Home | History | Annotate | Line # | Download | only in kern
vfs_cache.c revision 1.107
      1 /*	$NetBSD: vfs_cache.c,v 1.107 2015/08/24 22:50:32 pooka Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * Copyright (c) 1989, 1993
     31  *	The Regents of the University of California.  All rights reserved.
     32  *
     33  * Redistribution and use in source and binary forms, with or without
     34  * modification, are permitted provided that the following conditions
     35  * are met:
     36  * 1. Redistributions of source code must retain the above copyright
     37  *    notice, this list of conditions and the following disclaimer.
     38  * 2. Redistributions in binary form must reproduce the above copyright
     39  *    notice, this list of conditions and the following disclaimer in the
     40  *    documentation and/or other materials provided with the distribution.
     41  * 3. Neither the name of the University nor the names of its contributors
     42  *    may be used to endorse or promote products derived from this software
     43  *    without specific prior written permission.
     44  *
     45  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55  * SUCH DAMAGE.
     56  *
     57  *	@(#)vfs_cache.c	8.3 (Berkeley) 8/22/94
     58  */
     59 
     60 #include <sys/cdefs.h>
     61 __KERNEL_RCSID(0, "$NetBSD: vfs_cache.c,v 1.107 2015/08/24 22:50:32 pooka Exp $");
     62 
     63 #ifdef _KERNEL_OPT
     64 #include "opt_ddb.h"
     65 #include "opt_revcache.h"
     66 #endif
     67 
     68 #include <sys/param.h>
     69 #include <sys/systm.h>
     70 #include <sys/sysctl.h>
     71 #include <sys/time.h>
     72 #include <sys/mount.h>
     73 #include <sys/vnode.h>
     74 #include <sys/namei.h>
     75 #include <sys/errno.h>
     76 #include <sys/pool.h>
     77 #include <sys/mutex.h>
     78 #include <sys/atomic.h>
     79 #include <sys/kthread.h>
     80 #include <sys/kernel.h>
     81 #include <sys/cpu.h>
     82 #include <sys/evcnt.h>
     83 
     84 #define NAMECACHE_ENTER_REVERSE
     85 /*
     86  * Name caching works as follows:
     87  *
     88  * Names found by directory scans are retained in a cache
     89  * for future reference.  It is managed LRU, so frequently
     90  * used names will hang around.  Cache is indexed by hash value
     91  * obtained from (dvp, name) where dvp refers to the directory
     92  * containing name.
     93  *
     94  * For simplicity (and economy of storage), names longer than
     95  * a maximum length of NCHNAMLEN are not cached; they occur
     96  * infrequently in any case, and are almost never of interest.
     97  *
     98  * Upon reaching the last segment of a path, if the reference
     99  * is for DELETE, or NOCACHE is set (rewrite), and the
    100  * name is located in the cache, it will be dropped.
    101  * The entry is dropped also when it was not possible to lock
    102  * the cached vnode, either because vget() failed or the generation
    103  * number has changed while waiting for the lock.
    104  */
    105 
    106 /*
    107  * The locking in this subsystem works as follows:
    108  *
    109  * When an entry is added to the cache, via cache_enter(),
    110  * namecache_lock is taken to exclude other writers.  The new
    111  * entry is added to the hash list in a way which permits
    112  * concurrent lookups and invalidations in the cache done on
    113  * other CPUs to continue in parallel.
    114  *
    115  * When a lookup is done in the cache, via cache_lookup() or
    116  * cache_lookup_raw(), the per-cpu lock below is taken.  This
    117  * protects calls to cache_lookup_entry() and cache_invalidate()
    118  * against cache_reclaim() but allows lookups to continue in
    119  * parallel with cache_enter().
    120  *
    121  * cache_revlookup() takes namecache_lock to exclude cache_enter()
    122  * and cache_reclaim() since the list it operates on is not
    123  * maintained to allow concurrent reads.
    124  *
    125  * When cache_reclaim() is called namecache_lock is held to hold
    126  * off calls to cache_enter()/cache_revlookup() and each of the
    127  * per-cpu locks is taken to hold off lookups.  Holding all these
    128  * locks essentially idles the subsystem, ensuring there are no
    129  * concurrent references to the cache entries being freed.
    130  *
    131  * 32 bit per-cpu statistic counters (struct nchstats_percpu) are
    132  * incremented when the operations they count are performed while
    133  * running on the corresponding CPU.  Frequently individual counters
    134  * are incremented while holding a lock (either a per-cpu lock or
    135  * namecache_lock) sufficient to preclude concurrent increments
    136  * being done to the same counter, so non-atomic increments are
    137  * done using the COUNT() macro.  Counters which are incremented
    138  * when one of these locks is not held use the COUNT_UNL() macro
    139  * instead.  COUNT_UNL() could be defined to do atomic increments
    140  * but currently just does what COUNT() does, on the theory that
    141  * it is unlikely the non-atomic increment will be interrupted
    142  * by something on the same CPU that increments the same counter,
    143  * but even if it does happen the consequences aren't serious.
    144  *
    145  * N.B.: Attempting to protect COUNT_UNL() increments by taking
    146  * a per-cpu lock in the namecache_count_*() functions causes
    147  * a deadlock.  Don't do that, use atomic increments instead if
    148  * the imperfections here bug you.
    149  *
    150  * The 64 bit system-wide statistic counts (struct nchstats) are
    151  * maintained by sampling the per-cpu counters periodically, adding
    152  * in the deltas since the last samples and recording the current
    153  * samples to use to compute the next delta.  The sampling is done
    154  * as a side effect of cache_reclaim() which is run periodically,
    155  * for its own purposes, often enough to avoid overflow of the 32
    156  * bit counters.  While sampling in this fashion requires no locking
    157  * it is never-the-less done only after all locks have been taken by
    158  * cache_reclaim() to allow cache_stat_sysctl() to hold off
    159  * cache_reclaim() with minimal locking.
    160  *
    161  * cache_stat_sysctl() takes its CPU's per-cpu lock to hold off
    162  * cache_reclaim() so that it can copy the subsystem total stats
    163  * without them being concurrently modified.  If CACHE_STATS_CURRENT
    164  * is defined it also harvests the per-cpu increments into the total,
    165  * which again requires cache_reclaim() to be held off.
    166  *
    167  * The per-cpu data (a lock and the per-cpu stats structures)
    168  * are defined next.
    169  */
    170 struct nchstats_percpu _NAMEI_CACHE_STATS(uint32_t);
    171 
    172 struct nchcpu {
    173 	kmutex_t		cpu_lock;
    174 	struct nchstats_percpu	cpu_stats;
    175 	/* XXX maybe __cacheline_aligned would improve this? */
    176 	struct nchstats_percpu	cpu_stats_last;	/* from last sample */
    177 };
    178 
    179 /*
    180  * The type for the hash code. While the hash function generates a
    181  * u32, the hash code has historically been passed around as a u_long,
    182  * and the value is modified by xor'ing a uintptr_t, so it's not
    183  * entirely clear what the best type is. For now I'll leave it
    184  * unchanged as u_long.
    185  */
    186 
    187 typedef u_long nchash_t;
    188 
    189 /*
    190  * Structures associated with name cacheing.
    191  */
    192 
    193 static kmutex_t *namecache_lock __read_mostly;
    194 static pool_cache_t namecache_cache __read_mostly;
    195 static TAILQ_HEAD(, namecache) nclruhead __cacheline_aligned;
    196 
    197 static LIST_HEAD(nchashhead, namecache) *nchashtbl __read_mostly;
    198 static u_long	nchash __read_mostly;
    199 
    200 #define	NCHASH2(hash, dvp)	\
    201 	(((hash) ^ ((uintptr_t)(dvp) >> 3)) & nchash)
    202 
    203 static LIST_HEAD(ncvhashhead, namecache) *ncvhashtbl __read_mostly;
    204 static u_long	ncvhash __read_mostly;
    205 
    206 #define	NCVHASH(vp)		(((uintptr_t)(vp) >> 3) & ncvhash)
    207 
    208 /* Number of cache entries allocated. */
    209 static long	numcache __cacheline_aligned;
    210 
    211 /* Garbage collection queue and number of entries pending in it. */
    212 static void	*cache_gcqueue;
    213 static u_int	cache_gcpend;
    214 
    215 /* Cache effectiveness statistics.  This holds total from per-cpu stats */
    216 struct nchstats	nchstats __cacheline_aligned;
    217 
    218 /*
    219  * Macros to count an event, update the central stats with per-cpu
    220  * values and add current per-cpu increments to the subsystem total
    221  * last collected by cache_reclaim().
    222  */
    223 #define	CACHE_STATS_CURRENT	/* nothing */
    224 
    225 #define	COUNT(cpup, f)	((cpup)->cpu_stats.f++)
    226 
    227 #define	UPDATE(cpup, f) do { \
    228 	struct nchcpu *Xcpup = (cpup); \
    229 	uint32_t Xcnt = (volatile uint32_t) Xcpup->cpu_stats.f; \
    230 	nchstats.f += Xcnt - Xcpup->cpu_stats_last.f; \
    231 	Xcpup->cpu_stats_last.f = Xcnt; \
    232 } while (/* CONSTCOND */ 0)
    233 
    234 #define	ADD(stats, cpup, f) do { \
    235 	struct nchcpu *Xcpup = (cpup); \
    236 	stats.f += Xcpup->cpu_stats.f - Xcpup->cpu_stats_last.f; \
    237 } while (/* CONSTCOND */ 0)
    238 
    239 /* Do unlocked stats the same way. Use a different name to allow mind changes */
    240 #define	COUNT_UNL(cpup, f)	COUNT((cpup), f)
    241 
    242 static const int cache_lowat = 95;
    243 static const int cache_hiwat = 98;
    244 static const int cache_hottime = 5;	/* number of seconds */
    245 static int doingcache = 1;		/* 1 => enable the cache */
    246 
    247 static struct evcnt cache_ev_scan;
    248 static struct evcnt cache_ev_gc;
    249 static struct evcnt cache_ev_over;
    250 static struct evcnt cache_ev_under;
    251 static struct evcnt cache_ev_forced;
    252 
    253 static void cache_invalidate(struct namecache *);
    254 static struct namecache *cache_lookup_entry(
    255     const struct vnode *, const char *, size_t);
    256 static void cache_thread(void *);
    257 static void cache_invalidate(struct namecache *);
    258 static void cache_disassociate(struct namecache *);
    259 static void cache_reclaim(void);
    260 static int cache_ctor(void *, void *, int);
    261 static void cache_dtor(void *, void *);
    262 
    263 static struct sysctllog *sysctllog;
    264 static void sysctl_cache_stat_setup(void);
    265 
    266 /*
    267  * Compute the hash for an entry.
    268  *
    269  * (This is for now a wrapper around namei_hash, whose interface is
    270  * for the time being slightly inconvenient.)
    271  */
    272 static nchash_t
    273 cache_hash(const char *name, size_t namelen)
    274 {
    275 	const char *endptr;
    276 
    277 	endptr = name + namelen;
    278 	return namei_hash(name, &endptr);
    279 }
    280 
    281 /*
    282  * Invalidate a cache entry and enqueue it for garbage collection.
    283  * The caller needs to hold namecache_lock or a per-cpu lock to hold
    284  * off cache_reclaim().
    285  */
    286 static void
    287 cache_invalidate(struct namecache *ncp)
    288 {
    289 	void *head;
    290 
    291 	KASSERT(mutex_owned(&ncp->nc_lock));
    292 
    293 	if (ncp->nc_dvp != NULL) {
    294 		ncp->nc_vp = NULL;
    295 		ncp->nc_dvp = NULL;
    296 		do {
    297 			head = cache_gcqueue;
    298 			ncp->nc_gcqueue = head;
    299 		} while (atomic_cas_ptr(&cache_gcqueue, head, ncp) != head);
    300 		atomic_inc_uint(&cache_gcpend);
    301 	}
    302 }
    303 
    304 /*
    305  * Disassociate a namecache entry from any vnodes it is attached to,
    306  * and remove from the global LRU list.
    307  */
    308 static void
    309 cache_disassociate(struct namecache *ncp)
    310 {
    311 
    312 	KASSERT(mutex_owned(namecache_lock));
    313 	KASSERT(ncp->nc_dvp == NULL);
    314 
    315 	if (ncp->nc_lru.tqe_prev != NULL) {
    316 		TAILQ_REMOVE(&nclruhead, ncp, nc_lru);
    317 		ncp->nc_lru.tqe_prev = NULL;
    318 	}
    319 	if (ncp->nc_vhash.le_prev != NULL) {
    320 		LIST_REMOVE(ncp, nc_vhash);
    321 		ncp->nc_vhash.le_prev = NULL;
    322 	}
    323 	if (ncp->nc_vlist.le_prev != NULL) {
    324 		LIST_REMOVE(ncp, nc_vlist);
    325 		ncp->nc_vlist.le_prev = NULL;
    326 	}
    327 	if (ncp->nc_dvlist.le_prev != NULL) {
    328 		LIST_REMOVE(ncp, nc_dvlist);
    329 		ncp->nc_dvlist.le_prev = NULL;
    330 	}
    331 }
    332 
    333 /*
    334  * Lock all CPUs to prevent any cache lookup activity.  Conceptually,
    335  * this locks out all "readers".
    336  */
    337 static void
    338 cache_lock_cpus(void)
    339 {
    340 	CPU_INFO_ITERATOR cii;
    341 	struct cpu_info *ci;
    342 	struct nchcpu *cpup;
    343 
    344 	/*
    345 	 * Lock out all CPUs first, then harvest per-cpu stats.  This
    346 	 * is probably not quite as cache-efficient as doing the lock
    347 	 * and harvest at the same time, but allows cache_stat_sysctl()
    348 	 * to make do with a per-cpu lock.
    349 	 */
    350 	for (CPU_INFO_FOREACH(cii, ci)) {
    351 		cpup = ci->ci_data.cpu_nch;
    352 		mutex_enter(&cpup->cpu_lock);
    353 	}
    354 	for (CPU_INFO_FOREACH(cii, ci)) {
    355 		cpup = ci->ci_data.cpu_nch;
    356 		UPDATE(cpup, ncs_goodhits);
    357 		UPDATE(cpup, ncs_neghits);
    358 		UPDATE(cpup, ncs_badhits);
    359 		UPDATE(cpup, ncs_falsehits);
    360 		UPDATE(cpup, ncs_miss);
    361 		UPDATE(cpup, ncs_long);
    362 		UPDATE(cpup, ncs_pass2);
    363 		UPDATE(cpup, ncs_2passes);
    364 		UPDATE(cpup, ncs_revhits);
    365 		UPDATE(cpup, ncs_revmiss);
    366 	}
    367 }
    368 
    369 /*
    370  * Release all CPU locks.
    371  */
    372 static void
    373 cache_unlock_cpus(void)
    374 {
    375 	CPU_INFO_ITERATOR cii;
    376 	struct cpu_info *ci;
    377 	struct nchcpu *cpup;
    378 
    379 	for (CPU_INFO_FOREACH(cii, ci)) {
    380 		cpup = ci->ci_data.cpu_nch;
    381 		mutex_exit(&cpup->cpu_lock);
    382 	}
    383 }
    384 
    385 /*
    386  * Find a single cache entry and return it locked.
    387  * The caller needs to hold namecache_lock or a per-cpu lock to hold
    388  * off cache_reclaim().
    389  */
    390 static struct namecache *
    391 cache_lookup_entry(const struct vnode *dvp, const char *name, size_t namelen)
    392 {
    393 	struct nchashhead *ncpp;
    394 	struct namecache *ncp;
    395 	nchash_t hash;
    396 
    397 	KASSERT(dvp != NULL);
    398 	hash = cache_hash(name, namelen);
    399 	ncpp = &nchashtbl[NCHASH2(hash, dvp)];
    400 
    401 	LIST_FOREACH(ncp, ncpp, nc_hash) {
    402 		membar_datadep_consumer();	/* for Alpha... */
    403 		if (ncp->nc_dvp != dvp ||
    404 		    ncp->nc_nlen != namelen ||
    405 		    memcmp(ncp->nc_name, name, (u_int)ncp->nc_nlen))
    406 		    	continue;
    407 	    	mutex_enter(&ncp->nc_lock);
    408 		if (__predict_true(ncp->nc_dvp == dvp)) {
    409 			ncp->nc_hittime = hardclock_ticks;
    410 			return ncp;
    411 		}
    412 		/* Raced: entry has been nullified. */
    413 		mutex_exit(&ncp->nc_lock);
    414 	}
    415 
    416 	return NULL;
    417 }
    418 
    419 /*
    420  * Look for a the name in the cache. We don't do this
    421  * if the segment name is long, simply so the cache can avoid
    422  * holding long names (which would either waste space, or
    423  * add greatly to the complexity).
    424  *
    425  * Lookup is called with DVP pointing to the directory to search,
    426  * and CNP providing the name of the entry being sought: cn_nameptr
    427  * is the name, cn_namelen is its length, and cn_flags is the flags
    428  * word from the namei operation.
    429  *
    430  * DVP must be locked.
    431  *
    432  * There are three possible non-error return states:
    433  *    1. Nothing was found in the cache. Nothing is known about
    434  *       the requested name.
    435  *    2. A negative entry was found in the cache, meaning that the
    436  *       requested name definitely does not exist.
    437  *    3. A positive entry was found in the cache, meaning that the
    438  *       requested name does exist and that we are providing the
    439  *       vnode.
    440  * In these cases the results are:
    441  *    1. 0 returned; VN is set to NULL.
    442  *    2. 1 returned; VN is set to NULL.
    443  *    3. 1 returned; VN is set to the vnode found.
    444  *
    445  * The additional result argument ISWHT is set to zero, unless a
    446  * negative entry is found that was entered as a whiteout, in which
    447  * case ISWHT is set to one.
    448  *
    449  * The ISWHT_RET argument pointer may be null. In this case an
    450  * assertion is made that the whiteout flag is not set. File systems
    451  * that do not support whiteouts can/should do this.
    452  *
    453  * Filesystems that do support whiteouts should add ISWHITEOUT to
    454  * cnp->cn_flags if ISWHT comes back nonzero.
    455  *
    456  * When a vnode is returned, it is locked, as per the vnode lookup
    457  * locking protocol.
    458  *
    459  * There is no way for this function to fail, in the sense of
    460  * generating an error that requires aborting the namei operation.
    461  *
    462  * (Prior to October 2012, this function returned an integer status,
    463  * and a vnode, and mucked with the flags word in CNP for whiteouts.
    464  * The integer status was -1 for "nothing found", ENOENT for "a
    465  * negative entry found", 0 for "a positive entry found", and possibly
    466  * other errors, and the value of VN might or might not have been set
    467  * depending on what error occurred.)
    468  */
    469 int
    470 cache_lookup(struct vnode *dvp, const char *name, size_t namelen,
    471 	     uint32_t nameiop, uint32_t cnflags,
    472 	     int *iswht_ret, struct vnode **vn_ret)
    473 {
    474 	struct namecache *ncp;
    475 	struct vnode *vp;
    476 	struct nchcpu *cpup;
    477 	int error, ret_value;
    478 
    479 
    480 	/* Establish default result values */
    481 	if (iswht_ret != NULL) {
    482 		*iswht_ret = 0;
    483 	}
    484 	*vn_ret = NULL;
    485 
    486 	if (__predict_false(!doingcache)) {
    487 		return 0;
    488 	}
    489 
    490 	cpup = curcpu()->ci_data.cpu_nch;
    491 	mutex_enter(&cpup->cpu_lock);
    492 	if (__predict_false(namelen > NCHNAMLEN)) {
    493 		COUNT(cpup, ncs_long);
    494 		mutex_exit(&cpup->cpu_lock);
    495 		/* found nothing */
    496 		return 0;
    497 	}
    498 
    499 	ncp = cache_lookup_entry(dvp, name, namelen);
    500 	if (__predict_false(ncp == NULL)) {
    501 		COUNT(cpup, ncs_miss);
    502 		mutex_exit(&cpup->cpu_lock);
    503 		/* found nothing */
    504 		return 0;
    505 	}
    506 	if ((cnflags & MAKEENTRY) == 0) {
    507 		COUNT(cpup, ncs_badhits);
    508 		/*
    509 		 * Last component and we are renaming or deleting,
    510 		 * the cache entry is invalid, or otherwise don't
    511 		 * want cache entry to exist.
    512 		 */
    513 		cache_invalidate(ncp);
    514 		mutex_exit(&ncp->nc_lock);
    515 		mutex_exit(&cpup->cpu_lock);
    516 		/* found nothing */
    517 		return 0;
    518 	}
    519 	if (ncp->nc_vp == NULL) {
    520 		if (iswht_ret != NULL) {
    521 			/*
    522 			 * Restore the ISWHITEOUT flag saved earlier.
    523 			 */
    524 			KASSERT((ncp->nc_flags & ~ISWHITEOUT) == 0);
    525 			*iswht_ret = (ncp->nc_flags & ISWHITEOUT) != 0;
    526 		} else {
    527 			KASSERT(ncp->nc_flags == 0);
    528 		}
    529 
    530 		if (__predict_true(nameiop != CREATE ||
    531 		    (cnflags & ISLASTCN) == 0)) {
    532 			COUNT(cpup, ncs_neghits);
    533 			/* found neg entry; vn is already null from above */
    534 			ret_value = 1;
    535 		} else {
    536 			COUNT(cpup, ncs_badhits);
    537 			/*
    538 			 * Last component and we are renaming or
    539 			 * deleting, the cache entry is invalid,
    540 			 * or otherwise don't want cache entry to
    541 			 * exist.
    542 			 */
    543 			cache_invalidate(ncp);
    544 			/* found nothing */
    545 			ret_value = 0;
    546 		}
    547 		mutex_exit(&ncp->nc_lock);
    548 		mutex_exit(&cpup->cpu_lock);
    549 		return ret_value;
    550 	}
    551 
    552 	vp = ncp->nc_vp;
    553 	mutex_enter(vp->v_interlock);
    554 	mutex_exit(&ncp->nc_lock);
    555 	mutex_exit(&cpup->cpu_lock);
    556 
    557 	/*
    558 	 * Unlocked except for the vnode interlock.  Call vget().
    559 	 */
    560 	error = vget(vp, LK_NOWAIT, false /* !wait */);
    561 	if (error) {
    562 		KASSERT(error == EBUSY);
    563 		/*
    564 		 * This vnode is being cleaned out.
    565 		 * XXX badhits?
    566 		 */
    567 		COUNT_UNL(cpup, ncs_falsehits);
    568 		/* found nothing */
    569 		return 0;
    570 	}
    571 
    572 	COUNT_UNL(cpup, ncs_goodhits);
    573 	/* found it */
    574 	*vn_ret = vp;
    575 	return 1;
    576 }
    577 
    578 
    579 /*
    580  * Cut-'n-pasted version of the above without the nameiop argument.
    581  */
    582 int
    583 cache_lookup_raw(struct vnode *dvp, const char *name, size_t namelen,
    584 		 uint32_t cnflags,
    585 		 int *iswht_ret, struct vnode **vn_ret)
    586 {
    587 	struct namecache *ncp;
    588 	struct vnode *vp;
    589 	struct nchcpu *cpup;
    590 	int error;
    591 
    592 	/* Establish default results. */
    593 	if (iswht_ret != NULL) {
    594 		*iswht_ret = 0;
    595 	}
    596 	*vn_ret = NULL;
    597 
    598 	if (__predict_false(!doingcache)) {
    599 		/* found nothing */
    600 		return 0;
    601 	}
    602 
    603 	cpup = curcpu()->ci_data.cpu_nch;
    604 	mutex_enter(&cpup->cpu_lock);
    605 	if (__predict_false(namelen > NCHNAMLEN)) {
    606 		COUNT(cpup, ncs_long);
    607 		mutex_exit(&cpup->cpu_lock);
    608 		/* found nothing */
    609 		return 0;
    610 	}
    611 	ncp = cache_lookup_entry(dvp, name, namelen);
    612 	if (__predict_false(ncp == NULL)) {
    613 		COUNT(cpup, ncs_miss);
    614 		mutex_exit(&cpup->cpu_lock);
    615 		/* found nothing */
    616 		return 0;
    617 	}
    618 	vp = ncp->nc_vp;
    619 	if (vp == NULL) {
    620 		/*
    621 		 * Restore the ISWHITEOUT flag saved earlier.
    622 		 */
    623 		if (iswht_ret != NULL) {
    624 			KASSERT((ncp->nc_flags & ~ISWHITEOUT) == 0);
    625 			/*cnp->cn_flags |= ncp->nc_flags;*/
    626 			*iswht_ret = (ncp->nc_flags & ISWHITEOUT) != 0;
    627 		}
    628 		COUNT(cpup, ncs_neghits);
    629 		mutex_exit(&ncp->nc_lock);
    630 		mutex_exit(&cpup->cpu_lock);
    631 		/* found negative entry; vn is already null from above */
    632 		return 1;
    633 	}
    634 	mutex_enter(vp->v_interlock);
    635 	mutex_exit(&ncp->nc_lock);
    636 	mutex_exit(&cpup->cpu_lock);
    637 
    638 	/*
    639 	 * Unlocked except for the vnode interlock.  Call vget().
    640 	 */
    641 	error = vget(vp, LK_NOWAIT, false /* !wait */);
    642 	if (error) {
    643 		KASSERT(error == EBUSY);
    644 		/*
    645 		 * This vnode is being cleaned out.
    646 		 * XXX badhits?
    647 		 */
    648 		COUNT_UNL(cpup, ncs_falsehits);
    649 		/* found nothing */
    650 		return 0;
    651 	}
    652 
    653 	COUNT_UNL(cpup, ncs_goodhits); /* XXX can be "badhits" */
    654 	/* found it */
    655 	*vn_ret = vp;
    656 	return 1;
    657 }
    658 
    659 /*
    660  * Scan cache looking for name of directory entry pointing at vp.
    661  *
    662  * If the lookup succeeds the vnode is referenced and stored in dvpp.
    663  *
    664  * If bufp is non-NULL, also place the name in the buffer which starts
    665  * at bufp, immediately before *bpp, and move bpp backwards to point
    666  * at the start of it.  (Yes, this is a little baroque, but it's done
    667  * this way to cater to the whims of getcwd).
    668  *
    669  * Returns 0 on success, -1 on cache miss, positive errno on failure.
    670  */
    671 int
    672 cache_revlookup(struct vnode *vp, struct vnode **dvpp, char **bpp, char *bufp)
    673 {
    674 	struct namecache *ncp;
    675 	struct vnode *dvp;
    676 	struct ncvhashhead *nvcpp;
    677 	struct nchcpu *cpup;
    678 	char *bp;
    679 	int error, nlen;
    680 
    681 	if (!doingcache)
    682 		goto out;
    683 
    684 	nvcpp = &ncvhashtbl[NCVHASH(vp)];
    685 
    686 	/*
    687 	 * We increment counters in the local CPU's per-cpu stats.
    688 	 * We don't take the per-cpu lock, however, since this function
    689 	 * is the only place these counters are incremented so no one
    690 	 * will be racing with us to increment them.
    691 	 */
    692 	cpup = curcpu()->ci_data.cpu_nch;
    693 	mutex_enter(namecache_lock);
    694 	LIST_FOREACH(ncp, nvcpp, nc_vhash) {
    695 		mutex_enter(&ncp->nc_lock);
    696 		if (ncp->nc_vp == vp &&
    697 		    (dvp = ncp->nc_dvp) != NULL &&
    698 		    dvp != vp) { 		/* avoid pesky . entries.. */
    699 
    700 #ifdef DIAGNOSTIC
    701 			if (ncp->nc_nlen == 1 &&
    702 			    ncp->nc_name[0] == '.')
    703 				panic("cache_revlookup: found entry for .");
    704 
    705 			if (ncp->nc_nlen == 2 &&
    706 			    ncp->nc_name[0] == '.' &&
    707 			    ncp->nc_name[1] == '.')
    708 				panic("cache_revlookup: found entry for ..");
    709 #endif
    710 			COUNT(cpup, ncs_revhits);
    711 			nlen = ncp->nc_nlen;
    712 
    713 			if (bufp) {
    714 				bp = *bpp;
    715 				bp -= nlen;
    716 				if (bp <= bufp) {
    717 					*dvpp = NULL;
    718 					mutex_exit(&ncp->nc_lock);
    719 					mutex_exit(namecache_lock);
    720 					return (ERANGE);
    721 				}
    722 				memcpy(bp, ncp->nc_name, nlen);
    723 				*bpp = bp;
    724 			}
    725 
    726 			mutex_enter(dvp->v_interlock);
    727 			mutex_exit(&ncp->nc_lock);
    728 			mutex_exit(namecache_lock);
    729 			error = vget(dvp, LK_NOWAIT, false /* !wait */);
    730 			if (error) {
    731 				KASSERT(error == EBUSY);
    732 				if (bufp)
    733 					(*bpp) += nlen;
    734 				*dvpp = NULL;
    735 				return -1;
    736 			}
    737 			*dvpp = dvp;
    738 			return (0);
    739 		}
    740 		mutex_exit(&ncp->nc_lock);
    741 	}
    742 	COUNT(cpup, ncs_revmiss);
    743 	mutex_exit(namecache_lock);
    744  out:
    745 	*dvpp = NULL;
    746 	return (-1);
    747 }
    748 
    749 /*
    750  * Add an entry to the cache
    751  */
    752 void
    753 cache_enter(struct vnode *dvp, struct vnode *vp,
    754 	    const char *name, size_t namelen, uint32_t cnflags)
    755 {
    756 	struct namecache *ncp;
    757 	struct namecache *oncp;
    758 	struct nchashhead *ncpp;
    759 	struct ncvhashhead *nvcpp;
    760 	nchash_t hash;
    761 
    762 	/* First, check whether we can/should add a cache entry. */
    763 	if ((cnflags & MAKEENTRY) == 0 ||
    764 	    __predict_false(namelen > NCHNAMLEN || !doingcache)) {
    765 		return;
    766 	}
    767 
    768 	if (numcache > desiredvnodes) {
    769 		mutex_enter(namecache_lock);
    770 		cache_ev_forced.ev_count++;
    771 		cache_reclaim();
    772 		mutex_exit(namecache_lock);
    773 	}
    774 
    775 	ncp = pool_cache_get(namecache_cache, PR_WAITOK);
    776 	mutex_enter(namecache_lock);
    777 	numcache++;
    778 
    779 	/*
    780 	 * Concurrent lookups in the same directory may race for a
    781 	 * cache entry.  if there's a duplicated entry, free it.
    782 	 */
    783 	oncp = cache_lookup_entry(dvp, name, namelen);
    784 	if (oncp) {
    785 		cache_invalidate(oncp);
    786 		mutex_exit(&oncp->nc_lock);
    787 	}
    788 
    789 	/* Grab the vnode we just found. */
    790 	mutex_enter(&ncp->nc_lock);
    791 	ncp->nc_vp = vp;
    792 	ncp->nc_flags = 0;
    793 	ncp->nc_hittime = 0;
    794 	ncp->nc_gcqueue = NULL;
    795 	if (vp == NULL) {
    796 		/*
    797 		 * For negative hits, save the ISWHITEOUT flag so we can
    798 		 * restore it later when the cache entry is used again.
    799 		 */
    800 		ncp->nc_flags = cnflags & ISWHITEOUT;
    801 	}
    802 
    803 	/* Fill in cache info. */
    804 	ncp->nc_dvp = dvp;
    805 	LIST_INSERT_HEAD(&dvp->v_dnclist, ncp, nc_dvlist);
    806 	if (vp)
    807 		LIST_INSERT_HEAD(&vp->v_nclist, ncp, nc_vlist);
    808 	else {
    809 		ncp->nc_vlist.le_prev = NULL;
    810 		ncp->nc_vlist.le_next = NULL;
    811 	}
    812 	KASSERT(namelen <= NCHNAMLEN);
    813 	ncp->nc_nlen = namelen;
    814 	memcpy(ncp->nc_name, name, (unsigned)ncp->nc_nlen);
    815 	TAILQ_INSERT_TAIL(&nclruhead, ncp, nc_lru);
    816 	hash = cache_hash(name, namelen);
    817 	ncpp = &nchashtbl[NCHASH2(hash, dvp)];
    818 
    819 	/*
    820 	 * Flush updates before making visible in table.  No need for a
    821 	 * memory barrier on the other side: to see modifications the
    822 	 * list must be followed, meaning a dependent pointer load.
    823 	 * The below is LIST_INSERT_HEAD() inlined, with the memory
    824 	 * barrier included in the correct place.
    825 	 */
    826 	if ((ncp->nc_hash.le_next = ncpp->lh_first) != NULL)
    827 		ncpp->lh_first->nc_hash.le_prev = &ncp->nc_hash.le_next;
    828 	ncp->nc_hash.le_prev = &ncpp->lh_first;
    829 	membar_producer();
    830 	ncpp->lh_first = ncp;
    831 
    832 	ncp->nc_vhash.le_prev = NULL;
    833 	ncp->nc_vhash.le_next = NULL;
    834 
    835 	/*
    836 	 * Create reverse-cache entries (used in getcwd) for directories.
    837 	 * (and in linux procfs exe node)
    838 	 */
    839 	if (vp != NULL &&
    840 	    vp != dvp &&
    841 #ifndef NAMECACHE_ENTER_REVERSE
    842 	    vp->v_type == VDIR &&
    843 #endif
    844 	    (ncp->nc_nlen > 2 ||
    845 	    (ncp->nc_nlen > 1 && ncp->nc_name[1] != '.') ||
    846 	    (/* ncp->nc_nlen > 0 && */ ncp->nc_name[0] != '.'))) {
    847 		nvcpp = &ncvhashtbl[NCVHASH(vp)];
    848 		LIST_INSERT_HEAD(nvcpp, ncp, nc_vhash);
    849 	}
    850 	mutex_exit(&ncp->nc_lock);
    851 	mutex_exit(namecache_lock);
    852 }
    853 
    854 /*
    855  * Name cache initialization, from vfs_init() when we are booting
    856  */
    857 void
    858 nchinit(void)
    859 {
    860 	int error;
    861 
    862 	TAILQ_INIT(&nclruhead);
    863 	namecache_cache = pool_cache_init(sizeof(struct namecache),
    864 	    coherency_unit, 0, 0, "ncache", NULL, IPL_NONE, cache_ctor,
    865 	    cache_dtor, NULL);
    866 	KASSERT(namecache_cache != NULL);
    867 
    868 	namecache_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    869 
    870 	nchashtbl = hashinit(desiredvnodes, HASH_LIST, true, &nchash);
    871 	ncvhashtbl =
    872 #ifdef NAMECACHE_ENTER_REVERSE
    873 	    hashinit(desiredvnodes, HASH_LIST, true, &ncvhash);
    874 #else
    875 	    hashinit(desiredvnodes/8, HASH_LIST, true, &ncvhash);
    876 #endif
    877 
    878 	error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, cache_thread,
    879 	    NULL, NULL, "cachegc");
    880 	if (error != 0)
    881 		panic("nchinit %d", error);
    882 
    883 	evcnt_attach_dynamic(&cache_ev_scan, EVCNT_TYPE_MISC, NULL,
    884 	   "namecache", "entries scanned");
    885 	evcnt_attach_dynamic(&cache_ev_gc, EVCNT_TYPE_MISC, NULL,
    886 	   "namecache", "entries collected");
    887 	evcnt_attach_dynamic(&cache_ev_over, EVCNT_TYPE_MISC, NULL,
    888 	   "namecache", "over scan target");
    889 	evcnt_attach_dynamic(&cache_ev_under, EVCNT_TYPE_MISC, NULL,
    890 	   "namecache", "under scan target");
    891 	evcnt_attach_dynamic(&cache_ev_forced, EVCNT_TYPE_MISC, NULL,
    892 	   "namecache", "forced reclaims");
    893 
    894 	sysctl_cache_stat_setup();
    895 }
    896 
    897 static int
    898 cache_ctor(void *arg, void *obj, int flag)
    899 {
    900 	struct namecache *ncp;
    901 
    902 	ncp = obj;
    903 	mutex_init(&ncp->nc_lock, MUTEX_DEFAULT, IPL_NONE);
    904 
    905 	return 0;
    906 }
    907 
    908 static void
    909 cache_dtor(void *arg, void *obj)
    910 {
    911 	struct namecache *ncp;
    912 
    913 	ncp = obj;
    914 	mutex_destroy(&ncp->nc_lock);
    915 }
    916 
    917 /*
    918  * Called once for each CPU in the system as attached.
    919  */
    920 void
    921 cache_cpu_init(struct cpu_info *ci)
    922 {
    923 	struct nchcpu *cpup;
    924 	size_t sz;
    925 
    926 	sz = roundup2(sizeof(*cpup), coherency_unit) + coherency_unit;
    927 	cpup = kmem_zalloc(sz, KM_SLEEP);
    928 	cpup = (void *)roundup2((uintptr_t)cpup, coherency_unit);
    929 	mutex_init(&cpup->cpu_lock, MUTEX_DEFAULT, IPL_NONE);
    930 	ci->ci_data.cpu_nch = cpup;
    931 }
    932 
    933 /*
    934  * Name cache reinitialization, for when the maximum number of vnodes increases.
    935  */
    936 void
    937 nchreinit(void)
    938 {
    939 	struct namecache *ncp;
    940 	struct nchashhead *oldhash1, *hash1;
    941 	struct ncvhashhead *oldhash2, *hash2;
    942 	u_long i, oldmask1, oldmask2, mask1, mask2;
    943 
    944 	hash1 = hashinit(desiredvnodes, HASH_LIST, true, &mask1);
    945 	hash2 =
    946 #ifdef NAMECACHE_ENTER_REVERSE
    947 	    hashinit(desiredvnodes, HASH_LIST, true, &mask2);
    948 #else
    949 	    hashinit(desiredvnodes/8, HASH_LIST, true, &mask2);
    950 #endif
    951 	mutex_enter(namecache_lock);
    952 	cache_lock_cpus();
    953 	oldhash1 = nchashtbl;
    954 	oldmask1 = nchash;
    955 	nchashtbl = hash1;
    956 	nchash = mask1;
    957 	oldhash2 = ncvhashtbl;
    958 	oldmask2 = ncvhash;
    959 	ncvhashtbl = hash2;
    960 	ncvhash = mask2;
    961 	for (i = 0; i <= oldmask1; i++) {
    962 		while ((ncp = LIST_FIRST(&oldhash1[i])) != NULL) {
    963 			LIST_REMOVE(ncp, nc_hash);
    964 			ncp->nc_hash.le_prev = NULL;
    965 		}
    966 	}
    967 	for (i = 0; i <= oldmask2; i++) {
    968 		while ((ncp = LIST_FIRST(&oldhash2[i])) != NULL) {
    969 			LIST_REMOVE(ncp, nc_vhash);
    970 			ncp->nc_vhash.le_prev = NULL;
    971 		}
    972 	}
    973 	cache_unlock_cpus();
    974 	mutex_exit(namecache_lock);
    975 	hashdone(oldhash1, HASH_LIST, oldmask1);
    976 	hashdone(oldhash2, HASH_LIST, oldmask2);
    977 }
    978 
    979 /*
    980  * Cache flush, a particular vnode; called when a vnode is renamed to
    981  * hide entries that would now be invalid
    982  */
    983 void
    984 cache_purge1(struct vnode *vp, const char *name, size_t namelen, int flags)
    985 {
    986 	struct namecache *ncp, *ncnext;
    987 
    988 	mutex_enter(namecache_lock);
    989 	if (flags & PURGE_PARENTS) {
    990 		for (ncp = LIST_FIRST(&vp->v_nclist); ncp != NULL;
    991 		    ncp = ncnext) {
    992 			ncnext = LIST_NEXT(ncp, nc_vlist);
    993 			mutex_enter(&ncp->nc_lock);
    994 			cache_invalidate(ncp);
    995 			mutex_exit(&ncp->nc_lock);
    996 			cache_disassociate(ncp);
    997 		}
    998 	}
    999 	if (flags & PURGE_CHILDREN) {
   1000 		for (ncp = LIST_FIRST(&vp->v_dnclist); ncp != NULL;
   1001 		    ncp = ncnext) {
   1002 			ncnext = LIST_NEXT(ncp, nc_dvlist);
   1003 			mutex_enter(&ncp->nc_lock);
   1004 			cache_invalidate(ncp);
   1005 			mutex_exit(&ncp->nc_lock);
   1006 			cache_disassociate(ncp);
   1007 		}
   1008 	}
   1009 	if (name != NULL) {
   1010 		ncp = cache_lookup_entry(vp, name, namelen);
   1011 		if (ncp) {
   1012 			cache_invalidate(ncp);
   1013 			mutex_exit(&ncp->nc_lock);
   1014 			cache_disassociate(ncp);
   1015 		}
   1016 	}
   1017 	mutex_exit(namecache_lock);
   1018 }
   1019 
   1020 /*
   1021  * Cache flush, a whole filesystem; called when filesys is umounted to
   1022  * remove entries that would now be invalid.
   1023  */
   1024 void
   1025 cache_purgevfs(struct mount *mp)
   1026 {
   1027 	struct namecache *ncp, *nxtcp;
   1028 
   1029 	mutex_enter(namecache_lock);
   1030 	for (ncp = TAILQ_FIRST(&nclruhead); ncp != NULL; ncp = nxtcp) {
   1031 		nxtcp = TAILQ_NEXT(ncp, nc_lru);
   1032 		mutex_enter(&ncp->nc_lock);
   1033 		if (ncp->nc_dvp != NULL && ncp->nc_dvp->v_mount == mp) {
   1034 			/* Free the resources we had. */
   1035 			cache_invalidate(ncp);
   1036 			cache_disassociate(ncp);
   1037 		}
   1038 		mutex_exit(&ncp->nc_lock);
   1039 	}
   1040 	cache_reclaim();
   1041 	mutex_exit(namecache_lock);
   1042 }
   1043 
   1044 /*
   1045  * Scan global list invalidating entries until we meet a preset target.
   1046  * Prefer to invalidate entries that have not scored a hit within
   1047  * cache_hottime seconds.  We sort the LRU list only for this routine's
   1048  * benefit.
   1049  */
   1050 static void
   1051 cache_prune(int incache, int target)
   1052 {
   1053 	struct namecache *ncp, *nxtcp, *sentinel;
   1054 	int items, recent, tryharder;
   1055 
   1056 	KASSERT(mutex_owned(namecache_lock));
   1057 
   1058 	items = 0;
   1059 	tryharder = 0;
   1060 	recent = hardclock_ticks - hz * cache_hottime;
   1061 	sentinel = NULL;
   1062 	for (ncp = TAILQ_FIRST(&nclruhead); ncp != NULL; ncp = nxtcp) {
   1063 		if (incache <= target)
   1064 			break;
   1065 		items++;
   1066 		nxtcp = TAILQ_NEXT(ncp, nc_lru);
   1067 		if (ncp == sentinel) {
   1068 			/*
   1069 			 * If we looped back on ourself, then ignore
   1070 			 * recent entries and purge whatever we find.
   1071 			 */
   1072 			tryharder = 1;
   1073 		}
   1074 		if (ncp->nc_dvp == NULL)
   1075 			continue;
   1076 		if (!tryharder && (ncp->nc_hittime - recent) > 0) {
   1077 			if (sentinel == NULL)
   1078 				sentinel = ncp;
   1079 			TAILQ_REMOVE(&nclruhead, ncp, nc_lru);
   1080 			TAILQ_INSERT_TAIL(&nclruhead, ncp, nc_lru);
   1081 			continue;
   1082 		}
   1083 		mutex_enter(&ncp->nc_lock);
   1084 		if (ncp->nc_dvp != NULL) {
   1085 			cache_invalidate(ncp);
   1086 			cache_disassociate(ncp);
   1087 			incache--;
   1088 		}
   1089 		mutex_exit(&ncp->nc_lock);
   1090 	}
   1091 	cache_ev_scan.ev_count += items;
   1092 }
   1093 
   1094 /*
   1095  * Collect dead cache entries from all CPUs and garbage collect.
   1096  */
   1097 static void
   1098 cache_reclaim(void)
   1099 {
   1100 	struct namecache *ncp, *next;
   1101 	int items;
   1102 
   1103 	KASSERT(mutex_owned(namecache_lock));
   1104 
   1105 	/*
   1106 	 * If the number of extant entries not awaiting garbage collection
   1107 	 * exceeds the high water mark, then reclaim stale entries until we
   1108 	 * reach our low water mark.
   1109 	 */
   1110 	items = numcache - cache_gcpend;
   1111 	if (items > (uint64_t)desiredvnodes * cache_hiwat / 100) {
   1112 		cache_prune(items, (int)((uint64_t)desiredvnodes *
   1113 		    cache_lowat / 100));
   1114 		cache_ev_over.ev_count++;
   1115 	} else
   1116 		cache_ev_under.ev_count++;
   1117 
   1118 	/*
   1119 	 * Stop forward lookup activity on all CPUs and garbage collect dead
   1120 	 * entries.
   1121 	 */
   1122 	cache_lock_cpus();
   1123 	ncp = cache_gcqueue;
   1124 	cache_gcqueue = NULL;
   1125 	items = cache_gcpend;
   1126 	cache_gcpend = 0;
   1127 	while (ncp != NULL) {
   1128 		next = ncp->nc_gcqueue;
   1129 		cache_disassociate(ncp);
   1130 		KASSERT(ncp->nc_dvp == NULL);
   1131 		if (ncp->nc_hash.le_prev != NULL) {
   1132 			LIST_REMOVE(ncp, nc_hash);
   1133 			ncp->nc_hash.le_prev = NULL;
   1134 		}
   1135 		pool_cache_put(namecache_cache, ncp);
   1136 		ncp = next;
   1137 	}
   1138 	cache_unlock_cpus();
   1139 	numcache -= items;
   1140 	cache_ev_gc.ev_count += items;
   1141 }
   1142 
   1143 /*
   1144  * Cache maintainence thread, awakening once per second to:
   1145  *
   1146  * => keep number of entries below the high water mark
   1147  * => sort pseudo-LRU list
   1148  * => garbage collect dead entries
   1149  */
   1150 static void
   1151 cache_thread(void *arg)
   1152 {
   1153 
   1154 	mutex_enter(namecache_lock);
   1155 	for (;;) {
   1156 		cache_reclaim();
   1157 		kpause("cachegc", false, hz, namecache_lock);
   1158 	}
   1159 }
   1160 
   1161 #ifdef DDB
   1162 void
   1163 namecache_print(struct vnode *vp, void (*pr)(const char *, ...))
   1164 {
   1165 	struct vnode *dvp = NULL;
   1166 	struct namecache *ncp;
   1167 
   1168 	TAILQ_FOREACH(ncp, &nclruhead, nc_lru) {
   1169 		if (ncp->nc_vp == vp && ncp->nc_dvp != NULL) {
   1170 			(*pr)("name %.*s\n", ncp->nc_nlen, ncp->nc_name);
   1171 			dvp = ncp->nc_dvp;
   1172 		}
   1173 	}
   1174 	if (dvp == NULL) {
   1175 		(*pr)("name not found\n");
   1176 		return;
   1177 	}
   1178 	vp = dvp;
   1179 	TAILQ_FOREACH(ncp, &nclruhead, nc_lru) {
   1180 		if (ncp->nc_vp == vp) {
   1181 			(*pr)("parent %.*s\n", ncp->nc_nlen, ncp->nc_name);
   1182 		}
   1183 	}
   1184 }
   1185 #endif
   1186 
   1187 void
   1188 namecache_count_pass2(void)
   1189 {
   1190 	struct nchcpu *cpup = curcpu()->ci_data.cpu_nch;
   1191 
   1192 	COUNT_UNL(cpup, ncs_pass2);
   1193 }
   1194 
   1195 void
   1196 namecache_count_2passes(void)
   1197 {
   1198 	struct nchcpu *cpup = curcpu()->ci_data.cpu_nch;
   1199 
   1200 	COUNT_UNL(cpup, ncs_2passes);
   1201 }
   1202 
   1203 /*
   1204  * Fetch the current values of the stats.  We return the most
   1205  * recent values harvested into nchstats by cache_reclaim(), which
   1206  * will be less than a second old.
   1207  */
   1208 static int
   1209 cache_stat_sysctl(SYSCTLFN_ARGS)
   1210 {
   1211 	struct nchstats stats;
   1212 	struct nchcpu *my_cpup;
   1213 #ifdef CACHE_STATS_CURRENT
   1214 	CPU_INFO_ITERATOR cii;
   1215 	struct cpu_info *ci;
   1216 #endif	/* CACHE_STATS_CURRENT */
   1217 
   1218 	if (oldp == NULL) {
   1219 		*oldlenp = sizeof(stats);
   1220 		return 0;
   1221 	}
   1222 
   1223 	if (*oldlenp < sizeof(stats)) {
   1224 		*oldlenp = 0;
   1225 		return 0;
   1226 	}
   1227 
   1228 	/*
   1229 	 * Take this CPU's per-cpu lock to hold off cache_reclaim()
   1230 	 * from doing a stats update while doing minimal damage to
   1231 	 * concurrent operations.
   1232 	 */
   1233 	sysctl_unlock();
   1234 	my_cpup = curcpu()->ci_data.cpu_nch;
   1235 	mutex_enter(&my_cpup->cpu_lock);
   1236 	stats = nchstats;
   1237 #ifdef CACHE_STATS_CURRENT
   1238 	for (CPU_INFO_FOREACH(cii, ci)) {
   1239 		struct nchcpu *cpup = ci->ci_data.cpu_nch;
   1240 
   1241 		ADD(stats, cpup, ncs_goodhits);
   1242 		ADD(stats, cpup, ncs_neghits);
   1243 		ADD(stats, cpup, ncs_badhits);
   1244 		ADD(stats, cpup, ncs_falsehits);
   1245 		ADD(stats, cpup, ncs_miss);
   1246 		ADD(stats, cpup, ncs_long);
   1247 		ADD(stats, cpup, ncs_pass2);
   1248 		ADD(stats, cpup, ncs_2passes);
   1249 		ADD(stats, cpup, ncs_revhits);
   1250 		ADD(stats, cpup, ncs_revmiss);
   1251 	}
   1252 #endif	/* CACHE_STATS_CURRENT */
   1253 	mutex_exit(&my_cpup->cpu_lock);
   1254 	sysctl_relock();
   1255 
   1256 	*oldlenp = sizeof(stats);
   1257 	return sysctl_copyout(l, &stats, oldp, sizeof(stats));
   1258 }
   1259 
   1260 static void
   1261 sysctl_cache_stat_setup(void)
   1262 {
   1263 
   1264 	KASSERT(sysctllog == NULL);
   1265 	sysctl_createv(&sysctllog, 0, NULL, NULL,
   1266 		       CTLFLAG_PERMANENT,
   1267 		       CTLTYPE_STRUCT, "namecache_stats",
   1268 		       SYSCTL_DESCR("namecache statistics"),
   1269 		       cache_stat_sysctl, 0, NULL, 0,
   1270 		       CTL_VFS, CTL_CREATE, CTL_EOL);
   1271 }
   1272