Home | History | Annotate | Line # | Download | only in kern
vfs_cache.c revision 1.155
      1  1.155        ad /*	$NetBSD: vfs_cache.c,v 1.155 2023/09/09 18:27:59 ad Exp $	*/
      2   1.73        ad 
      3   1.73        ad /*-
      4  1.155        ad  * Copyright (c) 2008, 2019, 2020, 2023 The NetBSD Foundation, Inc.
      5   1.73        ad  * All rights reserved.
      6   1.73        ad  *
      7  1.128        ad  * This code is derived from software contributed to The NetBSD Foundation
      8  1.128        ad  * by Andrew Doran.
      9  1.128        ad  *
     10   1.73        ad  * Redistribution and use in source and binary forms, with or without
     11   1.73        ad  * modification, are permitted provided that the following conditions
     12   1.73        ad  * are met:
     13   1.73        ad  * 1. Redistributions of source code must retain the above copyright
     14   1.73        ad  *    notice, this list of conditions and the following disclaimer.
     15   1.73        ad  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.73        ad  *    notice, this list of conditions and the following disclaimer in the
     17   1.73        ad  *    documentation and/or other materials provided with the distribution.
     18   1.73        ad  *
     19   1.73        ad  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20   1.73        ad  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21   1.73        ad  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22   1.73        ad  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23   1.73        ad  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24   1.73        ad  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25   1.73        ad  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26   1.73        ad  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27   1.73        ad  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28   1.73        ad  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29   1.73        ad  * POSSIBILITY OF SUCH DAMAGE.
     30   1.73        ad  */
     31    1.6       cgd 
     32    1.1       cgd /*
     33    1.5   mycroft  * Copyright (c) 1989, 1993
     34    1.5   mycroft  *	The Regents of the University of California.  All rights reserved.
     35    1.1       cgd  *
     36    1.1       cgd  * Redistribution and use in source and binary forms, with or without
     37    1.1       cgd  * modification, are permitted provided that the following conditions
     38    1.1       cgd  * are met:
     39    1.1       cgd  * 1. Redistributions of source code must retain the above copyright
     40    1.1       cgd  *    notice, this list of conditions and the following disclaimer.
     41    1.1       cgd  * 2. Redistributions in binary form must reproduce the above copyright
     42    1.1       cgd  *    notice, this list of conditions and the following disclaimer in the
     43    1.1       cgd  *    documentation and/or other materials provided with the distribution.
     44   1.51       agc  * 3. Neither the name of the University nor the names of its contributors
     45    1.1       cgd  *    may be used to endorse or promote products derived from this software
     46    1.1       cgd  *    without specific prior written permission.
     47    1.1       cgd  *
     48    1.1       cgd  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49    1.1       cgd  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50    1.1       cgd  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51    1.1       cgd  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52    1.1       cgd  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53    1.1       cgd  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54    1.1       cgd  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55    1.1       cgd  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56    1.1       cgd  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57    1.1       cgd  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58    1.1       cgd  * SUCH DAMAGE.
     59    1.1       cgd  *
     60   1.10   mycroft  *	@(#)vfs_cache.c	8.3 (Berkeley) 8/22/94
     61    1.1       cgd  */
     62   1.32     lukem 
     63  1.128        ad /*
     64  1.128        ad  * Name caching:
     65  1.128        ad  *
     66  1.128        ad  *	Names found by directory scans are retained in a cache for future
     67  1.128        ad  *	reference.  It is managed LRU, so frequently used names will hang
     68  1.128        ad  *	around.  The cache is indexed by hash value obtained from the name.
     69  1.128        ad  *
     70  1.128        ad  *	The name cache is the brainchild of Robert Elz and was introduced in
     71  1.128        ad  *	4.3BSD.  See "Using gprof to Tune the 4.2BSD Kernel", Marshall Kirk
     72  1.128        ad  *	McKusick, May 21 1984.
     73  1.128        ad  *
     74  1.128        ad  * Data structures:
     75  1.128        ad  *
     76  1.128        ad  *	Most Unix namecaches very sensibly use a global hash table to index
     77  1.128        ad  *	names.  The global hash table works well, but can cause concurrency
     78  1.128        ad  *	headaches for the kernel hacker.  In the NetBSD 10.0 implementation
     79  1.128        ad  *	we are not sensible, and use a per-directory data structure to index
     80  1.128        ad  *	names, but the cache otherwise functions the same.
     81  1.128        ad  *
     82  1.155        ad  *	The index is a red-black tree.  It should not be difficult to
     83  1.155        ad  *	experiment with other types of index, however note that a tree
     84  1.155        ad  *	can trivially be made to support lockless lookup.
     85  1.128        ad  *
     86  1.128        ad  *	Each cached name is stored in a struct namecache, along with a
     87  1.128        ad  *	pointer to the associated vnode (nc_vp).  Names longer than a
     88  1.128        ad  *	maximum length of NCHNAMLEN are allocated with kmem_alloc(); they
     89  1.128        ad  *	occur infrequently, and names shorter than this are stored directly
     90  1.128        ad  *	in struct namecache.  If it is a "negative" entry, (i.e. for a name
     91  1.128        ad  *	that is known NOT to exist) the vnode pointer will be NULL.
     92  1.128        ad  *
     93  1.155        ad  *	In practice this implementation is not any slower than the hash
     94  1.155        ad  *	table that preceeded it and in some cases it significantly
     95  1.155        ad  *	outperforms the hash table.  Some reasons why this might be:
     96  1.155        ad  *
     97  1.155        ad  *	- natural partitioning provided by the file system structure, which
     98  1.155        ad  *	  the prior implementation discarded (global hash table).
     99  1.155        ad  *	- worst case tree traversal of O(log n), the hash table could have
    100  1.155        ad  *	  many collisions.
    101  1.155        ad  *	- minimized cache misses & total L2/L3 CPU cache footprint; struct
    102  1.155        ad  *	  namecache and vnode_impl_t are laid out to keep cache footprint
    103  1.155        ad  *	  minimal in the lookup path; no hash table buckets to cache.
    104  1.155        ad  *	- minimized number of conditionals & string comparisons.
    105  1.155        ad  *
    106  1.128        ad  *	For a directory with 3 cached names for 3 distinct vnodes, the
    107  1.128        ad  *	various vnodes and namecache structs would be connected like this
    108  1.128        ad  *	(the root is at the bottom of the diagram):
    109  1.128        ad  *
    110  1.128        ad  *          ...
    111  1.128        ad  *           ^
    112  1.128        ad  *           |- vi_nc_tree
    113  1.147  riastrad  *           |
    114  1.128        ad  *      +----o----+               +---------+               +---------+
    115  1.128        ad  *      |  VDIR   |               |  VCHR   |               |  VREG   |
    116  1.128        ad  *      |  vnode  o-----+         |  vnode  o-----+         |  vnode  o------+
    117  1.128        ad  *      +---------+     |         +---------+     |         +---------+      |
    118  1.128        ad  *           ^          |              ^          |              ^           |
    119  1.128        ad  *           |- nc_vp   |- vi_nc_list  |- nc_vp   |- vi_nc_list  |- nc_vp    |
    120  1.128        ad  *           |          |              |          |              |           |
    121  1.128        ad  *      +----o----+     |         +----o----+     |         +----o----+      |
    122  1.128        ad  *  +---onamecache|<----+     +---onamecache|<----+     +---onamecache|<-----+
    123  1.128        ad  *  |   +---------+           |   +---------+           |   +---------+
    124  1.128        ad  *  |        ^                |        ^                |        ^
    125  1.128        ad  *  |        |                |        |                |        |
    126  1.128        ad  *  |        |  +----------------------+                |        |
    127  1.128        ad  *  |-nc_dvp | +-------------------------------------------------+
    128  1.128        ad  *  |        |/- vi_nc_tree   |                         |
    129  1.128        ad  *  |        |                |- nc_dvp                 |- nc_dvp
    130  1.128        ad  *  |   +----o----+           |                         |
    131  1.128        ad  *  +-->|  VDIR   |<----------+                         |
    132  1.128        ad  *      |  vnode  |<------------------------------------+
    133  1.128        ad  *      +---------+
    134  1.128        ad  *
    135  1.128        ad  *      START HERE
    136  1.128        ad  *
    137  1.128        ad  * Replacement:
    138  1.128        ad  *
    139  1.128        ad  *	As the cache becomes full, old and unused entries are purged as new
    140  1.128        ad  *	entries are added.  The synchronization overhead in maintaining a
    141  1.128        ad  *	strict ordering would be prohibitive, so the VM system's "clock" or
    142  1.128        ad  *	"second chance" page replacement algorithm is aped here.  New
    143  1.128        ad  *	entries go to the tail of the active list.  After they age out and
    144  1.128        ad  *	reach the head of the list, they are moved to the tail of the
    145  1.128        ad  *	inactive list.  Any use of the deactivated cache entry reactivates
    146  1.128        ad  *	it, saving it from impending doom; if not reactivated, the entry
    147  1.128        ad  *	eventually reaches the head of the inactive list and is purged.
    148  1.128        ad  *
    149  1.128        ad  * Concurrency:
    150  1.128        ad  *
    151  1.128        ad  *	From a performance perspective, cache_lookup(nameiop == LOOKUP) is
    152  1.128        ad  *	what really matters; insertion of new entries with cache_enter() is
    153  1.128        ad  *	comparatively infrequent, and overshadowed by the cost of expensive
    154  1.128        ad  *	file system metadata operations (which may involve disk I/O).  We
    155  1.128        ad  *	therefore want to make everything simplest in the lookup path.
    156  1.128        ad  *
    157  1.128        ad  *	struct namecache is mostly stable except for list and tree related
    158  1.128        ad  *	entries, changes to which don't affect the cached name or vnode.
    159  1.128        ad  *	For changes to name+vnode, entries are purged in preference to
    160  1.128        ad  *	modifying them.
    161  1.128        ad  *
    162  1.128        ad  *	Read access to namecache entries is made via tree, list, or LRU
    163  1.128        ad  *	list.  A lock corresponding to the direction of access should be
    164  1.128        ad  *	held.  See definition of "struct namecache" in src/sys/namei.src,
    165  1.128        ad  *	and the definition of "struct vnode" for the particulars.
    166  1.128        ad  *
    167  1.128        ad  *	Per-CPU statistics, and LRU list totals are read unlocked, since
    168  1.128        ad  *	an approximate value is OK.  We maintain 32-bit sized per-CPU
    169  1.128        ad  *	counters and 64-bit global counters under the theory that 32-bit
    170  1.128        ad  *	sized counters are less likely to be hosed by nonatomic increment
    171  1.128        ad  *	(on 32-bit platforms).
    172  1.128        ad  *
    173  1.128        ad  *	The lock order is:
    174  1.128        ad  *
    175  1.128        ad  *	1) vi->vi_nc_lock	(tree or parent -> child direction,
    176  1.128        ad  *				 used during forward lookup)
    177  1.128        ad  *
    178  1.128        ad  *	2) vi->vi_nc_listlock	(list or child -> parent direction,
    179  1.128        ad  *				 used during reverse lookup)
    180  1.128        ad  *
    181  1.128        ad  *	3) cache_lru_lock	(LRU list direction, used during reclaim)
    182  1.128        ad  */
    183  1.128        ad 
    184   1.32     lukem #include <sys/cdefs.h>
    185  1.155        ad __KERNEL_RCSID(0, "$NetBSD: vfs_cache.c,v 1.155 2023/09/09 18:27:59 ad Exp $");
    186    1.1       cgd 
    187  1.121  christos #define __NAMECACHE_PRIVATE
    188  1.107     pooka #ifdef _KERNEL_OPT
    189   1.28       chs #include "opt_ddb.h"
    190  1.115  riastrad #include "opt_dtrace.h"
    191  1.107     pooka #endif
    192   1.28       chs 
    193  1.150     skrll #include <sys/param.h>
    194  1.128        ad #include <sys/types.h>
    195  1.115  riastrad #include <sys/atomic.h>
    196  1.128        ad #include <sys/callout.h>
    197  1.115  riastrad #include <sys/cpu.h>
    198  1.115  riastrad #include <sys/errno.h>
    199  1.115  riastrad #include <sys/evcnt.h>
    200  1.128        ad #include <sys/hash.h>
    201  1.115  riastrad #include <sys/kernel.h>
    202    1.4   mycroft #include <sys/mount.h>
    203  1.115  riastrad #include <sys/mutex.h>
    204    1.4   mycroft #include <sys/namei.h>
    205  1.128        ad #include <sys/param.h>
    206   1.18   thorpej #include <sys/pool.h>
    207  1.108  christos #include <sys/sdt.h>
    208  1.115  riastrad #include <sys/sysctl.h>
    209  1.115  riastrad #include <sys/systm.h>
    210  1.115  riastrad #include <sys/time.h>
    211  1.115  riastrad #include <sys/vnode_impl.h>
    212    1.1       cgd 
    213  1.128        ad #include <miscfs/genfs/genfs.h>
    214    1.1       cgd 
    215  1.155        ad /*
    216  1.155        ad  * Assert that data structure layout hasn't changed unintentionally.
    217  1.155        ad  */
    218  1.155        ad #ifdef _LP64
    219  1.155        ad CTASSERT(sizeof(struct namecache) == 128);
    220  1.155        ad #else
    221  1.155        ad CTASSERT(sizeof(struct namecache) == 64);
    222  1.155        ad #endif
    223  1.155        ad CTASSERT(NC_NLEN_MASK >= MAXPATHLEN);
    224  1.155        ad 
    225  1.128        ad static void	cache_activate(struct namecache *);
    226  1.128        ad static void	cache_update_stats(void *);
    227  1.128        ad static int	cache_compare_nodes(void *, const void *, const void *);
    228  1.128        ad static void	cache_deactivate(void);
    229  1.128        ad static void	cache_reclaim(void);
    230  1.128        ad static int	cache_stat_sysctl(SYSCTLFN_ARGS);
    231  1.128        ad 
    232  1.131        ad /*
    233  1.131        ad  * Global pool cache.
    234  1.131        ad  */
    235  1.128        ad static pool_cache_t cache_pool __read_mostly;
    236  1.128        ad 
    237  1.131        ad /*
    238  1.131        ad  * LRU replacement.
    239  1.131        ad  */
    240  1.128        ad enum cache_lru_id {
    241  1.128        ad 	LRU_ACTIVE,
    242  1.128        ad 	LRU_INACTIVE,
    243  1.128        ad 	LRU_COUNT
    244  1.128        ad };
    245  1.120  riastrad 
    246  1.128        ad static struct {
    247  1.128        ad 	TAILQ_HEAD(, namecache)	list[LRU_COUNT];
    248  1.128        ad 	u_int			count[LRU_COUNT];
    249  1.128        ad } cache_lru __cacheline_aligned;
    250  1.117  riastrad 
    251  1.128        ad static kmutex_t cache_lru_lock __cacheline_aligned;
    252  1.117  riastrad 
    253  1.131        ad /*
    254  1.131        ad  * Cache effectiveness statistics.  nchstats holds system-wide total.
    255  1.131        ad  */
    256  1.128        ad struct nchstats	nchstats;
    257  1.103    dennis struct nchstats_percpu _NAMEI_CACHE_STATS(uint32_t);
    258   1.77        ad struct nchcpu {
    259  1.128        ad 	struct nchstats_percpu cur;
    260  1.128        ad 	struct nchstats_percpu last;
    261   1.77        ad };
    262  1.128        ad static callout_t cache_stat_callout;
    263  1.128        ad static kmutex_t cache_stat_lock __cacheline_aligned;
    264   1.77        ad 
    265  1.138        ad #define	COUNT(f) do { \
    266  1.128        ad 	lwp_t *l = curlwp; \
    267  1.128        ad 	KPREEMPT_DISABLE(l); \
    268  1.149  christos 	struct nchcpu *nchcpu = curcpu()->ci_data.cpu_nch; \
    269  1.149  christos 	nchcpu->cur.f++; \
    270  1.128        ad 	KPREEMPT_ENABLE(l); \
    271  1.128        ad } while (/* CONSTCOND */ 0);
    272  1.128        ad 
    273  1.128        ad #define	UPDATE(nchcpu, f) do { \
    274  1.128        ad 	uint32_t cur = atomic_load_relaxed(&nchcpu->cur.f); \
    275  1.135        ad 	nchstats.f += (uint32_t)(cur - nchcpu->last.f); \
    276  1.128        ad 	nchcpu->last.f = cur; \
    277  1.128        ad } while (/* CONSTCOND */ 0)
    278   1.90  dholland 
    279   1.90  dholland /*
    280  1.128        ad  * Tunables.  cache_maxlen replaces the historical doingcache:
    281  1.128        ad  * set it zero to disable caching for debugging purposes.
    282    1.1       cgd  */
    283  1.128        ad int cache_lru_maxdeact __read_mostly = 2;	/* max # to deactivate */
    284  1.128        ad int cache_lru_maxscan __read_mostly = 64;	/* max # to scan/reclaim */
    285  1.155        ad int cache_maxlen __read_mostly = NC_NLEN_MASK;	/* max name length to cache */
    286  1.128        ad int cache_stat_interval __read_mostly = 300;	/* in seconds */
    287  1.128        ad 
    288  1.131        ad /*
    289  1.131        ad  * sysctl stuff.
    290  1.131        ad  */
    291  1.128        ad static struct	sysctllog *cache_sysctllog;
    292  1.128        ad 
    293  1.131        ad /*
    294  1.146        ad  * This is a dummy name that cannot usually occur anywhere in the cache nor
    295  1.146        ad  * file system.  It's used when caching the root vnode of mounted file
    296  1.146        ad  * systems.  The name is attached to the directory that the file system is
    297  1.146        ad  * mounted on.
    298  1.146        ad  */
    299  1.146        ad static const char cache_mp_name[] = "";
    300  1.146        ad static const int cache_mp_nlen = sizeof(cache_mp_name) - 1;
    301  1.146        ad 
    302  1.146        ad /*
    303  1.131        ad  * Red-black tree stuff.
    304  1.131        ad  */
    305  1.128        ad static const rb_tree_ops_t cache_rbtree_ops = {
    306  1.128        ad 	.rbto_compare_nodes = cache_compare_nodes,
    307  1.131        ad 	.rbto_compare_key = cache_compare_nodes,
    308  1.128        ad 	.rbto_node_offset = offsetof(struct namecache, nc_tree),
    309  1.128        ad 	.rbto_context = NULL
    310  1.128        ad };
    311   1.89     rmind 
    312  1.131        ad /*
    313  1.131        ad  * dtrace probes.
    314  1.131        ad  */
    315  1.108  christos SDT_PROBE_DEFINE1(vfs, namecache, invalidate, done, "struct vnode *");
    316  1.108  christos SDT_PROBE_DEFINE1(vfs, namecache, purge, parents, "struct vnode *");
    317  1.108  christos SDT_PROBE_DEFINE1(vfs, namecache, purge, children, "struct vnode *");
    318  1.108  christos SDT_PROBE_DEFINE2(vfs, namecache, purge, name, "char *", "size_t");
    319  1.108  christos SDT_PROBE_DEFINE1(vfs, namecache, purge, vfs, "struct mount *");
    320  1.108  christos SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *",
    321  1.108  christos     "char *", "size_t");
    322  1.108  christos SDT_PROBE_DEFINE3(vfs, namecache, lookup, miss, "struct vnode *",
    323  1.108  christos     "char *", "size_t");
    324  1.108  christos SDT_PROBE_DEFINE3(vfs, namecache, lookup, toolong, "struct vnode *",
    325  1.108  christos     "char *", "size_t");
    326  1.108  christos SDT_PROBE_DEFINE2(vfs, namecache, revlookup, success, "struct vnode *",
    327  1.108  christos      "struct vnode *");
    328  1.108  christos SDT_PROBE_DEFINE2(vfs, namecache, revlookup, fail, "struct vnode *",
    329  1.108  christos      "int");
    330  1.108  christos SDT_PROBE_DEFINE2(vfs, namecache, prune, done, "int", "int");
    331  1.108  christos SDT_PROBE_DEFINE3(vfs, namecache, enter, toolong, "struct vnode *",
    332  1.108  christos     "char *", "size_t");
    333  1.108  christos SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *",
    334  1.108  christos     "char *", "size_t");
    335  1.108  christos 
    336   1.73        ad /*
    337  1.128        ad  * rbtree: compare two nodes.
    338   1.90  dholland  */
    339  1.128        ad static int
    340  1.128        ad cache_compare_nodes(void *context, const void *n1, const void *n2)
    341   1.90  dholland {
    342  1.128        ad 	const struct namecache *nc1 = n1;
    343  1.128        ad 	const struct namecache *nc2 = n2;
    344   1.90  dholland 
    345  1.128        ad 	if (nc1->nc_key < nc2->nc_key) {
    346  1.128        ad 		return -1;
    347  1.128        ad 	}
    348  1.128        ad 	if (nc1->nc_key > nc2->nc_key) {
    349  1.128        ad 		return 1;
    350  1.128        ad 	}
    351  1.155        ad 	KASSERT(NC_NLEN(nc1) == NC_NLEN(nc2));
    352  1.155        ad 	return memcmp(nc1->nc_name, nc2->nc_name, NC_NLEN(nc1));
    353   1.73        ad }
    354   1.46      yamt 
    355   1.73        ad /*
    356  1.128        ad  * Compute a key value for the given name.  The name length is encoded in
    357  1.128        ad  * the key value to try and improve uniqueness, and so that length doesn't
    358  1.128        ad  * need to be compared separately for string comparisons.
    359   1.73        ad  */
    360  1.155        ad static uintptr_t
    361  1.128        ad cache_key(const char *name, size_t nlen)
    362   1.73        ad {
    363  1.155        ad 	uintptr_t key;
    364   1.73        ad 
    365  1.155        ad 	KASSERT((nlen & ~NC_NLEN_MASK) == 0);
    366   1.73        ad 
    367  1.128        ad 	key = hash32_buf(name, nlen, HASH32_STR_INIT);
    368  1.155        ad 	return (key << NC_NLEN_BITS) | (uintptr_t)nlen;
    369   1.46      yamt }
    370   1.46      yamt 
    371   1.73        ad /*
    372  1.128        ad  * Remove an entry from the cache.  vi_nc_lock must be held, and if dir2node
    373  1.128        ad  * is true, then we're locking in the conventional direction and the list
    374  1.128        ad  * lock will be acquired when removing the entry from the vnode list.
    375   1.73        ad  */
    376   1.73        ad static void
    377  1.128        ad cache_remove(struct namecache *ncp, const bool dir2node)
    378   1.73        ad {
    379  1.128        ad 	struct vnode *vp, *dvp = ncp->nc_dvp;
    380  1.128        ad 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
    381  1.155        ad 	size_t namelen = NC_NLEN(ncp);
    382  1.128        ad 
    383  1.128        ad 	KASSERT(rw_write_held(&dvi->vi_nc_lock));
    384  1.155        ad 	KASSERT(cache_key(ncp->nc_name, namelen) == ncp->nc_key);
    385  1.132        ad 	KASSERT(rb_tree_find_node(&dvi->vi_nc_tree, ncp) == ncp);
    386  1.128        ad 
    387  1.155        ad 	SDT_PROBE(vfs, namecache, invalidate, done, ncp, 0, 0, 0, 0);
    388  1.128        ad 
    389  1.134        ad 	/*
    390  1.134        ad 	 * Remove from the vnode's list.  This excludes cache_revlookup(),
    391  1.134        ad 	 * and then it's safe to remove from the LRU lists.
    392  1.134        ad 	 */
    393  1.128        ad 	if ((vp = ncp->nc_vp) != NULL) {
    394  1.128        ad 		vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
    395  1.128        ad 		if (__predict_true(dir2node)) {
    396  1.128        ad 			rw_enter(&vi->vi_nc_listlock, RW_WRITER);
    397  1.128        ad 			TAILQ_REMOVE(&vi->vi_nc_list, ncp, nc_list);
    398  1.128        ad 			rw_exit(&vi->vi_nc_listlock);
    399  1.128        ad 		} else {
    400  1.128        ad 			TAILQ_REMOVE(&vi->vi_nc_list, ncp, nc_list);
    401  1.128        ad 		}
    402  1.128        ad 	}
    403   1.73        ad 
    404  1.134        ad 	/* Remove from the directory's rbtree. */
    405  1.134        ad 	rb_tree_remove_node(&dvi->vi_nc_tree, ncp);
    406  1.134        ad 
    407  1.134        ad 	/* Remove from the LRU lists. */
    408  1.134        ad 	mutex_enter(&cache_lru_lock);
    409  1.134        ad 	TAILQ_REMOVE(&cache_lru.list[ncp->nc_lrulist], ncp, nc_lru);
    410  1.134        ad 	cache_lru.count[ncp->nc_lrulist]--;
    411  1.134        ad 	mutex_exit(&cache_lru_lock);
    412  1.134        ad 
    413  1.128        ad 	/* Finally, free it. */
    414  1.155        ad 	if (namelen > NCHNAMLEN) {
    415  1.155        ad 		size_t sz = offsetof(struct namecache, nc_name[namelen]);
    416  1.128        ad 		kmem_free(ncp, sz);
    417  1.128        ad 	} else {
    418  1.128        ad 		pool_cache_put(cache_pool, ncp);
    419   1.73        ad 	}
    420   1.73        ad }
    421   1.73        ad 
    422   1.73        ad /*
    423  1.128        ad  * Find a single cache entry and return it.  vi_nc_lock must be held.
    424   1.73        ad  */
    425  1.128        ad static struct namecache * __noinline
    426  1.128        ad cache_lookup_entry(struct vnode *dvp, const char *name, size_t namelen,
    427  1.155        ad     uintptr_t key)
    428   1.55      yamt {
    429  1.128        ad 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
    430  1.128        ad 	struct rb_node *node = dvi->vi_nc_tree.rbt_root;
    431   1.55      yamt 	struct namecache *ncp;
    432  1.155        ad 	enum cache_lru_id lrulist;
    433  1.155        ad 	int diff;
    434  1.128        ad 
    435  1.155        ad 	KASSERT(namelen <= MAXPATHLEN);
    436  1.128        ad 	KASSERT(rw_lock_held(&dvi->vi_nc_lock));
    437  1.128        ad 
    438  1.128        ad 	/*
    439  1.128        ad 	 * Search the RB tree for the key.  This is an inlined lookup
    440  1.128        ad 	 * tailored for exactly what's needed here (64-bit key and so on)
    441  1.147  riastrad 	 * that is quite a bit faster than using rb_tree_find_node().
    442  1.131        ad 	 *
    443  1.135        ad 	 * For a matching key memcmp() needs to be called once to confirm
    444  1.135        ad 	 * that the correct name has been found.  Very rarely there will be
    445  1.135        ad 	 * a key value collision and the search will continue.
    446  1.128        ad 	 */
    447  1.128        ad 	for (;;) {
    448  1.128        ad 		if (__predict_false(RB_SENTINEL_P(node))) {
    449  1.128        ad 			return NULL;
    450  1.128        ad 		}
    451  1.138        ad 		ncp = (struct namecache *)node;
    452  1.128        ad 		KASSERT((void *)&ncp->nc_tree == (void *)ncp);
    453  1.128        ad 		KASSERT(ncp->nc_dvp == dvp);
    454  1.138        ad 		if (ncp->nc_key == key) {
    455  1.155        ad 			KASSERT(NC_NLEN(ncp) == namelen);
    456  1.131        ad 			diff = memcmp(ncp->nc_name, name, namelen);
    457  1.131        ad 			if (__predict_true(diff == 0)) {
    458  1.131        ad 				break;
    459  1.131        ad 			}
    460  1.147  riastrad 			node = node->rb_nodes[diff < 0];
    461  1.131        ad 		} else {
    462  1.131        ad 			node = node->rb_nodes[ncp->nc_key < key];
    463  1.128        ad 		}
    464  1.128        ad 	}
    465   1.55      yamt 
    466  1.128        ad 	/*
    467  1.128        ad 	 * If the entry is on the wrong LRU list, requeue it.  This is an
    468  1.128        ad 	 * unlocked check, but it will rarely be wrong and even then there
    469  1.128        ad 	 * will be no harm caused.
    470  1.128        ad 	 */
    471  1.128        ad 	lrulist = atomic_load_relaxed(&ncp->nc_lrulist);
    472  1.128        ad 	if (__predict_false(lrulist != LRU_ACTIVE)) {
    473  1.128        ad 		cache_activate(ncp);
    474  1.128        ad 	}
    475  1.128        ad 	return ncp;
    476   1.55      yamt }
    477   1.55      yamt 
    478    1.1       cgd /*
    479    1.1       cgd  * Look for a the name in the cache. We don't do this
    480    1.1       cgd  * if the segment name is long, simply so the cache can avoid
    481    1.1       cgd  * holding long names (which would either waste space, or
    482    1.1       cgd  * add greatly to the complexity).
    483    1.1       cgd  *
    484   1.90  dholland  * Lookup is called with DVP pointing to the directory to search,
    485   1.90  dholland  * and CNP providing the name of the entry being sought: cn_nameptr
    486   1.90  dholland  * is the name, cn_namelen is its length, and cn_flags is the flags
    487   1.90  dholland  * word from the namei operation.
    488   1.90  dholland  *
    489   1.90  dholland  * DVP must be locked.
    490   1.90  dholland  *
    491   1.90  dholland  * There are three possible non-error return states:
    492   1.90  dholland  *    1. Nothing was found in the cache. Nothing is known about
    493   1.90  dholland  *       the requested name.
    494   1.90  dholland  *    2. A negative entry was found in the cache, meaning that the
    495   1.90  dholland  *       requested name definitely does not exist.
    496   1.90  dholland  *    3. A positive entry was found in the cache, meaning that the
    497   1.90  dholland  *       requested name does exist and that we are providing the
    498   1.90  dholland  *       vnode.
    499   1.90  dholland  * In these cases the results are:
    500   1.90  dholland  *    1. 0 returned; VN is set to NULL.
    501   1.90  dholland  *    2. 1 returned; VN is set to NULL.
    502   1.90  dholland  *    3. 1 returned; VN is set to the vnode found.
    503   1.90  dholland  *
    504   1.90  dholland  * The additional result argument ISWHT is set to zero, unless a
    505   1.90  dholland  * negative entry is found that was entered as a whiteout, in which
    506   1.90  dholland  * case ISWHT is set to one.
    507   1.90  dholland  *
    508   1.90  dholland  * The ISWHT_RET argument pointer may be null. In this case an
    509   1.90  dholland  * assertion is made that the whiteout flag is not set. File systems
    510   1.90  dholland  * that do not support whiteouts can/should do this.
    511   1.90  dholland  *
    512   1.90  dholland  * Filesystems that do support whiteouts should add ISWHITEOUT to
    513   1.90  dholland  * cnp->cn_flags if ISWHT comes back nonzero.
    514   1.90  dholland  *
    515   1.90  dholland  * When a vnode is returned, it is locked, as per the vnode lookup
    516   1.90  dholland  * locking protocol.
    517   1.90  dholland  *
    518   1.90  dholland  * There is no way for this function to fail, in the sense of
    519   1.90  dholland  * generating an error that requires aborting the namei operation.
    520   1.90  dholland  *
    521   1.90  dholland  * (Prior to October 2012, this function returned an integer status,
    522   1.90  dholland  * and a vnode, and mucked with the flags word in CNP for whiteouts.
    523   1.90  dholland  * The integer status was -1 for "nothing found", ENOENT for "a
    524   1.90  dholland  * negative entry found", 0 for "a positive entry found", and possibly
    525   1.90  dholland  * other errors, and the value of VN might or might not have been set
    526   1.90  dholland  * depending on what error occurred.)
    527    1.1       cgd  */
    528  1.113  riastrad bool
    529   1.91  dholland cache_lookup(struct vnode *dvp, const char *name, size_t namelen,
    530   1.91  dholland 	     uint32_t nameiop, uint32_t cnflags,
    531   1.90  dholland 	     int *iswht_ret, struct vnode **vn_ret)
    532    1.1       cgd {
    533  1.128        ad 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
    534   1.23  augustss 	struct namecache *ncp;
    535   1.20  jdolecek 	struct vnode *vp;
    536  1.155        ad 	uintptr_t key;
    537  1.113  riastrad 	int error;
    538  1.113  riastrad 	bool hit;
    539  1.128        ad 	krw_t op;
    540  1.125        ad 
    541  1.146        ad 	KASSERT(namelen != cache_mp_nlen || name == cache_mp_name);
    542  1.146        ad 
    543   1.90  dholland 	/* Establish default result values */
    544   1.90  dholland 	if (iswht_ret != NULL) {
    545   1.90  dholland 		*iswht_ret = 0;
    546   1.90  dholland 	}
    547   1.90  dholland 	*vn_ret = NULL;
    548   1.90  dholland 
    549  1.128        ad 	if (__predict_false(namelen > cache_maxlen)) {
    550  1.128        ad 		SDT_PROBE(vfs, namecache, lookup, toolong, dvp,
    551  1.128        ad 		    name, namelen, 0, 0);
    552  1.128        ad 		COUNT(ncs_long);
    553  1.113  riastrad 		return false;
    554    1.8       cgd 	}
    555   1.39        pk 
    556  1.128        ad 	/* Compute the key up front - don't need the lock. */
    557  1.128        ad 	key = cache_key(name, namelen);
    558  1.128        ad 
    559  1.128        ad 	/* Could the entry be purged below? */
    560  1.128        ad 	if ((cnflags & ISLASTCN) != 0 &&
    561  1.128        ad 	    ((cnflags & MAKEENTRY) == 0 || nameiop == CREATE)) {
    562  1.128        ad 	    	op = RW_WRITER;
    563  1.128        ad 	} else {
    564  1.128        ad 		op = RW_READER;
    565    1.1       cgd 	}
    566  1.103    dennis 
    567  1.128        ad 	/* Now look for the name. */
    568  1.128        ad 	rw_enter(&dvi->vi_nc_lock, op);
    569  1.128        ad 	ncp = cache_lookup_entry(dvp, name, namelen, key);
    570   1.77        ad 	if (__predict_false(ncp == NULL)) {
    571  1.128        ad 		rw_exit(&dvi->vi_nc_lock);
    572  1.128        ad 		COUNT(ncs_miss);
    573  1.128        ad 		SDT_PROBE(vfs, namecache, lookup, miss, dvp,
    574  1.128        ad 		    name, namelen, 0, 0);
    575  1.113  riastrad 		return false;
    576    1.1       cgd 	}
    577  1.128        ad 	if (__predict_false((cnflags & MAKEENTRY) == 0)) {
    578   1.77        ad 		/*
    579   1.77        ad 		 * Last component and we are renaming or deleting,
    580   1.77        ad 		 * the cache entry is invalid, or otherwise don't
    581   1.77        ad 		 * want cache entry to exist.
    582   1.77        ad 		 */
    583  1.128        ad 		KASSERT((cnflags & ISLASTCN) != 0);
    584  1.128        ad 		cache_remove(ncp, true);
    585  1.128        ad 		rw_exit(&dvi->vi_nc_lock);
    586  1.128        ad 		COUNT(ncs_badhits);
    587  1.113  riastrad 		return false;
    588   1.90  dholland 	}
    589  1.155        ad 	if ((vp = ncp->nc_vp) == NULL) {
    590  1.136        ad 		if (iswht_ret != NULL) {
    591  1.136        ad 			/*
    592  1.136        ad 			 * Restore the ISWHITEOUT flag saved earlier.
    593  1.136        ad 			 */
    594  1.136        ad 			*iswht_ret = ncp->nc_whiteout;
    595  1.136        ad 		} else {
    596  1.136        ad 			KASSERT(!ncp->nc_whiteout);
    597  1.136        ad 		}
    598  1.128        ad 		if (nameiop == CREATE && (cnflags & ISLASTCN) != 0) {
    599   1.90  dholland 			/*
    600  1.128        ad 			 * Last component and we are preparing to create
    601  1.128        ad 			 * the named object, so flush the negative cache
    602  1.128        ad 			 * entry.
    603   1.90  dholland 			 */
    604  1.128        ad 			COUNT(ncs_badhits);
    605  1.128        ad 			cache_remove(ncp, true);
    606  1.128        ad 			hit = false;
    607   1.90  dholland 		} else {
    608  1.128        ad 			COUNT(ncs_neghits);
    609  1.128        ad 			SDT_PROBE(vfs, namecache, lookup, hit, dvp, name,
    610  1.128        ad 			    namelen, 0, 0);
    611   1.90  dholland 			/* found neg entry; vn is already null from above */
    612  1.113  riastrad 			hit = true;
    613  1.128        ad 		}
    614  1.128        ad 		rw_exit(&dvi->vi_nc_lock);
    615  1.113  riastrad 		return hit;
    616   1.20  jdolecek 	}
    617  1.144        ad 	error = vcache_tryvget(vp);
    618  1.128        ad 	rw_exit(&dvi->vi_nc_lock);
    619   1.92   hannken 	if (error) {
    620   1.92   hannken 		KASSERT(error == EBUSY);
    621   1.92   hannken 		/*
    622   1.92   hannken 		 * This vnode is being cleaned out.
    623   1.92   hannken 		 * XXX badhits?
    624   1.92   hannken 		 */
    625  1.128        ad 		COUNT(ncs_falsehits);
    626  1.113  riastrad 		return false;
    627   1.77        ad 	}
    628  1.101  christos 
    629  1.128        ad 	COUNT(ncs_goodhits);
    630  1.128        ad 	SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0);
    631  1.101  christos 	/* found it */
    632  1.101  christos 	*vn_ret = vp;
    633  1.113  riastrad 	return true;
    634    1.1       cgd }
    635    1.1       cgd 
    636  1.103    dennis /*
    637  1.128        ad  * Version of the above without the nameiop argument, for NFS.
    638  1.103    dennis  */
    639  1.113  riastrad bool
    640   1.91  dholland cache_lookup_raw(struct vnode *dvp, const char *name, size_t namelen,
    641   1.91  dholland 		 uint32_t cnflags,
    642   1.90  dholland 		 int *iswht_ret, struct vnode **vn_ret)
    643   1.61      yamt {
    644  1.128        ad 
    645  1.128        ad 	return cache_lookup(dvp, name, namelen, LOOKUP, cnflags | MAKEENTRY,
    646  1.128        ad 	    iswht_ret, vn_ret);
    647  1.128        ad }
    648  1.128        ad 
    649  1.128        ad /*
    650  1.128        ad  * Used by namei() to walk down a path, component by component by looking up
    651  1.128        ad  * names in the cache.  The node locks are chained along the way: a parent's
    652  1.128        ad  * lock is not dropped until the child's is acquired.
    653  1.128        ad  */
    654  1.128        ad bool
    655  1.128        ad cache_lookup_linked(struct vnode *dvp, const char *name, size_t namelen,
    656  1.128        ad 		    struct vnode **vn_ret, krwlock_t **plock,
    657  1.128        ad 		    kauth_cred_t cred)
    658  1.128        ad {
    659  1.128        ad 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
    660   1.61      yamt 	struct namecache *ncp;
    661  1.145        ad 	krwlock_t *oldlock, *newlock;
    662  1.155        ad 	struct vnode *vp;
    663  1.155        ad 	uintptr_t key;
    664  1.101  christos 	int error;
    665   1.61      yamt 
    666  1.146        ad 	KASSERT(namelen != cache_mp_nlen || name == cache_mp_name);
    667  1.146        ad 
    668  1.128        ad 	/* If disabled, or file system doesn't support this, bail out. */
    669  1.131        ad 	if (__predict_false((dvp->v_mount->mnt_iflag & IMNT_NCLOOKUP) == 0)) {
    670  1.113  riastrad 		return false;
    671   1.61      yamt 	}
    672   1.61      yamt 
    673  1.131        ad 	if (__predict_false(namelen > cache_maxlen)) {
    674  1.128        ad 		COUNT(ncs_long);
    675  1.128        ad 		return false;
    676  1.128        ad 	}
    677  1.128        ad 
    678  1.128        ad 	/* Compute the key up front - don't need the lock. */
    679  1.128        ad 	key = cache_key(name, namelen);
    680  1.128        ad 
    681  1.128        ad 	/*
    682  1.128        ad 	 * Acquire the directory lock.  Once we have that, we can drop the
    683  1.128        ad 	 * previous one (if any).
    684  1.128        ad 	 *
    685  1.128        ad 	 * The two lock holds mean that the directory can't go away while
    686  1.128        ad 	 * here: the directory must be purged with cache_purge() before
    687  1.128        ad 	 * being freed, and both parent & child's vi_nc_lock must be taken
    688  1.128        ad 	 * before that point is passed.
    689  1.128        ad 	 *
    690  1.128        ad 	 * However if there's no previous lock, like at the root of the
    691  1.128        ad 	 * chain, then "dvp" must be referenced to prevent dvp going away
    692  1.128        ad 	 * before we get its lock.
    693  1.128        ad 	 *
    694  1.128        ad 	 * Note that the two locks can be the same if looking up a dot, for
    695  1.140        ad 	 * example: /usr/bin/.  If looking up the parent (..) we can't wait
    696  1.140        ad 	 * on the lock as child -> parent is the wrong direction.
    697  1.128        ad 	 */
    698  1.128        ad 	if (*plock != &dvi->vi_nc_lock) {
    699  1.145        ad 		oldlock = *plock;
    700  1.145        ad 		newlock = &dvi->vi_nc_lock;
    701  1.141        ad 		if (!rw_tryenter(&dvi->vi_nc_lock, RW_READER)) {
    702  1.141        ad 			return false;
    703  1.140        ad 		}
    704  1.145        ad 	} else {
    705  1.145        ad 		oldlock = NULL;
    706  1.145        ad 		newlock = NULL;
    707  1.145        ad 		if (*plock == NULL) {
    708  1.145        ad 			KASSERT(vrefcnt(dvp) > 0);
    709  1.128        ad 		}
    710  1.128        ad 	}
    711  1.128        ad 
    712  1.128        ad 	/*
    713  1.128        ad 	 * First up check if the user is allowed to look up files in this
    714  1.128        ad 	 * directory.
    715  1.128        ad 	 */
    716  1.145        ad 	if (cred != FSCRED) {
    717  1.145        ad 		if (dvi->vi_nc_mode == VNOVAL) {
    718  1.145        ad 			if (newlock != NULL) {
    719  1.145        ad 				rw_exit(newlock);
    720  1.145        ad 			}
    721  1.145        ad 			return false;
    722  1.145        ad 		}
    723  1.153  riastrad 		KASSERT(dvi->vi_nc_uid != VNOVAL);
    724  1.153  riastrad 		KASSERT(dvi->vi_nc_gid != VNOVAL);
    725  1.151  christos 		error = kauth_authorize_vnode(cred,
    726  1.151  christos 		    KAUTH_ACCESS_ACTION(VEXEC,
    727  1.145        ad 		    dvp->v_type, dvi->vi_nc_mode & ALLPERMS), dvp, NULL,
    728  1.145        ad 		    genfs_can_access(dvp, cred, dvi->vi_nc_uid, dvi->vi_nc_gid,
    729  1.145        ad 		    dvi->vi_nc_mode & ALLPERMS, NULL, VEXEC));
    730  1.145        ad 		if (error != 0) {
    731  1.145        ad 			if (newlock != NULL) {
    732  1.145        ad 				rw_exit(newlock);
    733  1.145        ad 			}
    734  1.145        ad 			COUNT(ncs_denied);
    735  1.145        ad 			return false;
    736  1.145        ad 		}
    737   1.61      yamt 	}
    738  1.128        ad 
    739  1.128        ad 	/*
    740  1.128        ad 	 * Now look for a matching cache entry.
    741  1.128        ad 	 */
    742  1.128        ad 	ncp = cache_lookup_entry(dvp, name, namelen, key);
    743   1.77        ad 	if (__predict_false(ncp == NULL)) {
    744  1.145        ad 		if (newlock != NULL) {
    745  1.145        ad 			rw_exit(newlock);
    746  1.145        ad 		}
    747  1.128        ad 		COUNT(ncs_miss);
    748  1.128        ad 		SDT_PROBE(vfs, namecache, lookup, miss, dvp,
    749  1.128        ad 		    name, namelen, 0, 0);
    750  1.113  riastrad 		return false;
    751   1.61      yamt 	}
    752  1.155        ad 	if ((vp = ncp->nc_vp) == NULL) {
    753   1.90  dholland 		/* found negative entry; vn is already null from above */
    754  1.153  riastrad 		KASSERT(namelen != cache_mp_nlen);
    755  1.153  riastrad 		KASSERT(name != cache_mp_name);
    756  1.128        ad 		COUNT(ncs_neghits);
    757  1.145        ad 	} else {
    758  1.145        ad 		COUNT(ncs_goodhits); /* XXX can be "badhits" */
    759   1.61      yamt 	}
    760  1.128        ad 	SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0);
    761  1.103    dennis 
    762  1.103    dennis 	/*
    763  1.128        ad 	 * Return with the directory lock still held.  It will either be
    764  1.128        ad 	 * returned to us with another call to cache_lookup_linked() when
    765  1.128        ad 	 * looking up the next component, or the caller will release it
    766  1.128        ad 	 * manually when finished.
    767  1.103    dennis 	 */
    768  1.145        ad 	if (oldlock) {
    769  1.145        ad 		rw_exit(oldlock);
    770  1.145        ad 	}
    771  1.145        ad 	if (newlock) {
    772  1.145        ad 		*plock = newlock;
    773  1.147  riastrad 	}
    774  1.155        ad 	*vn_ret = vp;
    775  1.113  riastrad 	return true;
    776   1.61      yamt }
    777   1.61      yamt 
    778    1.1       cgd /*
    779   1.19  sommerfe  * Scan cache looking for name of directory entry pointing at vp.
    780  1.128        ad  * Will not search for "." or "..".
    781   1.19  sommerfe  *
    782   1.86   hannken  * If the lookup succeeds the vnode is referenced and stored in dvpp.
    783   1.19  sommerfe  *
    784   1.19  sommerfe  * If bufp is non-NULL, also place the name in the buffer which starts
    785   1.19  sommerfe  * at bufp, immediately before *bpp, and move bpp backwards to point
    786   1.19  sommerfe  * at the start of it.  (Yes, this is a little baroque, but it's done
    787   1.19  sommerfe  * this way to cater to the whims of getcwd).
    788   1.19  sommerfe  *
    789   1.19  sommerfe  * Returns 0 on success, -1 on cache miss, positive errno on failure.
    790   1.19  sommerfe  */
    791   1.19  sommerfe int
    792  1.128        ad cache_revlookup(struct vnode *vp, struct vnode **dvpp, char **bpp, char *bufp,
    793  1.143  christos     bool checkaccess, accmode_t accmode)
    794   1.19  sommerfe {
    795  1.128        ad 	vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
    796   1.19  sommerfe 	struct namecache *ncp;
    797  1.155        ad 	enum cache_lru_id lrulist;
    798   1.19  sommerfe 	struct vnode *dvp;
    799  1.155        ad 	int error, nlen;
    800   1.34     enami 	char *bp;
    801   1.34     enami 
    802  1.126        ad 	KASSERT(vp != NULL);
    803  1.126        ad 
    804  1.128        ad 	if (cache_maxlen == 0)
    805   1.19  sommerfe 		goto out;
    806   1.19  sommerfe 
    807  1.128        ad 	rw_enter(&vi->vi_nc_listlock, RW_READER);
    808  1.128        ad 	if (checkaccess) {
    809  1.128        ad 		/*
    810  1.128        ad 		 * Check if the user is allowed to see.  NOTE: this is
    811  1.128        ad 		 * checking for access on the "wrong" directory.  getcwd()
    812  1.128        ad 		 * wants to see that there is access on every component
    813  1.128        ad 		 * along the way, not that there is access to any individual
    814  1.128        ad 		 * component.  Don't use this to check you can look in vp.
    815  1.128        ad 		 *
    816  1.128        ad 		 * I don't like it, I didn't come up with it, don't blame me!
    817  1.128        ad 		 */
    818  1.142        ad 		if (vi->vi_nc_mode == VNOVAL) {
    819  1.142        ad 			rw_exit(&vi->vi_nc_listlock);
    820  1.142        ad 			return -1;
    821  1.142        ad 		}
    822  1.153  riastrad 		KASSERT(vi->vi_nc_uid != VNOVAL);
    823  1.153  riastrad 		KASSERT(vi->vi_nc_gid != VNOVAL);
    824  1.151  christos 		error = kauth_authorize_vnode(kauth_cred_get(),
    825  1.128        ad 		    KAUTH_ACCESS_ACTION(VEXEC, vp->v_type, vi->vi_nc_mode &
    826  1.143  christos 		    ALLPERMS), vp, NULL, genfs_can_access(vp, curlwp->l_cred,
    827  1.143  christos 		    vi->vi_nc_uid, vi->vi_nc_gid, vi->vi_nc_mode & ALLPERMS,
    828  1.143  christos 		    NULL, accmode));
    829  1.128        ad 		    if (error != 0) {
    830  1.128        ad 		    	rw_exit(&vi->vi_nc_listlock);
    831  1.128        ad 			COUNT(ncs_denied);
    832  1.128        ad 			return EACCES;
    833  1.127        ad 		}
    834  1.128        ad 	}
    835  1.128        ad 	TAILQ_FOREACH(ncp, &vi->vi_nc_list, nc_list) {
    836  1.128        ad 		KASSERT(ncp->nc_vp == vp);
    837  1.128        ad 		KASSERT(ncp->nc_dvp != NULL);
    838  1.155        ad 		nlen = NC_NLEN(ncp);
    839  1.128        ad 
    840  1.127        ad 		/*
    841  1.146        ad 		 * Ignore mountpoint entries.
    842  1.146        ad 		 */
    843  1.155        ad 		if (nlen == cache_mp_nlen) {
    844  1.146        ad 			continue;
    845  1.146        ad 		}
    846  1.146        ad 
    847  1.146        ad 		/*
    848  1.128        ad 		 * The queue is partially sorted.  Once we hit dots, nothing
    849  1.128        ad 		 * else remains but dots and dotdots, so bail out.
    850  1.127        ad 		 */
    851  1.127        ad 		if (ncp->nc_name[0] == '.') {
    852  1.127        ad 			if (nlen == 1 ||
    853  1.127        ad 			    (nlen == 2 && ncp->nc_name[1] == '.')) {
    854  1.128        ad 			    	break;
    855   1.19  sommerfe 			}
    856  1.127        ad 		}
    857  1.128        ad 
    858  1.135        ad 		/*
    859  1.135        ad 		 * Record a hit on the entry.  This is an unlocked read but
    860  1.135        ad 		 * even if wrong it doesn't matter too much.
    861  1.135        ad 		 */
    862  1.128        ad 		lrulist = atomic_load_relaxed(&ncp->nc_lrulist);
    863  1.128        ad 		if (lrulist != LRU_ACTIVE) {
    864  1.128        ad 			cache_activate(ncp);
    865  1.128        ad 		}
    866   1.34     enami 
    867  1.127        ad 		if (bufp) {
    868  1.127        ad 			bp = *bpp;
    869  1.127        ad 			bp -= nlen;
    870  1.127        ad 			if (bp <= bufp) {
    871   1.92   hannken 				*dvpp = NULL;
    872  1.128        ad 				rw_exit(&vi->vi_nc_listlock);
    873  1.127        ad 				SDT_PROBE(vfs, namecache, revlookup,
    874  1.127        ad 				    fail, vp, ERANGE, 0, 0, 0);
    875  1.127        ad 				return (ERANGE);
    876   1.86   hannken 			}
    877  1.127        ad 			memcpy(bp, ncp->nc_name, nlen);
    878  1.127        ad 			*bpp = bp;
    879   1.19  sommerfe 		}
    880  1.127        ad 
    881  1.128        ad 		dvp = ncp->nc_dvp;
    882  1.144        ad 		error = vcache_tryvget(dvp);
    883  1.128        ad 		rw_exit(&vi->vi_nc_listlock);
    884  1.127        ad 		if (error) {
    885  1.127        ad 			KASSERT(error == EBUSY);
    886  1.127        ad 			if (bufp)
    887  1.127        ad 				(*bpp) += nlen;
    888  1.127        ad 			*dvpp = NULL;
    889  1.127        ad 			SDT_PROBE(vfs, namecache, revlookup, fail, vp,
    890  1.127        ad 			    error, 0, 0, 0);
    891  1.127        ad 			return -1;
    892  1.127        ad 		}
    893  1.127        ad 		*dvpp = dvp;
    894  1.127        ad 		SDT_PROBE(vfs, namecache, revlookup, success, vp, dvp,
    895  1.127        ad 		    0, 0, 0);
    896  1.128        ad 		COUNT(ncs_revhits);
    897  1.127        ad 		return (0);
    898   1.19  sommerfe 	}
    899  1.128        ad 	rw_exit(&vi->vi_nc_listlock);
    900  1.128        ad 	COUNT(ncs_revmiss);
    901   1.19  sommerfe  out:
    902   1.34     enami 	*dvpp = NULL;
    903   1.34     enami 	return (-1);
    904   1.19  sommerfe }
    905   1.19  sommerfe 
    906   1.19  sommerfe /*
    907  1.128        ad  * Add an entry to the cache.
    908    1.1       cgd  */
    909   1.13  christos void
    910   1.91  dholland cache_enter(struct vnode *dvp, struct vnode *vp,
    911   1.91  dholland 	    const char *name, size_t namelen, uint32_t cnflags)
    912    1.1       cgd {
    913  1.128        ad 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
    914  1.128        ad 	struct namecache *ncp, *oncp;
    915  1.128        ad 	int total;
    916    1.1       cgd 
    917  1.146        ad 	KASSERT(namelen != cache_mp_nlen || name == cache_mp_name);
    918  1.146        ad 
    919   1.89     rmind 	/* First, check whether we can/should add a cache entry. */
    920   1.91  dholland 	if ((cnflags & MAKEENTRY) == 0 ||
    921  1.128        ad 	    __predict_false(namelen > cache_maxlen)) {
    922  1.108  christos 		SDT_PROBE(vfs, namecache, enter, toolong, vp, name, namelen,
    923  1.108  christos 		    0, 0);
    924    1.1       cgd 		return;
    925   1.89     rmind 	}
    926   1.58      yamt 
    927  1.108  christos 	SDT_PROBE(vfs, namecache, enter, done, vp, name, namelen, 0, 0);
    928  1.128        ad 
    929  1.128        ad 	/*
    930  1.128        ad 	 * Reclaim some entries if over budget.  This is an unlocked check,
    931  1.128        ad 	 * but it doesn't matter.  Just need to catch up with things
    932  1.128        ad 	 * eventually: it doesn't matter if we go over temporarily.
    933  1.128        ad 	 */
    934  1.128        ad 	total = atomic_load_relaxed(&cache_lru.count[LRU_ACTIVE]);
    935  1.128        ad 	total += atomic_load_relaxed(&cache_lru.count[LRU_INACTIVE]);
    936  1.128        ad 	if (__predict_false(total > desiredvnodes)) {
    937   1.73        ad 		cache_reclaim();
    938   1.39        pk 	}
    939   1.57        pk 
    940  1.128        ad 	/* Now allocate a fresh entry. */
    941  1.128        ad 	if (__predict_true(namelen <= NCHNAMLEN)) {
    942  1.128        ad 		ncp = pool_cache_get(cache_pool, PR_WAITOK);
    943  1.128        ad 	} else {
    944  1.128        ad 		size_t sz = offsetof(struct namecache, nc_name[namelen]);
    945  1.128        ad 		ncp = kmem_alloc(sz, KM_SLEEP);
    946  1.128        ad 	}
    947  1.122      maya 
    948  1.130        ad 	/*
    949  1.130        ad 	 * Fill in cache info.  For negative hits, save the ISWHITEOUT flag
    950  1.130        ad 	 * so we can restore it later when the cache entry is used again.
    951  1.130        ad 	 */
    952  1.130        ad 	ncp->nc_vp = vp;
    953  1.128        ad 	ncp->nc_dvp = dvp;
    954  1.128        ad 	ncp->nc_key = cache_key(name, namelen);
    955  1.130        ad 	ncp->nc_whiteout = ((cnflags & ISWHITEOUT) != 0);
    956  1.128        ad 	memcpy(ncp->nc_name, name, namelen);
    957   1.73        ad 
    958   1.59      yamt 	/*
    959  1.130        ad 	 * Insert to the directory.  Concurrent lookups may race for a cache
    960  1.130        ad 	 * entry.  If there's a entry there already, purge it.
    961   1.59      yamt 	 */
    962  1.128        ad 	rw_enter(&dvi->vi_nc_lock, RW_WRITER);
    963  1.128        ad 	oncp = rb_tree_insert_node(&dvi->vi_nc_tree, ncp);
    964  1.128        ad 	if (oncp != ncp) {
    965  1.128        ad 		KASSERT(oncp->nc_key == ncp->nc_key);
    966  1.155        ad 		KASSERT(NC_NLEN(oncp) == NC_NLEN(ncp));
    967  1.131        ad 		KASSERT(memcmp(oncp->nc_name, name, namelen) == 0);
    968  1.128        ad 		cache_remove(oncp, true);
    969  1.128        ad 		oncp = rb_tree_insert_node(&dvi->vi_nc_tree, ncp);
    970  1.128        ad 		KASSERT(oncp == ncp);
    971   1.59      yamt 	}
    972   1.59      yamt 
    973  1.130        ad 	/*
    974  1.130        ad 	 * With the directory lock still held, insert to the tail of the
    975  1.135        ad 	 * ACTIVE LRU list (new) and take the opportunity to incrementally
    976  1.135        ad 	 * balance the lists.
    977  1.130        ad 	 */
    978  1.130        ad 	mutex_enter(&cache_lru_lock);
    979  1.130        ad 	ncp->nc_lrulist = LRU_ACTIVE;
    980  1.130        ad 	cache_lru.count[LRU_ACTIVE]++;
    981  1.130        ad 	TAILQ_INSERT_TAIL(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru);
    982  1.130        ad 	cache_deactivate();
    983  1.130        ad 	mutex_exit(&cache_lru_lock);
    984  1.130        ad 
    985  1.130        ad 	/*
    986  1.135        ad 	 * Finally, insert to the vnode and unlock.  With everything set up
    987  1.135        ad 	 * it's safe to let cache_revlookup() see the entry.  Partially sort
    988  1.135        ad 	 * the per-vnode list: dots go to back so cache_revlookup() doesn't
    989  1.135        ad 	 * have to consider them.
    990  1.130        ad 	 */
    991  1.130        ad 	if (vp != NULL) {
    992  1.128        ad 		vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
    993  1.128        ad 		rw_enter(&vi->vi_nc_listlock, RW_WRITER);
    994  1.127        ad 		if ((namelen == 1 && name[0] == '.') ||
    995  1.127        ad 		    (namelen == 2 && name[0] == '.' && name[1] == '.')) {
    996  1.128        ad 			TAILQ_INSERT_TAIL(&vi->vi_nc_list, ncp, nc_list);
    997  1.127        ad 		} else {
    998  1.128        ad 			TAILQ_INSERT_HEAD(&vi->vi_nc_list, ncp, nc_list);
    999  1.127        ad 		}
   1000  1.128        ad 		rw_exit(&vi->vi_nc_listlock);
   1001   1.73        ad 	}
   1002  1.128        ad 	rw_exit(&dvi->vi_nc_lock);
   1003  1.128        ad }
   1004  1.128        ad 
   1005  1.128        ad /*
   1006  1.128        ad  * Set identity info in cache for a vnode.  We only care about directories
   1007  1.142        ad  * so ignore other updates.  The cached info may be marked invalid if the
   1008  1.142        ad  * inode has an ACL.
   1009  1.128        ad  */
   1010  1.128        ad void
   1011  1.142        ad cache_enter_id(struct vnode *vp, mode_t mode, uid_t uid, gid_t gid, bool valid)
   1012  1.128        ad {
   1013  1.128        ad 	vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
   1014  1.128        ad 
   1015  1.128        ad 	if (vp->v_type == VDIR) {
   1016  1.128        ad 		/* Grab both locks, for forward & reverse lookup. */
   1017  1.128        ad 		rw_enter(&vi->vi_nc_lock, RW_WRITER);
   1018  1.128        ad 		rw_enter(&vi->vi_nc_listlock, RW_WRITER);
   1019  1.142        ad 		if (valid) {
   1020  1.142        ad 			vi->vi_nc_mode = mode;
   1021  1.142        ad 			vi->vi_nc_uid = uid;
   1022  1.142        ad 			vi->vi_nc_gid = gid;
   1023  1.142        ad 		} else {
   1024  1.142        ad 			vi->vi_nc_mode = VNOVAL;
   1025  1.142        ad 			vi->vi_nc_uid = VNOVAL;
   1026  1.142        ad 			vi->vi_nc_gid = VNOVAL;
   1027  1.142        ad 		}
   1028  1.128        ad 		rw_exit(&vi->vi_nc_listlock);
   1029  1.128        ad 		rw_exit(&vi->vi_nc_lock);
   1030  1.128        ad 	}
   1031  1.128        ad }
   1032  1.128        ad 
   1033  1.128        ad /*
   1034  1.128        ad  * Return true if we have identity for the given vnode, and use as an
   1035  1.128        ad  * opportunity to confirm that everything squares up.
   1036  1.128        ad  *
   1037  1.128        ad  * Because of shared code, some file systems could provide partial
   1038  1.142        ad  * information, missing some updates, so check the mount flag too.
   1039  1.128        ad  */
   1040  1.128        ad bool
   1041  1.128        ad cache_have_id(struct vnode *vp)
   1042  1.128        ad {
   1043  1.128        ad 
   1044  1.128        ad 	if (vp->v_type == VDIR &&
   1045  1.142        ad 	    (vp->v_mount->mnt_iflag & IMNT_NCLOOKUP) != 0 &&
   1046  1.142        ad 	    atomic_load_relaxed(&VNODE_TO_VIMPL(vp)->vi_nc_mode) != VNOVAL) {
   1047  1.128        ad 		return true;
   1048  1.128        ad 	} else {
   1049  1.128        ad 		return false;
   1050  1.128        ad 	}
   1051    1.1       cgd }
   1052    1.1       cgd 
   1053    1.1       cgd /*
   1054  1.146        ad  * Enter a mount point.  cvp is the covered vnode, and rvp is the root of
   1055  1.146        ad  * the mounted file system.
   1056  1.146        ad  */
   1057  1.146        ad void
   1058  1.146        ad cache_enter_mount(struct vnode *cvp, struct vnode *rvp)
   1059  1.146        ad {
   1060  1.146        ad 
   1061  1.146        ad 	KASSERT(vrefcnt(cvp) > 0);
   1062  1.146        ad 	KASSERT(vrefcnt(rvp) > 0);
   1063  1.146        ad 	KASSERT(cvp->v_type == VDIR);
   1064  1.146        ad 	KASSERT((rvp->v_vflag & VV_ROOT) != 0);
   1065  1.146        ad 
   1066  1.146        ad 	if (rvp->v_type == VDIR) {
   1067  1.146        ad 		cache_enter(cvp, rvp, cache_mp_name, cache_mp_nlen, MAKEENTRY);
   1068  1.146        ad 	}
   1069  1.146        ad }
   1070  1.146        ad 
   1071  1.146        ad /*
   1072  1.146        ad  * Look up a cached mount point.  Used in the strongly locked path.
   1073  1.146        ad  */
   1074  1.146        ad bool
   1075  1.146        ad cache_lookup_mount(struct vnode *dvp, struct vnode **vn_ret)
   1076  1.146        ad {
   1077  1.146        ad 	bool ret;
   1078  1.146        ad 
   1079  1.146        ad 	ret = cache_lookup(dvp, cache_mp_name, cache_mp_nlen, LOOKUP,
   1080  1.146        ad 	    MAKEENTRY, NULL, vn_ret);
   1081  1.146        ad 	KASSERT((*vn_ret != NULL) == ret);
   1082  1.146        ad 	return ret;
   1083  1.146        ad }
   1084  1.146        ad 
   1085  1.146        ad /*
   1086  1.146        ad  * Try to cross a mount point.  For use with cache_lookup_linked().
   1087  1.146        ad  */
   1088  1.146        ad bool
   1089  1.146        ad cache_cross_mount(struct vnode **dvp, krwlock_t **plock)
   1090  1.146        ad {
   1091  1.146        ad 
   1092  1.146        ad 	return cache_lookup_linked(*dvp, cache_mp_name, cache_mp_nlen,
   1093  1.146        ad 	   dvp, plock, FSCRED);
   1094  1.146        ad }
   1095  1.146        ad 
   1096  1.146        ad /*
   1097  1.128        ad  * Name cache initialization, from vfs_init() when the system is booting.
   1098    1.1       cgd  */
   1099   1.13  christos void
   1100   1.34     enami nchinit(void)
   1101    1.1       cgd {
   1102    1.1       cgd 
   1103  1.128        ad 	cache_pool = pool_cache_init(sizeof(struct namecache),
   1104  1.135        ad 	    coherency_unit, 0, 0, "namecache", NULL, IPL_NONE, NULL,
   1105  1.128        ad 	    NULL, NULL);
   1106  1.128        ad 	KASSERT(cache_pool != NULL);
   1107  1.128        ad 
   1108  1.128        ad 	mutex_init(&cache_lru_lock, MUTEX_DEFAULT, IPL_NONE);
   1109  1.128        ad 	TAILQ_INIT(&cache_lru.list[LRU_ACTIVE]);
   1110  1.128        ad 	TAILQ_INIT(&cache_lru.list[LRU_INACTIVE]);
   1111  1.128        ad 
   1112  1.128        ad 	mutex_init(&cache_stat_lock, MUTEX_DEFAULT, IPL_NONE);
   1113  1.128        ad 	callout_init(&cache_stat_callout, CALLOUT_MPSAFE);
   1114  1.128        ad 	callout_setfunc(&cache_stat_callout, cache_update_stats, NULL);
   1115  1.128        ad 	callout_schedule(&cache_stat_callout, cache_stat_interval * hz);
   1116  1.128        ad 
   1117  1.128        ad 	KASSERT(cache_sysctllog == NULL);
   1118  1.128        ad 	sysctl_createv(&cache_sysctllog, 0, NULL, NULL,
   1119  1.128        ad 		       CTLFLAG_PERMANENT,
   1120  1.128        ad 		       CTLTYPE_STRUCT, "namecache_stats",
   1121  1.128        ad 		       SYSCTL_DESCR("namecache statistics"),
   1122  1.128        ad 		       cache_stat_sysctl, 0, NULL, 0,
   1123  1.128        ad 		       CTL_VFS, CTL_CREATE, CTL_EOL);
   1124  1.128        ad }
   1125  1.128        ad 
   1126  1.128        ad /*
   1127  1.128        ad  * Called once for each CPU in the system as attached.
   1128  1.128        ad  */
   1129  1.128        ad void
   1130  1.128        ad cache_cpu_init(struct cpu_info *ci)
   1131  1.128        ad {
   1132  1.128        ad 	size_t sz;
   1133  1.104     pooka 
   1134  1.155        ad 	sz = roundup2(sizeof(struct nchcpu), coherency_unit);
   1135  1.155        ad 	ci->ci_data.cpu_nch = kmem_zalloc(sz, KM_SLEEP);
   1136  1.155        ad 	KASSERT(((uintptr_t)ci->ci_data.cpu_nch & (coherency_unit - 1)) == 0);
   1137   1.73        ad }
   1138   1.73        ad 
   1139  1.128        ad /*
   1140  1.128        ad  * A vnode is being allocated: set up cache structures.
   1141  1.128        ad  */
   1142  1.128        ad void
   1143  1.128        ad cache_vnode_init(struct vnode *vp)
   1144   1.73        ad {
   1145  1.128        ad 	vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
   1146  1.128        ad 
   1147  1.128        ad 	rw_init(&vi->vi_nc_lock);
   1148  1.128        ad 	rw_init(&vi->vi_nc_listlock);
   1149  1.128        ad 	rb_tree_init(&vi->vi_nc_tree, &cache_rbtree_ops);
   1150  1.128        ad 	TAILQ_INIT(&vi->vi_nc_list);
   1151  1.128        ad 	vi->vi_nc_mode = VNOVAL;
   1152  1.128        ad 	vi->vi_nc_uid = VNOVAL;
   1153  1.128        ad 	vi->vi_nc_gid = VNOVAL;
   1154  1.128        ad }
   1155  1.125        ad 
   1156  1.128        ad /*
   1157  1.128        ad  * A vnode is being freed: finish cache structures.
   1158  1.128        ad  */
   1159  1.128        ad void
   1160  1.128        ad cache_vnode_fini(struct vnode *vp)
   1161  1.128        ad {
   1162  1.128        ad 	vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
   1163   1.73        ad 
   1164  1.128        ad 	KASSERT(RB_TREE_MIN(&vi->vi_nc_tree) == NULL);
   1165  1.128        ad 	KASSERT(TAILQ_EMPTY(&vi->vi_nc_list));
   1166  1.128        ad 	rw_destroy(&vi->vi_nc_lock);
   1167  1.128        ad 	rw_destroy(&vi->vi_nc_listlock);
   1168   1.73        ad }
   1169   1.73        ad 
   1170  1.128        ad /*
   1171  1.128        ad  * Helper for cache_purge1(): purge cache entries for the given vnode from
   1172  1.128        ad  * all directories that the vnode is cached in.
   1173  1.128        ad  */
   1174   1.73        ad static void
   1175  1.128        ad cache_purge_parents(struct vnode *vp)
   1176   1.73        ad {
   1177  1.128        ad 	vnode_impl_t *dvi, *vi = VNODE_TO_VIMPL(vp);
   1178  1.128        ad 	struct vnode *dvp, *blocked;
   1179  1.125        ad 	struct namecache *ncp;
   1180   1.73        ad 
   1181  1.128        ad 	SDT_PROBE(vfs, namecache, purge, parents, vp, 0, 0, 0, 0);
   1182  1.128        ad 
   1183  1.128        ad 	blocked = NULL;
   1184  1.128        ad 
   1185  1.128        ad 	rw_enter(&vi->vi_nc_listlock, RW_WRITER);
   1186  1.128        ad 	while ((ncp = TAILQ_FIRST(&vi->vi_nc_list)) != NULL) {
   1187  1.128        ad 		/*
   1188  1.128        ad 		 * Locking in the wrong direction.  Try for a hold on the
   1189  1.128        ad 		 * directory node's lock, and if we get it then all good,
   1190  1.128        ad 		 * nuke the entry and move on to the next.
   1191  1.128        ad 		 */
   1192  1.128        ad 		dvp = ncp->nc_dvp;
   1193  1.128        ad 		dvi = VNODE_TO_VIMPL(dvp);
   1194  1.128        ad 		if (rw_tryenter(&dvi->vi_nc_lock, RW_WRITER)) {
   1195  1.128        ad 			cache_remove(ncp, false);
   1196  1.128        ad 			rw_exit(&dvi->vi_nc_lock);
   1197  1.128        ad 			blocked = NULL;
   1198  1.128        ad 			continue;
   1199  1.128        ad 		}
   1200  1.128        ad 
   1201  1.128        ad 		/*
   1202  1.128        ad 		 * We can't wait on the directory node's lock with our list
   1203  1.128        ad 		 * lock held or the system could deadlock.
   1204  1.128        ad 		 *
   1205  1.128        ad 		 * Take a hold on the directory vnode to prevent it from
   1206  1.128        ad 		 * being freed (taking the vnode & lock with it).  Then
   1207  1.128        ad 		 * wait for the lock to become available with no other locks
   1208  1.128        ad 		 * held, and retry.
   1209  1.128        ad 		 *
   1210  1.128        ad 		 * If this happens twice in a row, give the other side a
   1211  1.128        ad 		 * breather; we can do nothing until it lets go.
   1212  1.128        ad 		 */
   1213  1.128        ad 		vhold(dvp);
   1214  1.128        ad 		rw_exit(&vi->vi_nc_listlock);
   1215  1.128        ad 		rw_enter(&dvi->vi_nc_lock, RW_WRITER);
   1216  1.128        ad 		/* Do nothing. */
   1217  1.128        ad 		rw_exit(&dvi->vi_nc_lock);
   1218  1.128        ad 		holdrele(dvp);
   1219  1.128        ad 		if (blocked == dvp) {
   1220  1.128        ad 			kpause("ncpurge", false, 1, NULL);
   1221  1.128        ad 		}
   1222  1.128        ad 		rw_enter(&vi->vi_nc_listlock, RW_WRITER);
   1223  1.128        ad 		blocked = dvp;
   1224  1.128        ad 	}
   1225  1.128        ad 	rw_exit(&vi->vi_nc_listlock);
   1226   1.73        ad }
   1227   1.73        ad 
   1228   1.73        ad /*
   1229  1.128        ad  * Helper for cache_purge1(): purge all cache entries hanging off the given
   1230  1.128        ad  * directory vnode.
   1231   1.73        ad  */
   1232  1.128        ad static void
   1233  1.128        ad cache_purge_children(struct vnode *dvp)
   1234   1.73        ad {
   1235  1.128        ad 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
   1236  1.128        ad 	struct namecache *ncp;
   1237  1.128        ad 
   1238  1.128        ad 	SDT_PROBE(vfs, namecache, purge, children, dvp, 0, 0, 0, 0);
   1239   1.73        ad 
   1240  1.128        ad 	rw_enter(&dvi->vi_nc_lock, RW_WRITER);
   1241  1.135        ad 	while ((ncp = RB_TREE_MIN(&dvi->vi_nc_tree)) != NULL) {
   1242  1.128        ad 		cache_remove(ncp, true);
   1243  1.128        ad 	}
   1244  1.128        ad 	rw_exit(&dvi->vi_nc_lock);
   1245   1.30       chs }
   1246   1.30       chs 
   1247   1.30       chs /*
   1248  1.128        ad  * Helper for cache_purge1(): purge cache entry from the given vnode,
   1249  1.128        ad  * finding it by name.
   1250   1.30       chs  */
   1251  1.128        ad static void
   1252  1.128        ad cache_purge_name(struct vnode *dvp, const char *name, size_t namelen)
   1253   1.30       chs {
   1254  1.128        ad 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
   1255   1.30       chs 	struct namecache *ncp;
   1256  1.155        ad 	uintptr_t key;
   1257  1.126        ad 
   1258  1.128        ad 	SDT_PROBE(vfs, namecache, purge, name, name, namelen, 0, 0, 0);
   1259  1.128        ad 
   1260  1.128        ad 	key = cache_key(name, namelen);
   1261  1.128        ad 	rw_enter(&dvi->vi_nc_lock, RW_WRITER);
   1262  1.128        ad 	ncp = cache_lookup_entry(dvp, name, namelen, key);
   1263  1.128        ad 	if (ncp) {
   1264  1.128        ad 		cache_remove(ncp, true);
   1265  1.128        ad 	}
   1266  1.128        ad 	rw_exit(&dvi->vi_nc_lock);
   1267    1.1       cgd }
   1268    1.1       cgd 
   1269    1.1       cgd /*
   1270    1.1       cgd  * Cache flush, a particular vnode; called when a vnode is renamed to
   1271  1.128        ad  * hide entries that would now be invalid.
   1272    1.1       cgd  */
   1273   1.13  christos void
   1274   1.91  dholland cache_purge1(struct vnode *vp, const char *name, size_t namelen, int flags)
   1275    1.1       cgd {
   1276    1.1       cgd 
   1277   1.55      yamt 	if (flags & PURGE_PARENTS) {
   1278  1.128        ad 		cache_purge_parents(vp);
   1279   1.55      yamt 	}
   1280   1.55      yamt 	if (flags & PURGE_CHILDREN) {
   1281  1.128        ad 		cache_purge_children(vp);
   1282   1.46      yamt 	}
   1283   1.91  dholland 	if (name != NULL) {
   1284  1.128        ad 		cache_purge_name(vp, name, namelen);
   1285   1.46      yamt 	}
   1286  1.128        ad }
   1287  1.128        ad 
   1288  1.128        ad /*
   1289  1.128        ad  * vnode filter for cache_purgevfs().
   1290  1.128        ad  */
   1291  1.128        ad static bool
   1292  1.128        ad cache_vdir_filter(void *cookie, vnode_t *vp)
   1293  1.128        ad {
   1294  1.128        ad 
   1295  1.128        ad 	return vp->v_type == VDIR;
   1296    1.1       cgd }
   1297    1.1       cgd 
   1298    1.1       cgd /*
   1299    1.1       cgd  * Cache flush, a whole filesystem; called when filesys is umounted to
   1300   1.27       chs  * remove entries that would now be invalid.
   1301    1.1       cgd  */
   1302   1.13  christos void
   1303   1.34     enami cache_purgevfs(struct mount *mp)
   1304    1.1       cgd {
   1305  1.128        ad 	struct vnode_iterator *iter;
   1306  1.128        ad 	vnode_t *dvp;
   1307    1.1       cgd 
   1308  1.128        ad 	vfs_vnode_iterator_init(mp, &iter);
   1309  1.128        ad 	for (;;) {
   1310  1.128        ad 		dvp = vfs_vnode_iterator_next(iter, cache_vdir_filter, NULL);
   1311  1.128        ad 		if (dvp == NULL) {
   1312  1.128        ad 			break;
   1313   1.73        ad 		}
   1314  1.128        ad 		cache_purge_children(dvp);
   1315  1.128        ad 		vrele(dvp);
   1316   1.73        ad 	}
   1317  1.128        ad 	vfs_vnode_iterator_destroy(iter);
   1318   1.73        ad }
   1319   1.73        ad 
   1320   1.73        ad /*
   1321  1.135        ad  * Re-queue an entry onto the tail of the active LRU list, after it has
   1322  1.135        ad  * scored a hit.
   1323   1.73        ad  */
   1324   1.73        ad static void
   1325  1.128        ad cache_activate(struct namecache *ncp)
   1326   1.73        ad {
   1327   1.73        ad 
   1328  1.128        ad 	mutex_enter(&cache_lru_lock);
   1329  1.128        ad 	TAILQ_REMOVE(&cache_lru.list[ncp->nc_lrulist], ncp, nc_lru);
   1330  1.128        ad 	TAILQ_INSERT_TAIL(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru);
   1331  1.128        ad 	cache_lru.count[ncp->nc_lrulist]--;
   1332  1.128        ad 	cache_lru.count[LRU_ACTIVE]++;
   1333  1.128        ad 	ncp->nc_lrulist = LRU_ACTIVE;
   1334  1.128        ad 	mutex_exit(&cache_lru_lock);
   1335   1.73        ad }
   1336   1.73        ad 
   1337   1.73        ad /*
   1338  1.128        ad  * Try to balance the LRU lists.  Pick some victim entries, and re-queue
   1339  1.147  riastrad  * them from the head of the active list to the tail of the inactive list.
   1340   1.73        ad  */
   1341   1.73        ad static void
   1342  1.128        ad cache_deactivate(void)
   1343   1.73        ad {
   1344  1.128        ad 	struct namecache *ncp;
   1345  1.128        ad 	int total, i;
   1346  1.128        ad 
   1347  1.128        ad 	KASSERT(mutex_owned(&cache_lru_lock));
   1348   1.73        ad 
   1349  1.128        ad 	/* If we're nowhere near budget yet, don't bother. */
   1350  1.128        ad 	total = cache_lru.count[LRU_ACTIVE] + cache_lru.count[LRU_INACTIVE];
   1351  1.128        ad 	if (total < (desiredvnodes >> 1)) {
   1352  1.128        ad 	    	return;
   1353  1.128        ad 	}
   1354   1.73        ad 
   1355   1.73        ad 	/*
   1356  1.128        ad 	 * Aim for a 1:1 ratio of active to inactive.  This is to allow each
   1357  1.128        ad 	 * potential victim a reasonable amount of time to cycle through the
   1358  1.128        ad 	 * inactive list in order to score a hit and be reactivated, while
   1359  1.128        ad 	 * trying not to cause reactivations too frequently.
   1360   1.73        ad 	 */
   1361  1.128        ad 	if (cache_lru.count[LRU_ACTIVE] < cache_lru.count[LRU_INACTIVE]) {
   1362  1.128        ad 		return;
   1363  1.128        ad 	}
   1364   1.73        ad 
   1365  1.128        ad 	/* Move only a few at a time; will catch up eventually. */
   1366  1.128        ad 	for (i = 0; i < cache_lru_maxdeact; i++) {
   1367  1.128        ad 		ncp = TAILQ_FIRST(&cache_lru.list[LRU_ACTIVE]);
   1368  1.128        ad 		if (ncp == NULL) {
   1369  1.128        ad 			break;
   1370  1.128        ad 		}
   1371  1.128        ad 		KASSERT(ncp->nc_lrulist == LRU_ACTIVE);
   1372  1.128        ad 		ncp->nc_lrulist = LRU_INACTIVE;
   1373  1.128        ad 		TAILQ_REMOVE(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru);
   1374  1.128        ad 		TAILQ_INSERT_TAIL(&cache_lru.list[LRU_INACTIVE], ncp, nc_lru);
   1375  1.128        ad 		cache_lru.count[LRU_ACTIVE]--;
   1376  1.128        ad 		cache_lru.count[LRU_INACTIVE]++;
   1377  1.128        ad 	}
   1378   1.73        ad }
   1379   1.73        ad 
   1380   1.73        ad /*
   1381  1.128        ad  * Free some entries from the cache, when we have gone over budget.
   1382  1.128        ad  *
   1383  1.128        ad  * We don't want to cause too much work for any individual caller, and it
   1384  1.128        ad  * doesn't matter if we temporarily go over budget.  This is also "just a
   1385  1.128        ad  * cache" so it's not a big deal if we screw up and throw out something we
   1386  1.128        ad  * shouldn't.  So we take a relaxed attitude to this process to reduce its
   1387  1.128        ad  * impact.
   1388   1.73        ad  */
   1389   1.73        ad static void
   1390  1.128        ad cache_reclaim(void)
   1391   1.28       chs {
   1392   1.28       chs 	struct namecache *ncp;
   1393  1.128        ad 	vnode_impl_t *dvi;
   1394  1.128        ad 	int toscan;
   1395   1.28       chs 
   1396  1.128        ad 	/*
   1397  1.152    andvar 	 * Scan up to a preset maximum number of entries, but no more than
   1398  1.128        ad 	 * 0.8% of the total at once (to allow for very small systems).
   1399  1.128        ad 	 *
   1400  1.128        ad 	 * On bigger systems, do a larger chunk of work to reduce the number
   1401  1.128        ad 	 * of times that cache_lru_lock is held for any length of time.
   1402  1.128        ad 	 */
   1403  1.128        ad 	mutex_enter(&cache_lru_lock);
   1404  1.128        ad 	toscan = MIN(cache_lru_maxscan, desiredvnodes >> 7);
   1405  1.128        ad 	toscan = MAX(toscan, 1);
   1406  1.128        ad 	SDT_PROBE(vfs, namecache, prune, done, cache_lru.count[LRU_ACTIVE] +
   1407  1.128        ad 	    cache_lru.count[LRU_INACTIVE], toscan, 0, 0, 0);
   1408  1.128        ad 	while (toscan-- != 0) {
   1409  1.128        ad 		/* First try to balance the lists. */
   1410  1.128        ad 		cache_deactivate();
   1411  1.128        ad 
   1412  1.128        ad 		/* Now look for a victim on head of inactive list (old). */
   1413  1.128        ad 		ncp = TAILQ_FIRST(&cache_lru.list[LRU_INACTIVE]);
   1414  1.128        ad 		if (ncp == NULL) {
   1415  1.128        ad 			break;
   1416   1.28       chs 		}
   1417  1.128        ad 		dvi = VNODE_TO_VIMPL(ncp->nc_dvp);
   1418  1.128        ad 		KASSERT(ncp->nc_lrulist == LRU_INACTIVE);
   1419  1.128        ad 		KASSERT(dvi != NULL);
   1420  1.128        ad 
   1421  1.128        ad 		/*
   1422  1.128        ad 		 * Locking in the wrong direction.  If we can't get the
   1423  1.128        ad 		 * lock, the directory is actively busy, and it could also
   1424  1.128        ad 		 * cause problems for the next guy in here, so send the
   1425  1.128        ad 		 * entry to the back of the list.
   1426  1.128        ad 		 */
   1427  1.128        ad 		if (!rw_tryenter(&dvi->vi_nc_lock, RW_WRITER)) {
   1428  1.128        ad 			TAILQ_REMOVE(&cache_lru.list[LRU_INACTIVE],
   1429  1.128        ad 			    ncp, nc_lru);
   1430  1.128        ad 			TAILQ_INSERT_TAIL(&cache_lru.list[LRU_INACTIVE],
   1431  1.128        ad 			    ncp, nc_lru);
   1432  1.128        ad 			continue;
   1433   1.28       chs 		}
   1434  1.128        ad 
   1435  1.128        ad 		/*
   1436  1.128        ad 		 * Now have the victim entry locked.  Drop the LRU list
   1437  1.128        ad 		 * lock, purge the entry, and start over.  The hold on
   1438  1.128        ad 		 * vi_nc_lock will prevent the vnode from vanishing until
   1439  1.128        ad 		 * finished (cache_purge() will be called on dvp before it
   1440  1.128        ad 		 * disappears, and that will wait on vi_nc_lock).
   1441  1.128        ad 		 */
   1442  1.128        ad 		mutex_exit(&cache_lru_lock);
   1443  1.128        ad 		cache_remove(ncp, true);
   1444  1.128        ad 		rw_exit(&dvi->vi_nc_lock);
   1445  1.128        ad 		mutex_enter(&cache_lru_lock);
   1446   1.28       chs 	}
   1447  1.128        ad 	mutex_exit(&cache_lru_lock);
   1448   1.28       chs }
   1449   1.95     joerg 
   1450  1.128        ad /*
   1451  1.128        ad  * For file system code: count a lookup that required a full re-scan of
   1452  1.128        ad  * directory metadata.
   1453  1.128        ad  */
   1454   1.95     joerg void
   1455   1.95     joerg namecache_count_pass2(void)
   1456   1.95     joerg {
   1457   1.95     joerg 
   1458  1.128        ad 	COUNT(ncs_pass2);
   1459   1.95     joerg }
   1460   1.95     joerg 
   1461  1.128        ad /*
   1462  1.128        ad  * For file system code: count a lookup that scored a hit in the directory
   1463  1.128        ad  * metadata near the location of the last lookup.
   1464  1.128        ad  */
   1465   1.95     joerg void
   1466   1.95     joerg namecache_count_2passes(void)
   1467   1.95     joerg {
   1468   1.95     joerg 
   1469  1.128        ad 	COUNT(ncs_2passes);
   1470  1.128        ad }
   1471  1.128        ad 
   1472  1.128        ad /*
   1473  1.128        ad  * Sum the stats from all CPUs into nchstats.  This needs to run at least
   1474  1.128        ad  * once within every window where a 32-bit counter could roll over.  It's
   1475  1.128        ad  * called regularly by timer to ensure this.
   1476  1.128        ad  */
   1477  1.128        ad static void
   1478  1.128        ad cache_update_stats(void *cookie)
   1479  1.128        ad {
   1480  1.128        ad 	CPU_INFO_ITERATOR cii;
   1481  1.128        ad 	struct cpu_info *ci;
   1482  1.128        ad 
   1483  1.128        ad 	mutex_enter(&cache_stat_lock);
   1484  1.128        ad 	for (CPU_INFO_FOREACH(cii, ci)) {
   1485  1.128        ad 		struct nchcpu *nchcpu = ci->ci_data.cpu_nch;
   1486  1.128        ad 		UPDATE(nchcpu, ncs_goodhits);
   1487  1.128        ad 		UPDATE(nchcpu, ncs_neghits);
   1488  1.128        ad 		UPDATE(nchcpu, ncs_badhits);
   1489  1.128        ad 		UPDATE(nchcpu, ncs_falsehits);
   1490  1.128        ad 		UPDATE(nchcpu, ncs_miss);
   1491  1.128        ad 		UPDATE(nchcpu, ncs_long);
   1492  1.128        ad 		UPDATE(nchcpu, ncs_pass2);
   1493  1.128        ad 		UPDATE(nchcpu, ncs_2passes);
   1494  1.128        ad 		UPDATE(nchcpu, ncs_revhits);
   1495  1.128        ad 		UPDATE(nchcpu, ncs_revmiss);
   1496  1.128        ad 		UPDATE(nchcpu, ncs_denied);
   1497  1.128        ad 	}
   1498  1.128        ad 	if (cookie != NULL) {
   1499  1.128        ad 		memcpy(cookie, &nchstats, sizeof(nchstats));
   1500  1.128        ad 	}
   1501  1.128        ad 	/* Reset the timer; arrive back here in N minutes at latest. */
   1502  1.128        ad 	callout_schedule(&cache_stat_callout, cache_stat_interval * hz);
   1503  1.128        ad 	mutex_exit(&cache_stat_lock);
   1504   1.95     joerg }
   1505   1.97     joerg 
   1506  1.103    dennis /*
   1507  1.131        ad  * Fetch the current values of the stats for sysctl.
   1508  1.103    dennis  */
   1509   1.97     joerg static int
   1510   1.97     joerg cache_stat_sysctl(SYSCTLFN_ARGS)
   1511   1.97     joerg {
   1512  1.125        ad 	struct nchstats stats;
   1513   1.97     joerg 
   1514   1.97     joerg 	if (oldp == NULL) {
   1515  1.128        ad 		*oldlenp = sizeof(nchstats);
   1516   1.97     joerg 		return 0;
   1517   1.97     joerg 	}
   1518   1.97     joerg 
   1519  1.128        ad 	if (*oldlenp <= 0) {
   1520   1.97     joerg 		*oldlenp = 0;
   1521   1.97     joerg 		return 0;
   1522   1.97     joerg 	}
   1523   1.97     joerg 
   1524  1.128        ad 	/* Refresh the global stats. */
   1525  1.103    dennis 	sysctl_unlock();
   1526  1.128        ad 	cache_update_stats(&stats);
   1527   1.97     joerg 	sysctl_relock();
   1528   1.97     joerg 
   1529  1.128        ad 	*oldlenp = MIN(sizeof(stats), *oldlenp);
   1530  1.128        ad 	return sysctl_copyout(l, &stats, oldp, *oldlenp);
   1531   1.97     joerg }
   1532   1.97     joerg 
   1533  1.128        ad /*
   1534  1.128        ad  * For the debugger, given the address of a vnode, print all associated
   1535  1.128        ad  * names in the cache.
   1536  1.128        ad  */
   1537  1.128        ad #ifdef DDB
   1538  1.128        ad void
   1539  1.128        ad namecache_print(struct vnode *vp, void (*pr)(const char *, ...))
   1540   1.97     joerg {
   1541  1.128        ad 	struct vnode *dvp = NULL;
   1542  1.128        ad 	struct namecache *ncp;
   1543  1.128        ad 	enum cache_lru_id id;
   1544  1.104     pooka 
   1545  1.128        ad 	for (id = 0; id < LRU_COUNT; id++) {
   1546  1.128        ad 		TAILQ_FOREACH(ncp, &cache_lru.list[id], nc_lru) {
   1547  1.128        ad 			if (ncp->nc_vp == vp) {
   1548  1.155        ad 				(*pr)("name %.*s\n", NC_NLEN(ncp),
   1549  1.128        ad 				    ncp->nc_name);
   1550  1.128        ad 				dvp = ncp->nc_dvp;
   1551  1.128        ad 			}
   1552  1.128        ad 		}
   1553  1.128        ad 	}
   1554  1.128        ad 	if (dvp == NULL) {
   1555  1.128        ad 		(*pr)("name not found\n");
   1556  1.128        ad 		return;
   1557  1.128        ad 	}
   1558  1.128        ad 	for (id = 0; id < LRU_COUNT; id++) {
   1559  1.128        ad 		TAILQ_FOREACH(ncp, &cache_lru.list[id], nc_lru) {
   1560  1.128        ad 			if (ncp->nc_vp == dvp) {
   1561  1.155        ad 				(*pr)("parent %.*s\n", NC_NLEN(ncp),
   1562  1.128        ad 				    ncp->nc_name);
   1563  1.128        ad 			}
   1564  1.128        ad 		}
   1565  1.128        ad 	}
   1566   1.97     joerg }
   1567  1.128        ad #endif
   1568