319 */
320 sync = !ISSET(bp->b_flags, B_ASYNC);
321 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
322 bdwrite(bp);
323 return (0);
324 }
325
326 /*
327 * Collect statistics on synchronous and asynchronous writes.
328 * Writes to block devices are charged to their associated
329 * filesystem (if any).
330 */
331 if (mp != NULL) {
332 if (sync)
333 mp->mnt_stat.f_syncwrites++;
334 else
335 mp->mnt_stat.f_asyncwrites++;
336 }
337
338 wasdelayed = ISSET(bp->b_flags, B_DELWRI);
339
340 s = splbio();
341
342 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
343
344 /*
345 * Pay for the I/O operation and make sure the buf is on the correct
346 * vnode queue.
347 */
348 if (wasdelayed)
349 reassignbuf(bp, bp->b_vp);
350 else
351 p->p_stats->p_ru.ru_oublock++;
352
353 /* Initiate disk write. Make sure the appropriate party is charged. */
354 bp->b_vp->v_numoutput++;
355 splx(s);
356
357 VOP_STRATEGY(bp);
358
359 if (sync) {
360 /* If I/O was synchronous, wait for it to complete. */
361 rv = biowait(bp);
362
363 /* Release the buffer. */
364 brelse(bp);
365
366 return (rv);
367 } else {
368 return (0);
369 }
370 }
371
372 int
373 vn_bwrite(v)
374 void *v;
375 {
376 struct vop_bwrite_args *ap = v;
377
378 return (bwrite(ap->a_bp));
379 }
380
381 /*
382 * Delayed write.
383 *
384 * The buffer is marked dirty, but is not queued for I/O.
385 * This routine should be used when the buffer is expected
386 * to be modified again soon, typically a small write that
387 * partially fills a buffer.
388 *
389 * NB: magnetic tapes cannot be delayed; they must be
390 * written in the order that the writes are requested.
391 *
392 * Described in Leffler, et al. (pp. 208-213).
393 */
394 void
395 bdwrite(bp)
396 struct buf *bp;
397 {
398 struct proc *p = (curproc != NULL ? curproc : &proc0); /* XXX */
399 int s;
400
401 /* If this is a tape block, write the block now. */
402 /* XXX NOTE: the memory filesystem usurpes major device */
403 /* XXX number 255, which is a bad idea. */
404 if (bp->b_dev != NODEV &&
405 major(bp->b_dev) != 255 && /* XXX - MFS buffers! */
406 bdevsw[major(bp->b_dev)].d_type == D_TAPE) {
407 bawrite(bp);
408 return;
409 }
410
411 /*
412 * If the block hasn't been seen before:
413 * (1) Mark it as having been seen,
414 * (2) Charge for the write,
415 * (3) Make sure it's on its vnode's correct block list.
416 */
417 s = splbio();
418
419 if (!ISSET(bp->b_flags, B_DELWRI)) {
420 SET(bp->b_flags, B_DELWRI);
421 p->p_stats->p_ru.ru_oublock++;
422 reassignbuf(bp, bp->b_vp);
423 }
424
425 /* Otherwise, the "write" is done, so mark and release the buffer. */
426 CLR(bp->b_flags, B_NEEDCOMMIT|B_DONE);
427 splx(s);
428
429 brelse(bp);
430 }
431
432 /*
433 * Asynchronous block write; just an asynchronous bwrite().
434 */
435 void
436 bawrite(bp)
437 struct buf *bp;
438 {
439
440 SET(bp->b_flags, B_ASYNC);
441 VOP_BWRITE(bp);
442 }
443
444 /*
445 * Ordered block write; asynchronous, but I/O will occur in order queued.
446 */
447 void
448 bowrite(bp)
449 struct buf *bp;
450 {
451
452 SET(bp->b_flags, B_ASYNC | B_ORDERED);
453 VOP_BWRITE(bp);
454 }
455
456 /*
457 * Same as first half of bdwrite, mark buffer dirty, but do not release it.
458 */
459 void
460 bdirty(bp)
461 struct buf *bp;
462 {
463 struct proc *p = (curproc != NULL ? curproc : &proc0); /* XXX */
464 int s;
465
466 s = splbio();
467
468 CLR(bp->b_flags, B_AGE);
469
470 if (!ISSET(bp->b_flags, B_DELWRI)) {
471 SET(bp->b_flags, B_DELWRI);
472 p->p_stats->p_ru.ru_oublock++;
473 reassignbuf(bp, bp->b_vp);
474 }
475
476 splx(s);
477 }
478
479 /*
480 * Release a buffer on to the free lists.
481 * Described in Bach (p. 46).
482 */
483 void
484 brelse(bp)
485 struct buf *bp;
486 {
487 struct bqueues *bufq;
488 int s;
489
490 KASSERT(ISSET(bp->b_flags, B_BUSY));
491
492 /* Wake up any processes waiting for any buffer to become free. */
493 if (needbuffer) {
494 needbuffer = 0;
495 wakeup(&needbuffer);
496 }
497
498 /* Block disk interrupts. */
499 s = splbio();
500
501 /* Wake up any proceeses waiting for _this_ buffer to become free. */
502 if (ISSET(bp->b_flags, B_WANTED)) {
503 CLR(bp->b_flags, B_WANTED|B_AGE);
504 wakeup(bp);
505 }
506
507 /*
508 * Determine which queue the buffer should be on, then put it there.
509 */
510
511 /* If it's locked, don't report an error; try again later. */
512 if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
513 CLR(bp->b_flags, B_ERROR);
514
515 /* If it's not cacheable, or an error, mark it invalid. */
516 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
517 SET(bp->b_flags, B_INVAL);
518
519 if (ISSET(bp->b_flags, B_VFLUSH)) {
520 /*
521 * This is a delayed write buffer that was just flushed to
522 * disk. It is still on the LRU queue. If it's become
523 * invalid, then we need to move it to a different queue;
524 * otherwise leave it in its current position.
525 */
526 CLR(bp->b_flags, B_VFLUSH);
527 if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE))
528 goto already_queued;
529 else
530 bremfree(bp);
531 }
532
533 if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
534 /*
535 * If it's invalid or empty, dissociate it from its vnode
536 * and put on the head of the appropriate queue.
537 */
538 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
539 (*bioops.io_deallocate)(bp);
540 CLR(bp->b_flags, B_DONE|B_DELWRI);
541 if (bp->b_vp) {
542 reassignbuf(bp, bp->b_vp);
543 brelvp(bp);
544 }
545 if (bp->b_bufsize <= 0)
546 /* no data */
547 bufq = &bufqueues[BQ_EMPTY];
548 else
549 /* invalid data */
550 bufq = &bufqueues[BQ_AGE];
551 binsheadfree(bp, bufq);
552 } else {
553 /*
554 * It has valid data. Put it on the end of the appropriate
555 * queue, so that it'll stick around for as long as possible.
556 * If buf is AGE, but has dependencies, must put it on last
557 * bufqueue to be scanned, ie LRU. This protects against the
558 * livelock where BQ_AGE only has buffers with dependencies,
559 * and we thus never get to the dependent buffers in BQ_LRU.
560 */
561 if (ISSET(bp->b_flags, B_LOCKED))
562 /* locked in core */
563 bufq = &bufqueues[BQ_LOCKED];
564 else if (!ISSET(bp->b_flags, B_AGE))
565 /* valid data */
566 bufq = &bufqueues[BQ_LRU];
567 else {
568 /* stale but valid data */
569 int has_deps;
570
571 if (LIST_FIRST(&bp->b_dep) != NULL &&
572 bioops.io_countdeps)
573 has_deps = (*bioops.io_countdeps)(bp, 0);
574 else
575 has_deps = 0;
576 bufq = has_deps ? &bufqueues[BQ_LRU] :
577 &bufqueues[BQ_AGE];
578 }
579 binstailfree(bp, bufq);
580 }
581
582 already_queued:
583 /* Unlock the buffer. */
584 CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE|B_ORDERED);
585 SET(bp->b_flags, B_CACHE);
586
587 /* Allow disk interrupts. */
588 splx(s);
589 }
590
591 /*
592 * Determine if a block is in the cache.
593 * Just look on what would be its hash chain. If it's there, return
594 * a pointer to it, unless it's marked invalid. If it's marked invalid,
595 * we normally don't return the buffer, unless the caller explicitly
596 * wants us to.
597 */
598 struct buf *
599 incore(vp, blkno)
600 struct vnode *vp;
601 daddr_t blkno;
602 {
603 struct buf *bp;
604
605 bp = BUFHASH(vp, blkno)->lh_first;
606
607 /* Search hash chain */
608 for (; bp != NULL; bp = bp->b_hash.le_next) {
609 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
610 !ISSET(bp->b_flags, B_INVAL))
611 return (bp);
612 }
613
614 return (NULL);
615 }
616
617 /*
618 * Get a block of requested size that is associated with
619 * a given vnode and block offset. If it is found in the
620 * block cache, mark it as having been found, make it busy
621 * and return it. Otherwise, return an empty block of the
622 * correct size. It is up to the caller to insure that the
623 * cached blocks be of the correct size.
624 */
625 struct buf *
626 getblk(vp, blkno, size, slpflag, slptimeo)
627 struct vnode *vp;
628 daddr_t blkno;
629 int size, slpflag, slptimeo;
630 {
631 struct buf *bp;
632 int s, err;
633
634 start:
635 bp = incore(vp, blkno);
636 if (bp != NULL) {
637 s = splbio();
638 if (ISSET(bp->b_flags, B_BUSY)) {
639 if (curproc == uvm.pagedaemon_proc) {
640 splx(s);
641 return NULL;
642 }
643 SET(bp->b_flags, B_WANTED);
644 err = tsleep(bp, slpflag | (PRIBIO + 1), "getblk",
645 slptimeo);
646 splx(s);
647 if (err)
648 return (NULL);
649 goto start;
650 }
651 #ifdef DIAGNOSTIC
652 if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
653 bp->b_bcount < size && vp->v_type != VBLK)
654 panic("getblk: block size invariant failed");
655 #endif
656 SET(bp->b_flags, B_BUSY);
657 bremfree(bp);
658 splx(s);
659 } else {
660 if ((bp = getnewbuf(slpflag, slptimeo)) == NULL)
661 goto start;
662
663 binshash(bp, BUFHASH(vp, blkno));
664 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
665 s = splbio();
666 bgetvp(vp, bp);
667 splx(s);
668 }
669 allocbuf(bp, size);
670 return (bp);
671 }
672
673 /*
674 * Get an empty, disassociated buffer of given size.
675 */
676 struct buf *
677 geteblk(size)
678 int size;
679 {
680 struct buf *bp;
681
682 while ((bp = getnewbuf(0, 0)) == 0)
683 ;
684 SET(bp->b_flags, B_INVAL);
685 binshash(bp, &invalhash);
686 allocbuf(bp, size);
687 return (bp);
688 }
689
690 /*
691 * Expand or contract the actual memory allocated to a buffer.
692 *
693 * If the buffer shrinks, data is lost, so it's up to the
694 * caller to have written it out *first*; this routine will not
695 * start a write. If the buffer grows, it's the callers
696 * responsibility to fill out the buffer's additional contents.
697 */
698 void
699 allocbuf(bp, size)
700 struct buf *bp;
701 int size;
702 {
703 struct buf *nbp;
704 vsize_t desired_size;
705 int s;
706
707 desired_size = round_page((vsize_t)size);
708 if (desired_size > MAXBSIZE)
709 panic("allocbuf: buffer larger than MAXBSIZE requested");
710
711 if (bp->b_bufsize == desired_size)
712 goto out;
713
714 /*
715 * If the buffer is smaller than the desired size, we need to snarf
716 * it from other buffers. Get buffers (via getnewbuf()), and
717 * steal their pages.
718 */
719 while (bp->b_bufsize < desired_size) {
720 int amt;
721
722 /* find a buffer */
723 while ((nbp = getnewbuf(0, 0)) == NULL)
724 ;
725
726 SET(nbp->b_flags, B_INVAL);
727 binshash(nbp, &invalhash);
728
729 /* and steal its pages, up to the amount we need */
730 amt = min(nbp->b_bufsize, (desired_size - bp->b_bufsize));
731 pagemove((nbp->b_data + nbp->b_bufsize - amt),
732 bp->b_data + bp->b_bufsize, amt);
733 bp->b_bufsize += amt;
734 nbp->b_bufsize -= amt;
735
736 /* reduce transfer count if we stole some data */
737 if (nbp->b_bcount > nbp->b_bufsize)
738 nbp->b_bcount = nbp->b_bufsize;
739
740 #ifdef DIAGNOSTIC
741 if (nbp->b_bufsize < 0)
742 panic("allocbuf: negative bufsize");
743 #endif
744
745 brelse(nbp);
746 }
747
748 /*
749 * If we want a buffer smaller than the current size,
750 * shrink this buffer. Grab a buf head from the EMPTY queue,
751 * move a page onto it, and put it on front of the AGE queue.
752 * If there are no free buffer headers, leave the buffer alone.
753 */
754 if (bp->b_bufsize > desired_size) {
755 s = splbio();
756 if ((nbp = bufqueues[BQ_EMPTY].tqh_first) == NULL) {
757 /* No free buffer head */
758 splx(s);
759 goto out;
760 }
761 bremfree(nbp);
762 SET(nbp->b_flags, B_BUSY);
763 splx(s);
764
765 /* move the page to it and note this change */
766 pagemove(bp->b_data + desired_size,
767 nbp->b_data, bp->b_bufsize - desired_size);
768 nbp->b_bufsize = bp->b_bufsize - desired_size;
769 bp->b_bufsize = desired_size;
770 nbp->b_bcount = 0;
771 SET(nbp->b_flags, B_INVAL);
772
773 /* release the newly-filled buffer and leave */
774 brelse(nbp);
775 }
776
777 out:
778 bp->b_bcount = size;
779 }
780
781 /*
782 * Find a buffer which is available for use.
783 * Select something from a free list.
784 * Preference is to AGE list, then LRU list.
785 */
786 struct buf *
787 getnewbuf(slpflag, slptimeo)
788 int slpflag, slptimeo;
789 {
790 struct buf *bp;
791 int s;
792
793 start:
794 s = splbio();
795 if ((bp = bufqueues[BQ_AGE].tqh_first) != NULL ||
796 (bp = bufqueues[BQ_LRU].tqh_first) != NULL) {
797 bremfree(bp);
798 } else {
799 /* wait for a free buffer of any kind */
800 needbuffer = 1;
801 tsleep(&needbuffer, slpflag|(PRIBIO+1), "getnewbuf", slptimeo);
802 splx(s);
803 return (NULL);
804 }
805
806 if (ISSET(bp->b_flags, B_VFLUSH)) {
807 /*
808 * This is a delayed write buffer being flushed to disk. Make
809 * sure it gets aged out of the queue when it's finished, and
810 * leave it off the LRU queue.
811 */
812 CLR(bp->b_flags, B_VFLUSH);
813 SET(bp->b_flags, B_AGE);
814 splx(s);
815 goto start;
816 }
817
818 /* Buffer is no longer on free lists. */
819 SET(bp->b_flags, B_BUSY);
820
821 /*
822 * If buffer was a delayed write, start it and return NULL
823 * (since we might sleep while starting the write).
824 */
825 if (ISSET(bp->b_flags, B_DELWRI)) {
826 splx(s);
827 /*
828 * This buffer has gone through the LRU, so make sure it gets
829 * reused ASAP.
830 */
831 SET(bp->b_flags, B_AGE);
832 bawrite(bp);
833 return (NULL);
834 }
835
836 /* disassociate us from our vnode, if we had one... */
837 if (bp->b_vp)
838 brelvp(bp);
839 splx(s);
840
841 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
842 (*bioops.io_deallocate)(bp);
843
844 /* clear out various other fields */
845 bp->b_flags = B_BUSY;
846 bp->b_dev = NODEV;
847 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
848 bp->b_iodone = 0;
849 bp->b_error = 0;
850 bp->b_resid = 0;
851 bp->b_bcount = 0;
852
853 bremhash(bp);
854 return (bp);
855 }
856
857 /*
858 * Wait for operations on the buffer to complete.
859 * When they do, extract and return the I/O's error value.
860 */
861 int
862 biowait(bp)
863 struct buf *bp;
864 {
865 int s;
866
867 s = splbio();
868 while (!ISSET(bp->b_flags, B_DONE | B_DELWRI))
869 tsleep(bp, PRIBIO + 1, "biowait", 0);
870 splx(s);
871
872 /* check for interruption of I/O (e.g. via NFS), then errors. */
873 if (ISSET(bp->b_flags, B_EINTR)) {
874 CLR(bp->b_flags, B_EINTR);
875 return (EINTR);
876 } else if (ISSET(bp->b_flags, B_ERROR))
877 return (bp->b_error ? bp->b_error : EIO);
878 else
879 return (0);
880 }
881
882 /*
883 * Mark I/O complete on a buffer.
884 *
885 * If a callback has been requested, e.g. the pageout
886 * daemon, do so. Otherwise, awaken waiting processes.
887 *
888 * [ Leffler, et al., says on p.247:
889 * "This routine wakes up the blocked process, frees the buffer
890 * for an asynchronous write, or, for a request by the pagedaemon
891 * process, invokes a procedure specified in the buffer structure" ]
892 *
893 * In real life, the pagedaemon (or other system processes) wants
894 * to do async stuff to, and doesn't want the buffer brelse()'d.
895 * (for swap pager, that puts swap buffers on the free lists (!!!),
896 * for the vn device, that puts malloc'd buffers on the free lists!)
897 */
898 void
899 biodone(bp)
900 struct buf *bp;
901 {
902 int s = splbio();
903
904 if (ISSET(bp->b_flags, B_DONE))
905 panic("biodone already");
906 SET(bp->b_flags, B_DONE); /* note that it's done */
907
908 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
909 (*bioops.io_complete)(bp);
910
911 if (!ISSET(bp->b_flags, B_READ)) /* wake up reader */
912 vwakeup(bp);
913
914 if (ISSET(bp->b_flags, B_CALL)) { /* if necessary, call out */
915 CLR(bp->b_flags, B_CALL); /* but note callout done */
916 (*bp->b_iodone)(bp);
917 } else {
918 if (ISSET(bp->b_flags, B_ASYNC)) /* if async, release */
919 brelse(bp);
920 else { /* or just wakeup the buffer */
921 CLR(bp->b_flags, B_WANTED);
922 wakeup(bp);
923 }
924 }
925
926 splx(s);
927 }
928
929 /*
930 * Return a count of buffers on the "locked" queue.
931 */
932 int
933 count_lock_queue()
934 {
935 struct buf *bp;
936 int n = 0;
937
938 for (bp = bufqueues[BQ_LOCKED].tqh_first; bp;
939 bp = bp->b_freelist.tqe_next)
940 n++;
941 return (n);
942 }
943
944 #ifdef DEBUG
945 /*
946 * Print out statistics on the current allocation of the buffer pool.
947 * Can be enabled to print out on every ``sync'' by setting "syncprt"
948 * in vfs_syscalls.c using sysctl.
949 */
950 void
951 vfs_bufstats()
952 {
953 int s, i, j, count;
954 struct buf *bp;
955 struct bqueues *dp;
956 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
957 static char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE", "EMPTY" };
958
959 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
960 count = 0;
961 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
962 counts[j] = 0;
963 s = splbio();
964 for (bp = dp->tqh_first; bp; bp = bp->b_freelist.tqe_next) {
965 counts[bp->b_bufsize/PAGE_SIZE]++;
966 count++;
967 }
968 splx(s);
969 printf("%s: total-%d", bname[i], count);
970 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
971 if (counts[j] != 0)
972 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
973 printf("\n");
974 }
975 }
976 #endif /* DEBUG */
977