vfs_bio.c revision 1.92 1 /* $NetBSD: vfs_bio.c,v 1.92 2003/04/09 12:55:51 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1994 Christopher G. Demetriou
5 * Copyright (c) 1982, 1986, 1989, 1993
6 * The Regents of the University of California. All rights reserved.
7 * (c) UNIX System Laboratories, Inc.
8 * All or some portions of this file are derived from material licensed
9 * to the University of California by American Telephone and Telegraph
10 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11 * the permission of UNIX System Laboratories, Inc.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the University of
24 * California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
40 *
41 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
42 */
43
44 /*
45 * Some references:
46 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
47 * Leffler, et al.: The Design and Implementation of the 4.3BSD
48 * UNIX Operating System (Addison Welley, 1989)
49 */
50
51 #include "opt_softdep.h"
52
53 #include <sys/cdefs.h>
54 __KERNEL_RCSID(0, "$NetBSD: vfs_bio.c,v 1.92 2003/04/09 12:55:51 yamt Exp $");
55
56 #include <sys/param.h>
57 #include <sys/systm.h>
58 #include <sys/proc.h>
59 #include <sys/buf.h>
60 #include <sys/vnode.h>
61 #include <sys/mount.h>
62 #include <sys/malloc.h>
63 #include <sys/resourcevar.h>
64 #include <sys/conf.h>
65
66 #include <uvm/uvm.h>
67
68 #include <miscfs/specfs/specdev.h>
69
70 /* Macros to clear/set/test flags. */
71 #define SET(t, f) (t) |= (f)
72 #define CLR(t, f) (t) &= ~(f)
73 #define ISSET(t, f) ((t) & (f))
74
75 /*
76 * Definitions for the buffer hash lists.
77 */
78 #define BUFHASH(dvp, lbn) \
79 (&bufhashtbl[(((long)(dvp) >> 8) + (int)(lbn)) & bufhash])
80 LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
81 u_long bufhash;
82 #ifndef SOFTDEP
83 struct bio_ops bioops; /* I/O operation notification */
84 #endif
85
86 /*
87 * Insq/Remq for the buffer hash lists.
88 */
89 #define binshash(bp, dp) LIST_INSERT_HEAD(dp, bp, b_hash)
90 #define bremhash(bp) LIST_REMOVE(bp, b_hash)
91
92 /*
93 * Definitions for the buffer free lists.
94 */
95 #define BQUEUES 4 /* number of free buffer queues */
96
97 #define BQ_LOCKED 0 /* super-blocks &c */
98 #define BQ_LRU 1 /* lru, useful buffers */
99 #define BQ_AGE 2 /* rubbish */
100 #define BQ_EMPTY 3 /* buffer headers with no memory */
101
102 TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
103 int needbuffer;
104
105 /*
106 * Buffer queue lock.
107 * Take this lock first if also taking some buffer's b_interlock.
108 */
109 struct simplelock bqueue_slock = SIMPLELOCK_INITIALIZER;
110
111 /*
112 * Buffer pool for I/O buffers.
113 */
114 struct pool bufpool;
115
116 /*
117 * bread()/breadn() helper.
118 */
119 static __inline struct buf *bio_doread(struct vnode *, daddr_t, int,
120 struct ucred *, int);
121 int count_lock_queue(void);
122
123 /*
124 * Insq/Remq for the buffer free lists.
125 * Call with buffer queue locked.
126 */
127 #define binsheadfree(bp, dp) TAILQ_INSERT_HEAD(dp, bp, b_freelist)
128 #define binstailfree(bp, dp) TAILQ_INSERT_TAIL(dp, bp, b_freelist)
129
130 void
131 bremfree(bp)
132 struct buf *bp;
133 {
134 struct bqueues *dp = NULL;
135
136 /*
137 * We only calculate the head of the freelist when removing
138 * the last element of the list as that is the only time that
139 * it is needed (e.g. to reset the tail pointer).
140 *
141 * NB: This makes an assumption about how tailq's are implemented.
142 */
143 if (TAILQ_NEXT(bp, b_freelist) == NULL) {
144 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
145 if (dp->tqh_last == &bp->b_freelist.tqe_next)
146 break;
147 if (dp == &bufqueues[BQUEUES])
148 panic("bremfree: lost tail");
149 }
150 TAILQ_REMOVE(dp, bp, b_freelist);
151 }
152
153 /*
154 * Initialize buffers and hash links for buffers.
155 */
156 void
157 bufinit()
158 {
159 struct buf *bp;
160 struct bqueues *dp;
161 u_int i, base, residual;
162
163 /*
164 * Initialize the buffer pool. This pool is used for buffers
165 * which are strictly I/O control blocks, not buffer cache
166 * buffers.
167 */
168 pool_init(&bufpool, sizeof(struct buf), 0, 0, 0, "bufpl", NULL);
169
170 for (dp = bufqueues; dp < &bufqueues[BQUEUES]; dp++)
171 TAILQ_INIT(dp);
172 bufhashtbl = hashinit(nbuf, HASH_LIST, M_CACHE, M_WAITOK, &bufhash);
173 base = bufpages / nbuf;
174 residual = bufpages % nbuf;
175 for (i = 0; i < nbuf; i++) {
176 bp = &buf[i];
177 memset((char *)bp, 0, sizeof(*bp));
178 BUF_INIT(bp);
179 bp->b_dev = NODEV;
180 bp->b_vnbufs.le_next = NOLIST;
181 bp->b_data = buffers + i * MAXBSIZE;
182 if (i < residual)
183 bp->b_bufsize = (base + 1) * PAGE_SIZE;
184 else
185 bp->b_bufsize = base * PAGE_SIZE;
186 bp->b_flags = B_INVAL;
187 dp = bp->b_bufsize ? &bufqueues[BQ_AGE] : &bufqueues[BQ_EMPTY];
188 binsheadfree(bp, dp);
189 binshash(bp, &invalhash);
190 }
191 }
192
193 static __inline struct buf *
194 bio_doread(vp, blkno, size, cred, async)
195 struct vnode *vp;
196 daddr_t blkno;
197 int size;
198 struct ucred *cred;
199 int async;
200 {
201 struct buf *bp;
202 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
203 struct proc *p = l->l_proc;
204
205 bp = getblk(vp, blkno, size, 0, 0);
206
207 #ifdef DIAGNOSTIC
208 if (bp == NULL) {
209 panic("bio_doread: no such buf");
210 }
211 #endif
212
213 /*
214 * If buffer does not have data valid, start a read.
215 * Note that if buffer is B_INVAL, getblk() won't return it.
216 * Therefore, it's valid if its I/O has completed or been delayed.
217 */
218 if (!ISSET(bp->b_flags, (B_DONE | B_DELWRI))) {
219 /* Start I/O for the buffer. */
220 SET(bp->b_flags, B_READ | async);
221 VOP_STRATEGY(bp);
222
223 /* Pay for the read. */
224 p->p_stats->p_ru.ru_inblock++;
225 } else if (async) {
226 brelse(bp);
227 }
228
229 return (bp);
230 }
231
232 /*
233 * Read a disk block.
234 * This algorithm described in Bach (p.54).
235 */
236 int
237 bread(vp, blkno, size, cred, bpp)
238 struct vnode *vp;
239 daddr_t blkno;
240 int size;
241 struct ucred *cred;
242 struct buf **bpp;
243 {
244 struct buf *bp;
245
246 /* Get buffer for block. */
247 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
248
249 /* Wait for the read to complete, and return result. */
250 return (biowait(bp));
251 }
252
253 /*
254 * Read-ahead multiple disk blocks. The first is sync, the rest async.
255 * Trivial modification to the breada algorithm presented in Bach (p.55).
256 */
257 int
258 breadn(vp, blkno, size, rablks, rasizes, nrablks, cred, bpp)
259 struct vnode *vp;
260 daddr_t blkno; int size;
261 daddr_t rablks[]; int rasizes[];
262 int nrablks;
263 struct ucred *cred;
264 struct buf **bpp;
265 {
266 struct buf *bp;
267 int i;
268
269 bp = *bpp = bio_doread(vp, blkno, size, cred, 0);
270
271 /*
272 * For each of the read-ahead blocks, start a read, if necessary.
273 */
274 for (i = 0; i < nrablks; i++) {
275 /* If it's in the cache, just go on to next one. */
276 if (incore(vp, rablks[i]))
277 continue;
278
279 /* Get a buffer for the read-ahead block */
280 (void) bio_doread(vp, rablks[i], rasizes[i], cred, B_ASYNC);
281 }
282
283 /* Otherwise, we had to start a read for it; wait until it's valid. */
284 return (biowait(bp));
285 }
286
287 /*
288 * Read with single-block read-ahead. Defined in Bach (p.55), but
289 * implemented as a call to breadn().
290 * XXX for compatibility with old file systems.
291 */
292 int
293 breada(vp, blkno, size, rablkno, rabsize, cred, bpp)
294 struct vnode *vp;
295 daddr_t blkno; int size;
296 daddr_t rablkno; int rabsize;
297 struct ucred *cred;
298 struct buf **bpp;
299 {
300
301 return (breadn(vp, blkno, size, &rablkno, &rabsize, 1, cred, bpp));
302 }
303
304 /*
305 * Block write. Described in Bach (p.56)
306 */
307 int
308 bwrite(bp)
309 struct buf *bp;
310 {
311 int rv, sync, wasdelayed, s;
312 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
313 struct proc *p = l->l_proc;
314 struct vnode *vp;
315 struct mount *mp;
316
317 KASSERT(ISSET(bp->b_flags, B_BUSY));
318
319 vp = bp->b_vp;
320 if (vp != NULL) {
321 if (vp->v_type == VBLK)
322 mp = vp->v_specmountpoint;
323 else
324 mp = vp->v_mount;
325 } else {
326 mp = NULL;
327 }
328
329 /*
330 * Remember buffer type, to switch on it later. If the write was
331 * synchronous, but the file system was mounted with MNT_ASYNC,
332 * convert it to a delayed write.
333 * XXX note that this relies on delayed tape writes being converted
334 * to async, not sync writes (which is safe, but ugly).
335 */
336 sync = !ISSET(bp->b_flags, B_ASYNC);
337 if (sync && mp != NULL && ISSET(mp->mnt_flag, MNT_ASYNC)) {
338 bdwrite(bp);
339 return (0);
340 }
341
342 /*
343 * Collect statistics on synchronous and asynchronous writes.
344 * Writes to block devices are charged to their associated
345 * filesystem (if any).
346 */
347 if (mp != NULL) {
348 if (sync)
349 mp->mnt_stat.f_syncwrites++;
350 else
351 mp->mnt_stat.f_asyncwrites++;
352 }
353
354 wasdelayed = ISSET(bp->b_flags, B_DELWRI);
355
356 s = splbio();
357 simple_lock(&bp->b_interlock);
358
359 CLR(bp->b_flags, (B_READ | B_DONE | B_ERROR | B_DELWRI));
360
361 /*
362 * Pay for the I/O operation and make sure the buf is on the correct
363 * vnode queue.
364 */
365 if (wasdelayed)
366 reassignbuf(bp, bp->b_vp);
367 else
368 p->p_stats->p_ru.ru_oublock++;
369
370 /* Initiate disk write. Make sure the appropriate party is charged. */
371 V_INCR_NUMOUTPUT(bp->b_vp);
372 simple_unlock(&bp->b_interlock);
373 splx(s);
374
375 VOP_STRATEGY(bp);
376
377 if (sync) {
378 /* If I/O was synchronous, wait for it to complete. */
379 rv = biowait(bp);
380
381 /* Release the buffer. */
382 brelse(bp);
383
384 return (rv);
385 } else {
386 return (0);
387 }
388 }
389
390 int
391 vn_bwrite(v)
392 void *v;
393 {
394 struct vop_bwrite_args *ap = v;
395
396 return (bwrite(ap->a_bp));
397 }
398
399 /*
400 * Delayed write.
401 *
402 * The buffer is marked dirty, but is not queued for I/O.
403 * This routine should be used when the buffer is expected
404 * to be modified again soon, typically a small write that
405 * partially fills a buffer.
406 *
407 * NB: magnetic tapes cannot be delayed; they must be
408 * written in the order that the writes are requested.
409 *
410 * Described in Leffler, et al. (pp. 208-213).
411 */
412 void
413 bdwrite(bp)
414 struct buf *bp;
415 {
416 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
417 struct proc *p = l->l_proc;
418 const struct bdevsw *bdev;
419 int s;
420
421 KASSERT(ISSET(bp->b_flags, B_BUSY));
422
423 /* If this is a tape block, write the block now. */
424 bdev = bdevsw_lookup(bp->b_dev);
425 if (bdev != NULL && bdev->d_type == D_TAPE) {
426 bawrite(bp);
427 return;
428 }
429
430 /*
431 * If the block hasn't been seen before:
432 * (1) Mark it as having been seen,
433 * (2) Charge for the write,
434 * (3) Make sure it's on its vnode's correct block list.
435 */
436 s = splbio();
437 simple_lock(&bp->b_interlock);
438
439 if (!ISSET(bp->b_flags, B_DELWRI)) {
440 SET(bp->b_flags, B_DELWRI);
441 p->p_stats->p_ru.ru_oublock++;
442 reassignbuf(bp, bp->b_vp);
443 }
444
445 /* Otherwise, the "write" is done, so mark and release the buffer. */
446 CLR(bp->b_flags, B_DONE);
447 simple_unlock(&bp->b_interlock);
448 splx(s);
449
450 brelse(bp);
451 }
452
453 /*
454 * Asynchronous block write; just an asynchronous bwrite().
455 */
456 void
457 bawrite(bp)
458 struct buf *bp;
459 {
460 int s;
461
462 KASSERT(ISSET(bp->b_flags, B_BUSY));
463
464 s = splbio();
465 simple_lock(&bp->b_interlock);
466 SET(bp->b_flags, B_ASYNC);
467 simple_unlock(&bp->b_interlock);
468 splx(s);
469 VOP_BWRITE(bp);
470 }
471
472 /*
473 * Same as first half of bdwrite, mark buffer dirty, but do not release it.
474 * Call at splbio() and with the buffer interlock locked.
475 * Note: called only from biodone() through ffs softdep's bioops.io_complete()
476 */
477 void
478 bdirty(bp)
479 struct buf *bp;
480 {
481 struct lwp *l = (curlwp != NULL ? curlwp : &lwp0); /* XXX */
482 struct proc *p = l->l_proc;
483
484 KASSERT(ISSET(bp->b_flags, B_BUSY));
485 LOCK_ASSERT(simple_lock_held(&bp->b_interlock));
486
487 CLR(bp->b_flags, B_AGE);
488
489 if (!ISSET(bp->b_flags, B_DELWRI)) {
490 SET(bp->b_flags, B_DELWRI);
491 p->p_stats->p_ru.ru_oublock++;
492 reassignbuf(bp, bp->b_vp);
493 }
494 }
495
496 /*
497 * Release a buffer on to the free lists.
498 * Described in Bach (p. 46).
499 */
500 void
501 brelse(bp)
502 struct buf *bp;
503 {
504 struct bqueues *bufq;
505 int s;
506
507 KASSERT(ISSET(bp->b_flags, B_BUSY));
508
509 /* Block disk interrupts. */
510 s = splbio();
511 simple_lock(&bqueue_slock);
512 simple_lock(&bp->b_interlock);
513
514 /* Wake up any processes waiting for any buffer to become free. */
515 if (needbuffer) {
516 needbuffer = 0;
517 wakeup(&needbuffer);
518 }
519
520 /* Wake up any proceeses waiting for _this_ buffer to become free. */
521 if (ISSET(bp->b_flags, B_WANTED)) {
522 CLR(bp->b_flags, B_WANTED|B_AGE);
523 wakeup(bp);
524 }
525
526 /*
527 * Determine which queue the buffer should be on, then put it there.
528 */
529
530 /* If it's locked, don't report an error; try again later. */
531 if (ISSET(bp->b_flags, (B_LOCKED|B_ERROR)) == (B_LOCKED|B_ERROR))
532 CLR(bp->b_flags, B_ERROR);
533
534 /* If it's not cacheable, or an error, mark it invalid. */
535 if (ISSET(bp->b_flags, (B_NOCACHE|B_ERROR)))
536 SET(bp->b_flags, B_INVAL);
537
538 if (ISSET(bp->b_flags, B_VFLUSH)) {
539 /*
540 * This is a delayed write buffer that was just flushed to
541 * disk. It is still on the LRU queue. If it's become
542 * invalid, then we need to move it to a different queue;
543 * otherwise leave it in its current position.
544 */
545 CLR(bp->b_flags, B_VFLUSH);
546 if (!ISSET(bp->b_flags, B_ERROR|B_INVAL|B_LOCKED|B_AGE))
547 goto already_queued;
548 else
549 bremfree(bp);
550 }
551
552 if ((bp->b_bufsize <= 0) || ISSET(bp->b_flags, B_INVAL)) {
553 /*
554 * If it's invalid or empty, dissociate it from its vnode
555 * and put on the head of the appropriate queue.
556 */
557 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
558 (*bioops.io_deallocate)(bp);
559 CLR(bp->b_flags, B_DONE|B_DELWRI);
560 if (bp->b_vp) {
561 reassignbuf(bp, bp->b_vp);
562 brelvp(bp);
563 }
564 if (bp->b_bufsize <= 0)
565 /* no data */
566 bufq = &bufqueues[BQ_EMPTY];
567 else
568 /* invalid data */
569 bufq = &bufqueues[BQ_AGE];
570 binsheadfree(bp, bufq);
571 } else {
572 /*
573 * It has valid data. Put it on the end of the appropriate
574 * queue, so that it'll stick around for as long as possible.
575 * If buf is AGE, but has dependencies, must put it on last
576 * bufqueue to be scanned, ie LRU. This protects against the
577 * livelock where BQ_AGE only has buffers with dependencies,
578 * and we thus never get to the dependent buffers in BQ_LRU.
579 */
580 if (ISSET(bp->b_flags, B_LOCKED))
581 /* locked in core */
582 bufq = &bufqueues[BQ_LOCKED];
583 else if (!ISSET(bp->b_flags, B_AGE))
584 /* valid data */
585 bufq = &bufqueues[BQ_LRU];
586 else {
587 /* stale but valid data */
588 int has_deps;
589
590 if (LIST_FIRST(&bp->b_dep) != NULL &&
591 bioops.io_countdeps)
592 has_deps = (*bioops.io_countdeps)(bp, 0);
593 else
594 has_deps = 0;
595 bufq = has_deps ? &bufqueues[BQ_LRU] :
596 &bufqueues[BQ_AGE];
597 }
598 binstailfree(bp, bufq);
599 }
600
601 already_queued:
602 /* Unlock the buffer. */
603 CLR(bp->b_flags, B_AGE|B_ASYNC|B_BUSY|B_NOCACHE);
604 SET(bp->b_flags, B_CACHE);
605
606 /* Allow disk interrupts. */
607 simple_unlock(&bp->b_interlock);
608 simple_unlock(&bqueue_slock);
609 splx(s);
610 }
611
612 /*
613 * Determine if a block is in the cache.
614 * Just look on what would be its hash chain. If it's there, return
615 * a pointer to it, unless it's marked invalid. If it's marked invalid,
616 * we normally don't return the buffer, unless the caller explicitly
617 * wants us to.
618 */
619 struct buf *
620 incore(vp, blkno)
621 struct vnode *vp;
622 daddr_t blkno;
623 {
624 struct buf *bp;
625
626 /* Search hash chain */
627 LIST_FOREACH(bp, BUFHASH(vp, blkno), b_hash) {
628 if (bp->b_lblkno == blkno && bp->b_vp == vp &&
629 !ISSET(bp->b_flags, B_INVAL))
630 return (bp);
631 }
632
633 return (NULL);
634 }
635
636 /*
637 * Get a block of requested size that is associated with
638 * a given vnode and block offset. If it is found in the
639 * block cache, mark it as having been found, make it busy
640 * and return it. Otherwise, return an empty block of the
641 * correct size. It is up to the caller to insure that the
642 * cached blocks be of the correct size.
643 */
644 struct buf *
645 getblk(vp, blkno, size, slpflag, slptimeo)
646 struct vnode *vp;
647 daddr_t blkno;
648 int size, slpflag, slptimeo;
649 {
650 struct buf *bp;
651 int s, err;
652
653 start:
654 s = splbio();
655 simple_lock(&bqueue_slock);
656 bp = incore(vp, blkno);
657 if (bp != NULL) {
658 simple_lock(&bp->b_interlock);
659 if (ISSET(bp->b_flags, B_BUSY)) {
660 simple_unlock(&bqueue_slock);
661 if (curproc == uvm.pagedaemon_proc) {
662 simple_unlock(&bp->b_interlock);
663 splx(s);
664 return NULL;
665 }
666 SET(bp->b_flags, B_WANTED);
667 err = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK,
668 "getblk", slptimeo, &bp->b_interlock);
669 splx(s);
670 if (err)
671 return (NULL);
672 goto start;
673 }
674 #ifdef DIAGNOSTIC
675 if (ISSET(bp->b_flags, B_DONE|B_DELWRI) &&
676 bp->b_bcount < size && vp->v_type != VBLK)
677 panic("getblk: block size invariant failed");
678 #endif
679 SET(bp->b_flags, B_BUSY);
680 bremfree(bp);
681 } else {
682 if ((bp = getnewbuf(slpflag, slptimeo)) == NULL) {
683 simple_unlock(&bqueue_slock);
684 splx(s);
685 goto start;
686 }
687
688 binshash(bp, BUFHASH(vp, blkno));
689 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = blkno;
690 bgetvp(vp, bp);
691 }
692 simple_unlock(&bp->b_interlock);
693 simple_unlock(&bqueue_slock);
694 splx(s);
695 allocbuf(bp, size);
696 return (bp);
697 }
698
699 /*
700 * Get an empty, disassociated buffer of given size.
701 */
702 struct buf *
703 geteblk(size)
704 int size;
705 {
706 struct buf *bp;
707 int s;
708
709 s = splbio();
710 simple_lock(&bqueue_slock);
711 while ((bp = getnewbuf(0, 0)) == 0)
712 ;
713
714 SET(bp->b_flags, B_INVAL);
715 binshash(bp, &invalhash);
716 simple_unlock(&bqueue_slock);
717 simple_unlock(&bp->b_interlock);
718 splx(s);
719 allocbuf(bp, size);
720 return (bp);
721 }
722
723 /*
724 * Expand or contract the actual memory allocated to a buffer.
725 *
726 * If the buffer shrinks, data is lost, so it's up to the
727 * caller to have written it out *first*; this routine will not
728 * start a write. If the buffer grows, it's the callers
729 * responsibility to fill out the buffer's additional contents.
730 */
731 void
732 allocbuf(bp, size)
733 struct buf *bp;
734 int size;
735 {
736 struct buf *nbp;
737 vsize_t desired_size;
738 int s;
739
740 desired_size = round_page((vsize_t)size);
741 if (desired_size > MAXBSIZE)
742 panic("allocbuf: buffer larger than MAXBSIZE requested");
743
744 if (bp->b_bufsize == desired_size)
745 goto out;
746
747 /*
748 * If the buffer is smaller than the desired size, we need to snarf
749 * it from other buffers. Get buffers (via getnewbuf()), and
750 * steal their pages.
751 */
752 while (bp->b_bufsize < desired_size) {
753 int amt;
754
755 /* find a buffer */
756 s = splbio();
757 simple_lock(&bqueue_slock);
758 while ((nbp = getnewbuf(0, 0)) == NULL)
759 ;
760
761 SET(nbp->b_flags, B_INVAL);
762 binshash(nbp, &invalhash);
763
764 simple_unlock(&nbp->b_interlock);
765 simple_unlock(&bqueue_slock);
766 splx(s);
767
768 /* and steal its pages, up to the amount we need */
769 amt = min(nbp->b_bufsize, (desired_size - bp->b_bufsize));
770 pagemove((nbp->b_data + nbp->b_bufsize - amt),
771 bp->b_data + bp->b_bufsize, amt);
772 bp->b_bufsize += amt;
773 nbp->b_bufsize -= amt;
774
775 /* reduce transfer count if we stole some data */
776 if (nbp->b_bcount > nbp->b_bufsize)
777 nbp->b_bcount = nbp->b_bufsize;
778
779 #ifdef DIAGNOSTIC
780 if (nbp->b_bufsize < 0)
781 panic("allocbuf: negative bufsize");
782 #endif
783 brelse(nbp);
784 }
785
786 /*
787 * If we want a buffer smaller than the current size,
788 * shrink this buffer. Grab a buf head from the EMPTY queue,
789 * move a page onto it, and put it on front of the AGE queue.
790 * If there are no free buffer headers, leave the buffer alone.
791 */
792 if (bp->b_bufsize > desired_size) {
793 s = splbio();
794 simple_lock(&bqueue_slock);
795 if ((nbp = TAILQ_FIRST(&bufqueues[BQ_EMPTY])) == NULL) {
796 /* No free buffer head */
797 simple_unlock(&bqueue_slock);
798 splx(s);
799 goto out;
800 }
801 /* No need to lock nbp since it came from the empty queue */
802 bremfree(nbp);
803 SET(nbp->b_flags, B_BUSY | B_INVAL);
804 simple_unlock(&bqueue_slock);
805 splx(s);
806
807 /* move the page to it and note this change */
808 pagemove(bp->b_data + desired_size,
809 nbp->b_data, bp->b_bufsize - desired_size);
810 nbp->b_bufsize = bp->b_bufsize - desired_size;
811 bp->b_bufsize = desired_size;
812 nbp->b_bcount = 0;
813
814 /* release the newly-filled buffer and leave */
815 brelse(nbp);
816 }
817
818 out:
819 bp->b_bcount = size;
820 }
821
822 /*
823 * Find a buffer which is available for use.
824 * Select something from a free list.
825 * Preference is to AGE list, then LRU list.
826 *
827 * Called with buffer queues locked.
828 * Return buffer locked.
829 */
830 struct buf *
831 getnewbuf(slpflag, slptimeo)
832 int slpflag, slptimeo;
833 {
834 struct buf *bp;
835
836 start:
837 LOCK_ASSERT(simple_lock_held(&bqueue_slock));
838
839 if ((bp = TAILQ_FIRST(&bufqueues[BQ_AGE])) != NULL ||
840 (bp = TAILQ_FIRST(&bufqueues[BQ_LRU])) != NULL) {
841 simple_lock(&bp->b_interlock);
842 bremfree(bp);
843 } else {
844 /* wait for a free buffer of any kind */
845 needbuffer = 1;
846 ltsleep(&needbuffer, slpflag|(PRIBIO+1),
847 "getnewbuf", slptimeo, &bqueue_slock);
848 return (NULL);
849 }
850
851 if (ISSET(bp->b_flags, B_VFLUSH)) {
852 /*
853 * This is a delayed write buffer being flushed to disk. Make
854 * sure it gets aged out of the queue when it's finished, and
855 * leave it off the LRU queue.
856 */
857 CLR(bp->b_flags, B_VFLUSH);
858 SET(bp->b_flags, B_AGE);
859 simple_unlock(&bp->b_interlock);
860 goto start;
861 }
862
863 /* Buffer is no longer on free lists. */
864 SET(bp->b_flags, B_BUSY);
865
866 /*
867 * If buffer was a delayed write, start it and return NULL
868 * (since we might sleep while starting the write).
869 */
870 if (ISSET(bp->b_flags, B_DELWRI)) {
871 /*
872 * This buffer has gone through the LRU, so make sure it gets
873 * reused ASAP.
874 */
875 SET(bp->b_flags, B_AGE);
876 simple_unlock(&bp->b_interlock);
877 simple_unlock(&bqueue_slock);
878 bawrite(bp);
879 simple_lock(&bqueue_slock);
880 return (NULL);
881 }
882
883 /* disassociate us from our vnode, if we had one... */
884 if (bp->b_vp)
885 brelvp(bp);
886
887 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
888 (*bioops.io_deallocate)(bp);
889
890 /* clear out various other fields */
891 bp->b_flags = B_BUSY;
892 bp->b_dev = NODEV;
893 bp->b_blkno = bp->b_lblkno = bp->b_rawblkno = 0;
894 bp->b_iodone = 0;
895 bp->b_error = 0;
896 bp->b_resid = 0;
897 bp->b_bcount = 0;
898
899 bremhash(bp);
900 return (bp);
901 }
902
903 /*
904 * Wait for operations on the buffer to complete.
905 * When they do, extract and return the I/O's error value.
906 */
907 int
908 biowait(bp)
909 struct buf *bp;
910 {
911 int s, error;
912
913 s = splbio();
914 simple_lock(&bp->b_interlock);
915 while (!ISSET(bp->b_flags, B_DONE | B_DELWRI))
916 ltsleep(bp, PRIBIO + 1, "biowait", 0, &bp->b_interlock);
917
918 /* check for interruption of I/O (e.g. via NFS), then errors. */
919 if (ISSET(bp->b_flags, B_EINTR)) {
920 CLR(bp->b_flags, B_EINTR);
921 error = EINTR;
922 } else if (ISSET(bp->b_flags, B_ERROR))
923 error = bp->b_error ? bp->b_error : EIO;
924 else
925 error = 0;
926
927 simple_unlock(&bp->b_interlock);
928 splx(s);
929 return (error);
930 }
931
932 /*
933 * Mark I/O complete on a buffer.
934 *
935 * If a callback has been requested, e.g. the pageout
936 * daemon, do so. Otherwise, awaken waiting processes.
937 *
938 * [ Leffler, et al., says on p.247:
939 * "This routine wakes up the blocked process, frees the buffer
940 * for an asynchronous write, or, for a request by the pagedaemon
941 * process, invokes a procedure specified in the buffer structure" ]
942 *
943 * In real life, the pagedaemon (or other system processes) wants
944 * to do async stuff to, and doesn't want the buffer brelse()'d.
945 * (for swap pager, that puts swap buffers on the free lists (!!!),
946 * for the vn device, that puts malloc'd buffers on the free lists!)
947 */
948 void
949 biodone(bp)
950 struct buf *bp;
951 {
952 int s = splbio();
953
954 simple_lock(&bp->b_interlock);
955 if (ISSET(bp->b_flags, B_DONE))
956 panic("biodone already");
957 SET(bp->b_flags, B_DONE); /* note that it's done */
958
959 if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
960 (*bioops.io_complete)(bp);
961
962 if (!ISSET(bp->b_flags, B_READ)) /* wake up reader */
963 vwakeup(bp);
964
965 /*
966 * If necessary, call out. Unlock the buffer before calling
967 * iodone() as the buffer isn't valid any more when it return.
968 */
969 if (ISSET(bp->b_flags, B_CALL)) {
970 CLR(bp->b_flags, B_CALL); /* but note callout done */
971 simple_unlock(&bp->b_interlock);
972 (*bp->b_iodone)(bp);
973 } else {
974 if (ISSET(bp->b_flags, B_ASYNC)) { /* if async, release */
975 simple_unlock(&bp->b_interlock);
976 brelse(bp);
977 } else { /* or just wakeup the buffer */
978 CLR(bp->b_flags, B_WANTED);
979 wakeup(bp);
980 simple_unlock(&bp->b_interlock);
981 }
982 }
983
984 splx(s);
985 }
986
987 /*
988 * Return a count of buffers on the "locked" queue.
989 */
990 int
991 count_lock_queue()
992 {
993 struct buf *bp;
994 int n = 0;
995
996 simple_lock(&bqueue_slock);
997 TAILQ_FOREACH(bp, &bufqueues[BQ_LOCKED], b_freelist)
998 n++;
999 simple_unlock(&bqueue_slock);
1000 return (n);
1001 }
1002
1003 #ifdef DEBUG
1004 /*
1005 * Print out statistics on the current allocation of the buffer pool.
1006 * Can be enabled to print out on every ``sync'' by setting "syncprt"
1007 * in vfs_syscalls.c using sysctl.
1008 */
1009 void
1010 vfs_bufstats()
1011 {
1012 int s, i, j, count;
1013 struct buf *bp;
1014 struct bqueues *dp;
1015 int counts[(MAXBSIZE / PAGE_SIZE) + 1];
1016 static char *bname[BQUEUES] = { "LOCKED", "LRU", "AGE", "EMPTY" };
1017
1018 for (dp = bufqueues, i = 0; dp < &bufqueues[BQUEUES]; dp++, i++) {
1019 count = 0;
1020 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1021 counts[j] = 0;
1022 s = splbio();
1023 TAILQ_FOREACH(bp, dp, b_freelist) {
1024 counts[bp->b_bufsize/PAGE_SIZE]++;
1025 count++;
1026 }
1027 splx(s);
1028 printf("%s: total-%d", bname[i], count);
1029 for (j = 0; j <= MAXBSIZE/PAGE_SIZE; j++)
1030 if (counts[j] != 0)
1031 printf(", %d-%d", j * PAGE_SIZE, counts[j]);
1032 printf("\n");
1033 }
1034 }
1035 #endif /* DEBUG */
1036