vfs_cache.c revision 1.104 1 /* $NetBSD: vfs_cache.c,v 1.104 2015/01/04 19:31:00 pooka Exp $ */
2
3 /*-
4 * Copyright (c) 2008 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright (c) 1989, 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the University nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 * @(#)vfs_cache.c 8.3 (Berkeley) 8/22/94
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: vfs_cache.c,v 1.104 2015/01/04 19:31:00 pooka Exp $");
62
63 #include "opt_ddb.h"
64 #include "opt_revcache.h"
65
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/sysctl.h>
69 #include <sys/time.h>
70 #include <sys/mount.h>
71 #include <sys/vnode.h>
72 #include <sys/namei.h>
73 #include <sys/errno.h>
74 #include <sys/pool.h>
75 #include <sys/mutex.h>
76 #include <sys/atomic.h>
77 #include <sys/kthread.h>
78 #include <sys/kernel.h>
79 #include <sys/cpu.h>
80 #include <sys/evcnt.h>
81
82 #define NAMECACHE_ENTER_REVERSE
83 /*
84 * Name caching works as follows:
85 *
86 * Names found by directory scans are retained in a cache
87 * for future reference. It is managed LRU, so frequently
88 * used names will hang around. Cache is indexed by hash value
89 * obtained from (dvp, name) where dvp refers to the directory
90 * containing name.
91 *
92 * For simplicity (and economy of storage), names longer than
93 * a maximum length of NCHNAMLEN are not cached; they occur
94 * infrequently in any case, and are almost never of interest.
95 *
96 * Upon reaching the last segment of a path, if the reference
97 * is for DELETE, or NOCACHE is set (rewrite), and the
98 * name is located in the cache, it will be dropped.
99 * The entry is dropped also when it was not possible to lock
100 * the cached vnode, either because vget() failed or the generation
101 * number has changed while waiting for the lock.
102 */
103
104 /*
105 * The locking in this subsystem works as follows:
106 *
107 * When an entry is added to the cache, via cache_enter(),
108 * namecache_lock is taken to exclude other writers. The new
109 * entry is added to the hash list in a way which permits
110 * concurrent lookups and invalidations in the cache done on
111 * other CPUs to continue in parallel.
112 *
113 * When a lookup is done in the cache, via cache_lookup() or
114 * cache_lookup_raw(), the per-cpu lock below is taken. This
115 * protects calls to cache_lookup_entry() and cache_invalidate()
116 * against cache_reclaim() but allows lookups to continue in
117 * parallel with cache_enter().
118 *
119 * cache_revlookup() takes namecache_lock to exclude cache_enter()
120 * and cache_reclaim() since the list it operates on is not
121 * maintained to allow concurrent reads.
122 *
123 * When cache_reclaim() is called namecache_lock is held to hold
124 * off calls to cache_enter()/cache_revlookup() and each of the
125 * per-cpu locks is taken to hold off lookups. Holding all these
126 * locks essentially idles the subsystem, ensuring there are no
127 * concurrent references to the cache entries being freed.
128 *
129 * 32 bit per-cpu statistic counters (struct nchstats_percpu) are
130 * incremented when the operations they count are performed while
131 * running on the corresponding CPU. Frequently individual counters
132 * are incremented while holding a lock (either a per-cpu lock or
133 * namecache_lock) sufficient to preclude concurrent increments
134 * being done to the same counter, so non-atomic increments are
135 * done using the COUNT() macro. Counters which are incremented
136 * when one of these locks is not held use the COUNT_UNL() macro
137 * instead. COUNT_UNL() could be defined to do atomic increments
138 * but currently just does what COUNT() does, on the theory that
139 * it is unlikely the non-atomic increment will be interrupted
140 * by something on the same CPU that increments the same counter,
141 * but even if it does happen the consequences aren't serious.
142 *
143 * N.B.: Attempting to protect COUNT_UNL() increments by taking
144 * a per-cpu lock in the namecache_count_*() functions causes
145 * a deadlock. Don't do that, use atomic increments instead if
146 * the imperfections here bug you.
147 *
148 * The 64 bit system-wide statistic counts (struct nchstats) are
149 * maintained by sampling the per-cpu counters periodically, adding
150 * in the deltas since the last samples and recording the current
151 * samples to use to compute the next delta. The sampling is done
152 * as a side effect of cache_reclaim() which is run periodically,
153 * for its own purposes, often enough to avoid overflow of the 32
154 * bit counters. While sampling in this fashion requires no locking
155 * it is never-the-less done only after all locks have been taken by
156 * cache_reclaim() to allow cache_stat_sysctl() to hold off
157 * cache_reclaim() with minimal locking.
158 *
159 * cache_stat_sysctl() takes its CPU's per-cpu lock to hold off
160 * cache_reclaim() so that it can copy the subsystem total stats
161 * without them being concurrently modified. If CACHE_STATS_CURRENT
162 * is defined it also harvests the per-cpu increments into the total,
163 * which again requires cache_reclaim() to be held off.
164 *
165 * The per-cpu data (a lock and the per-cpu stats structures)
166 * are defined next.
167 */
168 struct nchstats_percpu _NAMEI_CACHE_STATS(uint32_t);
169
170 struct nchcpu {
171 kmutex_t cpu_lock;
172 struct nchstats_percpu cpu_stats;
173 /* XXX maybe __cacheline_aligned would improve this? */
174 struct nchstats_percpu cpu_stats_last; /* from last sample */
175 };
176
177 /*
178 * The type for the hash code. While the hash function generates a
179 * u32, the hash code has historically been passed around as a u_long,
180 * and the value is modified by xor'ing a uintptr_t, so it's not
181 * entirely clear what the best type is. For now I'll leave it
182 * unchanged as u_long.
183 */
184
185 typedef u_long nchash_t;
186
187 /*
188 * Structures associated with name cacheing.
189 */
190
191 static kmutex_t *namecache_lock __read_mostly;
192 static pool_cache_t namecache_cache __read_mostly;
193 static TAILQ_HEAD(, namecache) nclruhead __cacheline_aligned;
194
195 static LIST_HEAD(nchashhead, namecache) *nchashtbl __read_mostly;
196 static u_long nchash __read_mostly;
197
198 #define NCHASH2(hash, dvp) \
199 (((hash) ^ ((uintptr_t)(dvp) >> 3)) & nchash)
200
201 static LIST_HEAD(ncvhashhead, namecache) *ncvhashtbl __read_mostly;
202 static u_long ncvhash __read_mostly;
203
204 #define NCVHASH(vp) (((uintptr_t)(vp) >> 3) & ncvhash)
205
206 /* Number of cache entries allocated. */
207 static long numcache __cacheline_aligned;
208
209 /* Garbage collection queue and number of entries pending in it. */
210 static void *cache_gcqueue;
211 static u_int cache_gcpend;
212
213 /* Cache effectiveness statistics. This holds total from per-cpu stats */
214 struct nchstats nchstats __cacheline_aligned;
215
216 /*
217 * Macros to count an event, update the central stats with per-cpu
218 * values and add current per-cpu increments to the subsystem total
219 * last collected by cache_reclaim().
220 */
221 #define CACHE_STATS_CURRENT /* nothing */
222
223 #define COUNT(cpup, f) ((cpup)->cpu_stats.f++)
224
225 #define UPDATE(cpup, f) do { \
226 struct nchcpu *Xcpup = (cpup); \
227 uint32_t Xcnt = (volatile uint32_t) Xcpup->cpu_stats.f; \
228 nchstats.f += Xcnt - Xcpup->cpu_stats_last.f; \
229 Xcpup->cpu_stats_last.f = Xcnt; \
230 } while (/* CONSTCOND */ 0)
231
232 #define ADD(stats, cpup, f) do { \
233 struct nchcpu *Xcpup = (cpup); \
234 stats.f += Xcpup->cpu_stats.f - Xcpup->cpu_stats_last.f; \
235 } while (/* CONSTCOND */ 0)
236
237 /* Do unlocked stats the same way. Use a different name to allow mind changes */
238 #define COUNT_UNL(cpup, f) COUNT((cpup), f)
239
240 static const int cache_lowat = 95;
241 static const int cache_hiwat = 98;
242 static const int cache_hottime = 5; /* number of seconds */
243 static int doingcache = 1; /* 1 => enable the cache */
244
245 static struct evcnt cache_ev_scan;
246 static struct evcnt cache_ev_gc;
247 static struct evcnt cache_ev_over;
248 static struct evcnt cache_ev_under;
249 static struct evcnt cache_ev_forced;
250
251 static void cache_invalidate(struct namecache *);
252 static struct namecache *cache_lookup_entry(
253 const struct vnode *, const char *, size_t);
254 static void cache_thread(void *);
255 static void cache_invalidate(struct namecache *);
256 static void cache_disassociate(struct namecache *);
257 static void cache_reclaim(void);
258 static int cache_ctor(void *, void *, int);
259 static void cache_dtor(void *, void *);
260
261 static struct sysctllog *sysctllog;
262 static void sysctl_cache_stat_setup(void);
263
264 /*
265 * Compute the hash for an entry.
266 *
267 * (This is for now a wrapper around namei_hash, whose interface is
268 * for the time being slightly inconvenient.)
269 */
270 static nchash_t
271 cache_hash(const char *name, size_t namelen)
272 {
273 const char *endptr;
274
275 endptr = name + namelen;
276 return namei_hash(name, &endptr);
277 }
278
279 /*
280 * Invalidate a cache entry and enqueue it for garbage collection.
281 * The caller needs to hold namecache_lock or a per-cpu lock to hold
282 * off cache_reclaim().
283 */
284 static void
285 cache_invalidate(struct namecache *ncp)
286 {
287 void *head;
288
289 KASSERT(mutex_owned(&ncp->nc_lock));
290
291 if (ncp->nc_dvp != NULL) {
292 ncp->nc_vp = NULL;
293 ncp->nc_dvp = NULL;
294 do {
295 head = cache_gcqueue;
296 ncp->nc_gcqueue = head;
297 } while (atomic_cas_ptr(&cache_gcqueue, head, ncp) != head);
298 atomic_inc_uint(&cache_gcpend);
299 }
300 }
301
302 /*
303 * Disassociate a namecache entry from any vnodes it is attached to,
304 * and remove from the global LRU list.
305 */
306 static void
307 cache_disassociate(struct namecache *ncp)
308 {
309
310 KASSERT(mutex_owned(namecache_lock));
311 KASSERT(ncp->nc_dvp == NULL);
312
313 if (ncp->nc_lru.tqe_prev != NULL) {
314 TAILQ_REMOVE(&nclruhead, ncp, nc_lru);
315 ncp->nc_lru.tqe_prev = NULL;
316 }
317 if (ncp->nc_vhash.le_prev != NULL) {
318 LIST_REMOVE(ncp, nc_vhash);
319 ncp->nc_vhash.le_prev = NULL;
320 }
321 if (ncp->nc_vlist.le_prev != NULL) {
322 LIST_REMOVE(ncp, nc_vlist);
323 ncp->nc_vlist.le_prev = NULL;
324 }
325 if (ncp->nc_dvlist.le_prev != NULL) {
326 LIST_REMOVE(ncp, nc_dvlist);
327 ncp->nc_dvlist.le_prev = NULL;
328 }
329 }
330
331 /*
332 * Lock all CPUs to prevent any cache lookup activity. Conceptually,
333 * this locks out all "readers".
334 */
335 static void
336 cache_lock_cpus(void)
337 {
338 CPU_INFO_ITERATOR cii;
339 struct cpu_info *ci;
340 struct nchcpu *cpup;
341
342 /*
343 * Lock out all CPUs first, then harvest per-cpu stats. This
344 * is probably not quite as cache-efficient as doing the lock
345 * and harvest at the same time, but allows cache_stat_sysctl()
346 * to make do with a per-cpu lock.
347 */
348 for (CPU_INFO_FOREACH(cii, ci)) {
349 cpup = ci->ci_data.cpu_nch;
350 mutex_enter(&cpup->cpu_lock);
351 }
352 for (CPU_INFO_FOREACH(cii, ci)) {
353 cpup = ci->ci_data.cpu_nch;
354 UPDATE(cpup, ncs_goodhits);
355 UPDATE(cpup, ncs_neghits);
356 UPDATE(cpup, ncs_badhits);
357 UPDATE(cpup, ncs_falsehits);
358 UPDATE(cpup, ncs_miss);
359 UPDATE(cpup, ncs_long);
360 UPDATE(cpup, ncs_pass2);
361 UPDATE(cpup, ncs_2passes);
362 UPDATE(cpup, ncs_revhits);
363 UPDATE(cpup, ncs_revmiss);
364 }
365 }
366
367 /*
368 * Release all CPU locks.
369 */
370 static void
371 cache_unlock_cpus(void)
372 {
373 CPU_INFO_ITERATOR cii;
374 struct cpu_info *ci;
375 struct nchcpu *cpup;
376
377 for (CPU_INFO_FOREACH(cii, ci)) {
378 cpup = ci->ci_data.cpu_nch;
379 mutex_exit(&cpup->cpu_lock);
380 }
381 }
382
383 /*
384 * Find a single cache entry and return it locked.
385 * The caller needs to hold namecache_lock or a per-cpu lock to hold
386 * off cache_reclaim().
387 */
388 static struct namecache *
389 cache_lookup_entry(const struct vnode *dvp, const char *name, size_t namelen)
390 {
391 struct nchashhead *ncpp;
392 struct namecache *ncp;
393 nchash_t hash;
394
395 KASSERT(dvp != NULL);
396 hash = cache_hash(name, namelen);
397 ncpp = &nchashtbl[NCHASH2(hash, dvp)];
398
399 LIST_FOREACH(ncp, ncpp, nc_hash) {
400 /* XXX Needs barrier for Alpha here */
401 if (ncp->nc_dvp != dvp ||
402 ncp->nc_nlen != namelen ||
403 memcmp(ncp->nc_name, name, (u_int)ncp->nc_nlen))
404 continue;
405 mutex_enter(&ncp->nc_lock);
406 if (__predict_true(ncp->nc_dvp == dvp)) {
407 ncp->nc_hittime = hardclock_ticks;
408 return ncp;
409 }
410 /* Raced: entry has been nullified. */
411 mutex_exit(&ncp->nc_lock);
412 }
413
414 return NULL;
415 }
416
417 /*
418 * Look for a the name in the cache. We don't do this
419 * if the segment name is long, simply so the cache can avoid
420 * holding long names (which would either waste space, or
421 * add greatly to the complexity).
422 *
423 * Lookup is called with DVP pointing to the directory to search,
424 * and CNP providing the name of the entry being sought: cn_nameptr
425 * is the name, cn_namelen is its length, and cn_flags is the flags
426 * word from the namei operation.
427 *
428 * DVP must be locked.
429 *
430 * There are three possible non-error return states:
431 * 1. Nothing was found in the cache. Nothing is known about
432 * the requested name.
433 * 2. A negative entry was found in the cache, meaning that the
434 * requested name definitely does not exist.
435 * 3. A positive entry was found in the cache, meaning that the
436 * requested name does exist and that we are providing the
437 * vnode.
438 * In these cases the results are:
439 * 1. 0 returned; VN is set to NULL.
440 * 2. 1 returned; VN is set to NULL.
441 * 3. 1 returned; VN is set to the vnode found.
442 *
443 * The additional result argument ISWHT is set to zero, unless a
444 * negative entry is found that was entered as a whiteout, in which
445 * case ISWHT is set to one.
446 *
447 * The ISWHT_RET argument pointer may be null. In this case an
448 * assertion is made that the whiteout flag is not set. File systems
449 * that do not support whiteouts can/should do this.
450 *
451 * Filesystems that do support whiteouts should add ISWHITEOUT to
452 * cnp->cn_flags if ISWHT comes back nonzero.
453 *
454 * When a vnode is returned, it is locked, as per the vnode lookup
455 * locking protocol.
456 *
457 * There is no way for this function to fail, in the sense of
458 * generating an error that requires aborting the namei operation.
459 *
460 * (Prior to October 2012, this function returned an integer status,
461 * and a vnode, and mucked with the flags word in CNP for whiteouts.
462 * The integer status was -1 for "nothing found", ENOENT for "a
463 * negative entry found", 0 for "a positive entry found", and possibly
464 * other errors, and the value of VN might or might not have been set
465 * depending on what error occurred.)
466 */
467 int
468 cache_lookup(struct vnode *dvp, const char *name, size_t namelen,
469 uint32_t nameiop, uint32_t cnflags,
470 int *iswht_ret, struct vnode **vn_ret)
471 {
472 struct namecache *ncp;
473 struct vnode *vp;
474 struct nchcpu *cpup;
475 int error, ret_value;
476
477
478 /* Establish default result values */
479 if (iswht_ret != NULL) {
480 *iswht_ret = 0;
481 }
482 *vn_ret = NULL;
483
484 if (__predict_false(!doingcache)) {
485 return 0;
486 }
487
488 cpup = curcpu()->ci_data.cpu_nch;
489 mutex_enter(&cpup->cpu_lock);
490 if (__predict_false(namelen > NCHNAMLEN)) {
491 COUNT(cpup, ncs_long);
492 mutex_exit(&cpup->cpu_lock);
493 /* found nothing */
494 return 0;
495 }
496
497 ncp = cache_lookup_entry(dvp, name, namelen);
498 if (__predict_false(ncp == NULL)) {
499 COUNT(cpup, ncs_miss);
500 mutex_exit(&cpup->cpu_lock);
501 /* found nothing */
502 return 0;
503 }
504 if ((cnflags & MAKEENTRY) == 0) {
505 COUNT(cpup, ncs_badhits);
506 /*
507 * Last component and we are renaming or deleting,
508 * the cache entry is invalid, or otherwise don't
509 * want cache entry to exist.
510 */
511 cache_invalidate(ncp);
512 mutex_exit(&ncp->nc_lock);
513 mutex_exit(&cpup->cpu_lock);
514 /* found nothing */
515 return 0;
516 }
517 if (ncp->nc_vp == NULL) {
518 if (iswht_ret != NULL) {
519 /*
520 * Restore the ISWHITEOUT flag saved earlier.
521 */
522 KASSERT((ncp->nc_flags & ~ISWHITEOUT) == 0);
523 *iswht_ret = (ncp->nc_flags & ISWHITEOUT) != 0;
524 } else {
525 KASSERT(ncp->nc_flags == 0);
526 }
527
528 if (__predict_true(nameiop != CREATE ||
529 (cnflags & ISLASTCN) == 0)) {
530 COUNT(cpup, ncs_neghits);
531 /* found neg entry; vn is already null from above */
532 ret_value = 1;
533 } else {
534 COUNT(cpup, ncs_badhits);
535 /*
536 * Last component and we are renaming or
537 * deleting, the cache entry is invalid,
538 * or otherwise don't want cache entry to
539 * exist.
540 */
541 cache_invalidate(ncp);
542 /* found nothing */
543 ret_value = 0;
544 }
545 mutex_exit(&ncp->nc_lock);
546 mutex_exit(&cpup->cpu_lock);
547 return ret_value;
548 }
549
550 vp = ncp->nc_vp;
551 mutex_enter(vp->v_interlock);
552 mutex_exit(&ncp->nc_lock);
553 mutex_exit(&cpup->cpu_lock);
554
555 /*
556 * Unlocked except for the vnode interlock. Call vget().
557 */
558 error = vget(vp, LK_NOWAIT);
559 if (error) {
560 KASSERT(error == EBUSY);
561 /*
562 * This vnode is being cleaned out.
563 * XXX badhits?
564 */
565 COUNT_UNL(cpup, ncs_falsehits);
566 /* found nothing */
567 return 0;
568 }
569
570 COUNT_UNL(cpup, ncs_goodhits);
571 /* found it */
572 *vn_ret = vp;
573 return 1;
574 }
575
576
577 /*
578 * Cut-'n-pasted version of the above without the nameiop argument.
579 */
580 int
581 cache_lookup_raw(struct vnode *dvp, const char *name, size_t namelen,
582 uint32_t cnflags,
583 int *iswht_ret, struct vnode **vn_ret)
584 {
585 struct namecache *ncp;
586 struct vnode *vp;
587 struct nchcpu *cpup;
588 int error;
589
590 /* Establish default results. */
591 if (iswht_ret != NULL) {
592 *iswht_ret = 0;
593 }
594 *vn_ret = NULL;
595
596 if (__predict_false(!doingcache)) {
597 /* found nothing */
598 return 0;
599 }
600
601 cpup = curcpu()->ci_data.cpu_nch;
602 mutex_enter(&cpup->cpu_lock);
603 if (__predict_false(namelen > NCHNAMLEN)) {
604 COUNT(cpup, ncs_long);
605 mutex_exit(&cpup->cpu_lock);
606 /* found nothing */
607 return 0;
608 }
609 ncp = cache_lookup_entry(dvp, name, namelen);
610 if (__predict_false(ncp == NULL)) {
611 COUNT(cpup, ncs_miss);
612 mutex_exit(&cpup->cpu_lock);
613 /* found nothing */
614 return 0;
615 }
616 vp = ncp->nc_vp;
617 if (vp == NULL) {
618 /*
619 * Restore the ISWHITEOUT flag saved earlier.
620 */
621 if (iswht_ret != NULL) {
622 KASSERT((ncp->nc_flags & ~ISWHITEOUT) == 0);
623 /*cnp->cn_flags |= ncp->nc_flags;*/
624 *iswht_ret = (ncp->nc_flags & ISWHITEOUT) != 0;
625 }
626 COUNT(cpup, ncs_neghits);
627 mutex_exit(&ncp->nc_lock);
628 mutex_exit(&cpup->cpu_lock);
629 /* found negative entry; vn is already null from above */
630 return 1;
631 }
632 mutex_enter(vp->v_interlock);
633 mutex_exit(&ncp->nc_lock);
634 mutex_exit(&cpup->cpu_lock);
635
636 /*
637 * Unlocked except for the vnode interlock. Call vget().
638 */
639 error = vget(vp, LK_NOWAIT);
640 if (error) {
641 KASSERT(error == EBUSY);
642 /*
643 * This vnode is being cleaned out.
644 * XXX badhits?
645 */
646 COUNT_UNL(cpup, ncs_falsehits);
647 /* found nothing */
648 return 0;
649 }
650
651 COUNT_UNL(cpup, ncs_goodhits); /* XXX can be "badhits" */
652 /* found it */
653 *vn_ret = vp;
654 return 1;
655 }
656
657 /*
658 * Scan cache looking for name of directory entry pointing at vp.
659 *
660 * If the lookup succeeds the vnode is referenced and stored in dvpp.
661 *
662 * If bufp is non-NULL, also place the name in the buffer which starts
663 * at bufp, immediately before *bpp, and move bpp backwards to point
664 * at the start of it. (Yes, this is a little baroque, but it's done
665 * this way to cater to the whims of getcwd).
666 *
667 * Returns 0 on success, -1 on cache miss, positive errno on failure.
668 */
669 int
670 cache_revlookup(struct vnode *vp, struct vnode **dvpp, char **bpp, char *bufp)
671 {
672 struct namecache *ncp;
673 struct vnode *dvp;
674 struct ncvhashhead *nvcpp;
675 struct nchcpu *cpup;
676 char *bp;
677 int error, nlen;
678
679 if (!doingcache)
680 goto out;
681
682 nvcpp = &ncvhashtbl[NCVHASH(vp)];
683
684 /*
685 * We increment counters in the local CPU's per-cpu stats.
686 * We don't take the per-cpu lock, however, since this function
687 * is the only place these counters are incremented so no one
688 * will be racing with us to increment them.
689 */
690 cpup = curcpu()->ci_data.cpu_nch;
691 mutex_enter(namecache_lock);
692 LIST_FOREACH(ncp, nvcpp, nc_vhash) {
693 mutex_enter(&ncp->nc_lock);
694 if (ncp->nc_vp == vp &&
695 (dvp = ncp->nc_dvp) != NULL &&
696 dvp != vp) { /* avoid pesky . entries.. */
697
698 #ifdef DIAGNOSTIC
699 if (ncp->nc_nlen == 1 &&
700 ncp->nc_name[0] == '.')
701 panic("cache_revlookup: found entry for .");
702
703 if (ncp->nc_nlen == 2 &&
704 ncp->nc_name[0] == '.' &&
705 ncp->nc_name[1] == '.')
706 panic("cache_revlookup: found entry for ..");
707 #endif
708 COUNT(cpup, ncs_revhits);
709 nlen = ncp->nc_nlen;
710
711 if (bufp) {
712 bp = *bpp;
713 bp -= nlen;
714 if (bp <= bufp) {
715 *dvpp = NULL;
716 mutex_exit(&ncp->nc_lock);
717 mutex_exit(namecache_lock);
718 return (ERANGE);
719 }
720 memcpy(bp, ncp->nc_name, nlen);
721 *bpp = bp;
722 }
723
724 mutex_enter(dvp->v_interlock);
725 mutex_exit(&ncp->nc_lock);
726 mutex_exit(namecache_lock);
727 error = vget(dvp, LK_NOWAIT);
728 if (error) {
729 KASSERT(error == EBUSY);
730 if (bufp)
731 (*bpp) += nlen;
732 *dvpp = NULL;
733 return -1;
734 }
735 *dvpp = dvp;
736 return (0);
737 }
738 mutex_exit(&ncp->nc_lock);
739 }
740 COUNT(cpup, ncs_revmiss);
741 mutex_exit(namecache_lock);
742 out:
743 *dvpp = NULL;
744 return (-1);
745 }
746
747 /*
748 * Add an entry to the cache
749 */
750 void
751 cache_enter(struct vnode *dvp, struct vnode *vp,
752 const char *name, size_t namelen, uint32_t cnflags)
753 {
754 struct namecache *ncp;
755 struct namecache *oncp;
756 struct nchashhead *ncpp;
757 struct ncvhashhead *nvcpp;
758 nchash_t hash;
759
760 /* First, check whether we can/should add a cache entry. */
761 if ((cnflags & MAKEENTRY) == 0 ||
762 __predict_false(namelen > NCHNAMLEN || !doingcache)) {
763 return;
764 }
765
766 if (numcache > desiredvnodes) {
767 mutex_enter(namecache_lock);
768 cache_ev_forced.ev_count++;
769 cache_reclaim();
770 mutex_exit(namecache_lock);
771 }
772
773 ncp = pool_cache_get(namecache_cache, PR_WAITOK);
774 mutex_enter(namecache_lock);
775 numcache++;
776
777 /*
778 * Concurrent lookups in the same directory may race for a
779 * cache entry. if there's a duplicated entry, free it.
780 */
781 oncp = cache_lookup_entry(dvp, name, namelen);
782 if (oncp) {
783 cache_invalidate(oncp);
784 mutex_exit(&oncp->nc_lock);
785 }
786
787 /* Grab the vnode we just found. */
788 mutex_enter(&ncp->nc_lock);
789 ncp->nc_vp = vp;
790 ncp->nc_flags = 0;
791 ncp->nc_hittime = 0;
792 ncp->nc_gcqueue = NULL;
793 if (vp == NULL) {
794 /*
795 * For negative hits, save the ISWHITEOUT flag so we can
796 * restore it later when the cache entry is used again.
797 */
798 ncp->nc_flags = cnflags & ISWHITEOUT;
799 }
800
801 /* Fill in cache info. */
802 ncp->nc_dvp = dvp;
803 LIST_INSERT_HEAD(&dvp->v_dnclist, ncp, nc_dvlist);
804 if (vp)
805 LIST_INSERT_HEAD(&vp->v_nclist, ncp, nc_vlist);
806 else {
807 ncp->nc_vlist.le_prev = NULL;
808 ncp->nc_vlist.le_next = NULL;
809 }
810 KASSERT(namelen <= NCHNAMLEN);
811 ncp->nc_nlen = namelen;
812 memcpy(ncp->nc_name, name, (unsigned)ncp->nc_nlen);
813 TAILQ_INSERT_TAIL(&nclruhead, ncp, nc_lru);
814 hash = cache_hash(name, namelen);
815 ncpp = &nchashtbl[NCHASH2(hash, dvp)];
816
817 /*
818 * Flush updates before making visible in table. No need for a
819 * memory barrier on the other side: to see modifications the
820 * list must be followed, meaning a dependent pointer load.
821 * The below is LIST_INSERT_HEAD() inlined, with the memory
822 * barrier included in the correct place.
823 */
824 if ((ncp->nc_hash.le_next = ncpp->lh_first) != NULL)
825 ncpp->lh_first->nc_hash.le_prev = &ncp->nc_hash.le_next;
826 ncp->nc_hash.le_prev = &ncpp->lh_first;
827 membar_producer();
828 ncpp->lh_first = ncp;
829
830 ncp->nc_vhash.le_prev = NULL;
831 ncp->nc_vhash.le_next = NULL;
832
833 /*
834 * Create reverse-cache entries (used in getcwd) for directories.
835 * (and in linux procfs exe node)
836 */
837 if (vp != NULL &&
838 vp != dvp &&
839 #ifndef NAMECACHE_ENTER_REVERSE
840 vp->v_type == VDIR &&
841 #endif
842 (ncp->nc_nlen > 2 ||
843 (ncp->nc_nlen > 1 && ncp->nc_name[1] != '.') ||
844 (/* ncp->nc_nlen > 0 && */ ncp->nc_name[0] != '.'))) {
845 nvcpp = &ncvhashtbl[NCVHASH(vp)];
846 LIST_INSERT_HEAD(nvcpp, ncp, nc_vhash);
847 }
848 mutex_exit(&ncp->nc_lock);
849 mutex_exit(namecache_lock);
850 }
851
852 /*
853 * Name cache initialization, from vfs_init() when we are booting
854 */
855 void
856 nchinit(void)
857 {
858 int error;
859
860 TAILQ_INIT(&nclruhead);
861 namecache_cache = pool_cache_init(sizeof(struct namecache),
862 coherency_unit, 0, 0, "ncache", NULL, IPL_NONE, cache_ctor,
863 cache_dtor, NULL);
864 KASSERT(namecache_cache != NULL);
865
866 namecache_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
867
868 nchashtbl = hashinit(desiredvnodes, HASH_LIST, true, &nchash);
869 ncvhashtbl =
870 #ifdef NAMECACHE_ENTER_REVERSE
871 hashinit(desiredvnodes, HASH_LIST, true, &ncvhash);
872 #else
873 hashinit(desiredvnodes/8, HASH_LIST, true, &ncvhash);
874 #endif
875
876 error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, cache_thread,
877 NULL, NULL, "cachegc");
878 if (error != 0)
879 panic("nchinit %d", error);
880
881 evcnt_attach_dynamic(&cache_ev_scan, EVCNT_TYPE_MISC, NULL,
882 "namecache", "entries scanned");
883 evcnt_attach_dynamic(&cache_ev_gc, EVCNT_TYPE_MISC, NULL,
884 "namecache", "entries collected");
885 evcnt_attach_dynamic(&cache_ev_over, EVCNT_TYPE_MISC, NULL,
886 "namecache", "over scan target");
887 evcnt_attach_dynamic(&cache_ev_under, EVCNT_TYPE_MISC, NULL,
888 "namecache", "under scan target");
889 evcnt_attach_dynamic(&cache_ev_forced, EVCNT_TYPE_MISC, NULL,
890 "namecache", "forced reclaims");
891
892 sysctl_cache_stat_setup();
893 }
894
895 static int
896 cache_ctor(void *arg, void *obj, int flag)
897 {
898 struct namecache *ncp;
899
900 ncp = obj;
901 mutex_init(&ncp->nc_lock, MUTEX_DEFAULT, IPL_NONE);
902
903 return 0;
904 }
905
906 static void
907 cache_dtor(void *arg, void *obj)
908 {
909 struct namecache *ncp;
910
911 ncp = obj;
912 mutex_destroy(&ncp->nc_lock);
913 }
914
915 /*
916 * Called once for each CPU in the system as attached.
917 */
918 void
919 cache_cpu_init(struct cpu_info *ci)
920 {
921 struct nchcpu *cpup;
922 size_t sz;
923
924 sz = roundup2(sizeof(*cpup), coherency_unit) + coherency_unit;
925 cpup = kmem_zalloc(sz, KM_SLEEP);
926 cpup = (void *)roundup2((uintptr_t)cpup, coherency_unit);
927 mutex_init(&cpup->cpu_lock, MUTEX_DEFAULT, IPL_NONE);
928 ci->ci_data.cpu_nch = cpup;
929 }
930
931 /*
932 * Name cache reinitialization, for when the maximum number of vnodes increases.
933 */
934 void
935 nchreinit(void)
936 {
937 struct namecache *ncp;
938 struct nchashhead *oldhash1, *hash1;
939 struct ncvhashhead *oldhash2, *hash2;
940 u_long i, oldmask1, oldmask2, mask1, mask2;
941
942 hash1 = hashinit(desiredvnodes, HASH_LIST, true, &mask1);
943 hash2 =
944 #ifdef NAMECACHE_ENTER_REVERSE
945 hashinit(desiredvnodes, HASH_LIST, true, &mask2);
946 #else
947 hashinit(desiredvnodes/8, HASH_LIST, true, &mask2);
948 #endif
949 mutex_enter(namecache_lock);
950 cache_lock_cpus();
951 oldhash1 = nchashtbl;
952 oldmask1 = nchash;
953 nchashtbl = hash1;
954 nchash = mask1;
955 oldhash2 = ncvhashtbl;
956 oldmask2 = ncvhash;
957 ncvhashtbl = hash2;
958 ncvhash = mask2;
959 for (i = 0; i <= oldmask1; i++) {
960 while ((ncp = LIST_FIRST(&oldhash1[i])) != NULL) {
961 LIST_REMOVE(ncp, nc_hash);
962 ncp->nc_hash.le_prev = NULL;
963 }
964 }
965 for (i = 0; i <= oldmask2; i++) {
966 while ((ncp = LIST_FIRST(&oldhash2[i])) != NULL) {
967 LIST_REMOVE(ncp, nc_vhash);
968 ncp->nc_vhash.le_prev = NULL;
969 }
970 }
971 cache_unlock_cpus();
972 mutex_exit(namecache_lock);
973 hashdone(oldhash1, HASH_LIST, oldmask1);
974 hashdone(oldhash2, HASH_LIST, oldmask2);
975 }
976
977 /*
978 * Cache flush, a particular vnode; called when a vnode is renamed to
979 * hide entries that would now be invalid
980 */
981 void
982 cache_purge1(struct vnode *vp, const char *name, size_t namelen, int flags)
983 {
984 struct namecache *ncp, *ncnext;
985
986 mutex_enter(namecache_lock);
987 if (flags & PURGE_PARENTS) {
988 for (ncp = LIST_FIRST(&vp->v_nclist); ncp != NULL;
989 ncp = ncnext) {
990 ncnext = LIST_NEXT(ncp, nc_vlist);
991 mutex_enter(&ncp->nc_lock);
992 cache_invalidate(ncp);
993 mutex_exit(&ncp->nc_lock);
994 cache_disassociate(ncp);
995 }
996 }
997 if (flags & PURGE_CHILDREN) {
998 for (ncp = LIST_FIRST(&vp->v_dnclist); ncp != NULL;
999 ncp = ncnext) {
1000 ncnext = LIST_NEXT(ncp, nc_dvlist);
1001 mutex_enter(&ncp->nc_lock);
1002 cache_invalidate(ncp);
1003 mutex_exit(&ncp->nc_lock);
1004 cache_disassociate(ncp);
1005 }
1006 }
1007 if (name != NULL) {
1008 ncp = cache_lookup_entry(vp, name, namelen);
1009 if (ncp) {
1010 cache_invalidate(ncp);
1011 mutex_exit(&ncp->nc_lock);
1012 cache_disassociate(ncp);
1013 }
1014 }
1015 mutex_exit(namecache_lock);
1016 }
1017
1018 /*
1019 * Cache flush, a whole filesystem; called when filesys is umounted to
1020 * remove entries that would now be invalid.
1021 */
1022 void
1023 cache_purgevfs(struct mount *mp)
1024 {
1025 struct namecache *ncp, *nxtcp;
1026
1027 mutex_enter(namecache_lock);
1028 for (ncp = TAILQ_FIRST(&nclruhead); ncp != NULL; ncp = nxtcp) {
1029 nxtcp = TAILQ_NEXT(ncp, nc_lru);
1030 mutex_enter(&ncp->nc_lock);
1031 if (ncp->nc_dvp != NULL && ncp->nc_dvp->v_mount == mp) {
1032 /* Free the resources we had. */
1033 cache_invalidate(ncp);
1034 cache_disassociate(ncp);
1035 }
1036 mutex_exit(&ncp->nc_lock);
1037 }
1038 cache_reclaim();
1039 mutex_exit(namecache_lock);
1040 }
1041
1042 /*
1043 * Scan global list invalidating entries until we meet a preset target.
1044 * Prefer to invalidate entries that have not scored a hit within
1045 * cache_hottime seconds. We sort the LRU list only for this routine's
1046 * benefit.
1047 */
1048 static void
1049 cache_prune(int incache, int target)
1050 {
1051 struct namecache *ncp, *nxtcp, *sentinel;
1052 int items, recent, tryharder;
1053
1054 KASSERT(mutex_owned(namecache_lock));
1055
1056 items = 0;
1057 tryharder = 0;
1058 recent = hardclock_ticks - hz * cache_hottime;
1059 sentinel = NULL;
1060 for (ncp = TAILQ_FIRST(&nclruhead); ncp != NULL; ncp = nxtcp) {
1061 if (incache <= target)
1062 break;
1063 items++;
1064 nxtcp = TAILQ_NEXT(ncp, nc_lru);
1065 if (ncp == sentinel) {
1066 /*
1067 * If we looped back on ourself, then ignore
1068 * recent entries and purge whatever we find.
1069 */
1070 tryharder = 1;
1071 }
1072 if (ncp->nc_dvp == NULL)
1073 continue;
1074 if (!tryharder && (ncp->nc_hittime - recent) > 0) {
1075 if (sentinel == NULL)
1076 sentinel = ncp;
1077 TAILQ_REMOVE(&nclruhead, ncp, nc_lru);
1078 TAILQ_INSERT_TAIL(&nclruhead, ncp, nc_lru);
1079 continue;
1080 }
1081 mutex_enter(&ncp->nc_lock);
1082 if (ncp->nc_dvp != NULL) {
1083 cache_invalidate(ncp);
1084 cache_disassociate(ncp);
1085 incache--;
1086 }
1087 mutex_exit(&ncp->nc_lock);
1088 }
1089 cache_ev_scan.ev_count += items;
1090 }
1091
1092 /*
1093 * Collect dead cache entries from all CPUs and garbage collect.
1094 */
1095 static void
1096 cache_reclaim(void)
1097 {
1098 struct namecache *ncp, *next;
1099 int items;
1100
1101 KASSERT(mutex_owned(namecache_lock));
1102
1103 /*
1104 * If the number of extant entries not awaiting garbage collection
1105 * exceeds the high water mark, then reclaim stale entries until we
1106 * reach our low water mark.
1107 */
1108 items = numcache - cache_gcpend;
1109 if (items > (uint64_t)desiredvnodes * cache_hiwat / 100) {
1110 cache_prune(items, (int)((uint64_t)desiredvnodes *
1111 cache_lowat / 100));
1112 cache_ev_over.ev_count++;
1113 } else
1114 cache_ev_under.ev_count++;
1115
1116 /*
1117 * Stop forward lookup activity on all CPUs and garbage collect dead
1118 * entries.
1119 */
1120 cache_lock_cpus();
1121 ncp = cache_gcqueue;
1122 cache_gcqueue = NULL;
1123 items = cache_gcpend;
1124 cache_gcpend = 0;
1125 while (ncp != NULL) {
1126 next = ncp->nc_gcqueue;
1127 cache_disassociate(ncp);
1128 KASSERT(ncp->nc_dvp == NULL);
1129 if (ncp->nc_hash.le_prev != NULL) {
1130 LIST_REMOVE(ncp, nc_hash);
1131 ncp->nc_hash.le_prev = NULL;
1132 }
1133 pool_cache_put(namecache_cache, ncp);
1134 ncp = next;
1135 }
1136 cache_unlock_cpus();
1137 numcache -= items;
1138 cache_ev_gc.ev_count += items;
1139 }
1140
1141 /*
1142 * Cache maintainence thread, awakening once per second to:
1143 *
1144 * => keep number of entries below the high water mark
1145 * => sort pseudo-LRU list
1146 * => garbage collect dead entries
1147 */
1148 static void
1149 cache_thread(void *arg)
1150 {
1151
1152 mutex_enter(namecache_lock);
1153 for (;;) {
1154 cache_reclaim();
1155 kpause("cachegc", false, hz, namecache_lock);
1156 }
1157 }
1158
1159 #ifdef DDB
1160 void
1161 namecache_print(struct vnode *vp, void (*pr)(const char *, ...))
1162 {
1163 struct vnode *dvp = NULL;
1164 struct namecache *ncp;
1165
1166 TAILQ_FOREACH(ncp, &nclruhead, nc_lru) {
1167 if (ncp->nc_vp == vp && ncp->nc_dvp != NULL) {
1168 (*pr)("name %.*s\n", ncp->nc_nlen, ncp->nc_name);
1169 dvp = ncp->nc_dvp;
1170 }
1171 }
1172 if (dvp == NULL) {
1173 (*pr)("name not found\n");
1174 return;
1175 }
1176 vp = dvp;
1177 TAILQ_FOREACH(ncp, &nclruhead, nc_lru) {
1178 if (ncp->nc_vp == vp) {
1179 (*pr)("parent %.*s\n", ncp->nc_nlen, ncp->nc_name);
1180 }
1181 }
1182 }
1183 #endif
1184
1185 void
1186 namecache_count_pass2(void)
1187 {
1188 struct nchcpu *cpup = curcpu()->ci_data.cpu_nch;
1189
1190 COUNT_UNL(cpup, ncs_pass2);
1191 }
1192
1193 void
1194 namecache_count_2passes(void)
1195 {
1196 struct nchcpu *cpup = curcpu()->ci_data.cpu_nch;
1197
1198 COUNT_UNL(cpup, ncs_2passes);
1199 }
1200
1201 /*
1202 * Fetch the current values of the stats. We return the most
1203 * recent values harvested into nchstats by cache_reclaim(), which
1204 * will be less than a second old.
1205 */
1206 static int
1207 cache_stat_sysctl(SYSCTLFN_ARGS)
1208 {
1209 struct nchstats stats;
1210 struct nchcpu *my_cpup;
1211 #ifdef CACHE_STATS_CURRENT
1212 CPU_INFO_ITERATOR cii;
1213 struct cpu_info *ci;
1214 #endif /* CACHE_STATS_CURRENT */
1215
1216 if (oldp == NULL) {
1217 *oldlenp = sizeof(stats);
1218 return 0;
1219 }
1220
1221 if (*oldlenp < sizeof(stats)) {
1222 *oldlenp = 0;
1223 return 0;
1224 }
1225
1226 /*
1227 * Take this CPU's per-cpu lock to hold off cache_reclaim()
1228 * from doing a stats update while doing minimal damage to
1229 * concurrent operations.
1230 */
1231 sysctl_unlock();
1232 my_cpup = curcpu()->ci_data.cpu_nch;
1233 mutex_enter(&my_cpup->cpu_lock);
1234 stats = nchstats;
1235 #ifdef CACHE_STATS_CURRENT
1236 for (CPU_INFO_FOREACH(cii, ci)) {
1237 struct nchcpu *cpup = ci->ci_data.cpu_nch;
1238
1239 ADD(stats, cpup, ncs_goodhits);
1240 ADD(stats, cpup, ncs_neghits);
1241 ADD(stats, cpup, ncs_badhits);
1242 ADD(stats, cpup, ncs_falsehits);
1243 ADD(stats, cpup, ncs_miss);
1244 ADD(stats, cpup, ncs_long);
1245 ADD(stats, cpup, ncs_pass2);
1246 ADD(stats, cpup, ncs_2passes);
1247 ADD(stats, cpup, ncs_revhits);
1248 ADD(stats, cpup, ncs_revmiss);
1249 }
1250 #endif /* CACHE_STATS_CURRENT */
1251 mutex_exit(&my_cpup->cpu_lock);
1252 sysctl_relock();
1253
1254 *oldlenp = sizeof(stats);
1255 return sysctl_copyout(l, &stats, oldp, sizeof(stats));
1256 }
1257
1258 static void
1259 sysctl_cache_stat_setup(void)
1260 {
1261
1262 KASSERT(sysctllog == NULL);
1263 sysctl_createv(&sysctllog, 0, NULL, NULL,
1264 CTLFLAG_PERMANENT,
1265 CTLTYPE_STRUCT, "namecache_stats",
1266 SYSCTL_DESCR("namecache statistics"),
1267 cache_stat_sysctl, 0, NULL, 0,
1268 CTL_VFS, CTL_CREATE, CTL_EOL);
1269 }
1270