Home | History | Annotate | Line # | Download | only in kern
vfs_cache.c revision 1.104
      1 /*	$NetBSD: vfs_cache.c,v 1.104 2015/01/04 19:31:00 pooka Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * Copyright (c) 1989, 1993
     31  *	The Regents of the University of California.  All rights reserved.
     32  *
     33  * Redistribution and use in source and binary forms, with or without
     34  * modification, are permitted provided that the following conditions
     35  * are met:
     36  * 1. Redistributions of source code must retain the above copyright
     37  *    notice, this list of conditions and the following disclaimer.
     38  * 2. Redistributions in binary form must reproduce the above copyright
     39  *    notice, this list of conditions and the following disclaimer in the
     40  *    documentation and/or other materials provided with the distribution.
     41  * 3. Neither the name of the University nor the names of its contributors
     42  *    may be used to endorse or promote products derived from this software
     43  *    without specific prior written permission.
     44  *
     45  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55  * SUCH DAMAGE.
     56  *
     57  *	@(#)vfs_cache.c	8.3 (Berkeley) 8/22/94
     58  */
     59 
     60 #include <sys/cdefs.h>
     61 __KERNEL_RCSID(0, "$NetBSD: vfs_cache.c,v 1.104 2015/01/04 19:31:00 pooka Exp $");
     62 
     63 #include "opt_ddb.h"
     64 #include "opt_revcache.h"
     65 
     66 #include <sys/param.h>
     67 #include <sys/systm.h>
     68 #include <sys/sysctl.h>
     69 #include <sys/time.h>
     70 #include <sys/mount.h>
     71 #include <sys/vnode.h>
     72 #include <sys/namei.h>
     73 #include <sys/errno.h>
     74 #include <sys/pool.h>
     75 #include <sys/mutex.h>
     76 #include <sys/atomic.h>
     77 #include <sys/kthread.h>
     78 #include <sys/kernel.h>
     79 #include <sys/cpu.h>
     80 #include <sys/evcnt.h>
     81 
     82 #define NAMECACHE_ENTER_REVERSE
     83 /*
     84  * Name caching works as follows:
     85  *
     86  * Names found by directory scans are retained in a cache
     87  * for future reference.  It is managed LRU, so frequently
     88  * used names will hang around.  Cache is indexed by hash value
     89  * obtained from (dvp, name) where dvp refers to the directory
     90  * containing name.
     91  *
     92  * For simplicity (and economy of storage), names longer than
     93  * a maximum length of NCHNAMLEN are not cached; they occur
     94  * infrequently in any case, and are almost never of interest.
     95  *
     96  * Upon reaching the last segment of a path, if the reference
     97  * is for DELETE, or NOCACHE is set (rewrite), and the
     98  * name is located in the cache, it will be dropped.
     99  * The entry is dropped also when it was not possible to lock
    100  * the cached vnode, either because vget() failed or the generation
    101  * number has changed while waiting for the lock.
    102  */
    103 
    104 /*
    105  * The locking in this subsystem works as follows:
    106  *
    107  * When an entry is added to the cache, via cache_enter(),
    108  * namecache_lock is taken to exclude other writers.  The new
    109  * entry is added to the hash list in a way which permits
    110  * concurrent lookups and invalidations in the cache done on
    111  * other CPUs to continue in parallel.
    112  *
    113  * When a lookup is done in the cache, via cache_lookup() or
    114  * cache_lookup_raw(), the per-cpu lock below is taken.  This
    115  * protects calls to cache_lookup_entry() and cache_invalidate()
    116  * against cache_reclaim() but allows lookups to continue in
    117  * parallel with cache_enter().
    118  *
    119  * cache_revlookup() takes namecache_lock to exclude cache_enter()
    120  * and cache_reclaim() since the list it operates on is not
    121  * maintained to allow concurrent reads.
    122  *
    123  * When cache_reclaim() is called namecache_lock is held to hold
    124  * off calls to cache_enter()/cache_revlookup() and each of the
    125  * per-cpu locks is taken to hold off lookups.  Holding all these
    126  * locks essentially idles the subsystem, ensuring there are no
    127  * concurrent references to the cache entries being freed.
    128  *
    129  * 32 bit per-cpu statistic counters (struct nchstats_percpu) are
    130  * incremented when the operations they count are performed while
    131  * running on the corresponding CPU.  Frequently individual counters
    132  * are incremented while holding a lock (either a per-cpu lock or
    133  * namecache_lock) sufficient to preclude concurrent increments
    134  * being done to the same counter, so non-atomic increments are
    135  * done using the COUNT() macro.  Counters which are incremented
    136  * when one of these locks is not held use the COUNT_UNL() macro
    137  * instead.  COUNT_UNL() could be defined to do atomic increments
    138  * but currently just does what COUNT() does, on the theory that
    139  * it is unlikely the non-atomic increment will be interrupted
    140  * by something on the same CPU that increments the same counter,
    141  * but even if it does happen the consequences aren't serious.
    142  *
    143  * N.B.: Attempting to protect COUNT_UNL() increments by taking
    144  * a per-cpu lock in the namecache_count_*() functions causes
    145  * a deadlock.  Don't do that, use atomic increments instead if
    146  * the imperfections here bug you.
    147  *
    148  * The 64 bit system-wide statistic counts (struct nchstats) are
    149  * maintained by sampling the per-cpu counters periodically, adding
    150  * in the deltas since the last samples and recording the current
    151  * samples to use to compute the next delta.  The sampling is done
    152  * as a side effect of cache_reclaim() which is run periodically,
    153  * for its own purposes, often enough to avoid overflow of the 32
    154  * bit counters.  While sampling in this fashion requires no locking
    155  * it is never-the-less done only after all locks have been taken by
    156  * cache_reclaim() to allow cache_stat_sysctl() to hold off
    157  * cache_reclaim() with minimal locking.
    158  *
    159  * cache_stat_sysctl() takes its CPU's per-cpu lock to hold off
    160  * cache_reclaim() so that it can copy the subsystem total stats
    161  * without them being concurrently modified.  If CACHE_STATS_CURRENT
    162  * is defined it also harvests the per-cpu increments into the total,
    163  * which again requires cache_reclaim() to be held off.
    164  *
    165  * The per-cpu data (a lock and the per-cpu stats structures)
    166  * are defined next.
    167  */
    168 struct nchstats_percpu _NAMEI_CACHE_STATS(uint32_t);
    169 
    170 struct nchcpu {
    171 	kmutex_t		cpu_lock;
    172 	struct nchstats_percpu	cpu_stats;
    173 	/* XXX maybe __cacheline_aligned would improve this? */
    174 	struct nchstats_percpu	cpu_stats_last;	/* from last sample */
    175 };
    176 
    177 /*
    178  * The type for the hash code. While the hash function generates a
    179  * u32, the hash code has historically been passed around as a u_long,
    180  * and the value is modified by xor'ing a uintptr_t, so it's not
    181  * entirely clear what the best type is. For now I'll leave it
    182  * unchanged as u_long.
    183  */
    184 
    185 typedef u_long nchash_t;
    186 
    187 /*
    188  * Structures associated with name cacheing.
    189  */
    190 
    191 static kmutex_t *namecache_lock __read_mostly;
    192 static pool_cache_t namecache_cache __read_mostly;
    193 static TAILQ_HEAD(, namecache) nclruhead __cacheline_aligned;
    194 
    195 static LIST_HEAD(nchashhead, namecache) *nchashtbl __read_mostly;
    196 static u_long	nchash __read_mostly;
    197 
    198 #define	NCHASH2(hash, dvp)	\
    199 	(((hash) ^ ((uintptr_t)(dvp) >> 3)) & nchash)
    200 
    201 static LIST_HEAD(ncvhashhead, namecache) *ncvhashtbl __read_mostly;
    202 static u_long	ncvhash __read_mostly;
    203 
    204 #define	NCVHASH(vp)		(((uintptr_t)(vp) >> 3) & ncvhash)
    205 
    206 /* Number of cache entries allocated. */
    207 static long	numcache __cacheline_aligned;
    208 
    209 /* Garbage collection queue and number of entries pending in it. */
    210 static void	*cache_gcqueue;
    211 static u_int	cache_gcpend;
    212 
    213 /* Cache effectiveness statistics.  This holds total from per-cpu stats */
    214 struct nchstats	nchstats __cacheline_aligned;
    215 
    216 /*
    217  * Macros to count an event, update the central stats with per-cpu
    218  * values and add current per-cpu increments to the subsystem total
    219  * last collected by cache_reclaim().
    220  */
    221 #define	CACHE_STATS_CURRENT	/* nothing */
    222 
    223 #define	COUNT(cpup, f)	((cpup)->cpu_stats.f++)
    224 
    225 #define	UPDATE(cpup, f) do { \
    226 	struct nchcpu *Xcpup = (cpup); \
    227 	uint32_t Xcnt = (volatile uint32_t) Xcpup->cpu_stats.f; \
    228 	nchstats.f += Xcnt - Xcpup->cpu_stats_last.f; \
    229 	Xcpup->cpu_stats_last.f = Xcnt; \
    230 } while (/* CONSTCOND */ 0)
    231 
    232 #define	ADD(stats, cpup, f) do { \
    233 	struct nchcpu *Xcpup = (cpup); \
    234 	stats.f += Xcpup->cpu_stats.f - Xcpup->cpu_stats_last.f; \
    235 } while (/* CONSTCOND */ 0)
    236 
    237 /* Do unlocked stats the same way. Use a different name to allow mind changes */
    238 #define	COUNT_UNL(cpup, f)	COUNT((cpup), f)
    239 
    240 static const int cache_lowat = 95;
    241 static const int cache_hiwat = 98;
    242 static const int cache_hottime = 5;	/* number of seconds */
    243 static int doingcache = 1;		/* 1 => enable the cache */
    244 
    245 static struct evcnt cache_ev_scan;
    246 static struct evcnt cache_ev_gc;
    247 static struct evcnt cache_ev_over;
    248 static struct evcnt cache_ev_under;
    249 static struct evcnt cache_ev_forced;
    250 
    251 static void cache_invalidate(struct namecache *);
    252 static struct namecache *cache_lookup_entry(
    253     const struct vnode *, const char *, size_t);
    254 static void cache_thread(void *);
    255 static void cache_invalidate(struct namecache *);
    256 static void cache_disassociate(struct namecache *);
    257 static void cache_reclaim(void);
    258 static int cache_ctor(void *, void *, int);
    259 static void cache_dtor(void *, void *);
    260 
    261 static struct sysctllog *sysctllog;
    262 static void sysctl_cache_stat_setup(void);
    263 
    264 /*
    265  * Compute the hash for an entry.
    266  *
    267  * (This is for now a wrapper around namei_hash, whose interface is
    268  * for the time being slightly inconvenient.)
    269  */
    270 static nchash_t
    271 cache_hash(const char *name, size_t namelen)
    272 {
    273 	const char *endptr;
    274 
    275 	endptr = name + namelen;
    276 	return namei_hash(name, &endptr);
    277 }
    278 
    279 /*
    280  * Invalidate a cache entry and enqueue it for garbage collection.
    281  * The caller needs to hold namecache_lock or a per-cpu lock to hold
    282  * off cache_reclaim().
    283  */
    284 static void
    285 cache_invalidate(struct namecache *ncp)
    286 {
    287 	void *head;
    288 
    289 	KASSERT(mutex_owned(&ncp->nc_lock));
    290 
    291 	if (ncp->nc_dvp != NULL) {
    292 		ncp->nc_vp = NULL;
    293 		ncp->nc_dvp = NULL;
    294 		do {
    295 			head = cache_gcqueue;
    296 			ncp->nc_gcqueue = head;
    297 		} while (atomic_cas_ptr(&cache_gcqueue, head, ncp) != head);
    298 		atomic_inc_uint(&cache_gcpend);
    299 	}
    300 }
    301 
    302 /*
    303  * Disassociate a namecache entry from any vnodes it is attached to,
    304  * and remove from the global LRU list.
    305  */
    306 static void
    307 cache_disassociate(struct namecache *ncp)
    308 {
    309 
    310 	KASSERT(mutex_owned(namecache_lock));
    311 	KASSERT(ncp->nc_dvp == NULL);
    312 
    313 	if (ncp->nc_lru.tqe_prev != NULL) {
    314 		TAILQ_REMOVE(&nclruhead, ncp, nc_lru);
    315 		ncp->nc_lru.tqe_prev = NULL;
    316 	}
    317 	if (ncp->nc_vhash.le_prev != NULL) {
    318 		LIST_REMOVE(ncp, nc_vhash);
    319 		ncp->nc_vhash.le_prev = NULL;
    320 	}
    321 	if (ncp->nc_vlist.le_prev != NULL) {
    322 		LIST_REMOVE(ncp, nc_vlist);
    323 		ncp->nc_vlist.le_prev = NULL;
    324 	}
    325 	if (ncp->nc_dvlist.le_prev != NULL) {
    326 		LIST_REMOVE(ncp, nc_dvlist);
    327 		ncp->nc_dvlist.le_prev = NULL;
    328 	}
    329 }
    330 
    331 /*
    332  * Lock all CPUs to prevent any cache lookup activity.  Conceptually,
    333  * this locks out all "readers".
    334  */
    335 static void
    336 cache_lock_cpus(void)
    337 {
    338 	CPU_INFO_ITERATOR cii;
    339 	struct cpu_info *ci;
    340 	struct nchcpu *cpup;
    341 
    342 	/*
    343 	 * Lock out all CPUs first, then harvest per-cpu stats.  This
    344 	 * is probably not quite as cache-efficient as doing the lock
    345 	 * and harvest at the same time, but allows cache_stat_sysctl()
    346 	 * to make do with a per-cpu lock.
    347 	 */
    348 	for (CPU_INFO_FOREACH(cii, ci)) {
    349 		cpup = ci->ci_data.cpu_nch;
    350 		mutex_enter(&cpup->cpu_lock);
    351 	}
    352 	for (CPU_INFO_FOREACH(cii, ci)) {
    353 		cpup = ci->ci_data.cpu_nch;
    354 		UPDATE(cpup, ncs_goodhits);
    355 		UPDATE(cpup, ncs_neghits);
    356 		UPDATE(cpup, ncs_badhits);
    357 		UPDATE(cpup, ncs_falsehits);
    358 		UPDATE(cpup, ncs_miss);
    359 		UPDATE(cpup, ncs_long);
    360 		UPDATE(cpup, ncs_pass2);
    361 		UPDATE(cpup, ncs_2passes);
    362 		UPDATE(cpup, ncs_revhits);
    363 		UPDATE(cpup, ncs_revmiss);
    364 	}
    365 }
    366 
    367 /*
    368  * Release all CPU locks.
    369  */
    370 static void
    371 cache_unlock_cpus(void)
    372 {
    373 	CPU_INFO_ITERATOR cii;
    374 	struct cpu_info *ci;
    375 	struct nchcpu *cpup;
    376 
    377 	for (CPU_INFO_FOREACH(cii, ci)) {
    378 		cpup = ci->ci_data.cpu_nch;
    379 		mutex_exit(&cpup->cpu_lock);
    380 	}
    381 }
    382 
    383 /*
    384  * Find a single cache entry and return it locked.
    385  * The caller needs to hold namecache_lock or a per-cpu lock to hold
    386  * off cache_reclaim().
    387  */
    388 static struct namecache *
    389 cache_lookup_entry(const struct vnode *dvp, const char *name, size_t namelen)
    390 {
    391 	struct nchashhead *ncpp;
    392 	struct namecache *ncp;
    393 	nchash_t hash;
    394 
    395 	KASSERT(dvp != NULL);
    396 	hash = cache_hash(name, namelen);
    397 	ncpp = &nchashtbl[NCHASH2(hash, dvp)];
    398 
    399 	LIST_FOREACH(ncp, ncpp, nc_hash) {
    400 		/* XXX Needs barrier for Alpha here */
    401 		if (ncp->nc_dvp != dvp ||
    402 		    ncp->nc_nlen != namelen ||
    403 		    memcmp(ncp->nc_name, name, (u_int)ncp->nc_nlen))
    404 		    	continue;
    405 	    	mutex_enter(&ncp->nc_lock);
    406 		if (__predict_true(ncp->nc_dvp == dvp)) {
    407 			ncp->nc_hittime = hardclock_ticks;
    408 			return ncp;
    409 		}
    410 		/* Raced: entry has been nullified. */
    411 		mutex_exit(&ncp->nc_lock);
    412 	}
    413 
    414 	return NULL;
    415 }
    416 
    417 /*
    418  * Look for a the name in the cache. We don't do this
    419  * if the segment name is long, simply so the cache can avoid
    420  * holding long names (which would either waste space, or
    421  * add greatly to the complexity).
    422  *
    423  * Lookup is called with DVP pointing to the directory to search,
    424  * and CNP providing the name of the entry being sought: cn_nameptr
    425  * is the name, cn_namelen is its length, and cn_flags is the flags
    426  * word from the namei operation.
    427  *
    428  * DVP must be locked.
    429  *
    430  * There are three possible non-error return states:
    431  *    1. Nothing was found in the cache. Nothing is known about
    432  *       the requested name.
    433  *    2. A negative entry was found in the cache, meaning that the
    434  *       requested name definitely does not exist.
    435  *    3. A positive entry was found in the cache, meaning that the
    436  *       requested name does exist and that we are providing the
    437  *       vnode.
    438  * In these cases the results are:
    439  *    1. 0 returned; VN is set to NULL.
    440  *    2. 1 returned; VN is set to NULL.
    441  *    3. 1 returned; VN is set to the vnode found.
    442  *
    443  * The additional result argument ISWHT is set to zero, unless a
    444  * negative entry is found that was entered as a whiteout, in which
    445  * case ISWHT is set to one.
    446  *
    447  * The ISWHT_RET argument pointer may be null. In this case an
    448  * assertion is made that the whiteout flag is not set. File systems
    449  * that do not support whiteouts can/should do this.
    450  *
    451  * Filesystems that do support whiteouts should add ISWHITEOUT to
    452  * cnp->cn_flags if ISWHT comes back nonzero.
    453  *
    454  * When a vnode is returned, it is locked, as per the vnode lookup
    455  * locking protocol.
    456  *
    457  * There is no way for this function to fail, in the sense of
    458  * generating an error that requires aborting the namei operation.
    459  *
    460  * (Prior to October 2012, this function returned an integer status,
    461  * and a vnode, and mucked with the flags word in CNP for whiteouts.
    462  * The integer status was -1 for "nothing found", ENOENT for "a
    463  * negative entry found", 0 for "a positive entry found", and possibly
    464  * other errors, and the value of VN might or might not have been set
    465  * depending on what error occurred.)
    466  */
    467 int
    468 cache_lookup(struct vnode *dvp, const char *name, size_t namelen,
    469 	     uint32_t nameiop, uint32_t cnflags,
    470 	     int *iswht_ret, struct vnode **vn_ret)
    471 {
    472 	struct namecache *ncp;
    473 	struct vnode *vp;
    474 	struct nchcpu *cpup;
    475 	int error, ret_value;
    476 
    477 
    478 	/* Establish default result values */
    479 	if (iswht_ret != NULL) {
    480 		*iswht_ret = 0;
    481 	}
    482 	*vn_ret = NULL;
    483 
    484 	if (__predict_false(!doingcache)) {
    485 		return 0;
    486 	}
    487 
    488 	cpup = curcpu()->ci_data.cpu_nch;
    489 	mutex_enter(&cpup->cpu_lock);
    490 	if (__predict_false(namelen > NCHNAMLEN)) {
    491 		COUNT(cpup, ncs_long);
    492 		mutex_exit(&cpup->cpu_lock);
    493 		/* found nothing */
    494 		return 0;
    495 	}
    496 
    497 	ncp = cache_lookup_entry(dvp, name, namelen);
    498 	if (__predict_false(ncp == NULL)) {
    499 		COUNT(cpup, ncs_miss);
    500 		mutex_exit(&cpup->cpu_lock);
    501 		/* found nothing */
    502 		return 0;
    503 	}
    504 	if ((cnflags & MAKEENTRY) == 0) {
    505 		COUNT(cpup, ncs_badhits);
    506 		/*
    507 		 * Last component and we are renaming or deleting,
    508 		 * the cache entry is invalid, or otherwise don't
    509 		 * want cache entry to exist.
    510 		 */
    511 		cache_invalidate(ncp);
    512 		mutex_exit(&ncp->nc_lock);
    513 		mutex_exit(&cpup->cpu_lock);
    514 		/* found nothing */
    515 		return 0;
    516 	}
    517 	if (ncp->nc_vp == NULL) {
    518 		if (iswht_ret != NULL) {
    519 			/*
    520 			 * Restore the ISWHITEOUT flag saved earlier.
    521 			 */
    522 			KASSERT((ncp->nc_flags & ~ISWHITEOUT) == 0);
    523 			*iswht_ret = (ncp->nc_flags & ISWHITEOUT) != 0;
    524 		} else {
    525 			KASSERT(ncp->nc_flags == 0);
    526 		}
    527 
    528 		if (__predict_true(nameiop != CREATE ||
    529 		    (cnflags & ISLASTCN) == 0)) {
    530 			COUNT(cpup, ncs_neghits);
    531 			/* found neg entry; vn is already null from above */
    532 			ret_value = 1;
    533 		} else {
    534 			COUNT(cpup, ncs_badhits);
    535 			/*
    536 			 * Last component and we are renaming or
    537 			 * deleting, the cache entry is invalid,
    538 			 * or otherwise don't want cache entry to
    539 			 * exist.
    540 			 */
    541 			cache_invalidate(ncp);
    542 			/* found nothing */
    543 			ret_value = 0;
    544 		}
    545 		mutex_exit(&ncp->nc_lock);
    546 		mutex_exit(&cpup->cpu_lock);
    547 		return ret_value;
    548 	}
    549 
    550 	vp = ncp->nc_vp;
    551 	mutex_enter(vp->v_interlock);
    552 	mutex_exit(&ncp->nc_lock);
    553 	mutex_exit(&cpup->cpu_lock);
    554 
    555 	/*
    556 	 * Unlocked except for the vnode interlock.  Call vget().
    557 	 */
    558 	error = vget(vp, LK_NOWAIT);
    559 	if (error) {
    560 		KASSERT(error == EBUSY);
    561 		/*
    562 		 * This vnode is being cleaned out.
    563 		 * XXX badhits?
    564 		 */
    565 		COUNT_UNL(cpup, ncs_falsehits);
    566 		/* found nothing */
    567 		return 0;
    568 	}
    569 
    570 	COUNT_UNL(cpup, ncs_goodhits);
    571 	/* found it */
    572 	*vn_ret = vp;
    573 	return 1;
    574 }
    575 
    576 
    577 /*
    578  * Cut-'n-pasted version of the above without the nameiop argument.
    579  */
    580 int
    581 cache_lookup_raw(struct vnode *dvp, const char *name, size_t namelen,
    582 		 uint32_t cnflags,
    583 		 int *iswht_ret, struct vnode **vn_ret)
    584 {
    585 	struct namecache *ncp;
    586 	struct vnode *vp;
    587 	struct nchcpu *cpup;
    588 	int error;
    589 
    590 	/* Establish default results. */
    591 	if (iswht_ret != NULL) {
    592 		*iswht_ret = 0;
    593 	}
    594 	*vn_ret = NULL;
    595 
    596 	if (__predict_false(!doingcache)) {
    597 		/* found nothing */
    598 		return 0;
    599 	}
    600 
    601 	cpup = curcpu()->ci_data.cpu_nch;
    602 	mutex_enter(&cpup->cpu_lock);
    603 	if (__predict_false(namelen > NCHNAMLEN)) {
    604 		COUNT(cpup, ncs_long);
    605 		mutex_exit(&cpup->cpu_lock);
    606 		/* found nothing */
    607 		return 0;
    608 	}
    609 	ncp = cache_lookup_entry(dvp, name, namelen);
    610 	if (__predict_false(ncp == NULL)) {
    611 		COUNT(cpup, ncs_miss);
    612 		mutex_exit(&cpup->cpu_lock);
    613 		/* found nothing */
    614 		return 0;
    615 	}
    616 	vp = ncp->nc_vp;
    617 	if (vp == NULL) {
    618 		/*
    619 		 * Restore the ISWHITEOUT flag saved earlier.
    620 		 */
    621 		if (iswht_ret != NULL) {
    622 			KASSERT((ncp->nc_flags & ~ISWHITEOUT) == 0);
    623 			/*cnp->cn_flags |= ncp->nc_flags;*/
    624 			*iswht_ret = (ncp->nc_flags & ISWHITEOUT) != 0;
    625 		}
    626 		COUNT(cpup, ncs_neghits);
    627 		mutex_exit(&ncp->nc_lock);
    628 		mutex_exit(&cpup->cpu_lock);
    629 		/* found negative entry; vn is already null from above */
    630 		return 1;
    631 	}
    632 	mutex_enter(vp->v_interlock);
    633 	mutex_exit(&ncp->nc_lock);
    634 	mutex_exit(&cpup->cpu_lock);
    635 
    636 	/*
    637 	 * Unlocked except for the vnode interlock.  Call vget().
    638 	 */
    639 	error = vget(vp, LK_NOWAIT);
    640 	if (error) {
    641 		KASSERT(error == EBUSY);
    642 		/*
    643 		 * This vnode is being cleaned out.
    644 		 * XXX badhits?
    645 		 */
    646 		COUNT_UNL(cpup, ncs_falsehits);
    647 		/* found nothing */
    648 		return 0;
    649 	}
    650 
    651 	COUNT_UNL(cpup, ncs_goodhits); /* XXX can be "badhits" */
    652 	/* found it */
    653 	*vn_ret = vp;
    654 	return 1;
    655 }
    656 
    657 /*
    658  * Scan cache looking for name of directory entry pointing at vp.
    659  *
    660  * If the lookup succeeds the vnode is referenced and stored in dvpp.
    661  *
    662  * If bufp is non-NULL, also place the name in the buffer which starts
    663  * at bufp, immediately before *bpp, and move bpp backwards to point
    664  * at the start of it.  (Yes, this is a little baroque, but it's done
    665  * this way to cater to the whims of getcwd).
    666  *
    667  * Returns 0 on success, -1 on cache miss, positive errno on failure.
    668  */
    669 int
    670 cache_revlookup(struct vnode *vp, struct vnode **dvpp, char **bpp, char *bufp)
    671 {
    672 	struct namecache *ncp;
    673 	struct vnode *dvp;
    674 	struct ncvhashhead *nvcpp;
    675 	struct nchcpu *cpup;
    676 	char *bp;
    677 	int error, nlen;
    678 
    679 	if (!doingcache)
    680 		goto out;
    681 
    682 	nvcpp = &ncvhashtbl[NCVHASH(vp)];
    683 
    684 	/*
    685 	 * We increment counters in the local CPU's per-cpu stats.
    686 	 * We don't take the per-cpu lock, however, since this function
    687 	 * is the only place these counters are incremented so no one
    688 	 * will be racing with us to increment them.
    689 	 */
    690 	cpup = curcpu()->ci_data.cpu_nch;
    691 	mutex_enter(namecache_lock);
    692 	LIST_FOREACH(ncp, nvcpp, nc_vhash) {
    693 		mutex_enter(&ncp->nc_lock);
    694 		if (ncp->nc_vp == vp &&
    695 		    (dvp = ncp->nc_dvp) != NULL &&
    696 		    dvp != vp) { 		/* avoid pesky . entries.. */
    697 
    698 #ifdef DIAGNOSTIC
    699 			if (ncp->nc_nlen == 1 &&
    700 			    ncp->nc_name[0] == '.')
    701 				panic("cache_revlookup: found entry for .");
    702 
    703 			if (ncp->nc_nlen == 2 &&
    704 			    ncp->nc_name[0] == '.' &&
    705 			    ncp->nc_name[1] == '.')
    706 				panic("cache_revlookup: found entry for ..");
    707 #endif
    708 			COUNT(cpup, ncs_revhits);
    709 			nlen = ncp->nc_nlen;
    710 
    711 			if (bufp) {
    712 				bp = *bpp;
    713 				bp -= nlen;
    714 				if (bp <= bufp) {
    715 					*dvpp = NULL;
    716 					mutex_exit(&ncp->nc_lock);
    717 					mutex_exit(namecache_lock);
    718 					return (ERANGE);
    719 				}
    720 				memcpy(bp, ncp->nc_name, nlen);
    721 				*bpp = bp;
    722 			}
    723 
    724 			mutex_enter(dvp->v_interlock);
    725 			mutex_exit(&ncp->nc_lock);
    726 			mutex_exit(namecache_lock);
    727 			error = vget(dvp, LK_NOWAIT);
    728 			if (error) {
    729 				KASSERT(error == EBUSY);
    730 				if (bufp)
    731 					(*bpp) += nlen;
    732 				*dvpp = NULL;
    733 				return -1;
    734 			}
    735 			*dvpp = dvp;
    736 			return (0);
    737 		}
    738 		mutex_exit(&ncp->nc_lock);
    739 	}
    740 	COUNT(cpup, ncs_revmiss);
    741 	mutex_exit(namecache_lock);
    742  out:
    743 	*dvpp = NULL;
    744 	return (-1);
    745 }
    746 
    747 /*
    748  * Add an entry to the cache
    749  */
    750 void
    751 cache_enter(struct vnode *dvp, struct vnode *vp,
    752 	    const char *name, size_t namelen, uint32_t cnflags)
    753 {
    754 	struct namecache *ncp;
    755 	struct namecache *oncp;
    756 	struct nchashhead *ncpp;
    757 	struct ncvhashhead *nvcpp;
    758 	nchash_t hash;
    759 
    760 	/* First, check whether we can/should add a cache entry. */
    761 	if ((cnflags & MAKEENTRY) == 0 ||
    762 	    __predict_false(namelen > NCHNAMLEN || !doingcache)) {
    763 		return;
    764 	}
    765 
    766 	if (numcache > desiredvnodes) {
    767 		mutex_enter(namecache_lock);
    768 		cache_ev_forced.ev_count++;
    769 		cache_reclaim();
    770 		mutex_exit(namecache_lock);
    771 	}
    772 
    773 	ncp = pool_cache_get(namecache_cache, PR_WAITOK);
    774 	mutex_enter(namecache_lock);
    775 	numcache++;
    776 
    777 	/*
    778 	 * Concurrent lookups in the same directory may race for a
    779 	 * cache entry.  if there's a duplicated entry, free it.
    780 	 */
    781 	oncp = cache_lookup_entry(dvp, name, namelen);
    782 	if (oncp) {
    783 		cache_invalidate(oncp);
    784 		mutex_exit(&oncp->nc_lock);
    785 	}
    786 
    787 	/* Grab the vnode we just found. */
    788 	mutex_enter(&ncp->nc_lock);
    789 	ncp->nc_vp = vp;
    790 	ncp->nc_flags = 0;
    791 	ncp->nc_hittime = 0;
    792 	ncp->nc_gcqueue = NULL;
    793 	if (vp == NULL) {
    794 		/*
    795 		 * For negative hits, save the ISWHITEOUT flag so we can
    796 		 * restore it later when the cache entry is used again.
    797 		 */
    798 		ncp->nc_flags = cnflags & ISWHITEOUT;
    799 	}
    800 
    801 	/* Fill in cache info. */
    802 	ncp->nc_dvp = dvp;
    803 	LIST_INSERT_HEAD(&dvp->v_dnclist, ncp, nc_dvlist);
    804 	if (vp)
    805 		LIST_INSERT_HEAD(&vp->v_nclist, ncp, nc_vlist);
    806 	else {
    807 		ncp->nc_vlist.le_prev = NULL;
    808 		ncp->nc_vlist.le_next = NULL;
    809 	}
    810 	KASSERT(namelen <= NCHNAMLEN);
    811 	ncp->nc_nlen = namelen;
    812 	memcpy(ncp->nc_name, name, (unsigned)ncp->nc_nlen);
    813 	TAILQ_INSERT_TAIL(&nclruhead, ncp, nc_lru);
    814 	hash = cache_hash(name, namelen);
    815 	ncpp = &nchashtbl[NCHASH2(hash, dvp)];
    816 
    817 	/*
    818 	 * Flush updates before making visible in table.  No need for a
    819 	 * memory barrier on the other side: to see modifications the
    820 	 * list must be followed, meaning a dependent pointer load.
    821 	 * The below is LIST_INSERT_HEAD() inlined, with the memory
    822 	 * barrier included in the correct place.
    823 	 */
    824 	if ((ncp->nc_hash.le_next = ncpp->lh_first) != NULL)
    825 		ncpp->lh_first->nc_hash.le_prev = &ncp->nc_hash.le_next;
    826 	ncp->nc_hash.le_prev = &ncpp->lh_first;
    827 	membar_producer();
    828 	ncpp->lh_first = ncp;
    829 
    830 	ncp->nc_vhash.le_prev = NULL;
    831 	ncp->nc_vhash.le_next = NULL;
    832 
    833 	/*
    834 	 * Create reverse-cache entries (used in getcwd) for directories.
    835 	 * (and in linux procfs exe node)
    836 	 */
    837 	if (vp != NULL &&
    838 	    vp != dvp &&
    839 #ifndef NAMECACHE_ENTER_REVERSE
    840 	    vp->v_type == VDIR &&
    841 #endif
    842 	    (ncp->nc_nlen > 2 ||
    843 	    (ncp->nc_nlen > 1 && ncp->nc_name[1] != '.') ||
    844 	    (/* ncp->nc_nlen > 0 && */ ncp->nc_name[0] != '.'))) {
    845 		nvcpp = &ncvhashtbl[NCVHASH(vp)];
    846 		LIST_INSERT_HEAD(nvcpp, ncp, nc_vhash);
    847 	}
    848 	mutex_exit(&ncp->nc_lock);
    849 	mutex_exit(namecache_lock);
    850 }
    851 
    852 /*
    853  * Name cache initialization, from vfs_init() when we are booting
    854  */
    855 void
    856 nchinit(void)
    857 {
    858 	int error;
    859 
    860 	TAILQ_INIT(&nclruhead);
    861 	namecache_cache = pool_cache_init(sizeof(struct namecache),
    862 	    coherency_unit, 0, 0, "ncache", NULL, IPL_NONE, cache_ctor,
    863 	    cache_dtor, NULL);
    864 	KASSERT(namecache_cache != NULL);
    865 
    866 	namecache_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    867 
    868 	nchashtbl = hashinit(desiredvnodes, HASH_LIST, true, &nchash);
    869 	ncvhashtbl =
    870 #ifdef NAMECACHE_ENTER_REVERSE
    871 	    hashinit(desiredvnodes, HASH_LIST, true, &ncvhash);
    872 #else
    873 	    hashinit(desiredvnodes/8, HASH_LIST, true, &ncvhash);
    874 #endif
    875 
    876 	error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, cache_thread,
    877 	    NULL, NULL, "cachegc");
    878 	if (error != 0)
    879 		panic("nchinit %d", error);
    880 
    881 	evcnt_attach_dynamic(&cache_ev_scan, EVCNT_TYPE_MISC, NULL,
    882 	   "namecache", "entries scanned");
    883 	evcnt_attach_dynamic(&cache_ev_gc, EVCNT_TYPE_MISC, NULL,
    884 	   "namecache", "entries collected");
    885 	evcnt_attach_dynamic(&cache_ev_over, EVCNT_TYPE_MISC, NULL,
    886 	   "namecache", "over scan target");
    887 	evcnt_attach_dynamic(&cache_ev_under, EVCNT_TYPE_MISC, NULL,
    888 	   "namecache", "under scan target");
    889 	evcnt_attach_dynamic(&cache_ev_forced, EVCNT_TYPE_MISC, NULL,
    890 	   "namecache", "forced reclaims");
    891 
    892 	sysctl_cache_stat_setup();
    893 }
    894 
    895 static int
    896 cache_ctor(void *arg, void *obj, int flag)
    897 {
    898 	struct namecache *ncp;
    899 
    900 	ncp = obj;
    901 	mutex_init(&ncp->nc_lock, MUTEX_DEFAULT, IPL_NONE);
    902 
    903 	return 0;
    904 }
    905 
    906 static void
    907 cache_dtor(void *arg, void *obj)
    908 {
    909 	struct namecache *ncp;
    910 
    911 	ncp = obj;
    912 	mutex_destroy(&ncp->nc_lock);
    913 }
    914 
    915 /*
    916  * Called once for each CPU in the system as attached.
    917  */
    918 void
    919 cache_cpu_init(struct cpu_info *ci)
    920 {
    921 	struct nchcpu *cpup;
    922 	size_t sz;
    923 
    924 	sz = roundup2(sizeof(*cpup), coherency_unit) + coherency_unit;
    925 	cpup = kmem_zalloc(sz, KM_SLEEP);
    926 	cpup = (void *)roundup2((uintptr_t)cpup, coherency_unit);
    927 	mutex_init(&cpup->cpu_lock, MUTEX_DEFAULT, IPL_NONE);
    928 	ci->ci_data.cpu_nch = cpup;
    929 }
    930 
    931 /*
    932  * Name cache reinitialization, for when the maximum number of vnodes increases.
    933  */
    934 void
    935 nchreinit(void)
    936 {
    937 	struct namecache *ncp;
    938 	struct nchashhead *oldhash1, *hash1;
    939 	struct ncvhashhead *oldhash2, *hash2;
    940 	u_long i, oldmask1, oldmask2, mask1, mask2;
    941 
    942 	hash1 = hashinit(desiredvnodes, HASH_LIST, true, &mask1);
    943 	hash2 =
    944 #ifdef NAMECACHE_ENTER_REVERSE
    945 	    hashinit(desiredvnodes, HASH_LIST, true, &mask2);
    946 #else
    947 	    hashinit(desiredvnodes/8, HASH_LIST, true, &mask2);
    948 #endif
    949 	mutex_enter(namecache_lock);
    950 	cache_lock_cpus();
    951 	oldhash1 = nchashtbl;
    952 	oldmask1 = nchash;
    953 	nchashtbl = hash1;
    954 	nchash = mask1;
    955 	oldhash2 = ncvhashtbl;
    956 	oldmask2 = ncvhash;
    957 	ncvhashtbl = hash2;
    958 	ncvhash = mask2;
    959 	for (i = 0; i <= oldmask1; i++) {
    960 		while ((ncp = LIST_FIRST(&oldhash1[i])) != NULL) {
    961 			LIST_REMOVE(ncp, nc_hash);
    962 			ncp->nc_hash.le_prev = NULL;
    963 		}
    964 	}
    965 	for (i = 0; i <= oldmask2; i++) {
    966 		while ((ncp = LIST_FIRST(&oldhash2[i])) != NULL) {
    967 			LIST_REMOVE(ncp, nc_vhash);
    968 			ncp->nc_vhash.le_prev = NULL;
    969 		}
    970 	}
    971 	cache_unlock_cpus();
    972 	mutex_exit(namecache_lock);
    973 	hashdone(oldhash1, HASH_LIST, oldmask1);
    974 	hashdone(oldhash2, HASH_LIST, oldmask2);
    975 }
    976 
    977 /*
    978  * Cache flush, a particular vnode; called when a vnode is renamed to
    979  * hide entries that would now be invalid
    980  */
    981 void
    982 cache_purge1(struct vnode *vp, const char *name, size_t namelen, int flags)
    983 {
    984 	struct namecache *ncp, *ncnext;
    985 
    986 	mutex_enter(namecache_lock);
    987 	if (flags & PURGE_PARENTS) {
    988 		for (ncp = LIST_FIRST(&vp->v_nclist); ncp != NULL;
    989 		    ncp = ncnext) {
    990 			ncnext = LIST_NEXT(ncp, nc_vlist);
    991 			mutex_enter(&ncp->nc_lock);
    992 			cache_invalidate(ncp);
    993 			mutex_exit(&ncp->nc_lock);
    994 			cache_disassociate(ncp);
    995 		}
    996 	}
    997 	if (flags & PURGE_CHILDREN) {
    998 		for (ncp = LIST_FIRST(&vp->v_dnclist); ncp != NULL;
    999 		    ncp = ncnext) {
   1000 			ncnext = LIST_NEXT(ncp, nc_dvlist);
   1001 			mutex_enter(&ncp->nc_lock);
   1002 			cache_invalidate(ncp);
   1003 			mutex_exit(&ncp->nc_lock);
   1004 			cache_disassociate(ncp);
   1005 		}
   1006 	}
   1007 	if (name != NULL) {
   1008 		ncp = cache_lookup_entry(vp, name, namelen);
   1009 		if (ncp) {
   1010 			cache_invalidate(ncp);
   1011 			mutex_exit(&ncp->nc_lock);
   1012 			cache_disassociate(ncp);
   1013 		}
   1014 	}
   1015 	mutex_exit(namecache_lock);
   1016 }
   1017 
   1018 /*
   1019  * Cache flush, a whole filesystem; called when filesys is umounted to
   1020  * remove entries that would now be invalid.
   1021  */
   1022 void
   1023 cache_purgevfs(struct mount *mp)
   1024 {
   1025 	struct namecache *ncp, *nxtcp;
   1026 
   1027 	mutex_enter(namecache_lock);
   1028 	for (ncp = TAILQ_FIRST(&nclruhead); ncp != NULL; ncp = nxtcp) {
   1029 		nxtcp = TAILQ_NEXT(ncp, nc_lru);
   1030 		mutex_enter(&ncp->nc_lock);
   1031 		if (ncp->nc_dvp != NULL && ncp->nc_dvp->v_mount == mp) {
   1032 			/* Free the resources we had. */
   1033 			cache_invalidate(ncp);
   1034 			cache_disassociate(ncp);
   1035 		}
   1036 		mutex_exit(&ncp->nc_lock);
   1037 	}
   1038 	cache_reclaim();
   1039 	mutex_exit(namecache_lock);
   1040 }
   1041 
   1042 /*
   1043  * Scan global list invalidating entries until we meet a preset target.
   1044  * Prefer to invalidate entries that have not scored a hit within
   1045  * cache_hottime seconds.  We sort the LRU list only for this routine's
   1046  * benefit.
   1047  */
   1048 static void
   1049 cache_prune(int incache, int target)
   1050 {
   1051 	struct namecache *ncp, *nxtcp, *sentinel;
   1052 	int items, recent, tryharder;
   1053 
   1054 	KASSERT(mutex_owned(namecache_lock));
   1055 
   1056 	items = 0;
   1057 	tryharder = 0;
   1058 	recent = hardclock_ticks - hz * cache_hottime;
   1059 	sentinel = NULL;
   1060 	for (ncp = TAILQ_FIRST(&nclruhead); ncp != NULL; ncp = nxtcp) {
   1061 		if (incache <= target)
   1062 			break;
   1063 		items++;
   1064 		nxtcp = TAILQ_NEXT(ncp, nc_lru);
   1065 		if (ncp == sentinel) {
   1066 			/*
   1067 			 * If we looped back on ourself, then ignore
   1068 			 * recent entries and purge whatever we find.
   1069 			 */
   1070 			tryharder = 1;
   1071 		}
   1072 		if (ncp->nc_dvp == NULL)
   1073 			continue;
   1074 		if (!tryharder && (ncp->nc_hittime - recent) > 0) {
   1075 			if (sentinel == NULL)
   1076 				sentinel = ncp;
   1077 			TAILQ_REMOVE(&nclruhead, ncp, nc_lru);
   1078 			TAILQ_INSERT_TAIL(&nclruhead, ncp, nc_lru);
   1079 			continue;
   1080 		}
   1081 		mutex_enter(&ncp->nc_lock);
   1082 		if (ncp->nc_dvp != NULL) {
   1083 			cache_invalidate(ncp);
   1084 			cache_disassociate(ncp);
   1085 			incache--;
   1086 		}
   1087 		mutex_exit(&ncp->nc_lock);
   1088 	}
   1089 	cache_ev_scan.ev_count += items;
   1090 }
   1091 
   1092 /*
   1093  * Collect dead cache entries from all CPUs and garbage collect.
   1094  */
   1095 static void
   1096 cache_reclaim(void)
   1097 {
   1098 	struct namecache *ncp, *next;
   1099 	int items;
   1100 
   1101 	KASSERT(mutex_owned(namecache_lock));
   1102 
   1103 	/*
   1104 	 * If the number of extant entries not awaiting garbage collection
   1105 	 * exceeds the high water mark, then reclaim stale entries until we
   1106 	 * reach our low water mark.
   1107 	 */
   1108 	items = numcache - cache_gcpend;
   1109 	if (items > (uint64_t)desiredvnodes * cache_hiwat / 100) {
   1110 		cache_prune(items, (int)((uint64_t)desiredvnodes *
   1111 		    cache_lowat / 100));
   1112 		cache_ev_over.ev_count++;
   1113 	} else
   1114 		cache_ev_under.ev_count++;
   1115 
   1116 	/*
   1117 	 * Stop forward lookup activity on all CPUs and garbage collect dead
   1118 	 * entries.
   1119 	 */
   1120 	cache_lock_cpus();
   1121 	ncp = cache_gcqueue;
   1122 	cache_gcqueue = NULL;
   1123 	items = cache_gcpend;
   1124 	cache_gcpend = 0;
   1125 	while (ncp != NULL) {
   1126 		next = ncp->nc_gcqueue;
   1127 		cache_disassociate(ncp);
   1128 		KASSERT(ncp->nc_dvp == NULL);
   1129 		if (ncp->nc_hash.le_prev != NULL) {
   1130 			LIST_REMOVE(ncp, nc_hash);
   1131 			ncp->nc_hash.le_prev = NULL;
   1132 		}
   1133 		pool_cache_put(namecache_cache, ncp);
   1134 		ncp = next;
   1135 	}
   1136 	cache_unlock_cpus();
   1137 	numcache -= items;
   1138 	cache_ev_gc.ev_count += items;
   1139 }
   1140 
   1141 /*
   1142  * Cache maintainence thread, awakening once per second to:
   1143  *
   1144  * => keep number of entries below the high water mark
   1145  * => sort pseudo-LRU list
   1146  * => garbage collect dead entries
   1147  */
   1148 static void
   1149 cache_thread(void *arg)
   1150 {
   1151 
   1152 	mutex_enter(namecache_lock);
   1153 	for (;;) {
   1154 		cache_reclaim();
   1155 		kpause("cachegc", false, hz, namecache_lock);
   1156 	}
   1157 }
   1158 
   1159 #ifdef DDB
   1160 void
   1161 namecache_print(struct vnode *vp, void (*pr)(const char *, ...))
   1162 {
   1163 	struct vnode *dvp = NULL;
   1164 	struct namecache *ncp;
   1165 
   1166 	TAILQ_FOREACH(ncp, &nclruhead, nc_lru) {
   1167 		if (ncp->nc_vp == vp && ncp->nc_dvp != NULL) {
   1168 			(*pr)("name %.*s\n", ncp->nc_nlen, ncp->nc_name);
   1169 			dvp = ncp->nc_dvp;
   1170 		}
   1171 	}
   1172 	if (dvp == NULL) {
   1173 		(*pr)("name not found\n");
   1174 		return;
   1175 	}
   1176 	vp = dvp;
   1177 	TAILQ_FOREACH(ncp, &nclruhead, nc_lru) {
   1178 		if (ncp->nc_vp == vp) {
   1179 			(*pr)("parent %.*s\n", ncp->nc_nlen, ncp->nc_name);
   1180 		}
   1181 	}
   1182 }
   1183 #endif
   1184 
   1185 void
   1186 namecache_count_pass2(void)
   1187 {
   1188 	struct nchcpu *cpup = curcpu()->ci_data.cpu_nch;
   1189 
   1190 	COUNT_UNL(cpup, ncs_pass2);
   1191 }
   1192 
   1193 void
   1194 namecache_count_2passes(void)
   1195 {
   1196 	struct nchcpu *cpup = curcpu()->ci_data.cpu_nch;
   1197 
   1198 	COUNT_UNL(cpup, ncs_2passes);
   1199 }
   1200 
   1201 /*
   1202  * Fetch the current values of the stats.  We return the most
   1203  * recent values harvested into nchstats by cache_reclaim(), which
   1204  * will be less than a second old.
   1205  */
   1206 static int
   1207 cache_stat_sysctl(SYSCTLFN_ARGS)
   1208 {
   1209 	struct nchstats stats;
   1210 	struct nchcpu *my_cpup;
   1211 #ifdef CACHE_STATS_CURRENT
   1212 	CPU_INFO_ITERATOR cii;
   1213 	struct cpu_info *ci;
   1214 #endif	/* CACHE_STATS_CURRENT */
   1215 
   1216 	if (oldp == NULL) {
   1217 		*oldlenp = sizeof(stats);
   1218 		return 0;
   1219 	}
   1220 
   1221 	if (*oldlenp < sizeof(stats)) {
   1222 		*oldlenp = 0;
   1223 		return 0;
   1224 	}
   1225 
   1226 	/*
   1227 	 * Take this CPU's per-cpu lock to hold off cache_reclaim()
   1228 	 * from doing a stats update while doing minimal damage to
   1229 	 * concurrent operations.
   1230 	 */
   1231 	sysctl_unlock();
   1232 	my_cpup = curcpu()->ci_data.cpu_nch;
   1233 	mutex_enter(&my_cpup->cpu_lock);
   1234 	stats = nchstats;
   1235 #ifdef CACHE_STATS_CURRENT
   1236 	for (CPU_INFO_FOREACH(cii, ci)) {
   1237 		struct nchcpu *cpup = ci->ci_data.cpu_nch;
   1238 
   1239 		ADD(stats, cpup, ncs_goodhits);
   1240 		ADD(stats, cpup, ncs_neghits);
   1241 		ADD(stats, cpup, ncs_badhits);
   1242 		ADD(stats, cpup, ncs_falsehits);
   1243 		ADD(stats, cpup, ncs_miss);
   1244 		ADD(stats, cpup, ncs_long);
   1245 		ADD(stats, cpup, ncs_pass2);
   1246 		ADD(stats, cpup, ncs_2passes);
   1247 		ADD(stats, cpup, ncs_revhits);
   1248 		ADD(stats, cpup, ncs_revmiss);
   1249 	}
   1250 #endif	/* CACHE_STATS_CURRENT */
   1251 	mutex_exit(&my_cpup->cpu_lock);
   1252 	sysctl_relock();
   1253 
   1254 	*oldlenp = sizeof(stats);
   1255 	return sysctl_copyout(l, &stats, oldp, sizeof(stats));
   1256 }
   1257 
   1258 static void
   1259 sysctl_cache_stat_setup(void)
   1260 {
   1261 
   1262 	KASSERT(sysctllog == NULL);
   1263 	sysctl_createv(&sysctllog, 0, NULL, NULL,
   1264 		       CTLFLAG_PERMANENT,
   1265 		       CTLTYPE_STRUCT, "namecache_stats",
   1266 		       SYSCTL_DESCR("namecache statistics"),
   1267 		       cache_stat_sysctl, 0, NULL, 0,
   1268 		       CTL_VFS, CTL_CREATE, CTL_EOL);
   1269 }
   1270