Home | History | Annotate | Line # | Download | only in kern
vfs_cache.c revision 1.142
      1  1.142        ad /*	$NetBSD: vfs_cache.c,v 1.142 2020/05/12 23:17:41 ad Exp $	*/
      2   1.73        ad 
      3   1.73        ad /*-
      4  1.128        ad  * Copyright (c) 2008, 2019, 2020 The NetBSD Foundation, Inc.
      5   1.73        ad  * All rights reserved.
      6   1.73        ad  *
      7  1.128        ad  * This code is derived from software contributed to The NetBSD Foundation
      8  1.128        ad  * by Andrew Doran.
      9  1.128        ad  *
     10   1.73        ad  * Redistribution and use in source and binary forms, with or without
     11   1.73        ad  * modification, are permitted provided that the following conditions
     12   1.73        ad  * are met:
     13   1.73        ad  * 1. Redistributions of source code must retain the above copyright
     14   1.73        ad  *    notice, this list of conditions and the following disclaimer.
     15   1.73        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.73        ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.73        ad  *    documentation and/or other materials provided with the distribution.
     18   1.73        ad  *
     19   1.73        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.73        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.73        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.73        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.73        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.73        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.73        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.73        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.73        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.73        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.73        ad  * POSSIBILITY OF SUCH DAMAGE.
     30   1.73        ad  */
     31    1.6       cgd 
     32    1.1       cgd /*
     33    1.5   mycroft  * Copyright (c) 1989, 1993
     34    1.5   mycroft  *	The Regents of the University of California.  All rights reserved.
     35    1.1       cgd  *
     36    1.1       cgd  * Redistribution and use in source and binary forms, with or without
     37    1.1       cgd  * modification, are permitted provided that the following conditions
     38    1.1       cgd  * are met:
     39    1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     40    1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     41    1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     42    1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     43    1.1       cgd  *    documentation and/or other materials provided with the distribution.
     44   1.51       agc  * 3. Neither the name of the University nor the names of its contributors
     45    1.1       cgd  *    may be used to endorse or promote products derived from this software
     46    1.1       cgd  *    without specific prior written permission.
     47    1.1       cgd  *
     48    1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49    1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50    1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51    1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52    1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53    1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54    1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55    1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56    1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57    1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58    1.1       cgd  * SUCH DAMAGE.
     59    1.1       cgd  *
     60   1.10   mycroft  *	@(#)vfs_cache.c	8.3 (Berkeley) 8/22/94
     61    1.1       cgd  */
     62   1.32     lukem 
     63  1.128        ad /*
     64  1.128        ad  * Name caching:
     65  1.128        ad  *
     66  1.128        ad  *	Names found by directory scans are retained in a cache for future
     67  1.128        ad  *	reference.  It is managed LRU, so frequently used names will hang
     68  1.128        ad  *	around.  The cache is indexed by hash value obtained from the name.
     69  1.128        ad  *
     70  1.128        ad  *	The name cache is the brainchild of Robert Elz and was introduced in
     71  1.128        ad  *	4.3BSD.  See "Using gprof to Tune the 4.2BSD Kernel", Marshall Kirk
     72  1.128        ad  *	McKusick, May 21 1984.
     73  1.128        ad  *
     74  1.128        ad  * Data structures:
     75  1.128        ad  *
     76  1.128        ad  *	Most Unix namecaches very sensibly use a global hash table to index
     77  1.128        ad  *	names.  The global hash table works well, but can cause concurrency
     78  1.128        ad  *	headaches for the kernel hacker.  In the NetBSD 10.0 implementation
     79  1.128        ad  *	we are not sensible, and use a per-directory data structure to index
     80  1.128        ad  *	names, but the cache otherwise functions the same.
     81  1.128        ad  *
     82  1.128        ad  *	The index is a red-black tree.  There are no special concurrency
     83  1.128        ad  *	requirements placed on it, because it's per-directory and protected
     84  1.128        ad  *	by the namecache's per-directory locks.  It should therefore not be
     85  1.128        ad  *	difficult to experiment with other types of index.
     86  1.128        ad  *
     87  1.128        ad  *	Each cached name is stored in a struct namecache, along with a
     88  1.128        ad  *	pointer to the associated vnode (nc_vp).  Names longer than a
     89  1.128        ad  *	maximum length of NCHNAMLEN are allocated with kmem_alloc(); they
     90  1.128        ad  *	occur infrequently, and names shorter than this are stored directly
     91  1.128        ad  *	in struct namecache.  If it is a "negative" entry, (i.e. for a name
     92  1.128        ad  *	that is known NOT to exist) the vnode pointer will be NULL.
     93  1.128        ad  *
     94  1.128        ad  *	For a directory with 3 cached names for 3 distinct vnodes, the
     95  1.128        ad  *	various vnodes and namecache structs would be connected like this
     96  1.128        ad  *	(the root is at the bottom of the diagram):
     97  1.128        ad  *
     98  1.128        ad  *          ...
     99  1.128        ad  *           ^
    100  1.128        ad  *           |- vi_nc_tree
    101  1.128        ad  *           |
    102  1.128        ad  *      +----o----+               +---------+               +---------+
    103  1.128        ad  *      |  VDIR   |               |  VCHR   |               |  VREG   |
    104  1.128        ad  *      |  vnode  o-----+         |  vnode  o-----+         |  vnode  o------+
    105  1.128        ad  *      +---------+     |         +---------+     |         +---------+      |
    106  1.128        ad  *           ^          |              ^          |              ^           |
    107  1.128        ad  *           |- nc_vp   |- vi_nc_list  |- nc_vp   |- vi_nc_list  |- nc_vp    |
    108  1.128        ad  *           |          |              |          |              |           |
    109  1.128        ad  *      +----o----+     |         +----o----+     |         +----o----+      |
    110  1.128        ad  *  +---onamecache|<----+     +---onamecache|<----+     +---onamecache|<-----+
    111  1.128        ad  *  |   +---------+           |   +---------+           |   +---------+
    112  1.128        ad  *  |        ^                |        ^                |        ^
    113  1.128        ad  *  |        |                |        |                |        |
    114  1.128        ad  *  |        |  +----------------------+                |        |
    115  1.128        ad  *  |-nc_dvp | +-------------------------------------------------+
    116  1.128        ad  *  |        |/- vi_nc_tree   |                         |
    117  1.128        ad  *  |        |                |- nc_dvp                 |- nc_dvp
    118  1.128        ad  *  |   +----o----+           |                         |
    119  1.128        ad  *  +-->|  VDIR   |<----------+                         |
    120  1.128        ad  *      |  vnode  |<------------------------------------+
    121  1.128        ad  *      +---------+
    122  1.128        ad  *
    123  1.128        ad  *      START HERE
    124  1.128        ad  *
    125  1.128        ad  * Replacement:
    126  1.128        ad  *
    127  1.128        ad  *	As the cache becomes full, old and unused entries are purged as new
    128  1.128        ad  *	entries are added.  The synchronization overhead in maintaining a
    129  1.128        ad  *	strict ordering would be prohibitive, so the VM system's "clock" or
    130  1.128        ad  *	"second chance" page replacement algorithm is aped here.  New
    131  1.128        ad  *	entries go to the tail of the active list.  After they age out and
    132  1.128        ad  *	reach the head of the list, they are moved to the tail of the
    133  1.128        ad  *	inactive list.  Any use of the deactivated cache entry reactivates
    134  1.128        ad  *	it, saving it from impending doom; if not reactivated, the entry
    135  1.128        ad  *	eventually reaches the head of the inactive list and is purged.
    136  1.128        ad  *
    137  1.128        ad  * Concurrency:
    138  1.128        ad  *
    139  1.128        ad  *	From a performance perspective, cache_lookup(nameiop == LOOKUP) is
    140  1.128        ad  *	what really matters; insertion of new entries with cache_enter() is
    141  1.128        ad  *	comparatively infrequent, and overshadowed by the cost of expensive
    142  1.128        ad  *	file system metadata operations (which may involve disk I/O).  We
    143  1.128        ad  *	therefore want to make everything simplest in the lookup path.
    144  1.128        ad  *
    145  1.128        ad  *	struct namecache is mostly stable except for list and tree related
    146  1.128        ad  *	entries, changes to which don't affect the cached name or vnode.
    147  1.128        ad  *	For changes to name+vnode, entries are purged in preference to
    148  1.128        ad  *	modifying them.
    149  1.128        ad  *
    150  1.128        ad  *	Read access to namecache entries is made via tree, list, or LRU
    151  1.128        ad  *	list.  A lock corresponding to the direction of access should be
    152  1.128        ad  *	held.  See definition of "struct namecache" in src/sys/namei.src,
    153  1.128        ad  *	and the definition of "struct vnode" for the particulars.
    154  1.128        ad  *
    155  1.128        ad  *	Per-CPU statistics, and LRU list totals are read unlocked, since
    156  1.128        ad  *	an approximate value is OK.  We maintain 32-bit sized per-CPU
    157  1.128        ad  *	counters and 64-bit global counters under the theory that 32-bit
    158  1.128        ad  *	sized counters are less likely to be hosed by nonatomic increment
    159  1.128        ad  *	(on 32-bit platforms).
    160  1.128        ad  *
    161  1.128        ad  *	The lock order is:
    162  1.128        ad  *
    163  1.128        ad  *	1) vi->vi_nc_lock	(tree or parent -> child direction,
    164  1.128        ad  *				 used during forward lookup)
    165  1.128        ad  *
    166  1.128        ad  *	2) vi->vi_nc_listlock	(list or child -> parent direction,
    167  1.128        ad  *				 used during reverse lookup)
    168  1.128        ad  *
    169  1.128        ad  *	3) cache_lru_lock	(LRU list direction, used during reclaim)
    170  1.128        ad  *
    171  1.128        ad  *	4) vp->v_interlock	(what the cache entry points to)
    172  1.128        ad  */
    173  1.128        ad 
    174   1.32     lukem #include <sys/cdefs.h>
    175  1.142        ad __KERNEL_RCSID(0, "$NetBSD: vfs_cache.c,v 1.142 2020/05/12 23:17:41 ad Exp $");
    176    1.1       cgd 
    177  1.121  christos #define __NAMECACHE_PRIVATE
    178  1.107     pooka #ifdef _KERNEL_OPT
    179   1.28       chs #include "opt_ddb.h"
    180  1.115  riastrad #include "opt_dtrace.h"
    181  1.107     pooka #endif
    182   1.28       chs 
    183  1.128        ad #include <sys/types.h>
    184  1.115  riastrad #include <sys/atomic.h>
    185  1.128        ad #include <sys/callout.h>
    186  1.115  riastrad #include <sys/cpu.h>
    187  1.115  riastrad #include <sys/errno.h>
    188  1.115  riastrad #include <sys/evcnt.h>
    189  1.128        ad #include <sys/hash.h>
    190  1.115  riastrad #include <sys/kernel.h>
    191    1.4   mycroft #include <sys/mount.h>
    192  1.115  riastrad #include <sys/mutex.h>
    193    1.4   mycroft #include <sys/namei.h>
    194  1.128        ad #include <sys/param.h>
    195   1.18   thorpej #include <sys/pool.h>
    196  1.108  christos #include <sys/sdt.h>
    197  1.115  riastrad #include <sys/sysctl.h>
    198  1.115  riastrad #include <sys/systm.h>
    199  1.115  riastrad #include <sys/time.h>
    200  1.115  riastrad #include <sys/vnode_impl.h>
    201    1.1       cgd 
    202  1.128        ad #include <miscfs/genfs/genfs.h>
    203    1.1       cgd 
    204  1.128        ad static void	cache_activate(struct namecache *);
    205  1.128        ad static void	cache_update_stats(void *);
    206  1.128        ad static int	cache_compare_nodes(void *, const void *, const void *);
    207  1.128        ad static void	cache_deactivate(void);
    208  1.128        ad static void	cache_reclaim(void);
    209  1.128        ad static int	cache_stat_sysctl(SYSCTLFN_ARGS);
    210  1.128        ad 
    211  1.131        ad /*
    212  1.131        ad  * Global pool cache.
    213  1.131        ad  */
    214  1.128        ad static pool_cache_t cache_pool __read_mostly;
    215  1.128        ad 
    216  1.131        ad /*
    217  1.131        ad  * LRU replacement.
    218  1.131        ad  */
    219  1.128        ad enum cache_lru_id {
    220  1.128        ad 	LRU_ACTIVE,
    221  1.128        ad 	LRU_INACTIVE,
    222  1.128        ad 	LRU_COUNT
    223  1.128        ad };
    224  1.120  riastrad 
    225  1.128        ad static struct {
    226  1.128        ad 	TAILQ_HEAD(, namecache)	list[LRU_COUNT];
    227  1.128        ad 	u_int			count[LRU_COUNT];
    228  1.128        ad } cache_lru __cacheline_aligned;
    229  1.117  riastrad 
    230  1.128        ad static kmutex_t cache_lru_lock __cacheline_aligned;
    231  1.117  riastrad 
    232  1.131        ad /*
    233  1.131        ad  * Cache effectiveness statistics.  nchstats holds system-wide total.
    234  1.131        ad  */
    235  1.128        ad struct nchstats	nchstats;
    236  1.103    dennis struct nchstats_percpu _NAMEI_CACHE_STATS(uint32_t);
    237   1.77        ad struct nchcpu {
    238  1.128        ad 	struct nchstats_percpu cur;
    239  1.128        ad 	struct nchstats_percpu last;
    240   1.77        ad };
    241  1.128        ad static callout_t cache_stat_callout;
    242  1.128        ad static kmutex_t cache_stat_lock __cacheline_aligned;
    243   1.77        ad 
    244  1.138        ad #define	COUNT(f) do { \
    245  1.128        ad 	lwp_t *l = curlwp; \
    246  1.128        ad 	KPREEMPT_DISABLE(l); \
    247  1.128        ad 	((struct nchstats_percpu *)curcpu()->ci_data.cpu_nch)->f++; \
    248  1.128        ad 	KPREEMPT_ENABLE(l); \
    249  1.128        ad } while (/* CONSTCOND */ 0);
    250  1.128        ad 
    251  1.128        ad #define	UPDATE(nchcpu, f) do { \
    252  1.128        ad 	uint32_t cur = atomic_load_relaxed(&nchcpu->cur.f); \
    253  1.135        ad 	nchstats.f += (uint32_t)(cur - nchcpu->last.f); \
    254  1.128        ad 	nchcpu->last.f = cur; \
    255  1.128        ad } while (/* CONSTCOND */ 0)
    256   1.90  dholland 
    257   1.90  dholland /*
    258  1.128        ad  * Tunables.  cache_maxlen replaces the historical doingcache:
    259  1.128        ad  * set it zero to disable caching for debugging purposes.
    260    1.1       cgd  */
    261  1.128        ad int cache_lru_maxdeact __read_mostly = 2;	/* max # to deactivate */
    262  1.128        ad int cache_lru_maxscan __read_mostly = 64;	/* max # to scan/reclaim */
    263  1.128        ad int cache_maxlen __read_mostly = USHRT_MAX;	/* max name length to cache */
    264  1.128        ad int cache_stat_interval __read_mostly = 300;	/* in seconds */
    265  1.128        ad 
    266  1.131        ad /*
    267  1.131        ad  * sysctl stuff.
    268  1.131        ad  */
    269  1.128        ad static struct	sysctllog *cache_sysctllog;
    270  1.128        ad 
    271  1.131        ad /*
    272  1.131        ad  * Red-black tree stuff.
    273  1.131        ad  */
    274  1.128        ad static const rb_tree_ops_t cache_rbtree_ops = {
    275  1.128        ad 	.rbto_compare_nodes = cache_compare_nodes,
    276  1.131        ad 	.rbto_compare_key = cache_compare_nodes,
    277  1.128        ad 	.rbto_node_offset = offsetof(struct namecache, nc_tree),
    278  1.128        ad 	.rbto_context = NULL
    279  1.128        ad };
    280   1.89     rmind 
    281  1.131        ad /*
    282  1.131        ad  * dtrace probes.
    283  1.131        ad  */
    284  1.108  christos SDT_PROVIDER_DEFINE(vfs);
    285  1.108  christos 
    286  1.108  christos SDT_PROBE_DEFINE1(vfs, namecache, invalidate, done, "struct vnode *");
    287  1.108  christos SDT_PROBE_DEFINE1(vfs, namecache, purge, parents, "struct vnode *");
    288  1.108  christos SDT_PROBE_DEFINE1(vfs, namecache, purge, children, "struct vnode *");
    289  1.108  christos SDT_PROBE_DEFINE2(vfs, namecache, purge, name, "char *", "size_t");
    290  1.108  christos SDT_PROBE_DEFINE1(vfs, namecache, purge, vfs, "struct mount *");
    291  1.108  christos SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *",
    292  1.108  christos     "char *", "size_t");
    293  1.108  christos SDT_PROBE_DEFINE3(vfs, namecache, lookup, miss, "struct vnode *",
    294  1.108  christos     "char *", "size_t");
    295  1.108  christos SDT_PROBE_DEFINE3(vfs, namecache, lookup, toolong, "struct vnode *",
    296  1.108  christos     "char *", "size_t");
    297  1.108  christos SDT_PROBE_DEFINE2(vfs, namecache, revlookup, success, "struct vnode *",
    298  1.108  christos      "struct vnode *");
    299  1.108  christos SDT_PROBE_DEFINE2(vfs, namecache, revlookup, fail, "struct vnode *",
    300  1.108  christos      "int");
    301  1.108  christos SDT_PROBE_DEFINE2(vfs, namecache, prune, done, "int", "int");
    302  1.108  christos SDT_PROBE_DEFINE3(vfs, namecache, enter, toolong, "struct vnode *",
    303  1.108  christos     "char *", "size_t");
    304  1.108  christos SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *",
    305  1.108  christos     "char *", "size_t");
    306  1.108  christos 
    307   1.73        ad /*
    308  1.128        ad  * rbtree: compare two nodes.
    309   1.90  dholland  */
    310  1.128        ad static int
    311  1.128        ad cache_compare_nodes(void *context, const void *n1, const void *n2)
    312   1.90  dholland {
    313  1.128        ad 	const struct namecache *nc1 = n1;
    314  1.128        ad 	const struct namecache *nc2 = n2;
    315   1.90  dholland 
    316  1.128        ad 	if (nc1->nc_key < nc2->nc_key) {
    317  1.128        ad 		return -1;
    318  1.128        ad 	}
    319  1.128        ad 	if (nc1->nc_key > nc2->nc_key) {
    320  1.128        ad 		return 1;
    321  1.128        ad 	}
    322  1.131        ad 	KASSERT(nc1->nc_nlen == nc2->nc_nlen);
    323  1.131        ad 	return memcmp(nc1->nc_name, nc2->nc_name, nc1->nc_nlen);
    324   1.73        ad }
    325   1.46      yamt 
    326   1.73        ad /*
    327  1.128        ad  * Compute a key value for the given name.  The name length is encoded in
    328  1.128        ad  * the key value to try and improve uniqueness, and so that length doesn't
    329  1.128        ad  * need to be compared separately for string comparisons.
    330   1.73        ad  */
    331  1.129        ad static inline uint64_t
    332  1.128        ad cache_key(const char *name, size_t nlen)
    333   1.73        ad {
    334  1.129        ad 	uint64_t key;
    335   1.73        ad 
    336  1.128        ad 	KASSERT(nlen <= USHRT_MAX);
    337   1.73        ad 
    338  1.128        ad 	key = hash32_buf(name, nlen, HASH32_STR_INIT);
    339  1.128        ad 	return (key << 32) | nlen;
    340   1.46      yamt }
    341   1.46      yamt 
    342   1.73        ad /*
    343  1.128        ad  * Remove an entry from the cache.  vi_nc_lock must be held, and if dir2node
    344  1.128        ad  * is true, then we're locking in the conventional direction and the list
    345  1.128        ad  * lock will be acquired when removing the entry from the vnode list.
    346   1.73        ad  */
    347   1.73        ad static void
    348  1.128        ad cache_remove(struct namecache *ncp, const bool dir2node)
    349   1.73        ad {
    350  1.128        ad 	struct vnode *vp, *dvp = ncp->nc_dvp;
    351  1.128        ad 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
    352  1.128        ad 
    353  1.128        ad 	KASSERT(rw_write_held(&dvi->vi_nc_lock));
    354  1.128        ad 	KASSERT(cache_key(ncp->nc_name, ncp->nc_nlen) == ncp->nc_key);
    355  1.132        ad 	KASSERT(rb_tree_find_node(&dvi->vi_nc_tree, ncp) == ncp);
    356  1.128        ad 
    357  1.128        ad 	SDT_PROBE(vfs, namecache, invalidate, done, ncp,
    358  1.128        ad 	    0, 0, 0, 0);
    359  1.128        ad 
    360  1.134        ad 	/*
    361  1.134        ad 	 * Remove from the vnode's list.  This excludes cache_revlookup(),
    362  1.134        ad 	 * and then it's safe to remove from the LRU lists.
    363  1.134        ad 	 */
    364  1.128        ad 	if ((vp = ncp->nc_vp) != NULL) {
    365  1.128        ad 		vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
    366  1.128        ad 		if (__predict_true(dir2node)) {
    367  1.128        ad 			rw_enter(&vi->vi_nc_listlock, RW_WRITER);
    368  1.128        ad 			TAILQ_REMOVE(&vi->vi_nc_list, ncp, nc_list);
    369  1.128        ad 			rw_exit(&vi->vi_nc_listlock);
    370  1.128        ad 		} else {
    371  1.128        ad 			TAILQ_REMOVE(&vi->vi_nc_list, ncp, nc_list);
    372  1.128        ad 		}
    373  1.128        ad 	}
    374   1.73        ad 
    375  1.134        ad 	/* Remove from the directory's rbtree. */
    376  1.134        ad 	rb_tree_remove_node(&dvi->vi_nc_tree, ncp);
    377  1.134        ad 
    378  1.134        ad 	/* Remove from the LRU lists. */
    379  1.134        ad 	mutex_enter(&cache_lru_lock);
    380  1.134        ad 	TAILQ_REMOVE(&cache_lru.list[ncp->nc_lrulist], ncp, nc_lru);
    381  1.134        ad 	cache_lru.count[ncp->nc_lrulist]--;
    382  1.134        ad 	mutex_exit(&cache_lru_lock);
    383  1.134        ad 
    384  1.128        ad 	/* Finally, free it. */
    385  1.128        ad 	if (ncp->nc_nlen > NCHNAMLEN) {
    386  1.128        ad 		size_t sz = offsetof(struct namecache, nc_name[ncp->nc_nlen]);
    387  1.128        ad 		kmem_free(ncp, sz);
    388  1.128        ad 	} else {
    389  1.128        ad 		pool_cache_put(cache_pool, ncp);
    390   1.73        ad 	}
    391   1.73        ad }
    392   1.73        ad 
    393   1.73        ad /*
    394  1.128        ad  * Find a single cache entry and return it.  vi_nc_lock must be held.
    395   1.73        ad  */
    396  1.128        ad static struct namecache * __noinline
    397  1.128        ad cache_lookup_entry(struct vnode *dvp, const char *name, size_t namelen,
    398  1.129        ad     uint64_t key)
    399   1.55      yamt {
    400  1.128        ad 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
    401  1.128        ad 	struct rb_node *node = dvi->vi_nc_tree.rbt_root;
    402   1.55      yamt 	struct namecache *ncp;
    403  1.131        ad 	int lrulist, diff;
    404  1.128        ad 
    405  1.128        ad 	KASSERT(rw_lock_held(&dvi->vi_nc_lock));
    406  1.128        ad 
    407  1.128        ad 	/*
    408  1.128        ad 	 * Search the RB tree for the key.  This is an inlined lookup
    409  1.128        ad 	 * tailored for exactly what's needed here (64-bit key and so on)
    410  1.128        ad 	 * that is quite a bit faster than using rb_tree_find_node().
    411  1.131        ad 	 *
    412  1.135        ad 	 * For a matching key memcmp() needs to be called once to confirm
    413  1.135        ad 	 * that the correct name has been found.  Very rarely there will be
    414  1.135        ad 	 * a key value collision and the search will continue.
    415  1.128        ad 	 */
    416  1.128        ad 	for (;;) {
    417  1.128        ad 		if (__predict_false(RB_SENTINEL_P(node))) {
    418  1.128        ad 			return NULL;
    419  1.128        ad 		}
    420  1.138        ad 		ncp = (struct namecache *)node;
    421  1.128        ad 		KASSERT((void *)&ncp->nc_tree == (void *)ncp);
    422  1.128        ad 		KASSERT(ncp->nc_dvp == dvp);
    423  1.138        ad 		if (ncp->nc_key == key) {
    424  1.131        ad 			KASSERT(ncp->nc_nlen == namelen);
    425  1.131        ad 			diff = memcmp(ncp->nc_name, name, namelen);
    426  1.131        ad 			if (__predict_true(diff == 0)) {
    427  1.131        ad 				break;
    428  1.131        ad 			}
    429  1.131        ad 			node = node->rb_nodes[diff < 0];
    430  1.131        ad 		} else {
    431  1.131        ad 			node = node->rb_nodes[ncp->nc_key < key];
    432  1.128        ad 		}
    433  1.128        ad 	}
    434   1.55      yamt 
    435  1.128        ad 	/*
    436  1.128        ad 	 * If the entry is on the wrong LRU list, requeue it.  This is an
    437  1.128        ad 	 * unlocked check, but it will rarely be wrong and even then there
    438  1.128        ad 	 * will be no harm caused.
    439  1.128        ad 	 */
    440  1.128        ad 	lrulist = atomic_load_relaxed(&ncp->nc_lrulist);
    441  1.128        ad 	if (__predict_false(lrulist != LRU_ACTIVE)) {
    442  1.128        ad 		cache_activate(ncp);
    443  1.128        ad 	}
    444  1.128        ad 	return ncp;
    445   1.55      yamt }
    446   1.55      yamt 
    447    1.1       cgd /*
    448    1.1       cgd  * Look for a the name in the cache. We don't do this
    449    1.1       cgd  * if the segment name is long, simply so the cache can avoid
    450    1.1       cgd  * holding long names (which would either waste space, or
    451    1.1       cgd  * add greatly to the complexity).
    452    1.1       cgd  *
    453   1.90  dholland  * Lookup is called with DVP pointing to the directory to search,
    454   1.90  dholland  * and CNP providing the name of the entry being sought: cn_nameptr
    455   1.90  dholland  * is the name, cn_namelen is its length, and cn_flags is the flags
    456   1.90  dholland  * word from the namei operation.
    457   1.90  dholland  *
    458   1.90  dholland  * DVP must be locked.
    459   1.90  dholland  *
    460   1.90  dholland  * There are three possible non-error return states:
    461   1.90  dholland  *    1. Nothing was found in the cache. Nothing is known about
    462   1.90  dholland  *       the requested name.
    463   1.90  dholland  *    2. A negative entry was found in the cache, meaning that the
    464   1.90  dholland  *       requested name definitely does not exist.
    465   1.90  dholland  *    3. A positive entry was found in the cache, meaning that the
    466   1.90  dholland  *       requested name does exist and that we are providing the
    467   1.90  dholland  *       vnode.
    468   1.90  dholland  * In these cases the results are:
    469   1.90  dholland  *    1. 0 returned; VN is set to NULL.
    470   1.90  dholland  *    2. 1 returned; VN is set to NULL.
    471   1.90  dholland  *    3. 1 returned; VN is set to the vnode found.
    472   1.90  dholland  *
    473   1.90  dholland  * The additional result argument ISWHT is set to zero, unless a
    474   1.90  dholland  * negative entry is found that was entered as a whiteout, in which
    475   1.90  dholland  * case ISWHT is set to one.
    476   1.90  dholland  *
    477   1.90  dholland  * The ISWHT_RET argument pointer may be null. In this case an
    478   1.90  dholland  * assertion is made that the whiteout flag is not set. File systems
    479   1.90  dholland  * that do not support whiteouts can/should do this.
    480   1.90  dholland  *
    481   1.90  dholland  * Filesystems that do support whiteouts should add ISWHITEOUT to
    482   1.90  dholland  * cnp->cn_flags if ISWHT comes back nonzero.
    483   1.90  dholland  *
    484   1.90  dholland  * When a vnode is returned, it is locked, as per the vnode lookup
    485   1.90  dholland  * locking protocol.
    486   1.90  dholland  *
    487   1.90  dholland  * There is no way for this function to fail, in the sense of
    488   1.90  dholland  * generating an error that requires aborting the namei operation.
    489   1.90  dholland  *
    490   1.90  dholland  * (Prior to October 2012, this function returned an integer status,
    491   1.90  dholland  * and a vnode, and mucked with the flags word in CNP for whiteouts.
    492   1.90  dholland  * The integer status was -1 for "nothing found", ENOENT for "a
    493   1.90  dholland  * negative entry found", 0 for "a positive entry found", and possibly
    494   1.90  dholland  * other errors, and the value of VN might or might not have been set
    495   1.90  dholland  * depending on what error occurred.)
    496    1.1       cgd  */
    497  1.113  riastrad bool
    498   1.91  dholland cache_lookup(struct vnode *dvp, const char *name, size_t namelen,
    499   1.91  dholland 	     uint32_t nameiop, uint32_t cnflags,
    500   1.90  dholland 	     int *iswht_ret, struct vnode **vn_ret)
    501    1.1       cgd {
    502  1.128        ad 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
    503   1.23  augustss 	struct namecache *ncp;
    504   1.20  jdolecek 	struct vnode *vp;
    505  1.129        ad 	uint64_t key;
    506  1.113  riastrad 	int error;
    507  1.113  riastrad 	bool hit;
    508  1.128        ad 	krw_t op;
    509  1.125        ad 
    510   1.90  dholland 	/* Establish default result values */
    511   1.90  dholland 	if (iswht_ret != NULL) {
    512   1.90  dholland 		*iswht_ret = 0;
    513   1.90  dholland 	}
    514   1.90  dholland 	*vn_ret = NULL;
    515   1.90  dholland 
    516  1.128        ad 	if (__predict_false(namelen > cache_maxlen)) {
    517  1.128        ad 		SDT_PROBE(vfs, namecache, lookup, toolong, dvp,
    518  1.128        ad 		    name, namelen, 0, 0);
    519  1.128        ad 		COUNT(ncs_long);
    520  1.113  riastrad 		return false;
    521    1.8       cgd 	}
    522   1.39        pk 
    523  1.128        ad 	/* Compute the key up front - don't need the lock. */
    524  1.128        ad 	key = cache_key(name, namelen);
    525  1.128        ad 
    526  1.128        ad 	/* Could the entry be purged below? */
    527  1.128        ad 	if ((cnflags & ISLASTCN) != 0 &&
    528  1.128        ad 	    ((cnflags & MAKEENTRY) == 0 || nameiop == CREATE)) {
    529  1.128        ad 	    	op = RW_WRITER;
    530  1.128        ad 	} else {
    531  1.128        ad 		op = RW_READER;
    532    1.1       cgd 	}
    533  1.103    dennis 
    534  1.128        ad 	/* Now look for the name. */
    535  1.128        ad 	rw_enter(&dvi->vi_nc_lock, op);
    536  1.128        ad 	ncp = cache_lookup_entry(dvp, name, namelen, key);
    537   1.77        ad 	if (__predict_false(ncp == NULL)) {
    538  1.128        ad 		rw_exit(&dvi->vi_nc_lock);
    539  1.128        ad 		COUNT(ncs_miss);
    540  1.128        ad 		SDT_PROBE(vfs, namecache, lookup, miss, dvp,
    541  1.128        ad 		    name, namelen, 0, 0);
    542  1.113  riastrad 		return false;
    543    1.1       cgd 	}
    544  1.128        ad 	if (__predict_false((cnflags & MAKEENTRY) == 0)) {
    545   1.77        ad 		/*
    546   1.77        ad 		 * Last component and we are renaming or deleting,
    547   1.77        ad 		 * the cache entry is invalid, or otherwise don't
    548   1.77        ad 		 * want cache entry to exist.
    549   1.77        ad 		 */
    550  1.128        ad 		KASSERT((cnflags & ISLASTCN) != 0);
    551  1.128        ad 		cache_remove(ncp, true);
    552  1.128        ad 		rw_exit(&dvi->vi_nc_lock);
    553  1.128        ad 		COUNT(ncs_badhits);
    554  1.113  riastrad 		return false;
    555   1.90  dholland 	}
    556  1.125        ad 	if (ncp->nc_vp == NULL) {
    557  1.136        ad 		if (iswht_ret != NULL) {
    558  1.136        ad 			/*
    559  1.136        ad 			 * Restore the ISWHITEOUT flag saved earlier.
    560  1.136        ad 			 */
    561  1.136        ad 			*iswht_ret = ncp->nc_whiteout;
    562  1.136        ad 		} else {
    563  1.136        ad 			KASSERT(!ncp->nc_whiteout);
    564  1.136        ad 		}
    565  1.128        ad 		if (nameiop == CREATE && (cnflags & ISLASTCN) != 0) {
    566   1.90  dholland 			/*
    567  1.128        ad 			 * Last component and we are preparing to create
    568  1.128        ad 			 * the named object, so flush the negative cache
    569  1.128        ad 			 * entry.
    570   1.90  dholland 			 */
    571  1.128        ad 			COUNT(ncs_badhits);
    572  1.128        ad 			cache_remove(ncp, true);
    573  1.128        ad 			hit = false;
    574   1.90  dholland 		} else {
    575  1.128        ad 			COUNT(ncs_neghits);
    576  1.128        ad 			SDT_PROBE(vfs, namecache, lookup, hit, dvp, name,
    577  1.128        ad 			    namelen, 0, 0);
    578   1.90  dholland 			/* found neg entry; vn is already null from above */
    579  1.113  riastrad 			hit = true;
    580  1.128        ad 		}
    581  1.128        ad 		rw_exit(&dvi->vi_nc_lock);
    582  1.113  riastrad 		return hit;
    583   1.20  jdolecek 	}
    584  1.125        ad 	vp = ncp->nc_vp;
    585  1.125        ad 	mutex_enter(vp->v_interlock);
    586  1.128        ad 	rw_exit(&dvi->vi_nc_lock);
    587  1.103    dennis 
    588  1.103    dennis 	/*
    589  1.111   hannken 	 * Unlocked except for the vnode interlock.  Call vcache_tryvget().
    590  1.103    dennis 	 */
    591  1.111   hannken 	error = vcache_tryvget(vp);
    592   1.92   hannken 	if (error) {
    593   1.92   hannken 		KASSERT(error == EBUSY);
    594   1.92   hannken 		/*
    595   1.92   hannken 		 * This vnode is being cleaned out.
    596   1.92   hannken 		 * XXX badhits?
    597   1.92   hannken 		 */
    598  1.128        ad 		COUNT(ncs_falsehits);
    599  1.113  riastrad 		return false;
    600   1.77        ad 	}
    601  1.101  christos 
    602  1.128        ad 	COUNT(ncs_goodhits);
    603  1.128        ad 	SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0);
    604  1.101  christos 	/* found it */
    605  1.101  christos 	*vn_ret = vp;
    606  1.113  riastrad 	return true;
    607    1.1       cgd }
    608    1.1       cgd 
    609  1.103    dennis /*
    610  1.128        ad  * Version of the above without the nameiop argument, for NFS.
    611  1.103    dennis  */
    612  1.113  riastrad bool
    613   1.91  dholland cache_lookup_raw(struct vnode *dvp, const char *name, size_t namelen,
    614   1.91  dholland 		 uint32_t cnflags,
    615   1.90  dholland 		 int *iswht_ret, struct vnode **vn_ret)
    616   1.61      yamt {
    617  1.128        ad 
    618  1.128        ad 	return cache_lookup(dvp, name, namelen, LOOKUP, cnflags | MAKEENTRY,
    619  1.128        ad 	    iswht_ret, vn_ret);
    620  1.128        ad }
    621  1.128        ad 
    622  1.128        ad /*
    623  1.128        ad  * Used by namei() to walk down a path, component by component by looking up
    624  1.128        ad  * names in the cache.  The node locks are chained along the way: a parent's
    625  1.128        ad  * lock is not dropped until the child's is acquired.
    626  1.128        ad  */
    627  1.128        ad bool
    628  1.128        ad cache_lookup_linked(struct vnode *dvp, const char *name, size_t namelen,
    629  1.128        ad 		    struct vnode **vn_ret, krwlock_t **plock,
    630  1.128        ad 		    kauth_cred_t cred)
    631  1.128        ad {
    632  1.128        ad 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
    633   1.61      yamt 	struct namecache *ncp;
    634  1.129        ad 	uint64_t key;
    635  1.101  christos 	int error;
    636   1.61      yamt 
    637   1.90  dholland 	/* Establish default results. */
    638   1.90  dholland 	*vn_ret = NULL;
    639   1.90  dholland 
    640  1.128        ad 	/* If disabled, or file system doesn't support this, bail out. */
    641  1.131        ad 	if (__predict_false((dvp->v_mount->mnt_iflag & IMNT_NCLOOKUP) == 0)) {
    642  1.113  riastrad 		return false;
    643   1.61      yamt 	}
    644   1.61      yamt 
    645  1.131        ad 	if (__predict_false(namelen > cache_maxlen)) {
    646  1.128        ad 		COUNT(ncs_long);
    647  1.128        ad 		return false;
    648  1.128        ad 	}
    649  1.128        ad 
    650  1.128        ad 	/* Compute the key up front - don't need the lock. */
    651  1.128        ad 	key = cache_key(name, namelen);
    652  1.128        ad 
    653  1.128        ad 	/*
    654  1.128        ad 	 * Acquire the directory lock.  Once we have that, we can drop the
    655  1.128        ad 	 * previous one (if any).
    656  1.128        ad 	 *
    657  1.128        ad 	 * The two lock holds mean that the directory can't go away while
    658  1.128        ad 	 * here: the directory must be purged with cache_purge() before
    659  1.128        ad 	 * being freed, and both parent & child's vi_nc_lock must be taken
    660  1.128        ad 	 * before that point is passed.
    661  1.128        ad 	 *
    662  1.128        ad 	 * However if there's no previous lock, like at the root of the
    663  1.128        ad 	 * chain, then "dvp" must be referenced to prevent dvp going away
    664  1.128        ad 	 * before we get its lock.
    665  1.128        ad 	 *
    666  1.128        ad 	 * Note that the two locks can be the same if looking up a dot, for
    667  1.140        ad 	 * example: /usr/bin/.  If looking up the parent (..) we can't wait
    668  1.140        ad 	 * on the lock as child -> parent is the wrong direction.
    669  1.128        ad 	 */
    670  1.128        ad 	if (*plock != &dvi->vi_nc_lock) {
    671  1.141        ad 		if (!rw_tryenter(&dvi->vi_nc_lock, RW_READER)) {
    672  1.141        ad 			return false;
    673  1.140        ad 		}
    674  1.128        ad 		if (*plock != NULL) {
    675  1.128        ad 			rw_exit(*plock);
    676  1.128        ad 		}
    677  1.128        ad 		*plock = &dvi->vi_nc_lock;
    678  1.128        ad 	} else if (*plock == NULL) {
    679  1.139        ad 		KASSERT(vrefcnt(dvp) > 0);
    680  1.128        ad 	}
    681  1.128        ad 
    682  1.128        ad 	/*
    683  1.128        ad 	 * First up check if the user is allowed to look up files in this
    684  1.128        ad 	 * directory.
    685  1.128        ad 	 */
    686  1.142        ad 	if (dvi->vi_nc_mode == VNOVAL) {
    687  1.142        ad 		return false;
    688  1.142        ad 	}
    689  1.142        ad 	KASSERT(dvi->vi_nc_uid != VNOVAL && dvi->vi_nc_gid != VNOVAL);
    690  1.128        ad 	error = kauth_authorize_vnode(cred, KAUTH_ACCESS_ACTION(VEXEC,
    691  1.128        ad 	    dvp->v_type, dvi->vi_nc_mode & ALLPERMS), dvp, NULL,
    692  1.128        ad 	    genfs_can_access(dvp->v_type, dvi->vi_nc_mode & ALLPERMS,
    693  1.128        ad 	    dvi->vi_nc_uid, dvi->vi_nc_gid, VEXEC, cred));
    694  1.128        ad 	if (error != 0) {
    695  1.128        ad 		COUNT(ncs_denied);
    696  1.113  riastrad 		return false;
    697   1.61      yamt 	}
    698  1.128        ad 
    699  1.128        ad 	/*
    700  1.128        ad 	 * Now look for a matching cache entry.
    701  1.128        ad 	 */
    702  1.128        ad 	ncp = cache_lookup_entry(dvp, name, namelen, key);
    703   1.77        ad 	if (__predict_false(ncp == NULL)) {
    704  1.128        ad 		COUNT(ncs_miss);
    705  1.128        ad 		SDT_PROBE(vfs, namecache, lookup, miss, dvp,
    706  1.128        ad 		    name, namelen, 0, 0);
    707  1.113  riastrad 		return false;
    708   1.61      yamt 	}
    709  1.128        ad 	if (ncp->nc_vp == NULL) {
    710   1.90  dholland 		/* found negative entry; vn is already null from above */
    711  1.128        ad 		COUNT(ncs_neghits);
    712  1.128        ad 		SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0);
    713  1.113  riastrad 		return true;
    714   1.61      yamt 	}
    715  1.128        ad 
    716  1.128        ad 	COUNT(ncs_goodhits); /* XXX can be "badhits" */
    717  1.128        ad 	SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0);
    718  1.103    dennis 
    719  1.103    dennis 	/*
    720  1.128        ad 	 * Return with the directory lock still held.  It will either be
    721  1.128        ad 	 * returned to us with another call to cache_lookup_linked() when
    722  1.128        ad 	 * looking up the next component, or the caller will release it
    723  1.128        ad 	 * manually when finished.
    724  1.103    dennis 	 */
    725  1.128        ad 	*vn_ret = ncp->nc_vp;
    726  1.113  riastrad 	return true;
    727   1.61      yamt }
    728   1.61      yamt 
    729    1.1       cgd /*
    730   1.19  sommerfe  * Scan cache looking for name of directory entry pointing at vp.
    731  1.128        ad  * Will not search for "." or "..".
    732   1.19  sommerfe  *
    733   1.86   hannken  * If the lookup succeeds the vnode is referenced and stored in dvpp.
    734   1.19  sommerfe  *
    735   1.19  sommerfe  * If bufp is non-NULL, also place the name in the buffer which starts
    736   1.19  sommerfe  * at bufp, immediately before *bpp, and move bpp backwards to point
    737   1.19  sommerfe  * at the start of it.  (Yes, this is a little baroque, but it's done
    738   1.19  sommerfe  * this way to cater to the whims of getcwd).
    739   1.19  sommerfe  *
    740   1.19  sommerfe  * Returns 0 on success, -1 on cache miss, positive errno on failure.
    741   1.19  sommerfe  */
    742   1.19  sommerfe int
    743  1.128        ad cache_revlookup(struct vnode *vp, struct vnode **dvpp, char **bpp, char *bufp,
    744  1.128        ad     bool checkaccess, int perms)
    745   1.19  sommerfe {
    746  1.128        ad 	vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
    747   1.19  sommerfe 	struct namecache *ncp;
    748   1.19  sommerfe 	struct vnode *dvp;
    749  1.128        ad 	int error, nlen, lrulist;
    750   1.34     enami 	char *bp;
    751   1.34     enami 
    752  1.126        ad 	KASSERT(vp != NULL);
    753  1.126        ad 
    754  1.128        ad 	if (cache_maxlen == 0)
    755   1.19  sommerfe 		goto out;
    756   1.19  sommerfe 
    757  1.128        ad 	rw_enter(&vi->vi_nc_listlock, RW_READER);
    758  1.128        ad 	if (checkaccess) {
    759  1.128        ad 		/*
    760  1.128        ad 		 * Check if the user is allowed to see.  NOTE: this is
    761  1.128        ad 		 * checking for access on the "wrong" directory.  getcwd()
    762  1.128        ad 		 * wants to see that there is access on every component
    763  1.128        ad 		 * along the way, not that there is access to any individual
    764  1.128        ad 		 * component.  Don't use this to check you can look in vp.
    765  1.128        ad 		 *
    766  1.128        ad 		 * I don't like it, I didn't come up with it, don't blame me!
    767  1.128        ad 		 */
    768  1.142        ad 		if (vi->vi_nc_mode == VNOVAL) {
    769  1.142        ad 			rw_exit(&vi->vi_nc_listlock);
    770  1.142        ad 			return -1;
    771  1.142        ad 		}
    772  1.142        ad 		KASSERT(vi->vi_nc_uid != VNOVAL && vi->vi_nc_gid != VNOVAL);
    773  1.128        ad 		error = kauth_authorize_vnode(curlwp->l_cred,
    774  1.128        ad 		    KAUTH_ACCESS_ACTION(VEXEC, vp->v_type, vi->vi_nc_mode &
    775  1.128        ad 		    ALLPERMS), vp, NULL, genfs_can_access(vp->v_type,
    776  1.128        ad 		    vi->vi_nc_mode & ALLPERMS, vi->vi_nc_uid, vi->vi_nc_gid,
    777  1.128        ad 		    perms, curlwp->l_cred));
    778  1.128        ad 		    if (error != 0) {
    779  1.128        ad 		    	rw_exit(&vi->vi_nc_listlock);
    780  1.128        ad 			COUNT(ncs_denied);
    781  1.128        ad 			return EACCES;
    782  1.127        ad 		}
    783  1.128        ad 	}
    784  1.128        ad 	TAILQ_FOREACH(ncp, &vi->vi_nc_list, nc_list) {
    785  1.128        ad 		KASSERT(ncp->nc_vp == vp);
    786  1.128        ad 		KASSERT(ncp->nc_dvp != NULL);
    787  1.128        ad 		nlen = ncp->nc_nlen;
    788  1.128        ad 
    789  1.127        ad 		/*
    790  1.128        ad 		 * The queue is partially sorted.  Once we hit dots, nothing
    791  1.128        ad 		 * else remains but dots and dotdots, so bail out.
    792  1.127        ad 		 */
    793  1.127        ad 		if (ncp->nc_name[0] == '.') {
    794  1.127        ad 			if (nlen == 1 ||
    795  1.127        ad 			    (nlen == 2 && ncp->nc_name[1] == '.')) {
    796  1.128        ad 			    	break;
    797   1.19  sommerfe 			}
    798  1.127        ad 		}
    799  1.128        ad 
    800  1.135        ad 		/*
    801  1.135        ad 		 * Record a hit on the entry.  This is an unlocked read but
    802  1.135        ad 		 * even if wrong it doesn't matter too much.
    803  1.135        ad 		 */
    804  1.128        ad 		lrulist = atomic_load_relaxed(&ncp->nc_lrulist);
    805  1.128        ad 		if (lrulist != LRU_ACTIVE) {
    806  1.128        ad 			cache_activate(ncp);
    807  1.128        ad 		}
    808   1.34     enami 
    809  1.127        ad 		if (bufp) {
    810  1.127        ad 			bp = *bpp;
    811  1.127        ad 			bp -= nlen;
    812  1.127        ad 			if (bp <= bufp) {
    813   1.92   hannken 				*dvpp = NULL;
    814  1.128        ad 				rw_exit(&vi->vi_nc_listlock);
    815  1.127        ad 				SDT_PROBE(vfs, namecache, revlookup,
    816  1.127        ad 				    fail, vp, ERANGE, 0, 0, 0);
    817  1.127        ad 				return (ERANGE);
    818   1.86   hannken 			}
    819  1.127        ad 			memcpy(bp, ncp->nc_name, nlen);
    820  1.127        ad 			*bpp = bp;
    821   1.19  sommerfe 		}
    822  1.127        ad 
    823  1.128        ad 		dvp = ncp->nc_dvp;
    824  1.127        ad 		mutex_enter(dvp->v_interlock);
    825  1.128        ad 		rw_exit(&vi->vi_nc_listlock);
    826  1.127        ad 		error = vcache_tryvget(dvp);
    827  1.127        ad 		if (error) {
    828  1.127        ad 			KASSERT(error == EBUSY);
    829  1.127        ad 			if (bufp)
    830  1.127        ad 				(*bpp) += nlen;
    831  1.127        ad 			*dvpp = NULL;
    832  1.127        ad 			SDT_PROBE(vfs, namecache, revlookup, fail, vp,
    833  1.127        ad 			    error, 0, 0, 0);
    834  1.127        ad 			return -1;
    835  1.127        ad 		}
    836  1.127        ad 		*dvpp = dvp;
    837  1.127        ad 		SDT_PROBE(vfs, namecache, revlookup, success, vp, dvp,
    838  1.127        ad 		    0, 0, 0);
    839  1.128        ad 		COUNT(ncs_revhits);
    840  1.127        ad 		return (0);
    841   1.19  sommerfe 	}
    842  1.128        ad 	rw_exit(&vi->vi_nc_listlock);
    843  1.128        ad 	COUNT(ncs_revmiss);
    844   1.19  sommerfe  out:
    845   1.34     enami 	*dvpp = NULL;
    846   1.34     enami 	return (-1);
    847   1.19  sommerfe }
    848   1.19  sommerfe 
    849   1.19  sommerfe /*
    850  1.128        ad  * Add an entry to the cache.
    851    1.1       cgd  */
    852   1.13  christos void
    853   1.91  dholland cache_enter(struct vnode *dvp, struct vnode *vp,
    854   1.91  dholland 	    const char *name, size_t namelen, uint32_t cnflags)
    855    1.1       cgd {
    856  1.128        ad 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
    857  1.128        ad 	struct namecache *ncp, *oncp;
    858  1.128        ad 	int total;
    859    1.1       cgd 
    860   1.89     rmind 	/* First, check whether we can/should add a cache entry. */
    861   1.91  dholland 	if ((cnflags & MAKEENTRY) == 0 ||
    862  1.128        ad 	    __predict_false(namelen > cache_maxlen)) {
    863  1.108  christos 		SDT_PROBE(vfs, namecache, enter, toolong, vp, name, namelen,
    864  1.108  christos 		    0, 0);
    865    1.1       cgd 		return;
    866   1.89     rmind 	}
    867   1.58      yamt 
    868  1.108  christos 	SDT_PROBE(vfs, namecache, enter, done, vp, name, namelen, 0, 0);
    869  1.128        ad 
    870  1.128        ad 	/*
    871  1.128        ad 	 * Reclaim some entries if over budget.  This is an unlocked check,
    872  1.128        ad 	 * but it doesn't matter.  Just need to catch up with things
    873  1.128        ad 	 * eventually: it doesn't matter if we go over temporarily.
    874  1.128        ad 	 */
    875  1.128        ad 	total = atomic_load_relaxed(&cache_lru.count[LRU_ACTIVE]);
    876  1.128        ad 	total += atomic_load_relaxed(&cache_lru.count[LRU_INACTIVE]);
    877  1.128        ad 	if (__predict_false(total > desiredvnodes)) {
    878   1.73        ad 		cache_reclaim();
    879   1.39        pk 	}
    880   1.57        pk 
    881  1.128        ad 	/* Now allocate a fresh entry. */
    882  1.128        ad 	if (__predict_true(namelen <= NCHNAMLEN)) {
    883  1.128        ad 		ncp = pool_cache_get(cache_pool, PR_WAITOK);
    884  1.128        ad 	} else {
    885  1.128        ad 		size_t sz = offsetof(struct namecache, nc_name[namelen]);
    886  1.128        ad 		ncp = kmem_alloc(sz, KM_SLEEP);
    887  1.128        ad 	}
    888  1.122      maya 
    889  1.130        ad 	/*
    890  1.130        ad 	 * Fill in cache info.  For negative hits, save the ISWHITEOUT flag
    891  1.130        ad 	 * so we can restore it later when the cache entry is used again.
    892  1.130        ad 	 */
    893  1.130        ad 	ncp->nc_vp = vp;
    894  1.128        ad 	ncp->nc_dvp = dvp;
    895  1.128        ad 	ncp->nc_key = cache_key(name, namelen);
    896  1.128        ad 	ncp->nc_nlen = namelen;
    897  1.130        ad 	ncp->nc_whiteout = ((cnflags & ISWHITEOUT) != 0);
    898  1.128        ad 	memcpy(ncp->nc_name, name, namelen);
    899   1.73        ad 
    900   1.59      yamt 	/*
    901  1.130        ad 	 * Insert to the directory.  Concurrent lookups may race for a cache
    902  1.130        ad 	 * entry.  If there's a entry there already, purge it.
    903   1.59      yamt 	 */
    904  1.128        ad 	rw_enter(&dvi->vi_nc_lock, RW_WRITER);
    905  1.128        ad 	oncp = rb_tree_insert_node(&dvi->vi_nc_tree, ncp);
    906  1.128        ad 	if (oncp != ncp) {
    907  1.128        ad 		KASSERT(oncp->nc_key == ncp->nc_key);
    908  1.128        ad 		KASSERT(oncp->nc_nlen == ncp->nc_nlen);
    909  1.131        ad 		KASSERT(memcmp(oncp->nc_name, name, namelen) == 0);
    910  1.128        ad 		cache_remove(oncp, true);
    911  1.128        ad 		oncp = rb_tree_insert_node(&dvi->vi_nc_tree, ncp);
    912  1.128        ad 		KASSERT(oncp == ncp);
    913   1.59      yamt 	}
    914   1.59      yamt 
    915  1.130        ad 	/*
    916  1.130        ad 	 * With the directory lock still held, insert to the tail of the
    917  1.135        ad 	 * ACTIVE LRU list (new) and take the opportunity to incrementally
    918  1.135        ad 	 * balance the lists.
    919  1.130        ad 	 */
    920  1.130        ad 	mutex_enter(&cache_lru_lock);
    921  1.130        ad 	ncp->nc_lrulist = LRU_ACTIVE;
    922  1.130        ad 	cache_lru.count[LRU_ACTIVE]++;
    923  1.130        ad 	TAILQ_INSERT_TAIL(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru);
    924  1.130        ad 	cache_deactivate();
    925  1.130        ad 	mutex_exit(&cache_lru_lock);
    926  1.130        ad 
    927  1.130        ad 	/*
    928  1.135        ad 	 * Finally, insert to the vnode and unlock.  With everything set up
    929  1.135        ad 	 * it's safe to let cache_revlookup() see the entry.  Partially sort
    930  1.135        ad 	 * the per-vnode list: dots go to back so cache_revlookup() doesn't
    931  1.135        ad 	 * have to consider them.
    932  1.130        ad 	 */
    933  1.130        ad 	if (vp != NULL) {
    934  1.128        ad 		vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
    935  1.128        ad 		rw_enter(&vi->vi_nc_listlock, RW_WRITER);
    936  1.127        ad 		if ((namelen == 1 && name[0] == '.') ||
    937  1.127        ad 		    (namelen == 2 && name[0] == '.' && name[1] == '.')) {
    938  1.128        ad 			TAILQ_INSERT_TAIL(&vi->vi_nc_list, ncp, nc_list);
    939  1.127        ad 		} else {
    940  1.128        ad 			TAILQ_INSERT_HEAD(&vi->vi_nc_list, ncp, nc_list);
    941  1.127        ad 		}
    942  1.128        ad 		rw_exit(&vi->vi_nc_listlock);
    943   1.73        ad 	}
    944  1.128        ad 	rw_exit(&dvi->vi_nc_lock);
    945  1.128        ad }
    946  1.128        ad 
    947  1.128        ad /*
    948  1.128        ad  * Set identity info in cache for a vnode.  We only care about directories
    949  1.142        ad  * so ignore other updates.  The cached info may be marked invalid if the
    950  1.142        ad  * inode has an ACL.
    951  1.128        ad  */
    952  1.128        ad void
    953  1.142        ad cache_enter_id(struct vnode *vp, mode_t mode, uid_t uid, gid_t gid, bool valid)
    954  1.128        ad {
    955  1.128        ad 	vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
    956  1.128        ad 
    957  1.128        ad 	if (vp->v_type == VDIR) {
    958  1.128        ad 		/* Grab both locks, for forward & reverse lookup. */
    959  1.128        ad 		rw_enter(&vi->vi_nc_lock, RW_WRITER);
    960  1.128        ad 		rw_enter(&vi->vi_nc_listlock, RW_WRITER);
    961  1.142        ad 		if (valid) {
    962  1.142        ad 			vi->vi_nc_mode = mode;
    963  1.142        ad 			vi->vi_nc_uid = uid;
    964  1.142        ad 			vi->vi_nc_gid = gid;
    965  1.142        ad 		} else {
    966  1.142        ad 			vi->vi_nc_mode = VNOVAL;
    967  1.142        ad 			vi->vi_nc_uid = VNOVAL;
    968  1.142        ad 			vi->vi_nc_gid = VNOVAL;
    969  1.142        ad 		}
    970  1.128        ad 		rw_exit(&vi->vi_nc_listlock);
    971  1.128        ad 		rw_exit(&vi->vi_nc_lock);
    972  1.128        ad 	}
    973  1.128        ad }
    974  1.128        ad 
    975  1.128        ad /*
    976  1.128        ad  * Return true if we have identity for the given vnode, and use as an
    977  1.128        ad  * opportunity to confirm that everything squares up.
    978  1.128        ad  *
    979  1.128        ad  * Because of shared code, some file systems could provide partial
    980  1.142        ad  * information, missing some updates, so check the mount flag too.
    981  1.128        ad  */
    982  1.128        ad bool
    983  1.128        ad cache_have_id(struct vnode *vp)
    984  1.128        ad {
    985  1.128        ad 
    986  1.128        ad 	if (vp->v_type == VDIR &&
    987  1.142        ad 	    (vp->v_mount->mnt_iflag & IMNT_NCLOOKUP) != 0 &&
    988  1.142        ad 	    atomic_load_relaxed(&VNODE_TO_VIMPL(vp)->vi_nc_mode) != VNOVAL) {
    989  1.128        ad 		return true;
    990  1.128        ad 	} else {
    991  1.128        ad 		return false;
    992  1.128        ad 	}
    993    1.1       cgd }
    994    1.1       cgd 
    995    1.1       cgd /*
    996  1.128        ad  * Name cache initialization, from vfs_init() when the system is booting.
    997    1.1       cgd  */
    998   1.13  christos void
    999   1.34     enami nchinit(void)
   1000    1.1       cgd {
   1001    1.1       cgd 
   1002  1.128        ad 	cache_pool = pool_cache_init(sizeof(struct namecache),
   1003  1.135        ad 	    coherency_unit, 0, 0, "namecache", NULL, IPL_NONE, NULL,
   1004  1.128        ad 	    NULL, NULL);
   1005  1.128        ad 	KASSERT(cache_pool != NULL);
   1006  1.128        ad 
   1007  1.128        ad 	mutex_init(&cache_lru_lock, MUTEX_DEFAULT, IPL_NONE);
   1008  1.128        ad 	TAILQ_INIT(&cache_lru.list[LRU_ACTIVE]);
   1009  1.128        ad 	TAILQ_INIT(&cache_lru.list[LRU_INACTIVE]);
   1010  1.128        ad 
   1011  1.128        ad 	mutex_init(&cache_stat_lock, MUTEX_DEFAULT, IPL_NONE);
   1012  1.128        ad 	callout_init(&cache_stat_callout, CALLOUT_MPSAFE);
   1013  1.128        ad 	callout_setfunc(&cache_stat_callout, cache_update_stats, NULL);
   1014  1.128        ad 	callout_schedule(&cache_stat_callout, cache_stat_interval * hz);
   1015  1.128        ad 
   1016  1.128        ad 	KASSERT(cache_sysctllog == NULL);
   1017  1.128        ad 	sysctl_createv(&cache_sysctllog, 0, NULL, NULL,
   1018  1.128        ad 		       CTLFLAG_PERMANENT,
   1019  1.128        ad 		       CTLTYPE_STRUCT, "namecache_stats",
   1020  1.128        ad 		       SYSCTL_DESCR("namecache statistics"),
   1021  1.128        ad 		       cache_stat_sysctl, 0, NULL, 0,
   1022  1.128        ad 		       CTL_VFS, CTL_CREATE, CTL_EOL);
   1023  1.128        ad }
   1024  1.128        ad 
   1025  1.128        ad /*
   1026  1.128        ad  * Called once for each CPU in the system as attached.
   1027  1.128        ad  */
   1028  1.128        ad void
   1029  1.128        ad cache_cpu_init(struct cpu_info *ci)
   1030  1.128        ad {
   1031  1.128        ad 	void *p;
   1032  1.128        ad 	size_t sz;
   1033  1.104     pooka 
   1034  1.128        ad 	sz = roundup2(sizeof(struct nchstats_percpu), coherency_unit) +
   1035  1.128        ad 	    coherency_unit;
   1036  1.128        ad 	p = kmem_zalloc(sz, KM_SLEEP);
   1037  1.128        ad 	ci->ci_data.cpu_nch = (void *)roundup2((uintptr_t)p, coherency_unit);
   1038   1.73        ad }
   1039   1.73        ad 
   1040  1.128        ad /*
   1041  1.128        ad  * A vnode is being allocated: set up cache structures.
   1042  1.128        ad  */
   1043  1.128        ad void
   1044  1.128        ad cache_vnode_init(struct vnode *vp)
   1045   1.73        ad {
   1046  1.128        ad 	vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
   1047  1.128        ad 
   1048  1.128        ad 	rw_init(&vi->vi_nc_lock);
   1049  1.128        ad 	rw_init(&vi->vi_nc_listlock);
   1050  1.128        ad 	rb_tree_init(&vi->vi_nc_tree, &cache_rbtree_ops);
   1051  1.128        ad 	TAILQ_INIT(&vi->vi_nc_list);
   1052  1.128        ad 	vi->vi_nc_mode = VNOVAL;
   1053  1.128        ad 	vi->vi_nc_uid = VNOVAL;
   1054  1.128        ad 	vi->vi_nc_gid = VNOVAL;
   1055  1.128        ad }
   1056  1.125        ad 
   1057  1.128        ad /*
   1058  1.128        ad  * A vnode is being freed: finish cache structures.
   1059  1.128        ad  */
   1060  1.128        ad void
   1061  1.128        ad cache_vnode_fini(struct vnode *vp)
   1062  1.128        ad {
   1063  1.128        ad 	vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
   1064   1.73        ad 
   1065  1.128        ad 	KASSERT(RB_TREE_MIN(&vi->vi_nc_tree) == NULL);
   1066  1.128        ad 	KASSERT(TAILQ_EMPTY(&vi->vi_nc_list));
   1067  1.128        ad 	rw_destroy(&vi->vi_nc_lock);
   1068  1.128        ad 	rw_destroy(&vi->vi_nc_listlock);
   1069   1.73        ad }
   1070   1.73        ad 
   1071  1.128        ad /*
   1072  1.128        ad  * Helper for cache_purge1(): purge cache entries for the given vnode from
   1073  1.128        ad  * all directories that the vnode is cached in.
   1074  1.128        ad  */
   1075   1.73        ad static void
   1076  1.128        ad cache_purge_parents(struct vnode *vp)
   1077   1.73        ad {
   1078  1.128        ad 	vnode_impl_t *dvi, *vi = VNODE_TO_VIMPL(vp);
   1079  1.128        ad 	struct vnode *dvp, *blocked;
   1080  1.125        ad 	struct namecache *ncp;
   1081   1.73        ad 
   1082  1.128        ad 	SDT_PROBE(vfs, namecache, purge, parents, vp, 0, 0, 0, 0);
   1083  1.128        ad 
   1084  1.128        ad 	blocked = NULL;
   1085  1.128        ad 
   1086  1.128        ad 	rw_enter(&vi->vi_nc_listlock, RW_WRITER);
   1087  1.128        ad 	while ((ncp = TAILQ_FIRST(&vi->vi_nc_list)) != NULL) {
   1088  1.128        ad 		/*
   1089  1.128        ad 		 * Locking in the wrong direction.  Try for a hold on the
   1090  1.128        ad 		 * directory node's lock, and if we get it then all good,
   1091  1.128        ad 		 * nuke the entry and move on to the next.
   1092  1.128        ad 		 */
   1093  1.128        ad 		dvp = ncp->nc_dvp;
   1094  1.128        ad 		dvi = VNODE_TO_VIMPL(dvp);
   1095  1.128        ad 		if (rw_tryenter(&dvi->vi_nc_lock, RW_WRITER)) {
   1096  1.128        ad 			cache_remove(ncp, false);
   1097  1.128        ad 			rw_exit(&dvi->vi_nc_lock);
   1098  1.128        ad 			blocked = NULL;
   1099  1.128        ad 			continue;
   1100  1.128        ad 		}
   1101  1.128        ad 
   1102  1.128        ad 		/*
   1103  1.128        ad 		 * We can't wait on the directory node's lock with our list
   1104  1.128        ad 		 * lock held or the system could deadlock.
   1105  1.128        ad 		 *
   1106  1.128        ad 		 * Take a hold on the directory vnode to prevent it from
   1107  1.128        ad 		 * being freed (taking the vnode & lock with it).  Then
   1108  1.128        ad 		 * wait for the lock to become available with no other locks
   1109  1.128        ad 		 * held, and retry.
   1110  1.128        ad 		 *
   1111  1.128        ad 		 * If this happens twice in a row, give the other side a
   1112  1.128        ad 		 * breather; we can do nothing until it lets go.
   1113  1.128        ad 		 */
   1114  1.128        ad 		vhold(dvp);
   1115  1.128        ad 		rw_exit(&vi->vi_nc_listlock);
   1116  1.128        ad 		rw_enter(&dvi->vi_nc_lock, RW_WRITER);
   1117  1.128        ad 		/* Do nothing. */
   1118  1.128        ad 		rw_exit(&dvi->vi_nc_lock);
   1119  1.128        ad 		holdrele(dvp);
   1120  1.128        ad 		if (blocked == dvp) {
   1121  1.128        ad 			kpause("ncpurge", false, 1, NULL);
   1122  1.128        ad 		}
   1123  1.128        ad 		rw_enter(&vi->vi_nc_listlock, RW_WRITER);
   1124  1.128        ad 		blocked = dvp;
   1125  1.128        ad 	}
   1126  1.128        ad 	rw_exit(&vi->vi_nc_listlock);
   1127   1.73        ad }
   1128   1.73        ad 
   1129   1.73        ad /*
   1130  1.128        ad  * Helper for cache_purge1(): purge all cache entries hanging off the given
   1131  1.128        ad  * directory vnode.
   1132   1.73        ad  */
   1133  1.128        ad static void
   1134  1.128        ad cache_purge_children(struct vnode *dvp)
   1135   1.73        ad {
   1136  1.128        ad 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
   1137  1.128        ad 	struct namecache *ncp;
   1138  1.128        ad 
   1139  1.128        ad 	SDT_PROBE(vfs, namecache, purge, children, dvp, 0, 0, 0, 0);
   1140   1.73        ad 
   1141  1.128        ad 	rw_enter(&dvi->vi_nc_lock, RW_WRITER);
   1142  1.135        ad 	while ((ncp = RB_TREE_MIN(&dvi->vi_nc_tree)) != NULL) {
   1143  1.128        ad 		cache_remove(ncp, true);
   1144  1.128        ad 	}
   1145  1.128        ad 	rw_exit(&dvi->vi_nc_lock);
   1146   1.30       chs }
   1147   1.30       chs 
   1148   1.30       chs /*
   1149  1.128        ad  * Helper for cache_purge1(): purge cache entry from the given vnode,
   1150  1.128        ad  * finding it by name.
   1151   1.30       chs  */
   1152  1.128        ad static void
   1153  1.128        ad cache_purge_name(struct vnode *dvp, const char *name, size_t namelen)
   1154   1.30       chs {
   1155  1.128        ad 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
   1156   1.30       chs 	struct namecache *ncp;
   1157  1.129        ad 	uint64_t key;
   1158  1.126        ad 
   1159  1.128        ad 	SDT_PROBE(vfs, namecache, purge, name, name, namelen, 0, 0, 0);
   1160  1.128        ad 
   1161  1.128        ad 	key = cache_key(name, namelen);
   1162  1.128        ad 	rw_enter(&dvi->vi_nc_lock, RW_WRITER);
   1163  1.128        ad 	ncp = cache_lookup_entry(dvp, name, namelen, key);
   1164  1.128        ad 	if (ncp) {
   1165  1.128        ad 		cache_remove(ncp, true);
   1166  1.128        ad 	}
   1167  1.128        ad 	rw_exit(&dvi->vi_nc_lock);
   1168    1.1       cgd }
   1169    1.1       cgd 
   1170    1.1       cgd /*
   1171    1.1       cgd  * Cache flush, a particular vnode; called when a vnode is renamed to
   1172  1.128        ad  * hide entries that would now be invalid.
   1173    1.1       cgd  */
   1174   1.13  christos void
   1175   1.91  dholland cache_purge1(struct vnode *vp, const char *name, size_t namelen, int flags)
   1176    1.1       cgd {
   1177    1.1       cgd 
   1178   1.55      yamt 	if (flags & PURGE_PARENTS) {
   1179  1.128        ad 		cache_purge_parents(vp);
   1180   1.55      yamt 	}
   1181   1.55      yamt 	if (flags & PURGE_CHILDREN) {
   1182  1.128        ad 		cache_purge_children(vp);
   1183   1.46      yamt 	}
   1184   1.91  dholland 	if (name != NULL) {
   1185  1.128        ad 		cache_purge_name(vp, name, namelen);
   1186   1.46      yamt 	}
   1187  1.128        ad }
   1188  1.128        ad 
   1189  1.128        ad /*
   1190  1.128        ad  * vnode filter for cache_purgevfs().
   1191  1.128        ad  */
   1192  1.128        ad static bool
   1193  1.128        ad cache_vdir_filter(void *cookie, vnode_t *vp)
   1194  1.128        ad {
   1195  1.128        ad 
   1196  1.128        ad 	return vp->v_type == VDIR;
   1197    1.1       cgd }
   1198    1.1       cgd 
   1199    1.1       cgd /*
   1200    1.1       cgd  * Cache flush, a whole filesystem; called when filesys is umounted to
   1201   1.27       chs  * remove entries that would now be invalid.
   1202    1.1       cgd  */
   1203   1.13  christos void
   1204   1.34     enami cache_purgevfs(struct mount *mp)
   1205    1.1       cgd {
   1206  1.128        ad 	struct vnode_iterator *iter;
   1207  1.128        ad 	vnode_t *dvp;
   1208    1.1       cgd 
   1209  1.128        ad 	vfs_vnode_iterator_init(mp, &iter);
   1210  1.128        ad 	for (;;) {
   1211  1.128        ad 		dvp = vfs_vnode_iterator_next(iter, cache_vdir_filter, NULL);
   1212  1.128        ad 		if (dvp == NULL) {
   1213  1.128        ad 			break;
   1214   1.73        ad 		}
   1215  1.128        ad 		cache_purge_children(dvp);
   1216  1.128        ad 		vrele(dvp);
   1217   1.73        ad 	}
   1218  1.128        ad 	vfs_vnode_iterator_destroy(iter);
   1219   1.73        ad }
   1220   1.73        ad 
   1221   1.73        ad /*
   1222  1.135        ad  * Re-queue an entry onto the tail of the active LRU list, after it has
   1223  1.135        ad  * scored a hit.
   1224   1.73        ad  */
   1225   1.73        ad static void
   1226  1.128        ad cache_activate(struct namecache *ncp)
   1227   1.73        ad {
   1228   1.73        ad 
   1229  1.128        ad 	mutex_enter(&cache_lru_lock);
   1230  1.128        ad 	TAILQ_REMOVE(&cache_lru.list[ncp->nc_lrulist], ncp, nc_lru);
   1231  1.128        ad 	TAILQ_INSERT_TAIL(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru);
   1232  1.128        ad 	cache_lru.count[ncp->nc_lrulist]--;
   1233  1.128        ad 	cache_lru.count[LRU_ACTIVE]++;
   1234  1.128        ad 	ncp->nc_lrulist = LRU_ACTIVE;
   1235  1.128        ad 	mutex_exit(&cache_lru_lock);
   1236   1.73        ad }
   1237   1.73        ad 
   1238   1.73        ad /*
   1239  1.128        ad  * Try to balance the LRU lists.  Pick some victim entries, and re-queue
   1240  1.128        ad  * them from the head of the active list to the tail of the inactive list.
   1241   1.73        ad  */
   1242   1.73        ad static void
   1243  1.128        ad cache_deactivate(void)
   1244   1.73        ad {
   1245  1.128        ad 	struct namecache *ncp;
   1246  1.128        ad 	int total, i;
   1247  1.128        ad 
   1248  1.128        ad 	KASSERT(mutex_owned(&cache_lru_lock));
   1249   1.73        ad 
   1250  1.128        ad 	/* If we're nowhere near budget yet, don't bother. */
   1251  1.128        ad 	total = cache_lru.count[LRU_ACTIVE] + cache_lru.count[LRU_INACTIVE];
   1252  1.128        ad 	if (total < (desiredvnodes >> 1)) {
   1253  1.128        ad 	    	return;
   1254  1.128        ad 	}
   1255   1.73        ad 
   1256   1.73        ad 	/*
   1257  1.128        ad 	 * Aim for a 1:1 ratio of active to inactive.  This is to allow each
   1258  1.128        ad 	 * potential victim a reasonable amount of time to cycle through the
   1259  1.128        ad 	 * inactive list in order to score a hit and be reactivated, while
   1260  1.128        ad 	 * trying not to cause reactivations too frequently.
   1261   1.73        ad 	 */
   1262  1.128        ad 	if (cache_lru.count[LRU_ACTIVE] < cache_lru.count[LRU_INACTIVE]) {
   1263  1.128        ad 		return;
   1264  1.128        ad 	}
   1265   1.73        ad 
   1266  1.128        ad 	/* Move only a few at a time; will catch up eventually. */
   1267  1.128        ad 	for (i = 0; i < cache_lru_maxdeact; i++) {
   1268  1.128        ad 		ncp = TAILQ_FIRST(&cache_lru.list[LRU_ACTIVE]);
   1269  1.128        ad 		if (ncp == NULL) {
   1270  1.128        ad 			break;
   1271  1.128        ad 		}
   1272  1.128        ad 		KASSERT(ncp->nc_lrulist == LRU_ACTIVE);
   1273  1.128        ad 		ncp->nc_lrulist = LRU_INACTIVE;
   1274  1.128        ad 		TAILQ_REMOVE(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru);
   1275  1.128        ad 		TAILQ_INSERT_TAIL(&cache_lru.list[LRU_INACTIVE], ncp, nc_lru);
   1276  1.128        ad 		cache_lru.count[LRU_ACTIVE]--;
   1277  1.128        ad 		cache_lru.count[LRU_INACTIVE]++;
   1278  1.128        ad 	}
   1279   1.73        ad }
   1280   1.73        ad 
   1281   1.73        ad /*
   1282  1.128        ad  * Free some entries from the cache, when we have gone over budget.
   1283  1.128        ad  *
   1284  1.128        ad  * We don't want to cause too much work for any individual caller, and it
   1285  1.128        ad  * doesn't matter if we temporarily go over budget.  This is also "just a
   1286  1.128        ad  * cache" so it's not a big deal if we screw up and throw out something we
   1287  1.128        ad  * shouldn't.  So we take a relaxed attitude to this process to reduce its
   1288  1.128        ad  * impact.
   1289   1.73        ad  */
   1290   1.73        ad static void
   1291  1.128        ad cache_reclaim(void)
   1292   1.28       chs {
   1293   1.28       chs 	struct namecache *ncp;
   1294  1.128        ad 	vnode_impl_t *dvi;
   1295  1.128        ad 	int toscan;
   1296   1.28       chs 
   1297  1.128        ad 	/*
   1298  1.128        ad 	 * Scan up to a preset maxium number of entries, but no more than
   1299  1.128        ad 	 * 0.8% of the total at once (to allow for very small systems).
   1300  1.128        ad 	 *
   1301  1.128        ad 	 * On bigger systems, do a larger chunk of work to reduce the number
   1302  1.128        ad 	 * of times that cache_lru_lock is held for any length of time.
   1303  1.128        ad 	 */
   1304  1.128        ad 	mutex_enter(&cache_lru_lock);
   1305  1.128        ad 	toscan = MIN(cache_lru_maxscan, desiredvnodes >> 7);
   1306  1.128        ad 	toscan = MAX(toscan, 1);
   1307  1.128        ad 	SDT_PROBE(vfs, namecache, prune, done, cache_lru.count[LRU_ACTIVE] +
   1308  1.128        ad 	    cache_lru.count[LRU_INACTIVE], toscan, 0, 0, 0);
   1309  1.128        ad 	while (toscan-- != 0) {
   1310  1.128        ad 		/* First try to balance the lists. */
   1311  1.128        ad 		cache_deactivate();
   1312  1.128        ad 
   1313  1.128        ad 		/* Now look for a victim on head of inactive list (old). */
   1314  1.128        ad 		ncp = TAILQ_FIRST(&cache_lru.list[LRU_INACTIVE]);
   1315  1.128        ad 		if (ncp == NULL) {
   1316  1.128        ad 			break;
   1317   1.28       chs 		}
   1318  1.128        ad 		dvi = VNODE_TO_VIMPL(ncp->nc_dvp);
   1319  1.128        ad 		KASSERT(ncp->nc_lrulist == LRU_INACTIVE);
   1320  1.128        ad 		KASSERT(dvi != NULL);
   1321  1.128        ad 
   1322  1.128        ad 		/*
   1323  1.128        ad 		 * Locking in the wrong direction.  If we can't get the
   1324  1.128        ad 		 * lock, the directory is actively busy, and it could also
   1325  1.128        ad 		 * cause problems for the next guy in here, so send the
   1326  1.128        ad 		 * entry to the back of the list.
   1327  1.128        ad 		 */
   1328  1.128        ad 		if (!rw_tryenter(&dvi->vi_nc_lock, RW_WRITER)) {
   1329  1.128        ad 			TAILQ_REMOVE(&cache_lru.list[LRU_INACTIVE],
   1330  1.128        ad 			    ncp, nc_lru);
   1331  1.128        ad 			TAILQ_INSERT_TAIL(&cache_lru.list[LRU_INACTIVE],
   1332  1.128        ad 			    ncp, nc_lru);
   1333  1.128        ad 			continue;
   1334   1.28       chs 		}
   1335  1.128        ad 
   1336  1.128        ad 		/*
   1337  1.128        ad 		 * Now have the victim entry locked.  Drop the LRU list
   1338  1.128        ad 		 * lock, purge the entry, and start over.  The hold on
   1339  1.128        ad 		 * vi_nc_lock will prevent the vnode from vanishing until
   1340  1.128        ad 		 * finished (cache_purge() will be called on dvp before it
   1341  1.128        ad 		 * disappears, and that will wait on vi_nc_lock).
   1342  1.128        ad 		 */
   1343  1.128        ad 		mutex_exit(&cache_lru_lock);
   1344  1.128        ad 		cache_remove(ncp, true);
   1345  1.128        ad 		rw_exit(&dvi->vi_nc_lock);
   1346  1.128        ad 		mutex_enter(&cache_lru_lock);
   1347   1.28       chs 	}
   1348  1.128        ad 	mutex_exit(&cache_lru_lock);
   1349   1.28       chs }
   1350   1.95     joerg 
   1351  1.128        ad /*
   1352  1.128        ad  * For file system code: count a lookup that required a full re-scan of
   1353  1.128        ad  * directory metadata.
   1354  1.128        ad  */
   1355   1.95     joerg void
   1356   1.95     joerg namecache_count_pass2(void)
   1357   1.95     joerg {
   1358   1.95     joerg 
   1359  1.128        ad 	COUNT(ncs_pass2);
   1360   1.95     joerg }
   1361   1.95     joerg 
   1362  1.128        ad /*
   1363  1.128        ad  * For file system code: count a lookup that scored a hit in the directory
   1364  1.128        ad  * metadata near the location of the last lookup.
   1365  1.128        ad  */
   1366   1.95     joerg void
   1367   1.95     joerg namecache_count_2passes(void)
   1368   1.95     joerg {
   1369   1.95     joerg 
   1370  1.128        ad 	COUNT(ncs_2passes);
   1371  1.128        ad }
   1372  1.128        ad 
   1373  1.128        ad /*
   1374  1.128        ad  * Sum the stats from all CPUs into nchstats.  This needs to run at least
   1375  1.128        ad  * once within every window where a 32-bit counter could roll over.  It's
   1376  1.128        ad  * called regularly by timer to ensure this.
   1377  1.128        ad  */
   1378  1.128        ad static void
   1379  1.128        ad cache_update_stats(void *cookie)
   1380  1.128        ad {
   1381  1.128        ad 	CPU_INFO_ITERATOR cii;
   1382  1.128        ad 	struct cpu_info *ci;
   1383  1.128        ad 
   1384  1.128        ad 	mutex_enter(&cache_stat_lock);
   1385  1.128        ad 	for (CPU_INFO_FOREACH(cii, ci)) {
   1386  1.128        ad 		struct nchcpu *nchcpu = ci->ci_data.cpu_nch;
   1387  1.128        ad 		UPDATE(nchcpu, ncs_goodhits);
   1388  1.128        ad 		UPDATE(nchcpu, ncs_neghits);
   1389  1.128        ad 		UPDATE(nchcpu, ncs_badhits);
   1390  1.128        ad 		UPDATE(nchcpu, ncs_falsehits);
   1391  1.128        ad 		UPDATE(nchcpu, ncs_miss);
   1392  1.128        ad 		UPDATE(nchcpu, ncs_long);
   1393  1.128        ad 		UPDATE(nchcpu, ncs_pass2);
   1394  1.128        ad 		UPDATE(nchcpu, ncs_2passes);
   1395  1.128        ad 		UPDATE(nchcpu, ncs_revhits);
   1396  1.128        ad 		UPDATE(nchcpu, ncs_revmiss);
   1397  1.128        ad 		UPDATE(nchcpu, ncs_denied);
   1398  1.128        ad 	}
   1399  1.128        ad 	if (cookie != NULL) {
   1400  1.128        ad 		memcpy(cookie, &nchstats, sizeof(nchstats));
   1401  1.128        ad 	}
   1402  1.128        ad 	/* Reset the timer; arrive back here in N minutes at latest. */
   1403  1.128        ad 	callout_schedule(&cache_stat_callout, cache_stat_interval * hz);
   1404  1.128        ad 	mutex_exit(&cache_stat_lock);
   1405   1.95     joerg }
   1406   1.97     joerg 
   1407  1.103    dennis /*
   1408  1.131        ad  * Fetch the current values of the stats for sysctl.
   1409  1.103    dennis  */
   1410   1.97     joerg static int
   1411   1.97     joerg cache_stat_sysctl(SYSCTLFN_ARGS)
   1412   1.97     joerg {
   1413  1.125        ad 	struct nchstats stats;
   1414   1.97     joerg 
   1415   1.97     joerg 	if (oldp == NULL) {
   1416  1.128        ad 		*oldlenp = sizeof(nchstats);
   1417   1.97     joerg 		return 0;
   1418   1.97     joerg 	}
   1419   1.97     joerg 
   1420  1.128        ad 	if (*oldlenp <= 0) {
   1421   1.97     joerg 		*oldlenp = 0;
   1422   1.97     joerg 		return 0;
   1423   1.97     joerg 	}
   1424   1.97     joerg 
   1425  1.128        ad 	/* Refresh the global stats. */
   1426  1.103    dennis 	sysctl_unlock();
   1427  1.128        ad 	cache_update_stats(&stats);
   1428   1.97     joerg 	sysctl_relock();
   1429   1.97     joerg 
   1430  1.128        ad 	*oldlenp = MIN(sizeof(stats), *oldlenp);
   1431  1.128        ad 	return sysctl_copyout(l, &stats, oldp, *oldlenp);
   1432   1.97     joerg }
   1433   1.97     joerg 
   1434  1.128        ad /*
   1435  1.128        ad  * For the debugger, given the address of a vnode, print all associated
   1436  1.128        ad  * names in the cache.
   1437  1.128        ad  */
   1438  1.128        ad #ifdef DDB
   1439  1.128        ad void
   1440  1.128        ad namecache_print(struct vnode *vp, void (*pr)(const char *, ...))
   1441   1.97     joerg {
   1442  1.128        ad 	struct vnode *dvp = NULL;
   1443  1.128        ad 	struct namecache *ncp;
   1444  1.128        ad 	enum cache_lru_id id;
   1445  1.104     pooka 
   1446  1.128        ad 	for (id = 0; id < LRU_COUNT; id++) {
   1447  1.128        ad 		TAILQ_FOREACH(ncp, &cache_lru.list[id], nc_lru) {
   1448  1.128        ad 			if (ncp->nc_vp == vp) {
   1449  1.128        ad 				(*pr)("name %.*s\n", ncp->nc_nlen,
   1450  1.128        ad 				    ncp->nc_name);
   1451  1.128        ad 				dvp = ncp->nc_dvp;
   1452  1.128        ad 			}
   1453  1.128        ad 		}
   1454  1.128        ad 	}
   1455  1.128        ad 	if (dvp == NULL) {
   1456  1.128        ad 		(*pr)("name not found\n");
   1457  1.128        ad 		return;
   1458  1.128        ad 	}
   1459  1.128        ad 	for (id = 0; id < LRU_COUNT; id++) {
   1460  1.128        ad 		TAILQ_FOREACH(ncp, &cache_lru.list[id], nc_lru) {
   1461  1.128        ad 			if (ncp->nc_vp == dvp) {
   1462  1.128        ad 				(*pr)("parent %.*s\n", ncp->nc_nlen,
   1463  1.128        ad 				    ncp->nc_name);
   1464  1.128        ad 			}
   1465  1.128        ad 		}
   1466  1.128        ad 	}
   1467   1.97     joerg }
   1468  1.128        ad #endif
   1469