vfs_bio.c revision 1.87 1 /* $NetBSD: vfs_bio.c,v 1.87 2003/02/05 21:38:42 pk Exp $ */
2
3 /*-
4 * Copyright (c) 1994 Christopher G. Demetriou
5 * Copyright (c) 1982, 1986, 1989, 1993
6 * The Regents of the University of California. All rights reserved.
7 * (c) UNIX System Laboratories, Inc.
8 * All or some portions of this file are derived from material licensed
9 * to the University of California by American Telephone and Telegraph
10 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11 * the permission of UNIX System Laboratories, Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the University of
24 * California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
42 */
43
44 /*
45 * Some references:
46 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
47 * Leffler, et al.: The Design and Implementation of the 4.3BSD
48 * UNIX Operating System (Addison Welley, 1989)
49 */
50
51 #include "opt_softdep.h"
52
53 #include <sys/cdefs.h>
54 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.87 2003/02/05 21:38:42 pk Exp $");
55
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/proc.h>
59 #include <sys/buf.h>
60 #include <sys/vnode.h>
61 #include <sys/mount.h>
62 #include <sys/malloc.h>
63 #include <sys/resourcevar.h>
64 #include <sys/conf.h>
65
66 #include <uvm/uvm.h>
67
68 #include <miscfs/specfs/specdev.h>
69
70 /* Macros to clear/set/test flags. */
71 #define SET(t, f) (t) |= (f)
72 #define CLR(t, f) (t) &= ~(f)
73 #define ISSET(t, f) ((t) & (f))
74
75 /*
76 * Definitions for the buffer hash lists.
77 */
78 #define BUFHASH(dvp, lbn) \
79 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
80 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
81 u_long bufhash;
82 #ifndef SOFTDEP
83 struct bio_ops bioops; /* I/O operation notification */
84 #endif
85
86 /*
87 * Insq/Remq for the buffer hash lists.
88 */
89 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash)
90 #define bremhash(bp) LIST_REMOVE(bp, b_hash)
91
92 /*
93 * Definitions for the buffer free lists.
94 */
95 #define BQUEUES 4 /* number of free buffer queues */
96
97 #define BQ_LOCKED 0 /* super-blocks &c */
98 #define BQ_LRU 1 /* lru, useful buffers */
99 #define BQ_AGE 2 /* rubbish */
100 #define BQ_EMPTY 3 /* buffer headers with no memory */
101
102 TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
103 int needbuffer;
104
105 /*
106 * Buffer queue lock.
107 * Take this lock first if also taking some buffer's b_interlock.
108 */
109 struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER;
110
111 /*
112 * Buffer pool for I/O buffers.
113 */
114 struct pool bufpool;
115
116 /*
117 * bread()/breadn() helper.
118 */
119 static __inline struct buf *bio_doread(struct vnode *, daddr_t, int,
120 struct ucred *, int);
121 int count_lock_queue(void);
122
123 /*
124 * Insq/Remq for the buffer free lists.
125 * Call with buffer queue locked.
126 */
127 #define binsheadfree(bp, dp) TAILQ_INSERT_HEAD(dp, bp, b_freelist)
128 #define binstailfree(bp, dp) TAILQ_INSERT_TAIL(dp, bp, b_freelist)
129
130 void
131 bremfree(bp)
132 struct buf *bp;
133 {
134 struct bqueues *dp = NULL;
135
136 /*
137 * We only calculate the head of the freelist when removing
138 * the last element of the list as that is the only time that
139 * it is needed (e.g. to reset the tail pointer).
140 *
141 * NB: This makes an assumption about how tailq's are implemented.
142 */
143 if (TAILQ_NEXT(bp, b_freelist) == NULL) {
144 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
145 if (dp->tqh_last == &bp->b_freelist.tqe_next)
146 break;
147 if (dp == &bufqueues[BQUEUES])
148 panic("bremfree: lost tail");
149 }
150 TAILQ_REMOVE(dp, bp, b_freelist);
151 }
152
153 /*
154 * Initialize buffers and hash links for buffers.
155 */
156 void
157 bufinit()
158 {
159 struct buf *bp;
160 struct bqueues *dp;
161 u_int i, base, residual;
162
163 /*
164 * Initialize the buffer pool. This pool is used for buffers
165 * which are strictly I/O control blocks, not buffer cache
166 * buffers.
167 */
168 pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL);
169
170 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
171 TAILQ_INIT(dp);
172 bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
173 base = bufpages / nbuf;
174 residual = bufpages % nbuf;
175 for (i = 0; i < nbuf; i++) {
176 bp = &buf[i];
177 memset((char *)bp, 0, sizeof(*bp));
178 simple_lock_init(&bp->b_interlock);
179 bp->b_dev = NODEV;
180 bp->b_vnbufs.le_next = NOLIST;
181 LIST_INIT(&bp->b_dep);
182 bp->b_data = buffers + i * MAXBSIZE;
183 if (i < residual)
184 bp->b_bufsize = (base + 1) * PAGE_SIZE;
185 else
186 bp->b_bufsize = base * PAGE_SIZE;
187 bp->b_flags = B_INVAL;
188 dp = bp->b_bufsize ? &bufqueues[BQ_AGE] : &bufqueues[BQ_EMPTY];
189 binsheadfree(bp, dp);
190 binshash(bp, &invalhash);
191 }
192 }
193
194 static __inline struct buf *
195 bio_doread(vp, blkno, size, cred, async)
196 struct vnode *vp;
197 daddr_t blkno;
198 int size;
199 struct ucred *cred;
200 int async;
201 {
202 struct buf *bp;
203 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
204 struct proc *p = l->l_proc;
205
206 bp = getblk(vp, blkno, size, 0, 0);
207
208 #ifdef DIAGNOSTIC
209 if (bp == NULL) {
210 panic("bio_doread: no such buf");
211 }
212 #endif
213
214 /*
215 * If buffer does not have data valid, start a read.
216 * Note that if buffer is B_INVAL, getblk() won't return it.
217 * Therefore, it's valid if its I/O has completed or been delayed.
218 */
219 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
220 /* Start I/O for the buffer. */
221 SET(bp->b_flags, B_READ | async);
222 VOP_STRATEGY(bp);
223
224 /* Pay for the read. */
225 p->p_stats->p_ru.ru_inblock++;
226 } else if (async) {
227 brelse(bp);
228 }
229
230 return (bp);
231 }
232
233 /*
234 * Read a disk block.
235 * This algorithm described in Bach (p.54).
236 */
237 int
238 bread(vp, blkno, size, cred, bpp)
239 struct vnode *vp;
240 daddr_t blkno;
241 int size;
242 struct ucred *cred;
243 struct buf **bpp;
244 {
245 struct buf *bp;
246
247 /* Get buffer for block. */
248 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
249
250 /* Wait for the read to complete, and return result. */
251 return (biowait(bp));
252 }
253
254 /*
255 * Read-ahead multiple disk blocks. The first is sync, the rest async.
256 * Trivial modification to the breada algorithm presented in Bach (p.55).
257 */
258 int
259 breadn(vp, blkno, size, rablks, rasizes, nrablks, cred, bpp)
260 struct vnode *vp;
261 daddr_t blkno; int size;
262 daddr_t rablks[]; int rasizes[];
263 int nrablks;
264 struct ucred *cred;
265 struct buf **bpp;
266 {
267 struct buf *bp;
268 int i;
269
270 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
271
272 /*
273 * For each of the read-ahead blocks, start a read, if necessary.
274 */
275 for (i = 0; i < nrablks; i++) {
276 /* If it's in the cache, just go on to next one. */
277 if (incore(vp, rablks[i]))
278 continue;
279
280 /* Get a buffer for the read-ahead block */
281 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
282 }
283
284 /* Otherwise, we had to start a read for it; wait until it's valid. */
285 return (biowait(bp));
286 }
287
288 /*
289 * Read with single-block read-ahead. Defined in Bach (p.55), but
290 * implemented as a call to breadn().
291 * XXX for compatibility with old file systems.
292 */
293 int
294 breada(vp, blkno, size, rablkno, rabsize, cred, bpp)
295 struct vnode *vp;
296 daddr_t blkno; int size;
297 daddr_t rablkno; int rabsize;
298 struct ucred *cred;
299 struct buf **bpp;
300 {
301
302 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
303 }
304
305 /*
306 * Block write. Described in Bach (p.56)
307 */
308 int
309 bwrite(bp)
310 struct buf *bp;
311 {
312 int rv, sync, wasdelayed, s;
313 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
314 struct proc *p = l->l_proc;
315 struct vnode *vp;
316 struct mount *mp;
317
318 KASSERT(ISSET(bp->b_flags, B_BUSY));
319
320 vp = bp->b_vp;
321 if (vp != NULL) {
322 if (vp->v_type == VBLK)
323 mp = vp->v_specmountpoint;
324 else
325 mp = vp->v_mount;
326 } else {
327 mp = NULL;
328 }
329
330 /*
331 * Remember buffer type, to switch on it later. If the write was
332 * synchronous, but the file system was mounted with MNT_ASYNC,
333 * convert it to a delayed write.
334 * XXX note that this relies on delayed tape writes being converted
335 * to async, not sync writes (which is safe, but ugly).
336 */
337 sync = !ISSET(bp->b_flags, B_ASYNC);
338 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
339 bdwrite(bp);
340 return (0);
341 }
342
343 /*
344 * Collect statistics on synchronous and asynchronous writes.
345 * Writes to block devices are charged to their associated
346 * filesystem (if any).
347 */
348 if (mp != NULL) {
349 if (sync)
350 mp->mnt_stat.f_syncwrites++;
351 else
352 mp->mnt_stat.f_asyncwrites++;
353 }
354
355 wasdelayed = ISSET(bp->b_flags, B_DELWRI);
356
357 s = splbio();
358 simple_lock(&bp->b_interlock);
359
360 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
361
362 /*
363 * Pay for the I/O operation and make sure the buf is on the correct
364 * vnode queue.
365 */
366 if (wasdelayed)
367 reassignbuf(bp, bp->b_vp);
368 else
369 p->p_stats->p_ru.ru_oublock++;
370
371 /* Initiate disk write. Make sure the appropriate party is charged. */
372 V_INCR_NUMOUTPUT(bp->b_vp);
373 simple_unlock(&bp->b_interlock);
374 splx(s);
375
376 VOP_STRATEGY(bp);
377
378 if (sync) {
379 /* If I/O was synchronous, wait for it to complete. */
380 rv = biowait(bp);
381
382 /* Release the buffer. */
383 brelse(bp);
384
385 return (rv);
386 } else {
387 return (0);
388 }
389 }
390
391 int
392 vn_bwrite(v)
393 void *v;
394 {
395 struct vop_bwrite_args *ap = v;
396
397 return (bwrite(ap->a_bp));
398 }
399
400 /*
401 * Delayed write.
402 *
403 * The buffer is marked dirty, but is not queued for I/O.
404 * This routine should be used when the buffer is expected
405 * to be modified again soon, typically a small write that
406 * partially fills a buffer.
407 *
408 * NB: magnetic tapes cannot be delayed; they must be
409 * written in the order that the writes are requested.
410 *
411 * Described in Leffler, et al. (pp. 208-213).
412 */
413 void
414 bdwrite(bp)
415 struct buf *bp;
416 {
417 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
418 struct proc *p = l->l_proc;
419 const struct bdevsw *bdev;
420 int s;
421
422 KASSERT(ISSET(bp->b_flags, B_BUSY));
423
424 /* If this is a tape block, write the block now. */
425 /* XXX NOTE: the memory filesystem usurpes major device */
426 /* XXX number 4095, which is a bad idea. */
427 if (bp->b_dev != NODEV && major(bp->b_dev) != 4095) {
428 bdev = bdevsw_lookup(bp->b_dev);
429 if (bdev != NULL && bdev->d_type == D_TAPE) {
430 bawrite(bp);
431 return;
432 }
433 }
434
435 /*
436 * If the block hasn't been seen before:
437 * (1) Mark it as having been seen,
438 * (2) Charge for the write,
439 * (3) Make sure it's on its vnode's correct block list.
440 */
441 s = splbio();
442 simple_lock(&bp->b_interlock);
443
444 if (!ISSET(bp->b_flags, B_DELWRI)) {
445 SET(bp->b_flags, B_DELWRI);
446 p->p_stats->p_ru.ru_oublock++;
447 reassignbuf(bp, bp->b_vp);
448 }
449
450 /* Otherwise, the "write" is done, so mark and release the buffer. */
451 CLR(bp->b_flags, B_NEEDCOMMIT|B_DONE);
452 simple_unlock(&bp->b_interlock);
453 splx(s);
454
455 brelse(bp);
456 }
457
458 /*
459 * Asynchronous block write; just an asynchronous bwrite().
460 */
461 void
462 bawrite(bp)
463 struct buf *bp;
464 {
465 int s;
466
467 KASSERT(ISSET(bp->b_flags, B_BUSY));
468
469 s = splbio();
470 simple_lock(&bp->b_interlock);
471 SET(bp->b_flags, B_ASYNC);
472 simple_unlock(&bp->b_interlock);
473 splx(s);
474 VOP_BWRITE(bp);
475 }
476
477 /*
478 * Same as first half of bdwrite, mark buffer dirty, but do not release it.
479 */
480 void
481 bdirty(bp)
482 struct buf *bp;
483 {
484 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
485 struct proc *p = l->l_proc;
486 int s;
487
488 KASSERT(ISSET(bp->b_flags, B_BUSY));
489
490 s = splbio();
491 simple_lock(&bp->b_interlock);
492
493 CLR(bp->b_flags, B_AGE);
494
495 if (!ISSET(bp->b_flags, B_DELWRI)) {
496 SET(bp->b_flags, B_DELWRI);
497 p->p_stats->p_ru.ru_oublock++;
498 reassignbuf(bp, bp->b_vp);
499 }
500
501 simple_unlock(&bp->b_interlock);
502 splx(s);
503 }
504
505 /*
506 * Release a buffer on to the free lists.
507 * Described in Bach (p. 46).
508 */
509 void
510 brelse(bp)
511 struct buf *bp;
512 {
513 struct bqueues *bufq;
514 int s;
515
516 KASSERT(ISSET(bp->b_flags, B_BUSY));
517
518 /* Block disk interrupts. */
519 s = splbio();
520 simple_lock(&bqueue_slock);
521 simple_lock(&bp->b_interlock);
522
523 /* Wake up any processes waiting for any buffer to become free. */
524 if (needbuffer) {
525 needbuffer = 0;
526 wakeup(&needbuffer);
527 }
528
529 /* Wake up any proceeses waiting for _this_ buffer to become free. */
530 if (ISSET(bp->b_flags, B_WANTED)) {
531 CLR(bp->b_flags, B_WANTED|B_AGE);
532 wakeup(bp);
533 }
534
535 /*
536 * Determine which queue the buffer should be on, then put it there.
537 */
538
539 /* If it's locked, don't report an error; try again later. */
540 if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
541 CLR(bp->b_flags, B_ERROR);
542
543 /* If it's not cacheable, or an error, mark it invalid. */
544 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
545 SET(bp->b_flags, B_INVAL);
546
547 if (ISSET(bp->b_flags, B_VFLUSH)) {
548 /*
549 * This is a delayed write buffer that was just flushed to
550 * disk. It is still on the LRU queue. If it's become
551 * invalid, then we need to move it to a different queue;
552 * otherwise leave it in its current position.
553 */
554 CLR(bp->b_flags, B_VFLUSH);
555 if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE))
556 goto already_queued;
557 else
558 bremfree(bp);
559 }
560
561 if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
562 /*
563 * If it's invalid or empty, dissociate it from its vnode
564 * and put on the head of the appropriate queue.
565 */
566 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
567 (*bioops.io_deallocate)(bp);
568 CLR(bp->b_flags, B_DONE|B_DELWRI);
569 if (bp->b_vp) {
570 reassignbuf(bp, bp->b_vp);
571 brelvp(bp);
572 }
573 if (bp->b_bufsize <= 0)
574 /* no data */
575 bufq = &bufqueues[BQ_EMPTY];
576 else
577 /* invalid data */
578 bufq = &bufqueues[BQ_AGE];
579 binsheadfree(bp, bufq);
580 } else {
581 /*
582 * It has valid data. Put it on the end of the appropriate
583 * queue, so that it'll stick around for as long as possible.
584 * If buf is AGE, but has dependencies, must put it on last
585 * bufqueue to be scanned, ie LRU. This protects against the
586 * livelock where BQ_AGE only has buffers with dependencies,
587 * and we thus never get to the dependent buffers in BQ_LRU.
588 */
589 if (ISSET(bp->b_flags, B_LOCKED))
590 /* locked in core */
591 bufq = &bufqueues[BQ_LOCKED];
592 else if (!ISSET(bp->b_flags, B_AGE))
593 /* valid data */
594 bufq = &bufqueues[BQ_LRU];
595 else {
596 /* stale but valid data */
597 int has_deps;
598
599 if (LIST_FIRST(&bp->b_dep) != NULL &&
600 bioops.io_countdeps)
601 has_deps = (*bioops.io_countdeps)(bp, 0);
602 else
603 has_deps = 0;
604 bufq = has_deps ? &bufqueues[BQ_LRU] :
605 &bufqueues[BQ_AGE];
606 }
607 binstailfree(bp, bufq);
608 }
609
610 already_queued:
611 /* Unlock the buffer. */
612 CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE);
613 SET(bp->b_flags, B_CACHE);
614
615 /* Allow disk interrupts. */
616 simple_unlock(&bp->b_interlock);
617 simple_unlock(&bqueue_slock);
618 splx(s);
619 }
620
621 /*
622 * Determine if a block is in the cache.
623 * Just look on what would be its hash chain. If it's there, return
624 * a pointer to it, unless it's marked invalid. If it's marked invalid,
625 * we normally don't return the buffer, unless the caller explicitly
626 * wants us to.
627 */
628 struct buf *
629 incore(vp, blkno)
630 struct vnode *vp;
631 daddr_t blkno;
632 {
633 struct buf *bp;
634
635 /* Search hash chain */
636 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
637 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
638 !ISSET(bp->b_flags, B_INVAL))
639 return (bp);
640 }
641
642 return (NULL);
643 }
644
645 /*
646 * Get a block of requested size that is associated with
647 * a given vnode and block offset. If it is found in the
648 * block cache, mark it as having been found, make it busy
649 * and return it. Otherwise, return an empty block of the
650 * correct size. It is up to the caller to insure that the
651 * cached blocks be of the correct size.
652 */
653 struct buf *
654 getblk(vp, blkno, size, slpflag, slptimeo)
655 struct vnode *vp;
656 daddr_t blkno;
657 int size, slpflag, slptimeo;
658 {
659 struct buf *bp;
660 int s, err;
661
662 start:
663 s = splbio();
664 simple_lock(&bqueue_slock);
665 bp = incore(vp, blkno);
666 if (bp != NULL) {
667 simple_lock(&bp->b_interlock);
668 if (ISSET(bp->b_flags, B_BUSY)) {
669 simple_unlock(&bqueue_slock);
670 if (curproc == uvm.pagedaemon_proc) {
671 simple_unlock(&bp->b_interlock);
672 splx(s);
673 return NULL;
674 }
675 SET(bp->b_flags, B_WANTED);
676 err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK,
677 "getblk", slptimeo, &bp->b_interlock);
678 splx(s);
679 if (err)
680 return (NULL);
681 goto start;
682 }
683 #ifdef DIAGNOSTIC
684 if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
685 bp->b_bcount < size && vp->v_type != VBLK)
686 panic("getblk: block size invariant failed");
687 #endif
688 SET(bp->b_flags, B_BUSY);
689 bremfree(bp);
690 } else {
691 if ((bp = getnewbuf(slpflag, slptimeo)) == NULL) {
692 simple_unlock(&bqueue_slock);
693 splx(s);
694 goto start;
695 }
696
697 binshash(bp, BUFHASH(vp, blkno));
698 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
699 bgetvp(vp, bp);
700 }
701 simple_unlock(&bp->b_interlock);
702 simple_unlock(&bqueue_slock);
703 splx(s);
704 allocbuf(bp, size);
705 return (bp);
706 }
707
708 /*
709 * Get an empty, disassociated buffer of given size.
710 */
711 struct buf *
712 geteblk(size)
713 int size;
714 {
715 struct buf *bp;
716 int s;
717
718 s = splbio();
719 simple_lock(&bqueue_slock);
720 while ((bp = getnewbuf(0, 0)) == 0)
721 ;
722
723 SET(bp->b_flags, B_INVAL);
724 binshash(bp, &invalhash);
725 simple_unlock(&bqueue_slock);
726 simple_unlock(&bp->b_interlock);
727 splx(s);
728 allocbuf(bp, size);
729 return (bp);
730 }
731
732 /*
733 * Expand or contract the actual memory allocated to a buffer.
734 *
735 * If the buffer shrinks, data is lost, so it's up to the
736 * caller to have written it out *first*; this routine will not
737 * start a write. If the buffer grows, it's the callers
738 * responsibility to fill out the buffer's additional contents.
739 */
740 void
741 allocbuf(bp, size)
742 struct buf *bp;
743 int size;
744 {
745 struct buf *nbp;
746 vsize_t desired_size;
747 int s;
748
749 desired_size = round_page((vsize_t)size);
750 if (desired_size > MAXBSIZE)
751 panic("allocbuf: buffer larger than MAXBSIZE requested");
752
753 if (bp->b_bufsize == desired_size)
754 goto out;
755
756 /*
757 * If the buffer is smaller than the desired size, we need to snarf
758 * it from other buffers. Get buffers (via getnewbuf()), and
759 * steal their pages.
760 */
761 while (bp->b_bufsize < desired_size) {
762 int amt;
763
764 /* find a buffer */
765 s = splbio();
766 simple_lock(&bqueue_slock);
767 while ((nbp = getnewbuf(0, 0)) == NULL)
768 ;
769
770 SET(nbp->b_flags, B_INVAL);
771 binshash(nbp, &invalhash);
772
773 simple_unlock(&nbp->b_interlock);
774 simple_unlock(&bqueue_slock);
775 splx(s);
776
777 /* and steal its pages, up to the amount we need */
778 amt = min(nbp->b_bufsize, (desired_size - bp->b_bufsize));
779 pagemove((nbp->b_data + nbp->b_bufsize - amt),
780 bp->b_data + bp->b_bufsize, amt);
781 bp->b_bufsize += amt;
782 nbp->b_bufsize -= amt;
783
784 /* reduce transfer count if we stole some data */
785 if (nbp->b_bcount > nbp->b_bufsize)
786 nbp->b_bcount = nbp->b_bufsize;
787
788 #ifdef DIAGNOSTIC
789 if (nbp->b_bufsize < 0)
790 panic("allocbuf: negative bufsize");
791 #endif
792 brelse(nbp);
793 }
794
795 /*
796 * If we want a buffer smaller than the current size,
797 * shrink this buffer. Grab a buf head from the EMPTY queue,
798 * move a page onto it, and put it on front of the AGE queue.
799 * If there are no free buffer headers, leave the buffer alone.
800 */
801 if (bp->b_bufsize > desired_size) {
802 s = splbio();
803 simple_lock(&bqueue_slock);
804 if ((nbp = TAILQ_FIRST(&bufqueues[BQ_EMPTY])) == NULL) {
805 /* No free buffer head */
806 simple_unlock(&bqueue_slock);
807 splx(s);
808 goto out;
809 }
810 /* No need to lock nbp since it came from the empty queue */
811 bremfree(nbp);
812 SET(nbp->b_flags, B_BUSY | B_INVAL);
813 simple_unlock(&bqueue_slock);
814 splx(s);
815
816 /* move the page to it and note this change */
817 pagemove(bp->b_data + desired_size,
818 nbp->b_data, bp->b_bufsize - desired_size);
819 nbp->b_bufsize = bp->b_bufsize - desired_size;
820 bp->b_bufsize = desired_size;
821 nbp->b_bcount = 0;
822
823 /* release the newly-filled buffer and leave */
824 brelse(nbp);
825 }
826
827 out:
828 bp->b_bcount = size;
829 }
830
831 /*
832 * Find a buffer which is available for use.
833 * Select something from a free list.
834 * Preference is to AGE list, then LRU list.
835 *
836 * Called with buffer queues locked.
837 * Return buffer locked.
838 */
839 struct buf *
840 getnewbuf(slpflag, slptimeo)
841 int slpflag, slptimeo;
842 {
843 struct buf *bp;
844
845 start:
846 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
847
848 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE])) != NULL ||
849 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU])) != NULL) {
850 simple_lock(&bp->b_interlock);
851 bremfree(bp);
852 } else {
853 /* wait for a free buffer of any kind */
854 needbuffer = 1;
855 ltsleep(&needbuffer, slpflag|(PRIBIO+1),
856 "getnewbuf", slptimeo, &bqueue_slock);
857 return (NULL);
858 }
859
860 if (ISSET(bp->b_flags, B_VFLUSH)) {
861 /*
862 * This is a delayed write buffer being flushed to disk. Make
863 * sure it gets aged out of the queue when it's finished, and
864 * leave it off the LRU queue.
865 */
866 CLR(bp->b_flags, B_VFLUSH);
867 SET(bp->b_flags, B_AGE);
868 simple_unlock(&bp->b_interlock);
869 goto start;
870 }
871
872 /* Buffer is no longer on free lists. */
873 SET(bp->b_flags, B_BUSY);
874
875 /*
876 * If buffer was a delayed write, start it and return NULL
877 * (since we might sleep while starting the write).
878 */
879 if (ISSET(bp->b_flags, B_DELWRI)) {
880 /*
881 * This buffer has gone through the LRU, so make sure it gets
882 * reused ASAP.
883 */
884 SET(bp->b_flags, B_AGE);
885 simple_unlock(&bp->b_interlock);
886 bawrite(bp);
887 return (NULL);
888 }
889
890 /* disassociate us from our vnode, if we had one... */
891 if (bp->b_vp)
892 brelvp(bp);
893
894 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
895 (*bioops.io_deallocate)(bp);
896
897 /* clear out various other fields */
898 bp->b_flags = B_BUSY;
899 bp->b_dev = NODEV;
900 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
901 bp->b_iodone = 0;
902 bp->b_error = 0;
903 bp->b_resid = 0;
904 bp->b_bcount = 0;
905
906 bremhash(bp);
907 return (bp);
908 }
909
910 /*
911 * Wait for operations on the buffer to complete.
912 * When they do, extract and return the I/O's error value.
913 */
914 int
915 biowait(bp)
916 struct buf *bp;
917 {
918 int s, error;
919
920 s = splbio();
921 simple_lock(&bp->b_interlock);
922 while (!ISSET(bp->b_flags, B_DONE | B_DELWRI))
923 ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock);
924
925 /* check for interruption of I/O (e.g. via NFS), then errors. */
926 if (ISSET(bp->b_flags, B_EINTR)) {
927 CLR(bp->b_flags, B_EINTR);
928 error = EINTR;
929 } else if (ISSET(bp->b_flags, B_ERROR))
930 error = bp->b_error ? bp->b_error : EIO;
931 else
932 error = 0;
933
934 simple_unlock(&bp->b_interlock);
935 splx(s);
936 return (error);
937 }
938
939 /*
940 * Mark I/O complete on a buffer.
941 *
942 * If a callback has been requested, e.g. the pageout
943 * daemon, do so. Otherwise, awaken waiting processes.
944 *
945 * [ Leffler, et al., says on p.247:
946 * "This routine wakes up the blocked process, frees the buffer
947 * for an asynchronous write, or, for a request by the pagedaemon
948 * process, invokes a procedure specified in the buffer structure" ]
949 *
950 * In real life, the pagedaemon (or other system processes) wants
951 * to do async stuff to, and doesn't want the buffer brelse()'d.
952 * (for swap pager, that puts swap buffers on the free lists (!!!),
953 * for the vn device, that puts malloc'd buffers on the free lists!)
954 */
955 void
956 biodone(bp)
957 struct buf *bp;
958 {
959 int s = splbio();
960
961 simple_lock(&bp->b_interlock);
962 if (ISSET(bp->b_flags, B_DONE))
963 panic("biodone already");
964 SET(bp->b_flags, B_DONE); /* note that it's done */
965
966 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
967 (*bioops.io_complete)(bp);
968
969 if (!ISSET(bp->b_flags, B_READ)) /* wake up reader */
970 vwakeup(bp);
971
972 /*
973 * If necessary, call out. Unlock the buffer before calling
974 * iodone() as the buffer isn't valid any more when it return.
975 */
976 if (ISSET(bp->b_flags, B_CALL)) {
977 CLR(bp->b_flags, B_CALL); /* but note callout done */
978 simple_unlock(&bp->b_interlock);
979 (*bp->b_iodone)(bp);
980 } else {
981 if (ISSET(bp->b_flags, B_ASYNC)) { /* if async, release */
982 simple_unlock(&bp->b_interlock);
983 brelse(bp);
984 } else { /* or just wakeup the buffer */
985 CLR(bp->b_flags, B_WANTED);
986 wakeup(bp);
987 simple_unlock(&bp->b_interlock);
988 }
989 }
990
991 splx(s);
992 }
993
994 /*
995 * Return a count of buffers on the "locked" queue.
996 */
997 int
998 count_lock_queue()
999 {
1000 struct buf *bp;
1001 int n = 0;
1002
1003 simple_lock(&bqueue_slock);
1004 TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED], b_freelist)
1005 n++;
1006 simple_unlock(&bqueue_slock);
1007 return (n);
1008 }
1009
1010 #ifdef DEBUG
1011 /*
1012 * Print out statistics on the current allocation of the buffer pool.
1013 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1014 * in vfs_syscalls.c using sysctl.
1015 */
1016 void
1017 vfs_bufstats()
1018 {
1019 int s, i, j, count;
1020 struct buf *bp;
1021 struct bqueues *dp;
1022 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1023 static char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE", "EMPTY" };
1024
1025 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1026 count = 0;
1027 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1028 counts[j] = 0;
1029 s = splbio();
1030 TAILQ_FOREACH(bp, dp, b_freelist) {
1031 counts[bp->b_bufsize/PAGE_SIZE]++;
1032 count++;
1033 }
1034 splx(s);
1035 printf("%s: total-%d", bname[i], count);
1036 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1037 if (counts[j] != 0)
1038 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1039 printf("\n");
1040 }
1041 }
1042 #endif /* DEBUG */
1043