vfs_bio.c revision 1.85 1 /* $NetBSD: vfs_bio.c,v 1.85 2002/09/06 13:18:43 gehenna Exp $ */
2
3 /*-
4 * Copyright (c) 1994 Christopher G. Demetriou
5 * Copyright (c) 1982, 1986, 1989, 1993
6 * The Regents of the University of California. All rights reserved.
7 * (c) UNIX System Laboratories, Inc.
8 * All or some portions of this file are derived from material licensed
9 * to the University of California by American Telephone and Telegraph
10 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11 * the permission of UNIX System Laboratories, Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the University of
24 * California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
42 */
43
44 /*
45 * Some references:
46 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
47 * Leffler, et al.: The Design and Implementation of the 4.3BSD
48 * UNIX Operating System (Addison Welley, 1989)
49 */
50
51 #include "opt_softdep.h"
52
53 #include <sys/cdefs.h>
54 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.85 2002/09/06 13:18:43 gehenna Exp $");
55
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/proc.h>
59 #include <sys/buf.h>
60 #include <sys/vnode.h>
61 #include <sys/mount.h>
62 #include <sys/malloc.h>
63 #include <sys/resourcevar.h>
64 #include <sys/conf.h>
65
66 #include <uvm/uvm.h>
67
68 #include <miscfs/specfs/specdev.h>
69
70 /* Macros to clear/set/test flags. */
71 #define SET(t, f) (t) |= (f)
72 #define CLR(t, f) (t) &= ~(f)
73 #define ISSET(t, f) ((t) & (f))
74
75 /*
76 * Definitions for the buffer hash lists.
77 */
78 #define BUFHASH(dvp, lbn) \
79 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
80 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
81 u_long bufhash;
82 #ifndef SOFTDEP
83 struct bio_ops bioops; /* I/O operation notification */
84 #endif
85
86 /*
87 * Insq/Remq for the buffer hash lists.
88 */
89 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash)
90 #define bremhash(bp) LIST_REMOVE(bp, b_hash)
91
92 /*
93 * Definitions for the buffer free lists.
94 */
95 #define BQUEUES 4 /* number of free buffer queues */
96
97 #define BQ_LOCKED 0 /* super-blocks &c */
98 #define BQ_LRU 1 /* lru, useful buffers */
99 #define BQ_AGE 2 /* rubbish */
100 #define BQ_EMPTY 3 /* buffer headers with no memory */
101
102 TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
103 int needbuffer;
104
105 /*
106 * Buffer pool for I/O buffers.
107 */
108 struct pool bufpool;
109
110 /*
111 * Insq/Remq for the buffer free lists.
112 */
113 #define binsheadfree(bp, dp) TAILQ_INSERT_HEAD(dp, bp, b_freelist)
114 #define binstailfree(bp, dp) TAILQ_INSERT_TAIL(dp, bp, b_freelist)
115
116 static __inline struct buf *bio_doread __P((struct vnode *, daddr_t, int,
117 struct ucred *, int));
118 int count_lock_queue __P((void));
119
120 void
121 bremfree(bp)
122 struct buf *bp;
123 {
124 int s = splbio();
125
126 struct bqueues *dp = NULL;
127
128 /*
129 * We only calculate the head of the freelist when removing
130 * the last element of the list as that is the only time that
131 * it is needed (e.g. to reset the tail pointer).
132 *
133 * NB: This makes an assumption about how tailq's are implemented.
134 */
135 if (TAILQ_NEXT(bp, b_freelist) == NULL) {
136 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
137 if (dp->tqh_last == &bp->b_freelist.tqe_next)
138 break;
139 if (dp == &bufqueues[BQUEUES])
140 panic("bremfree: lost tail");
141 }
142 TAILQ_REMOVE(dp, bp, b_freelist);
143 splx(s);
144 }
145
146 /*
147 * Initialize buffers and hash links for buffers.
148 */
149 void
150 bufinit()
151 {
152 struct buf *bp;
153 struct bqueues *dp;
154 u_int i, base, residual;
155
156 /*
157 * Initialize the buffer pool. This pool is used for buffers
158 * which are strictly I/O control blocks, not buffer cache
159 * buffers.
160 */
161 pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL);
162
163 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
164 TAILQ_INIT(dp);
165 bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
166 base = bufpages / nbuf;
167 residual = bufpages % nbuf;
168 for (i = 0; i < nbuf; i++) {
169 bp = &buf[i];
170 memset((char *)bp, 0, sizeof(*bp));
171 bp->b_dev = NODEV;
172 bp->b_vnbufs.le_next = NOLIST;
173 LIST_INIT(&bp->b_dep);
174 bp->b_data = buffers + i * MAXBSIZE;
175 if (i < residual)
176 bp->b_bufsize = (base + 1) * PAGE_SIZE;
177 else
178 bp->b_bufsize = base * PAGE_SIZE;
179 bp->b_flags = B_INVAL;
180 dp = bp->b_bufsize ? &bufqueues[BQ_AGE] : &bufqueues[BQ_EMPTY];
181 binsheadfree(bp, dp);
182 binshash(bp, &invalhash);
183 }
184 }
185
186 static __inline struct buf *
187 bio_doread(vp, blkno, size, cred, async)
188 struct vnode *vp;
189 daddr_t blkno;
190 int size;
191 struct ucred *cred;
192 int async;
193 {
194 struct buf *bp;
195 struct proc *p = (curproc != NULL ? curproc : &proc0); /* XXX */
196
197 bp = getblk(vp, blkno, size, 0, 0);
198
199 /*
200 * If buffer does not have data valid, start a read.
201 * Note that if buffer is B_INVAL, getblk() won't return it.
202 * Therefore, it's valid if it's I/O has completed or been delayed.
203 */
204 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
205 /* Start I/O for the buffer. */
206 SET(bp->b_flags, B_READ | async);
207 VOP_STRATEGY(bp);
208
209 /* Pay for the read. */
210 p->p_stats->p_ru.ru_inblock++;
211 } else if (async) {
212 brelse(bp);
213 }
214
215 return (bp);
216 }
217
218 /*
219 * Read a disk block.
220 * This algorithm described in Bach (p.54).
221 */
222 int
223 bread(vp, blkno, size, cred, bpp)
224 struct vnode *vp;
225 daddr_t blkno;
226 int size;
227 struct ucred *cred;
228 struct buf **bpp;
229 {
230 struct buf *bp;
231
232 /* Get buffer for block. */
233 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
234
235 /* Wait for the read to complete, and return result. */
236 return (biowait(bp));
237 }
238
239 /*
240 * Read-ahead multiple disk blocks. The first is sync, the rest async.
241 * Trivial modification to the breada algorithm presented in Bach (p.55).
242 */
243 int
244 breadn(vp, blkno, size, rablks, rasizes, nrablks, cred, bpp)
245 struct vnode *vp;
246 daddr_t blkno; int size;
247 daddr_t rablks[]; int rasizes[];
248 int nrablks;
249 struct ucred *cred;
250 struct buf **bpp;
251 {
252 struct buf *bp;
253 int i;
254
255 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
256
257 /*
258 * For each of the read-ahead blocks, start a read, if necessary.
259 */
260 for (i = 0; i < nrablks; i++) {
261 /* If it's in the cache, just go on to next one. */
262 if (incore(vp, rablks[i]))
263 continue;
264
265 /* Get a buffer for the read-ahead block */
266 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
267 }
268
269 /* Otherwise, we had to start a read for it; wait until it's valid. */
270 return (biowait(bp));
271 }
272
273 /*
274 * Read with single-block read-ahead. Defined in Bach (p.55), but
275 * implemented as a call to breadn().
276 * XXX for compatibility with old file systems.
277 */
278 int
279 breada(vp, blkno, size, rablkno, rabsize, cred, bpp)
280 struct vnode *vp;
281 daddr_t blkno; int size;
282 daddr_t rablkno; int rabsize;
283 struct ucred *cred;
284 struct buf **bpp;
285 {
286
287 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
288 }
289
290 /*
291 * Block write. Described in Bach (p.56)
292 */
293 int
294 bwrite(bp)
295 struct buf *bp;
296 {
297 int rv, sync, wasdelayed, s;
298 struct proc *p = (curproc != NULL ? curproc : &proc0); /* XXX */
299 struct vnode *vp;
300 struct mount *mp;
301
302 vp = bp->b_vp;
303 if (vp != NULL) {
304 if (vp->v_type == VBLK)
305 mp = vp->v_specmountpoint;
306 else
307 mp = vp->v_mount;
308 } else {
309 mp = NULL;
310 }
311
312 /*
313 * Remember buffer type, to switch on it later. If the write was
314 * synchronous, but the file system was mounted with MNT_ASYNC,
315 * convert it to a delayed write.
316 * XXX note that this relies on delayed tape writes being converted
317 * to async, not sync writes (which is safe, but ugly).
318 */
319 sync = !ISSET(bp->b_flags, B_ASYNC);
320 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
321 bdwrite(bp);
322 return (0);
323 }
324
325 /*
326 * Collect statistics on synchronous and asynchronous writes.
327 * Writes to block devices are charged to their associated
328 * filesystem (if any).
329 */
330 if (mp != NULL) {
331 if (sync)
332 mp->mnt_stat.f_syncwrites++;
333 else
334 mp->mnt_stat.f_asyncwrites++;
335 }
336
337 wasdelayed = ISSET(bp->b_flags, B_DELWRI);
338
339 s = splbio();
340
341 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
342
343 /*
344 * Pay for the I/O operation and make sure the buf is on the correct
345 * vnode queue.
346 */
347 if (wasdelayed)
348 reassignbuf(bp, bp->b_vp);
349 else
350 p->p_stats->p_ru.ru_oublock++;
351
352 /* Initiate disk write. Make sure the appropriate party is charged. */
353 bp->b_vp->v_numoutput++;
354 splx(s);
355
356 VOP_STRATEGY(bp);
357
358 if (sync) {
359 /* If I/O was synchronous, wait for it to complete. */
360 rv = biowait(bp);
361
362 /* Release the buffer. */
363 brelse(bp);
364
365 return (rv);
366 } else {
367 return (0);
368 }
369 }
370
371 int
372 vn_bwrite(v)
373 void *v;
374 {
375 struct vop_bwrite_args *ap = v;
376
377 return (bwrite(ap->a_bp));
378 }
379
380 /*
381 * Delayed write.
382 *
383 * The buffer is marked dirty, but is not queued for I/O.
384 * This routine should be used when the buffer is expected
385 * to be modified again soon, typically a small write that
386 * partially fills a buffer.
387 *
388 * NB: magnetic tapes cannot be delayed; they must be
389 * written in the order that the writes are requested.
390 *
391 * Described in Leffler, et al. (pp. 208-213).
392 */
393 void
394 bdwrite(bp)
395 struct buf *bp;
396 {
397 struct proc *p = (curproc != NULL ? curproc : &proc0); /* XXX */
398 const struct bdevsw *bdev;
399 int s;
400
401 /* If this is a tape block, write the block now. */
402 /* XXX NOTE: the memory filesystem usurpes major device */
403 /* XXX number 4095, which is a bad idea. */
404 if (bp->b_dev != NODEV && major(bp->b_dev) != 4095) {
405 bdev = bdevsw_lookup(bp->b_dev);
406 if (bdev != NULL && bdev->d_type == D_TAPE) {
407 bawrite(bp);
408 return;
409 }
410 }
411
412 /*
413 * If the block hasn't been seen before:
414 * (1) Mark it as having been seen,
415 * (2) Charge for the write,
416 * (3) Make sure it's on its vnode's correct block list.
417 */
418 s = splbio();
419
420 if (!ISSET(bp->b_flags, B_DELWRI)) {
421 SET(bp->b_flags, B_DELWRI);
422 p->p_stats->p_ru.ru_oublock++;
423 reassignbuf(bp, bp->b_vp);
424 }
425
426 /* Otherwise, the "write" is done, so mark and release the buffer. */
427 CLR(bp->b_flags, B_NEEDCOMMIT|B_DONE);
428 splx(s);
429
430 brelse(bp);
431 }
432
433 /*
434 * Asynchronous block write; just an asynchronous bwrite().
435 */
436 void
437 bawrite(bp)
438 struct buf *bp;
439 {
440
441 SET(bp->b_flags, B_ASYNC);
442 VOP_BWRITE(bp);
443 }
444
445 /*
446 * Same as first half of bdwrite, mark buffer dirty, but do not release it.
447 */
448 void
449 bdirty(bp)
450 struct buf *bp;
451 {
452 struct proc *p = (curproc != NULL ? curproc : &proc0); /* XXX */
453 int s;
454
455 s = splbio();
456
457 CLR(bp->b_flags, B_AGE);
458
459 if (!ISSET(bp->b_flags, B_DELWRI)) {
460 SET(bp->b_flags, B_DELWRI);
461 p->p_stats->p_ru.ru_oublock++;
462 reassignbuf(bp, bp->b_vp);
463 }
464
465 splx(s);
466 }
467
468 /*
469 * Release a buffer on to the free lists.
470 * Described in Bach (p. 46).
471 */
472 void
473 brelse(bp)
474 struct buf *bp;
475 {
476 struct bqueues *bufq;
477 int s;
478
479 KASSERT(ISSET(bp->b_flags, B_BUSY));
480
481 /* Wake up any processes waiting for any buffer to become free. */
482 if (needbuffer) {
483 needbuffer = 0;
484 wakeup(&needbuffer);
485 }
486
487 /* Block disk interrupts. */
488 s = splbio();
489
490 /* Wake up any proceeses waiting for _this_ buffer to become free. */
491 if (ISSET(bp->b_flags, B_WANTED)) {
492 CLR(bp->b_flags, B_WANTED|B_AGE);
493 wakeup(bp);
494 }
495
496 /*
497 * Determine which queue the buffer should be on, then put it there.
498 */
499
500 /* If it's locked, don't report an error; try again later. */
501 if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
502 CLR(bp->b_flags, B_ERROR);
503
504 /* If it's not cacheable, or an error, mark it invalid. */
505 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
506 SET(bp->b_flags, B_INVAL);
507
508 if (ISSET(bp->b_flags, B_VFLUSH)) {
509 /*
510 * This is a delayed write buffer that was just flushed to
511 * disk. It is still on the LRU queue. If it's become
512 * invalid, then we need to move it to a different queue;
513 * otherwise leave it in its current position.
514 */
515 CLR(bp->b_flags, B_VFLUSH);
516 if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE))
517 goto already_queued;
518 else
519 bremfree(bp);
520 }
521
522 if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
523 /*
524 * If it's invalid or empty, dissociate it from its vnode
525 * and put on the head of the appropriate queue.
526 */
527 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
528 (*bioops.io_deallocate)(bp);
529 CLR(bp->b_flags, B_DONE|B_DELWRI);
530 if (bp->b_vp) {
531 reassignbuf(bp, bp->b_vp);
532 brelvp(bp);
533 }
534 if (bp->b_bufsize <= 0)
535 /* no data */
536 bufq = &bufqueues[BQ_EMPTY];
537 else
538 /* invalid data */
539 bufq = &bufqueues[BQ_AGE];
540 binsheadfree(bp, bufq);
541 } else {
542 /*
543 * It has valid data. Put it on the end of the appropriate
544 * queue, so that it'll stick around for as long as possible.
545 * If buf is AGE, but has dependencies, must put it on last
546 * bufqueue to be scanned, ie LRU. This protects against the
547 * livelock where BQ_AGE only has buffers with dependencies,
548 * and we thus never get to the dependent buffers in BQ_LRU.
549 */
550 if (ISSET(bp->b_flags, B_LOCKED))
551 /* locked in core */
552 bufq = &bufqueues[BQ_LOCKED];
553 else if (!ISSET(bp->b_flags, B_AGE))
554 /* valid data */
555 bufq = &bufqueues[BQ_LRU];
556 else {
557 /* stale but valid data */
558 int has_deps;
559
560 if (LIST_FIRST(&bp->b_dep) != NULL &&
561 bioops.io_countdeps)
562 has_deps = (*bioops.io_countdeps)(bp, 0);
563 else
564 has_deps = 0;
565 bufq = has_deps ? &bufqueues[BQ_LRU] :
566 &bufqueues[BQ_AGE];
567 }
568 binstailfree(bp, bufq);
569 }
570
571 already_queued:
572 /* Unlock the buffer. */
573 CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE);
574 SET(bp->b_flags, B_CACHE);
575
576 /* Allow disk interrupts. */
577 splx(s);
578 }
579
580 /*
581 * Determine if a block is in the cache.
582 * Just look on what would be its hash chain. If it's there, return
583 * a pointer to it, unless it's marked invalid. If it's marked invalid,
584 * we normally don't return the buffer, unless the caller explicitly
585 * wants us to.
586 */
587 struct buf *
588 incore(vp, blkno)
589 struct vnode *vp;
590 daddr_t blkno;
591 {
592 struct buf *bp;
593
594 /* Search hash chain */
595 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
596 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
597 !ISSET(bp->b_flags, B_INVAL))
598 return (bp);
599 }
600
601 return (NULL);
602 }
603
604 /*
605 * Get a block of requested size that is associated with
606 * a given vnode and block offset. If it is found in the
607 * block cache, mark it as having been found, make it busy
608 * and return it. Otherwise, return an empty block of the
609 * correct size. It is up to the caller to insure that the
610 * cached blocks be of the correct size.
611 */
612 struct buf *
613 getblk(vp, blkno, size, slpflag, slptimeo)
614 struct vnode *vp;
615 daddr_t blkno;
616 int size, slpflag, slptimeo;
617 {
618 struct buf *bp;
619 int s, err;
620
621 start:
622 bp = incore(vp, blkno);
623 if (bp != NULL) {
624 s = splbio();
625 if (ISSET(bp->b_flags, B_BUSY)) {
626 if (curproc == uvm.pagedaemon_proc) {
627 splx(s);
628 return NULL;
629 }
630 SET(bp->b_flags, B_WANTED);
631 err = tsleep(bp, slpflag | (PRIBIO + 1), "getblk",
632 slptimeo);
633 splx(s);
634 if (err)
635 return (NULL);
636 goto start;
637 }
638 #ifdef DIAGNOSTIC
639 if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
640 bp->b_bcount < size && vp->v_type != VBLK)
641 panic("getblk: block size invariant failed");
642 #endif
643 SET(bp->b_flags, B_BUSY);
644 bremfree(bp);
645 splx(s);
646 } else {
647 if ((bp = getnewbuf(slpflag, slptimeo)) == NULL)
648 goto start;
649
650 binshash(bp, BUFHASH(vp, blkno));
651 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
652 s = splbio();
653 bgetvp(vp, bp);
654 splx(s);
655 }
656 allocbuf(bp, size);
657 return (bp);
658 }
659
660 /*
661 * Get an empty, disassociated buffer of given size.
662 */
663 struct buf *
664 geteblk(size)
665 int size;
666 {
667 struct buf *bp;
668
669 while ((bp = getnewbuf(0, 0)) == 0)
670 ;
671 SET(bp->b_flags, B_INVAL);
672 binshash(bp, &invalhash);
673 allocbuf(bp, size);
674 return (bp);
675 }
676
677 /*
678 * Expand or contract the actual memory allocated to a buffer.
679 *
680 * If the buffer shrinks, data is lost, so it's up to the
681 * caller to have written it out *first*; this routine will not
682 * start a write. If the buffer grows, it's the callers
683 * responsibility to fill out the buffer's additional contents.
684 */
685 void
686 allocbuf(bp, size)
687 struct buf *bp;
688 int size;
689 {
690 struct buf *nbp;
691 vsize_t desired_size;
692 int s;
693
694 desired_size = round_page((vsize_t)size);
695 if (desired_size > MAXBSIZE)
696 panic("allocbuf: buffer larger than MAXBSIZE requested");
697
698 if (bp->b_bufsize == desired_size)
699 goto out;
700
701 /*
702 * If the buffer is smaller than the desired size, we need to snarf
703 * it from other buffers. Get buffers (via getnewbuf()), and
704 * steal their pages.
705 */
706 while (bp->b_bufsize < desired_size) {
707 int amt;
708
709 /* find a buffer */
710 while ((nbp = getnewbuf(0, 0)) == NULL)
711 ;
712
713 SET(nbp->b_flags, B_INVAL);
714 binshash(nbp, &invalhash);
715
716 /* and steal its pages, up to the amount we need */
717 amt = min(nbp->b_bufsize, (desired_size - bp->b_bufsize));
718 pagemove((nbp->b_data + nbp->b_bufsize - amt),
719 bp->b_data + bp->b_bufsize, amt);
720 bp->b_bufsize += amt;
721 nbp->b_bufsize -= amt;
722
723 /* reduce transfer count if we stole some data */
724 if (nbp->b_bcount > nbp->b_bufsize)
725 nbp->b_bcount = nbp->b_bufsize;
726
727 #ifdef DIAGNOSTIC
728 if (nbp->b_bufsize < 0)
729 panic("allocbuf: negative bufsize");
730 #endif
731
732 brelse(nbp);
733 }
734
735 /*
736 * If we want a buffer smaller than the current size,
737 * shrink this buffer. Grab a buf head from the EMPTY queue,
738 * move a page onto it, and put it on front of the AGE queue.
739 * If there are no free buffer headers, leave the buffer alone.
740 */
741 if (bp->b_bufsize > desired_size) {
742 s = splbio();
743 if ((nbp = TAILQ_FIRST(&bufqueues[BQ_EMPTY])) == NULL) {
744 /* No free buffer head */
745 splx(s);
746 goto out;
747 }
748 bremfree(nbp);
749 SET(nbp->b_flags, B_BUSY);
750 splx(s);
751
752 /* move the page to it and note this change */
753 pagemove(bp->b_data + desired_size,
754 nbp->b_data, bp->b_bufsize - desired_size);
755 nbp->b_bufsize = bp->b_bufsize - desired_size;
756 bp->b_bufsize = desired_size;
757 nbp->b_bcount = 0;
758 SET(nbp->b_flags, B_INVAL);
759
760 /* release the newly-filled buffer and leave */
761 brelse(nbp);
762 }
763
764 out:
765 bp->b_bcount = size;
766 }
767
768 /*
769 * Find a buffer which is available for use.
770 * Select something from a free list.
771 * Preference is to AGE list, then LRU list.
772 */
773 struct buf *
774 getnewbuf(slpflag, slptimeo)
775 int slpflag, slptimeo;
776 {
777 struct buf *bp;
778 int s;
779
780 start:
781 s = splbio();
782 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE])) != NULL ||
783 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU])) != NULL) {
784 bremfree(bp);
785 } else {
786 /* wait for a free buffer of any kind */
787 needbuffer = 1;
788 tsleep(&needbuffer, slpflag|(PRIBIO+1), "getnewbuf", slptimeo);
789 splx(s);
790 return (NULL);
791 }
792
793 if (ISSET(bp->b_flags, B_VFLUSH)) {
794 /*
795 * This is a delayed write buffer being flushed to disk. Make
796 * sure it gets aged out of the queue when it's finished, and
797 * leave it off the LRU queue.
798 */
799 CLR(bp->b_flags, B_VFLUSH);
800 SET(bp->b_flags, B_AGE);
801 splx(s);
802 goto start;
803 }
804
805 /* Buffer is no longer on free lists. */
806 SET(bp->b_flags, B_BUSY);
807
808 /*
809 * If buffer was a delayed write, start it and return NULL
810 * (since we might sleep while starting the write).
811 */
812 if (ISSET(bp->b_flags, B_DELWRI)) {
813 splx(s);
814 /*
815 * This buffer has gone through the LRU, so make sure it gets
816 * reused ASAP.
817 */
818 SET(bp->b_flags, B_AGE);
819 bawrite(bp);
820 return (NULL);
821 }
822
823 /* disassociate us from our vnode, if we had one... */
824 if (bp->b_vp)
825 brelvp(bp);
826 splx(s);
827
828 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
829 (*bioops.io_deallocate)(bp);
830
831 /* clear out various other fields */
832 bp->b_flags = B_BUSY;
833 bp->b_dev = NODEV;
834 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
835 bp->b_iodone = 0;
836 bp->b_error = 0;
837 bp->b_resid = 0;
838 bp->b_bcount = 0;
839
840 bremhash(bp);
841 return (bp);
842 }
843
844 /*
845 * Wait for operations on the buffer to complete.
846 * When they do, extract and return the I/O's error value.
847 */
848 int
849 biowait(bp)
850 struct buf *bp;
851 {
852 int s;
853
854 s = splbio();
855 while (!ISSET(bp->b_flags, B_DONE | B_DELWRI))
856 tsleep(bp, PRIBIO + 1, "biowait", 0);
857 splx(s);
858
859 /* check for interruption of I/O (e.g. via NFS), then errors. */
860 if (ISSET(bp->b_flags, B_EINTR)) {
861 CLR(bp->b_flags, B_EINTR);
862 return (EINTR);
863 } else if (ISSET(bp->b_flags, B_ERROR))
864 return (bp->b_error ? bp->b_error : EIO);
865 else
866 return (0);
867 }
868
869 /*
870 * Mark I/O complete on a buffer.
871 *
872 * If a callback has been requested, e.g. the pageout
873 * daemon, do so. Otherwise, awaken waiting processes.
874 *
875 * [ Leffler, et al., says on p.247:
876 * "This routine wakes up the blocked process, frees the buffer
877 * for an asynchronous write, or, for a request by the pagedaemon
878 * process, invokes a procedure specified in the buffer structure" ]
879 *
880 * In real life, the pagedaemon (or other system processes) wants
881 * to do async stuff to, and doesn't want the buffer brelse()'d.
882 * (for swap pager, that puts swap buffers on the free lists (!!!),
883 * for the vn device, that puts malloc'd buffers on the free lists!)
884 */
885 void
886 biodone(bp)
887 struct buf *bp;
888 {
889 int s = splbio();
890
891 if (ISSET(bp->b_flags, B_DONE))
892 panic("biodone already");
893 SET(bp->b_flags, B_DONE); /* note that it's done */
894
895 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
896 (*bioops.io_complete)(bp);
897
898 if (!ISSET(bp->b_flags, B_READ)) /* wake up reader */
899 vwakeup(bp);
900
901 if (ISSET(bp->b_flags, B_CALL)) { /* if necessary, call out */
902 CLR(bp->b_flags, B_CALL); /* but note callout done */
903 (*bp->b_iodone)(bp);
904 } else {
905 if (ISSET(bp->b_flags, B_ASYNC)) /* if async, release */
906 brelse(bp);
907 else { /* or just wakeup the buffer */
908 CLR(bp->b_flags, B_WANTED);
909 wakeup(bp);
910 }
911 }
912
913 splx(s);
914 }
915
916 /*
917 * Return a count of buffers on the "locked" queue.
918 */
919 int
920 count_lock_queue()
921 {
922 struct buf *bp;
923 int n = 0;
924
925 TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED], b_freelist)
926 n++;
927 return (n);
928 }
929
930 #ifdef DEBUG
931 /*
932 * Print out statistics on the current allocation of the buffer pool.
933 * Can be enabled to print out on every ``sync'' by setting "syncprt"
934 * in vfs_syscalls.c using sysctl.
935 */
936 void
937 vfs_bufstats()
938 {
939 int s, i, j, count;
940 struct buf *bp;
941 struct bqueues *dp;
942 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
943 static char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE", "EMPTY" };
944
945 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
946 count = 0;
947 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
948 counts[j] = 0;
949 s = splbio();
950 TAILQ_FOREACH(bp, dp, b_freelist) {
951 counts[bp->b_bufsize/PAGE_SIZE]++;
952 count++;
953 }
954 splx(s);
955 printf("%s: total-%d", bname[i], count);
956 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
957 if (counts[j] != 0)
958 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
959 printf("\n");
960 }
961 }
962 #endif /* DEBUG */
963