Home | History | Annotate | Line # | Download | only in kern
vfs_cache.c revision 1.112
      1 /*	$NetBSD: vfs_cache.c,v 1.112 2017/01/11 09:04:37 hannken Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * Copyright (c) 1989, 1993
     31  *	The Regents of the University of California.  All rights reserved.
     32  *
     33  * Redistribution and use in source and binary forms, with or without
     34  * modification, are permitted provided that the following conditions
     35  * are met:
     36  * 1. Redistributions of source code must retain the above copyright
     37  *    notice, this list of conditions and the following disclaimer.
     38  * 2. Redistributions in binary form must reproduce the above copyright
     39  *    notice, this list of conditions and the following disclaimer in the
     40  *    documentation and/or other materials provided with the distribution.
     41  * 3. Neither the name of the University nor the names of its contributors
     42  *    may be used to endorse or promote products derived from this software
     43  *    without specific prior written permission.
     44  *
     45  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55  * SUCH DAMAGE.
     56  *
     57  *	@(#)vfs_cache.c	8.3 (Berkeley) 8/22/94
     58  */
     59 
     60 #include <sys/cdefs.h>
     61 __KERNEL_RCSID(0, "$NetBSD: vfs_cache.c,v 1.112 2017/01/11 09:04:37 hannken Exp $");
     62 
     63 #ifdef _KERNEL_OPT
     64 #include "opt_ddb.h"
     65 #include "opt_revcache.h"
     66 #include "opt_dtrace.h"
     67 #endif
     68 
     69 #include <sys/param.h>
     70 #include <sys/systm.h>
     71 #include <sys/sysctl.h>
     72 #include <sys/time.h>
     73 #include <sys/mount.h>
     74 #include <sys/vnode_impl.h>
     75 #include <sys/namei.h>
     76 #include <sys/errno.h>
     77 #include <sys/pool.h>
     78 #include <sys/mutex.h>
     79 #include <sys/atomic.h>
     80 #include <sys/kthread.h>
     81 #include <sys/kernel.h>
     82 #include <sys/cpu.h>
     83 #include <sys/evcnt.h>
     84 #include <sys/sdt.h>
     85 
     86 #define NAMECACHE_ENTER_REVERSE
     87 /*
     88  * Name caching works as follows:
     89  *
     90  * Names found by directory scans are retained in a cache
     91  * for future reference.  It is managed LRU, so frequently
     92  * used names will hang around.  Cache is indexed by hash value
     93  * obtained from (dvp, name) where dvp refers to the directory
     94  * containing name.
     95  *
     96  * For simplicity (and economy of storage), names longer than
     97  * a maximum length of NCHNAMLEN are not cached; they occur
     98  * infrequently in any case, and are almost never of interest.
     99  *
    100  * Upon reaching the last segment of a path, if the reference
    101  * is for DELETE, or NOCACHE is set (rewrite), and the
    102  * name is located in the cache, it will be dropped.
    103  * The entry is dropped also when it was not possible to lock
    104  * the cached vnode, either because vcache_tryvget() failed or
    105  * the generation number has changed while waiting for the lock.
    106  */
    107 
    108 /*
    109  * The locking in this subsystem works as follows:
    110  *
    111  * When an entry is added to the cache, via cache_enter(),
    112  * namecache_lock is taken to exclude other writers.  The new
    113  * entry is added to the hash list in a way which permits
    114  * concurrent lookups and invalidations in the cache done on
    115  * other CPUs to continue in parallel.
    116  *
    117  * When a lookup is done in the cache, via cache_lookup() or
    118  * cache_lookup_raw(), the per-cpu lock below is taken.  This
    119  * protects calls to cache_lookup_entry() and cache_invalidate()
    120  * against cache_reclaim() but allows lookups to continue in
    121  * parallel with cache_enter().
    122  *
    123  * cache_revlookup() takes namecache_lock to exclude cache_enter()
    124  * and cache_reclaim() since the list it operates on is not
    125  * maintained to allow concurrent reads.
    126  *
    127  * When cache_reclaim() is called namecache_lock is held to hold
    128  * off calls to cache_enter()/cache_revlookup() and each of the
    129  * per-cpu locks is taken to hold off lookups.  Holding all these
    130  * locks essentially idles the subsystem, ensuring there are no
    131  * concurrent references to the cache entries being freed.
    132  *
    133  * 32 bit per-cpu statistic counters (struct nchstats_percpu) are
    134  * incremented when the operations they count are performed while
    135  * running on the corresponding CPU.  Frequently individual counters
    136  * are incremented while holding a lock (either a per-cpu lock or
    137  * namecache_lock) sufficient to preclude concurrent increments
    138  * being done to the same counter, so non-atomic increments are
    139  * done using the COUNT() macro.  Counters which are incremented
    140  * when one of these locks is not held use the COUNT_UNL() macro
    141  * instead.  COUNT_UNL() could be defined to do atomic increments
    142  * but currently just does what COUNT() does, on the theory that
    143  * it is unlikely the non-atomic increment will be interrupted
    144  * by something on the same CPU that increments the same counter,
    145  * but even if it does happen the consequences aren't serious.
    146  *
    147  * N.B.: Attempting to protect COUNT_UNL() increments by taking
    148  * a per-cpu lock in the namecache_count_*() functions causes
    149  * a deadlock.  Don't do that, use atomic increments instead if
    150  * the imperfections here bug you.
    151  *
    152  * The 64 bit system-wide statistic counts (struct nchstats) are
    153  * maintained by sampling the per-cpu counters periodically, adding
    154  * in the deltas since the last samples and recording the current
    155  * samples to use to compute the next delta.  The sampling is done
    156  * as a side effect of cache_reclaim() which is run periodically,
    157  * for its own purposes, often enough to avoid overflow of the 32
    158  * bit counters.  While sampling in this fashion requires no locking
    159  * it is never-the-less done only after all locks have been taken by
    160  * cache_reclaim() to allow cache_stat_sysctl() to hold off
    161  * cache_reclaim() with minimal locking.
    162  *
    163  * cache_stat_sysctl() takes its CPU's per-cpu lock to hold off
    164  * cache_reclaim() so that it can copy the subsystem total stats
    165  * without them being concurrently modified.  If CACHE_STATS_CURRENT
    166  * is defined it also harvests the per-cpu increments into the total,
    167  * which again requires cache_reclaim() to be held off.
    168  *
    169  * The per-cpu data (a lock and the per-cpu stats structures)
    170  * are defined next.
    171  */
    172 struct nchstats_percpu _NAMEI_CACHE_STATS(uint32_t);
    173 
    174 struct nchcpu {
    175 	kmutex_t		cpu_lock;
    176 	struct nchstats_percpu	cpu_stats;
    177 	/* XXX maybe __cacheline_aligned would improve this? */
    178 	struct nchstats_percpu	cpu_stats_last;	/* from last sample */
    179 };
    180 
    181 /*
    182  * The type for the hash code. While the hash function generates a
    183  * u32, the hash code has historically been passed around as a u_long,
    184  * and the value is modified by xor'ing a uintptr_t, so it's not
    185  * entirely clear what the best type is. For now I'll leave it
    186  * unchanged as u_long.
    187  */
    188 
    189 typedef u_long nchash_t;
    190 
    191 /*
    192  * Structures associated with name cacheing.
    193  */
    194 
    195 static kmutex_t *namecache_lock __read_mostly;
    196 static pool_cache_t namecache_cache __read_mostly;
    197 static TAILQ_HEAD(, namecache) nclruhead __cacheline_aligned;
    198 
    199 static LIST_HEAD(nchashhead, namecache) *nchashtbl __read_mostly;
    200 static u_long	nchash __read_mostly;
    201 
    202 #define	NCHASH2(hash, dvp)	\
    203 	(((hash) ^ ((uintptr_t)(dvp) >> 3)) & nchash)
    204 
    205 static LIST_HEAD(ncvhashhead, namecache) *ncvhashtbl __read_mostly;
    206 static u_long	ncvhash __read_mostly;
    207 
    208 #define	NCVHASH(vp)		(((uintptr_t)(vp) >> 3) & ncvhash)
    209 
    210 /* Number of cache entries allocated. */
    211 static long	numcache __cacheline_aligned;
    212 
    213 /* Garbage collection queue and number of entries pending in it. */
    214 static void	*cache_gcqueue;
    215 static u_int	cache_gcpend;
    216 
    217 /* Cache effectiveness statistics.  This holds total from per-cpu stats */
    218 struct nchstats	nchstats __cacheline_aligned;
    219 
    220 /*
    221  * Macros to count an event, update the central stats with per-cpu
    222  * values and add current per-cpu increments to the subsystem total
    223  * last collected by cache_reclaim().
    224  */
    225 #define	CACHE_STATS_CURRENT	/* nothing */
    226 
    227 #define	COUNT(cpup, f)	((cpup)->cpu_stats.f++)
    228 
    229 #define	UPDATE(cpup, f) do { \
    230 	struct nchcpu *Xcpup = (cpup); \
    231 	uint32_t Xcnt = (volatile uint32_t) Xcpup->cpu_stats.f; \
    232 	nchstats.f += Xcnt - Xcpup->cpu_stats_last.f; \
    233 	Xcpup->cpu_stats_last.f = Xcnt; \
    234 } while (/* CONSTCOND */ 0)
    235 
    236 #define	ADD(stats, cpup, f) do { \
    237 	struct nchcpu *Xcpup = (cpup); \
    238 	stats.f += Xcpup->cpu_stats.f - Xcpup->cpu_stats_last.f; \
    239 } while (/* CONSTCOND */ 0)
    240 
    241 /* Do unlocked stats the same way. Use a different name to allow mind changes */
    242 #define	COUNT_UNL(cpup, f)	COUNT((cpup), f)
    243 
    244 static const int cache_lowat = 95;
    245 static const int cache_hiwat = 98;
    246 static const int cache_hottime = 5;	/* number of seconds */
    247 static int doingcache = 1;		/* 1 => enable the cache */
    248 
    249 static struct evcnt cache_ev_scan;
    250 static struct evcnt cache_ev_gc;
    251 static struct evcnt cache_ev_over;
    252 static struct evcnt cache_ev_under;
    253 static struct evcnt cache_ev_forced;
    254 
    255 static void cache_invalidate(struct namecache *);
    256 static struct namecache *cache_lookup_entry(
    257     const struct vnode *, const char *, size_t);
    258 static void cache_thread(void *);
    259 static void cache_invalidate(struct namecache *);
    260 static void cache_disassociate(struct namecache *);
    261 static void cache_reclaim(void);
    262 static int cache_ctor(void *, void *, int);
    263 static void cache_dtor(void *, void *);
    264 
    265 static struct sysctllog *sysctllog;
    266 static void sysctl_cache_stat_setup(void);
    267 
    268 SDT_PROVIDER_DEFINE(vfs);
    269 
    270 SDT_PROBE_DEFINE1(vfs, namecache, invalidate, done, "struct vnode *");
    271 SDT_PROBE_DEFINE1(vfs, namecache, purge, parents, "struct vnode *");
    272 SDT_PROBE_DEFINE1(vfs, namecache, purge, children, "struct vnode *");
    273 SDT_PROBE_DEFINE2(vfs, namecache, purge, name, "char *", "size_t");
    274 SDT_PROBE_DEFINE1(vfs, namecache, purge, vfs, "struct mount *");
    275 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *",
    276     "char *", "size_t");
    277 SDT_PROBE_DEFINE3(vfs, namecache, lookup, miss, "struct vnode *",
    278     "char *", "size_t");
    279 SDT_PROBE_DEFINE3(vfs, namecache, lookup, toolong, "struct vnode *",
    280     "char *", "size_t");
    281 SDT_PROBE_DEFINE2(vfs, namecache, revlookup, success, "struct vnode *",
    282      "struct vnode *");
    283 SDT_PROBE_DEFINE2(vfs, namecache, revlookup, fail, "struct vnode *",
    284      "int");
    285 SDT_PROBE_DEFINE2(vfs, namecache, prune, done, "int", "int");
    286 SDT_PROBE_DEFINE3(vfs, namecache, enter, toolong, "struct vnode *",
    287     "char *", "size_t");
    288 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *",
    289     "char *", "size_t");
    290 
    291 /*
    292  * Compute the hash for an entry.
    293  *
    294  * (This is for now a wrapper around namei_hash, whose interface is
    295  * for the time being slightly inconvenient.)
    296  */
    297 static nchash_t
    298 cache_hash(const char *name, size_t namelen)
    299 {
    300 	const char *endptr;
    301 
    302 	endptr = name + namelen;
    303 	return namei_hash(name, &endptr);
    304 }
    305 
    306 /*
    307  * Invalidate a cache entry and enqueue it for garbage collection.
    308  * The caller needs to hold namecache_lock or a per-cpu lock to hold
    309  * off cache_reclaim().
    310  */
    311 static void
    312 cache_invalidate(struct namecache *ncp)
    313 {
    314 	void *head;
    315 
    316 	KASSERT(mutex_owned(&ncp->nc_lock));
    317 
    318 	if (ncp->nc_dvp != NULL) {
    319 		SDT_PROBE(vfs, namecache, invalidate, done, ncp->nc_dvp,
    320 		    0, 0, 0, 0);
    321 
    322 		ncp->nc_vp = NULL;
    323 		ncp->nc_dvp = NULL;
    324 		do {
    325 			head = cache_gcqueue;
    326 			ncp->nc_gcqueue = head;
    327 		} while (atomic_cas_ptr(&cache_gcqueue, head, ncp) != head);
    328 		atomic_inc_uint(&cache_gcpend);
    329 	}
    330 }
    331 
    332 /*
    333  * Disassociate a namecache entry from any vnodes it is attached to,
    334  * and remove from the global LRU list.
    335  */
    336 static void
    337 cache_disassociate(struct namecache *ncp)
    338 {
    339 
    340 	KASSERT(mutex_owned(namecache_lock));
    341 	KASSERT(ncp->nc_dvp == NULL);
    342 
    343 	if (ncp->nc_lru.tqe_prev != NULL) {
    344 		TAILQ_REMOVE(&nclruhead, ncp, nc_lru);
    345 		ncp->nc_lru.tqe_prev = NULL;
    346 	}
    347 	if (ncp->nc_vhash.le_prev != NULL) {
    348 		LIST_REMOVE(ncp, nc_vhash);
    349 		ncp->nc_vhash.le_prev = NULL;
    350 	}
    351 	if (ncp->nc_vlist.le_prev != NULL) {
    352 		LIST_REMOVE(ncp, nc_vlist);
    353 		ncp->nc_vlist.le_prev = NULL;
    354 	}
    355 	if (ncp->nc_dvlist.le_prev != NULL) {
    356 		LIST_REMOVE(ncp, nc_dvlist);
    357 		ncp->nc_dvlist.le_prev = NULL;
    358 	}
    359 }
    360 
    361 /*
    362  * Lock all CPUs to prevent any cache lookup activity.  Conceptually,
    363  * this locks out all "readers".
    364  */
    365 static void
    366 cache_lock_cpus(void)
    367 {
    368 	CPU_INFO_ITERATOR cii;
    369 	struct cpu_info *ci;
    370 	struct nchcpu *cpup;
    371 
    372 	/*
    373 	 * Lock out all CPUs first, then harvest per-cpu stats.  This
    374 	 * is probably not quite as cache-efficient as doing the lock
    375 	 * and harvest at the same time, but allows cache_stat_sysctl()
    376 	 * to make do with a per-cpu lock.
    377 	 */
    378 	for (CPU_INFO_FOREACH(cii, ci)) {
    379 		cpup = ci->ci_data.cpu_nch;
    380 		mutex_enter(&cpup->cpu_lock);
    381 	}
    382 	for (CPU_INFO_FOREACH(cii, ci)) {
    383 		cpup = ci->ci_data.cpu_nch;
    384 		UPDATE(cpup, ncs_goodhits);
    385 		UPDATE(cpup, ncs_neghits);
    386 		UPDATE(cpup, ncs_badhits);
    387 		UPDATE(cpup, ncs_falsehits);
    388 		UPDATE(cpup, ncs_miss);
    389 		UPDATE(cpup, ncs_long);
    390 		UPDATE(cpup, ncs_pass2);
    391 		UPDATE(cpup, ncs_2passes);
    392 		UPDATE(cpup, ncs_revhits);
    393 		UPDATE(cpup, ncs_revmiss);
    394 	}
    395 }
    396 
    397 /*
    398  * Release all CPU locks.
    399  */
    400 static void
    401 cache_unlock_cpus(void)
    402 {
    403 	CPU_INFO_ITERATOR cii;
    404 	struct cpu_info *ci;
    405 	struct nchcpu *cpup;
    406 
    407 	for (CPU_INFO_FOREACH(cii, ci)) {
    408 		cpup = ci->ci_data.cpu_nch;
    409 		mutex_exit(&cpup->cpu_lock);
    410 	}
    411 }
    412 
    413 /*
    414  * Find a single cache entry and return it locked.
    415  * The caller needs to hold namecache_lock or a per-cpu lock to hold
    416  * off cache_reclaim().
    417  */
    418 static struct namecache *
    419 cache_lookup_entry(const struct vnode *dvp, const char *name, size_t namelen)
    420 {
    421 	struct nchashhead *ncpp;
    422 	struct namecache *ncp;
    423 	nchash_t hash;
    424 
    425 	KASSERT(dvp != NULL);
    426 	hash = cache_hash(name, namelen);
    427 	ncpp = &nchashtbl[NCHASH2(hash, dvp)];
    428 
    429 	LIST_FOREACH(ncp, ncpp, nc_hash) {
    430 		membar_datadep_consumer();	/* for Alpha... */
    431 		if (ncp->nc_dvp != dvp ||
    432 		    ncp->nc_nlen != namelen ||
    433 		    memcmp(ncp->nc_name, name, (u_int)ncp->nc_nlen))
    434 		    	continue;
    435 	    	mutex_enter(&ncp->nc_lock);
    436 		if (__predict_true(ncp->nc_dvp == dvp)) {
    437 			ncp->nc_hittime = hardclock_ticks;
    438 			SDT_PROBE(vfs, namecache, lookup, hit, dvp,
    439 			    name, namelen, 0, 0);
    440 			return ncp;
    441 		}
    442 		/* Raced: entry has been nullified. */
    443 		mutex_exit(&ncp->nc_lock);
    444 	}
    445 
    446 	SDT_PROBE(vfs, namecache, lookup, miss, dvp,
    447 	    name, namelen, 0, 0);
    448 	return NULL;
    449 }
    450 
    451 /*
    452  * Look for a the name in the cache. We don't do this
    453  * if the segment name is long, simply so the cache can avoid
    454  * holding long names (which would either waste space, or
    455  * add greatly to the complexity).
    456  *
    457  * Lookup is called with DVP pointing to the directory to search,
    458  * and CNP providing the name of the entry being sought: cn_nameptr
    459  * is the name, cn_namelen is its length, and cn_flags is the flags
    460  * word from the namei operation.
    461  *
    462  * DVP must be locked.
    463  *
    464  * There are three possible non-error return states:
    465  *    1. Nothing was found in the cache. Nothing is known about
    466  *       the requested name.
    467  *    2. A negative entry was found in the cache, meaning that the
    468  *       requested name definitely does not exist.
    469  *    3. A positive entry was found in the cache, meaning that the
    470  *       requested name does exist and that we are providing the
    471  *       vnode.
    472  * In these cases the results are:
    473  *    1. 0 returned; VN is set to NULL.
    474  *    2. 1 returned; VN is set to NULL.
    475  *    3. 1 returned; VN is set to the vnode found.
    476  *
    477  * The additional result argument ISWHT is set to zero, unless a
    478  * negative entry is found that was entered as a whiteout, in which
    479  * case ISWHT is set to one.
    480  *
    481  * The ISWHT_RET argument pointer may be null. In this case an
    482  * assertion is made that the whiteout flag is not set. File systems
    483  * that do not support whiteouts can/should do this.
    484  *
    485  * Filesystems that do support whiteouts should add ISWHITEOUT to
    486  * cnp->cn_flags if ISWHT comes back nonzero.
    487  *
    488  * When a vnode is returned, it is locked, as per the vnode lookup
    489  * locking protocol.
    490  *
    491  * There is no way for this function to fail, in the sense of
    492  * generating an error that requires aborting the namei operation.
    493  *
    494  * (Prior to October 2012, this function returned an integer status,
    495  * and a vnode, and mucked with the flags word in CNP for whiteouts.
    496  * The integer status was -1 for "nothing found", ENOENT for "a
    497  * negative entry found", 0 for "a positive entry found", and possibly
    498  * other errors, and the value of VN might or might not have been set
    499  * depending on what error occurred.)
    500  */
    501 int
    502 cache_lookup(struct vnode *dvp, const char *name, size_t namelen,
    503 	     uint32_t nameiop, uint32_t cnflags,
    504 	     int *iswht_ret, struct vnode **vn_ret)
    505 {
    506 	struct namecache *ncp;
    507 	struct vnode *vp;
    508 	struct nchcpu *cpup;
    509 	int error, ret_value;
    510 
    511 
    512 	/* Establish default result values */
    513 	if (iswht_ret != NULL) {
    514 		*iswht_ret = 0;
    515 	}
    516 	*vn_ret = NULL;
    517 
    518 	if (__predict_false(!doingcache)) {
    519 		return 0;
    520 	}
    521 
    522 	cpup = curcpu()->ci_data.cpu_nch;
    523 	mutex_enter(&cpup->cpu_lock);
    524 	if (__predict_false(namelen > NCHNAMLEN)) {
    525 		SDT_PROBE(vfs, namecache, lookup, toolong, dvp,
    526 		    name, namelen, 0, 0);
    527 		COUNT(cpup, ncs_long);
    528 		mutex_exit(&cpup->cpu_lock);
    529 		/* found nothing */
    530 		return 0;
    531 	}
    532 
    533 	ncp = cache_lookup_entry(dvp, name, namelen);
    534 	if (__predict_false(ncp == NULL)) {
    535 		COUNT(cpup, ncs_miss);
    536 		mutex_exit(&cpup->cpu_lock);
    537 		/* found nothing */
    538 		return 0;
    539 	}
    540 	if ((cnflags & MAKEENTRY) == 0) {
    541 		COUNT(cpup, ncs_badhits);
    542 		/*
    543 		 * Last component and we are renaming or deleting,
    544 		 * the cache entry is invalid, or otherwise don't
    545 		 * want cache entry to exist.
    546 		 */
    547 		cache_invalidate(ncp);
    548 		mutex_exit(&ncp->nc_lock);
    549 		mutex_exit(&cpup->cpu_lock);
    550 		/* found nothing */
    551 		return 0;
    552 	}
    553 	if (ncp->nc_vp == NULL) {
    554 		if (iswht_ret != NULL) {
    555 			/*
    556 			 * Restore the ISWHITEOUT flag saved earlier.
    557 			 */
    558 			KASSERT((ncp->nc_flags & ~ISWHITEOUT) == 0);
    559 			*iswht_ret = (ncp->nc_flags & ISWHITEOUT) != 0;
    560 		} else {
    561 			KASSERT(ncp->nc_flags == 0);
    562 		}
    563 
    564 		if (__predict_true(nameiop != CREATE ||
    565 		    (cnflags & ISLASTCN) == 0)) {
    566 			COUNT(cpup, ncs_neghits);
    567 			/* found neg entry; vn is already null from above */
    568 			ret_value = 1;
    569 		} else {
    570 			COUNT(cpup, ncs_badhits);
    571 			/*
    572 			 * Last component and we are preparing to create
    573 			 * the named object, so flush the negative cache
    574 			 * entry.
    575 			 */
    576 			cache_invalidate(ncp);
    577 			/* found nothing */
    578 			ret_value = 0;
    579 		}
    580 		mutex_exit(&ncp->nc_lock);
    581 		mutex_exit(&cpup->cpu_lock);
    582 		return ret_value;
    583 	}
    584 
    585 	vp = ncp->nc_vp;
    586 	mutex_enter(vp->v_interlock);
    587 	mutex_exit(&ncp->nc_lock);
    588 	mutex_exit(&cpup->cpu_lock);
    589 
    590 	/*
    591 	 * Unlocked except for the vnode interlock.  Call vcache_tryvget().
    592 	 */
    593 	error = vcache_tryvget(vp);
    594 	if (error) {
    595 		KASSERT(error == EBUSY);
    596 		/*
    597 		 * This vnode is being cleaned out.
    598 		 * XXX badhits?
    599 		 */
    600 		COUNT_UNL(cpup, ncs_falsehits);
    601 		/* found nothing */
    602 		return 0;
    603 	}
    604 
    605 	COUNT_UNL(cpup, ncs_goodhits);
    606 	/* found it */
    607 	*vn_ret = vp;
    608 	return 1;
    609 }
    610 
    611 
    612 /*
    613  * Cut-'n-pasted version of the above without the nameiop argument.
    614  */
    615 int
    616 cache_lookup_raw(struct vnode *dvp, const char *name, size_t namelen,
    617 		 uint32_t cnflags,
    618 		 int *iswht_ret, struct vnode **vn_ret)
    619 {
    620 	struct namecache *ncp;
    621 	struct vnode *vp;
    622 	struct nchcpu *cpup;
    623 	int error;
    624 
    625 	/* Establish default results. */
    626 	if (iswht_ret != NULL) {
    627 		*iswht_ret = 0;
    628 	}
    629 	*vn_ret = NULL;
    630 
    631 	if (__predict_false(!doingcache)) {
    632 		/* found nothing */
    633 		return 0;
    634 	}
    635 
    636 	cpup = curcpu()->ci_data.cpu_nch;
    637 	mutex_enter(&cpup->cpu_lock);
    638 	if (__predict_false(namelen > NCHNAMLEN)) {
    639 		COUNT(cpup, ncs_long);
    640 		mutex_exit(&cpup->cpu_lock);
    641 		/* found nothing */
    642 		return 0;
    643 	}
    644 	ncp = cache_lookup_entry(dvp, name, namelen);
    645 	if (__predict_false(ncp == NULL)) {
    646 		COUNT(cpup, ncs_miss);
    647 		mutex_exit(&cpup->cpu_lock);
    648 		/* found nothing */
    649 		return 0;
    650 	}
    651 	vp = ncp->nc_vp;
    652 	if (vp == NULL) {
    653 		/*
    654 		 * Restore the ISWHITEOUT flag saved earlier.
    655 		 */
    656 		if (iswht_ret != NULL) {
    657 			KASSERT((ncp->nc_flags & ~ISWHITEOUT) == 0);
    658 			/*cnp->cn_flags |= ncp->nc_flags;*/
    659 			*iswht_ret = (ncp->nc_flags & ISWHITEOUT) != 0;
    660 		}
    661 		COUNT(cpup, ncs_neghits);
    662 		mutex_exit(&ncp->nc_lock);
    663 		mutex_exit(&cpup->cpu_lock);
    664 		/* found negative entry; vn is already null from above */
    665 		return 1;
    666 	}
    667 	mutex_enter(vp->v_interlock);
    668 	mutex_exit(&ncp->nc_lock);
    669 	mutex_exit(&cpup->cpu_lock);
    670 
    671 	/*
    672 	 * Unlocked except for the vnode interlock.  Call vcache_tryvget().
    673 	 */
    674 	error = vcache_tryvget(vp);
    675 	if (error) {
    676 		KASSERT(error == EBUSY);
    677 		/*
    678 		 * This vnode is being cleaned out.
    679 		 * XXX badhits?
    680 		 */
    681 		COUNT_UNL(cpup, ncs_falsehits);
    682 		/* found nothing */
    683 		return 0;
    684 	}
    685 
    686 	COUNT_UNL(cpup, ncs_goodhits); /* XXX can be "badhits" */
    687 	/* found it */
    688 	*vn_ret = vp;
    689 	return 1;
    690 }
    691 
    692 /*
    693  * Scan cache looking for name of directory entry pointing at vp.
    694  *
    695  * If the lookup succeeds the vnode is referenced and stored in dvpp.
    696  *
    697  * If bufp is non-NULL, also place the name in the buffer which starts
    698  * at bufp, immediately before *bpp, and move bpp backwards to point
    699  * at the start of it.  (Yes, this is a little baroque, but it's done
    700  * this way to cater to the whims of getcwd).
    701  *
    702  * Returns 0 on success, -1 on cache miss, positive errno on failure.
    703  */
    704 int
    705 cache_revlookup(struct vnode *vp, struct vnode **dvpp, char **bpp, char *bufp)
    706 {
    707 	struct namecache *ncp;
    708 	struct vnode *dvp;
    709 	struct ncvhashhead *nvcpp;
    710 	struct nchcpu *cpup;
    711 	char *bp;
    712 	int error, nlen;
    713 
    714 	if (!doingcache)
    715 		goto out;
    716 
    717 	nvcpp = &ncvhashtbl[NCVHASH(vp)];
    718 
    719 	/*
    720 	 * We increment counters in the local CPU's per-cpu stats.
    721 	 * We don't take the per-cpu lock, however, since this function
    722 	 * is the only place these counters are incremented so no one
    723 	 * will be racing with us to increment them.
    724 	 */
    725 	cpup = curcpu()->ci_data.cpu_nch;
    726 	mutex_enter(namecache_lock);
    727 	LIST_FOREACH(ncp, nvcpp, nc_vhash) {
    728 		mutex_enter(&ncp->nc_lock);
    729 		if (ncp->nc_vp == vp &&
    730 		    (dvp = ncp->nc_dvp) != NULL &&
    731 		    dvp != vp) { 		/* avoid pesky . entries.. */
    732 
    733 #ifdef DIAGNOSTIC
    734 			if (ncp->nc_nlen == 1 &&
    735 			    ncp->nc_name[0] == '.')
    736 				panic("cache_revlookup: found entry for .");
    737 
    738 			if (ncp->nc_nlen == 2 &&
    739 			    ncp->nc_name[0] == '.' &&
    740 			    ncp->nc_name[1] == '.')
    741 				panic("cache_revlookup: found entry for ..");
    742 #endif
    743 			COUNT(cpup, ncs_revhits);
    744 			nlen = ncp->nc_nlen;
    745 
    746 			if (bufp) {
    747 				bp = *bpp;
    748 				bp -= nlen;
    749 				if (bp <= bufp) {
    750 					*dvpp = NULL;
    751 					mutex_exit(&ncp->nc_lock);
    752 					mutex_exit(namecache_lock);
    753 					SDT_PROBE(vfs, namecache, revlookup,
    754 					    fail, vp, ERANGE, 0, 0, 0);
    755 					return (ERANGE);
    756 				}
    757 				memcpy(bp, ncp->nc_name, nlen);
    758 				*bpp = bp;
    759 			}
    760 
    761 			mutex_enter(dvp->v_interlock);
    762 			mutex_exit(&ncp->nc_lock);
    763 			mutex_exit(namecache_lock);
    764 			error = vcache_tryvget(dvp);
    765 			if (error) {
    766 				KASSERT(error == EBUSY);
    767 				if (bufp)
    768 					(*bpp) += nlen;
    769 				*dvpp = NULL;
    770 				SDT_PROBE(vfs, namecache, revlookup, fail, vp,
    771 				    error, 0, 0, 0);
    772 				return -1;
    773 			}
    774 			*dvpp = dvp;
    775 			SDT_PROBE(vfs, namecache, revlookup, success, vp, dvp,
    776 			    0, 0, 0);
    777 			return (0);
    778 		}
    779 		mutex_exit(&ncp->nc_lock);
    780 	}
    781 	COUNT(cpup, ncs_revmiss);
    782 	mutex_exit(namecache_lock);
    783  out:
    784 	*dvpp = NULL;
    785 	return (-1);
    786 }
    787 
    788 /*
    789  * Add an entry to the cache
    790  */
    791 void
    792 cache_enter(struct vnode *dvp, struct vnode *vp,
    793 	    const char *name, size_t namelen, uint32_t cnflags)
    794 {
    795 	struct namecache *ncp;
    796 	struct namecache *oncp;
    797 	struct nchashhead *ncpp;
    798 	struct ncvhashhead *nvcpp;
    799 	nchash_t hash;
    800 
    801 	/* First, check whether we can/should add a cache entry. */
    802 	if ((cnflags & MAKEENTRY) == 0 ||
    803 	    __predict_false(namelen > NCHNAMLEN || !doingcache)) {
    804 		SDT_PROBE(vfs, namecache, enter, toolong, vp, name, namelen,
    805 		    0, 0);
    806 		return;
    807 	}
    808 
    809 	SDT_PROBE(vfs, namecache, enter, done, vp, name, namelen, 0, 0);
    810 	if (numcache > desiredvnodes) {
    811 		mutex_enter(namecache_lock);
    812 		cache_ev_forced.ev_count++;
    813 		cache_reclaim();
    814 		mutex_exit(namecache_lock);
    815 	}
    816 
    817 	ncp = pool_cache_get(namecache_cache, PR_WAITOK);
    818 	mutex_enter(namecache_lock);
    819 	numcache++;
    820 
    821 	/*
    822 	 * Concurrent lookups in the same directory may race for a
    823 	 * cache entry.  if there's a duplicated entry, free it.
    824 	 */
    825 	oncp = cache_lookup_entry(dvp, name, namelen);
    826 	if (oncp) {
    827 		cache_invalidate(oncp);
    828 		mutex_exit(&oncp->nc_lock);
    829 	}
    830 
    831 	/* Grab the vnode we just found. */
    832 	mutex_enter(&ncp->nc_lock);
    833 	ncp->nc_vp = vp;
    834 	ncp->nc_flags = 0;
    835 	ncp->nc_hittime = 0;
    836 	ncp->nc_gcqueue = NULL;
    837 	if (vp == NULL) {
    838 		/*
    839 		 * For negative hits, save the ISWHITEOUT flag so we can
    840 		 * restore it later when the cache entry is used again.
    841 		 */
    842 		ncp->nc_flags = cnflags & ISWHITEOUT;
    843 	}
    844 
    845 	/* Fill in cache info. */
    846 	ncp->nc_dvp = dvp;
    847 	LIST_INSERT_HEAD(&VNODE_TO_VIMPL(dvp)->vi_dnclist, ncp, nc_dvlist);
    848 	if (vp)
    849 		LIST_INSERT_HEAD(&VNODE_TO_VIMPL(vp)->vi_nclist, ncp, nc_vlist);
    850 	else {
    851 		ncp->nc_vlist.le_prev = NULL;
    852 		ncp->nc_vlist.le_next = NULL;
    853 	}
    854 	KASSERT(namelen <= NCHNAMLEN);
    855 	ncp->nc_nlen = namelen;
    856 	memcpy(ncp->nc_name, name, (unsigned)ncp->nc_nlen);
    857 	TAILQ_INSERT_TAIL(&nclruhead, ncp, nc_lru);
    858 	hash = cache_hash(name, namelen);
    859 	ncpp = &nchashtbl[NCHASH2(hash, dvp)];
    860 
    861 	/*
    862 	 * Flush updates before making visible in table.  No need for a
    863 	 * memory barrier on the other side: to see modifications the
    864 	 * list must be followed, meaning a dependent pointer load.
    865 	 * The below is LIST_INSERT_HEAD() inlined, with the memory
    866 	 * barrier included in the correct place.
    867 	 */
    868 	if ((ncp->nc_hash.le_next = ncpp->lh_first) != NULL)
    869 		ncpp->lh_first->nc_hash.le_prev = &ncp->nc_hash.le_next;
    870 	ncp->nc_hash.le_prev = &ncpp->lh_first;
    871 	membar_producer();
    872 	ncpp->lh_first = ncp;
    873 
    874 	ncp->nc_vhash.le_prev = NULL;
    875 	ncp->nc_vhash.le_next = NULL;
    876 
    877 	/*
    878 	 * Create reverse-cache entries (used in getcwd) for directories.
    879 	 * (and in linux procfs exe node)
    880 	 */
    881 	if (vp != NULL &&
    882 	    vp != dvp &&
    883 #ifndef NAMECACHE_ENTER_REVERSE
    884 	    vp->v_type == VDIR &&
    885 #endif
    886 	    (ncp->nc_nlen > 2 ||
    887 	    (ncp->nc_nlen > 1 && ncp->nc_name[1] != '.') ||
    888 	    (/* ncp->nc_nlen > 0 && */ ncp->nc_name[0] != '.'))) {
    889 		nvcpp = &ncvhashtbl[NCVHASH(vp)];
    890 		LIST_INSERT_HEAD(nvcpp, ncp, nc_vhash);
    891 	}
    892 	mutex_exit(&ncp->nc_lock);
    893 	mutex_exit(namecache_lock);
    894 }
    895 
    896 /*
    897  * Name cache initialization, from vfs_init() when we are booting
    898  */
    899 void
    900 nchinit(void)
    901 {
    902 	int error;
    903 
    904 	TAILQ_INIT(&nclruhead);
    905 	namecache_cache = pool_cache_init(sizeof(struct namecache),
    906 	    coherency_unit, 0, 0, "ncache", NULL, IPL_NONE, cache_ctor,
    907 	    cache_dtor, NULL);
    908 	KASSERT(namecache_cache != NULL);
    909 
    910 	namecache_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    911 
    912 	nchashtbl = hashinit(desiredvnodes, HASH_LIST, true, &nchash);
    913 	ncvhashtbl =
    914 #ifdef NAMECACHE_ENTER_REVERSE
    915 	    hashinit(desiredvnodes, HASH_LIST, true, &ncvhash);
    916 #else
    917 	    hashinit(desiredvnodes/8, HASH_LIST, true, &ncvhash);
    918 #endif
    919 
    920 	error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, cache_thread,
    921 	    NULL, NULL, "cachegc");
    922 	if (error != 0)
    923 		panic("nchinit %d", error);
    924 
    925 	evcnt_attach_dynamic(&cache_ev_scan, EVCNT_TYPE_MISC, NULL,
    926 	   "namecache", "entries scanned");
    927 	evcnt_attach_dynamic(&cache_ev_gc, EVCNT_TYPE_MISC, NULL,
    928 	   "namecache", "entries collected");
    929 	evcnt_attach_dynamic(&cache_ev_over, EVCNT_TYPE_MISC, NULL,
    930 	   "namecache", "over scan target");
    931 	evcnt_attach_dynamic(&cache_ev_under, EVCNT_TYPE_MISC, NULL,
    932 	   "namecache", "under scan target");
    933 	evcnt_attach_dynamic(&cache_ev_forced, EVCNT_TYPE_MISC, NULL,
    934 	   "namecache", "forced reclaims");
    935 
    936 	sysctl_cache_stat_setup();
    937 }
    938 
    939 static int
    940 cache_ctor(void *arg, void *obj, int flag)
    941 {
    942 	struct namecache *ncp;
    943 
    944 	ncp = obj;
    945 	mutex_init(&ncp->nc_lock, MUTEX_DEFAULT, IPL_NONE);
    946 
    947 	return 0;
    948 }
    949 
    950 static void
    951 cache_dtor(void *arg, void *obj)
    952 {
    953 	struct namecache *ncp;
    954 
    955 	ncp = obj;
    956 	mutex_destroy(&ncp->nc_lock);
    957 }
    958 
    959 /*
    960  * Called once for each CPU in the system as attached.
    961  */
    962 void
    963 cache_cpu_init(struct cpu_info *ci)
    964 {
    965 	struct nchcpu *cpup;
    966 	size_t sz;
    967 
    968 	sz = roundup2(sizeof(*cpup), coherency_unit) + coherency_unit;
    969 	cpup = kmem_zalloc(sz, KM_SLEEP);
    970 	cpup = (void *)roundup2((uintptr_t)cpup, coherency_unit);
    971 	mutex_init(&cpup->cpu_lock, MUTEX_DEFAULT, IPL_NONE);
    972 	ci->ci_data.cpu_nch = cpup;
    973 }
    974 
    975 /*
    976  * Name cache reinitialization, for when the maximum number of vnodes increases.
    977  */
    978 void
    979 nchreinit(void)
    980 {
    981 	struct namecache *ncp;
    982 	struct nchashhead *oldhash1, *hash1;
    983 	struct ncvhashhead *oldhash2, *hash2;
    984 	u_long i, oldmask1, oldmask2, mask1, mask2;
    985 
    986 	hash1 = hashinit(desiredvnodes, HASH_LIST, true, &mask1);
    987 	hash2 =
    988 #ifdef NAMECACHE_ENTER_REVERSE
    989 	    hashinit(desiredvnodes, HASH_LIST, true, &mask2);
    990 #else
    991 	    hashinit(desiredvnodes/8, HASH_LIST, true, &mask2);
    992 #endif
    993 	mutex_enter(namecache_lock);
    994 	cache_lock_cpus();
    995 	oldhash1 = nchashtbl;
    996 	oldmask1 = nchash;
    997 	nchashtbl = hash1;
    998 	nchash = mask1;
    999 	oldhash2 = ncvhashtbl;
   1000 	oldmask2 = ncvhash;
   1001 	ncvhashtbl = hash2;
   1002 	ncvhash = mask2;
   1003 	for (i = 0; i <= oldmask1; i++) {
   1004 		while ((ncp = LIST_FIRST(&oldhash1[i])) != NULL) {
   1005 			LIST_REMOVE(ncp, nc_hash);
   1006 			ncp->nc_hash.le_prev = NULL;
   1007 		}
   1008 	}
   1009 	for (i = 0; i <= oldmask2; i++) {
   1010 		while ((ncp = LIST_FIRST(&oldhash2[i])) != NULL) {
   1011 			LIST_REMOVE(ncp, nc_vhash);
   1012 			ncp->nc_vhash.le_prev = NULL;
   1013 		}
   1014 	}
   1015 	cache_unlock_cpus();
   1016 	mutex_exit(namecache_lock);
   1017 	hashdone(oldhash1, HASH_LIST, oldmask1);
   1018 	hashdone(oldhash2, HASH_LIST, oldmask2);
   1019 }
   1020 
   1021 /*
   1022  * Cache flush, a particular vnode; called when a vnode is renamed to
   1023  * hide entries that would now be invalid
   1024  */
   1025 void
   1026 cache_purge1(struct vnode *vp, const char *name, size_t namelen, int flags)
   1027 {
   1028 	struct namecache *ncp, *ncnext;
   1029 
   1030 	mutex_enter(namecache_lock);
   1031 	if (flags & PURGE_PARENTS) {
   1032 		SDT_PROBE(vfs, namecache, purge, parents, vp, 0, 0, 0, 0);
   1033 
   1034 		for (ncp = LIST_FIRST(&VNODE_TO_VIMPL(vp)->vi_nclist);
   1035 		    ncp != NULL; ncp = ncnext) {
   1036 			ncnext = LIST_NEXT(ncp, nc_vlist);
   1037 			mutex_enter(&ncp->nc_lock);
   1038 			cache_invalidate(ncp);
   1039 			mutex_exit(&ncp->nc_lock);
   1040 			cache_disassociate(ncp);
   1041 		}
   1042 	}
   1043 	if (flags & PURGE_CHILDREN) {
   1044 		SDT_PROBE(vfs, namecache, purge, children, vp, 0, 0, 0, 0);
   1045 		for (ncp = LIST_FIRST(&VNODE_TO_VIMPL(vp)->vi_dnclist);
   1046 		    ncp != NULL; ncp = ncnext) {
   1047 			ncnext = LIST_NEXT(ncp, nc_dvlist);
   1048 			mutex_enter(&ncp->nc_lock);
   1049 			cache_invalidate(ncp);
   1050 			mutex_exit(&ncp->nc_lock);
   1051 			cache_disassociate(ncp);
   1052 		}
   1053 	}
   1054 	if (name != NULL) {
   1055 		SDT_PROBE(vfs, namecache, purge, name, name, namelen, 0, 0, 0);
   1056 		ncp = cache_lookup_entry(vp, name, namelen);
   1057 		if (ncp) {
   1058 			cache_invalidate(ncp);
   1059 			mutex_exit(&ncp->nc_lock);
   1060 			cache_disassociate(ncp);
   1061 		}
   1062 	}
   1063 	mutex_exit(namecache_lock);
   1064 }
   1065 
   1066 /*
   1067  * Cache flush, a whole filesystem; called when filesys is umounted to
   1068  * remove entries that would now be invalid.
   1069  */
   1070 void
   1071 cache_purgevfs(struct mount *mp)
   1072 {
   1073 	struct namecache *ncp, *nxtcp;
   1074 
   1075 	SDT_PROBE(vfs, namecache, purge, vfs, mp, 0, 0, 0, 0);
   1076 	mutex_enter(namecache_lock);
   1077 	for (ncp = TAILQ_FIRST(&nclruhead); ncp != NULL; ncp = nxtcp) {
   1078 		nxtcp = TAILQ_NEXT(ncp, nc_lru);
   1079 		mutex_enter(&ncp->nc_lock);
   1080 		if (ncp->nc_dvp != NULL && ncp->nc_dvp->v_mount == mp) {
   1081 			/* Free the resources we had. */
   1082 			cache_invalidate(ncp);
   1083 			cache_disassociate(ncp);
   1084 		}
   1085 		mutex_exit(&ncp->nc_lock);
   1086 	}
   1087 	cache_reclaim();
   1088 	mutex_exit(namecache_lock);
   1089 }
   1090 
   1091 /*
   1092  * Scan global list invalidating entries until we meet a preset target.
   1093  * Prefer to invalidate entries that have not scored a hit within
   1094  * cache_hottime seconds.  We sort the LRU list only for this routine's
   1095  * benefit.
   1096  */
   1097 static void
   1098 cache_prune(int incache, int target)
   1099 {
   1100 	struct namecache *ncp, *nxtcp, *sentinel;
   1101 	int items, recent, tryharder;
   1102 
   1103 	KASSERT(mutex_owned(namecache_lock));
   1104 
   1105 	SDT_PROBE(vfs, namecache, prune, done, incache, target, 0, 0, 0);
   1106 	items = 0;
   1107 	tryharder = 0;
   1108 	recent = hardclock_ticks - hz * cache_hottime;
   1109 	sentinel = NULL;
   1110 	for (ncp = TAILQ_FIRST(&nclruhead); ncp != NULL; ncp = nxtcp) {
   1111 		if (incache <= target)
   1112 			break;
   1113 		items++;
   1114 		nxtcp = TAILQ_NEXT(ncp, nc_lru);
   1115 		if (ncp == sentinel) {
   1116 			/*
   1117 			 * If we looped back on ourself, then ignore
   1118 			 * recent entries and purge whatever we find.
   1119 			 */
   1120 			tryharder = 1;
   1121 		}
   1122 		if (ncp->nc_dvp == NULL)
   1123 			continue;
   1124 		if (!tryharder && (ncp->nc_hittime - recent) > 0) {
   1125 			if (sentinel == NULL)
   1126 				sentinel = ncp;
   1127 			TAILQ_REMOVE(&nclruhead, ncp, nc_lru);
   1128 			TAILQ_INSERT_TAIL(&nclruhead, ncp, nc_lru);
   1129 			continue;
   1130 		}
   1131 		mutex_enter(&ncp->nc_lock);
   1132 		if (ncp->nc_dvp != NULL) {
   1133 			cache_invalidate(ncp);
   1134 			cache_disassociate(ncp);
   1135 			incache--;
   1136 		}
   1137 		mutex_exit(&ncp->nc_lock);
   1138 	}
   1139 	cache_ev_scan.ev_count += items;
   1140 }
   1141 
   1142 /*
   1143  * Collect dead cache entries from all CPUs and garbage collect.
   1144  */
   1145 static void
   1146 cache_reclaim(void)
   1147 {
   1148 	struct namecache *ncp, *next;
   1149 	int items;
   1150 
   1151 	KASSERT(mutex_owned(namecache_lock));
   1152 
   1153 	/*
   1154 	 * If the number of extant entries not awaiting garbage collection
   1155 	 * exceeds the high water mark, then reclaim stale entries until we
   1156 	 * reach our low water mark.
   1157 	 */
   1158 	items = numcache - cache_gcpend;
   1159 	if (items > (uint64_t)desiredvnodes * cache_hiwat / 100) {
   1160 		cache_prune(items, (int)((uint64_t)desiredvnodes *
   1161 		    cache_lowat / 100));
   1162 		cache_ev_over.ev_count++;
   1163 	} else
   1164 		cache_ev_under.ev_count++;
   1165 
   1166 	/*
   1167 	 * Stop forward lookup activity on all CPUs and garbage collect dead
   1168 	 * entries.
   1169 	 */
   1170 	cache_lock_cpus();
   1171 	ncp = cache_gcqueue;
   1172 	cache_gcqueue = NULL;
   1173 	items = cache_gcpend;
   1174 	cache_gcpend = 0;
   1175 	while (ncp != NULL) {
   1176 		next = ncp->nc_gcqueue;
   1177 		cache_disassociate(ncp);
   1178 		KASSERT(ncp->nc_dvp == NULL);
   1179 		if (ncp->nc_hash.le_prev != NULL) {
   1180 			LIST_REMOVE(ncp, nc_hash);
   1181 			ncp->nc_hash.le_prev = NULL;
   1182 		}
   1183 		pool_cache_put(namecache_cache, ncp);
   1184 		ncp = next;
   1185 	}
   1186 	cache_unlock_cpus();
   1187 	numcache -= items;
   1188 	cache_ev_gc.ev_count += items;
   1189 }
   1190 
   1191 /*
   1192  * Cache maintainence thread, awakening once per second to:
   1193  *
   1194  * => keep number of entries below the high water mark
   1195  * => sort pseudo-LRU list
   1196  * => garbage collect dead entries
   1197  */
   1198 static void
   1199 cache_thread(void *arg)
   1200 {
   1201 
   1202 	mutex_enter(namecache_lock);
   1203 	for (;;) {
   1204 		cache_reclaim();
   1205 		kpause("cachegc", false, hz, namecache_lock);
   1206 	}
   1207 }
   1208 
   1209 #ifdef DDB
   1210 void
   1211 namecache_print(struct vnode *vp, void (*pr)(const char *, ...))
   1212 {
   1213 	struct vnode *dvp = NULL;
   1214 	struct namecache *ncp;
   1215 
   1216 	TAILQ_FOREACH(ncp, &nclruhead, nc_lru) {
   1217 		if (ncp->nc_vp == vp && ncp->nc_dvp != NULL) {
   1218 			(*pr)("name %.*s\n", ncp->nc_nlen, ncp->nc_name);
   1219 			dvp = ncp->nc_dvp;
   1220 		}
   1221 	}
   1222 	if (dvp == NULL) {
   1223 		(*pr)("name not found\n");
   1224 		return;
   1225 	}
   1226 	vp = dvp;
   1227 	TAILQ_FOREACH(ncp, &nclruhead, nc_lru) {
   1228 		if (ncp->nc_vp == vp) {
   1229 			(*pr)("parent %.*s\n", ncp->nc_nlen, ncp->nc_name);
   1230 		}
   1231 	}
   1232 }
   1233 #endif
   1234 
   1235 void
   1236 namecache_count_pass2(void)
   1237 {
   1238 	struct nchcpu *cpup = curcpu()->ci_data.cpu_nch;
   1239 
   1240 	COUNT_UNL(cpup, ncs_pass2);
   1241 }
   1242 
   1243 void
   1244 namecache_count_2passes(void)
   1245 {
   1246 	struct nchcpu *cpup = curcpu()->ci_data.cpu_nch;
   1247 
   1248 	COUNT_UNL(cpup, ncs_2passes);
   1249 }
   1250 
   1251 /*
   1252  * Fetch the current values of the stats.  We return the most
   1253  * recent values harvested into nchstats by cache_reclaim(), which
   1254  * will be less than a second old.
   1255  */
   1256 static int
   1257 cache_stat_sysctl(SYSCTLFN_ARGS)
   1258 {
   1259 	struct nchstats stats;
   1260 	struct nchcpu *my_cpup;
   1261 #ifdef CACHE_STATS_CURRENT
   1262 	CPU_INFO_ITERATOR cii;
   1263 	struct cpu_info *ci;
   1264 #endif	/* CACHE_STATS_CURRENT */
   1265 
   1266 	if (oldp == NULL) {
   1267 		*oldlenp = sizeof(stats);
   1268 		return 0;
   1269 	}
   1270 
   1271 	if (*oldlenp < sizeof(stats)) {
   1272 		*oldlenp = 0;
   1273 		return 0;
   1274 	}
   1275 
   1276 	/*
   1277 	 * Take this CPU's per-cpu lock to hold off cache_reclaim()
   1278 	 * from doing a stats update while doing minimal damage to
   1279 	 * concurrent operations.
   1280 	 */
   1281 	sysctl_unlock();
   1282 	my_cpup = curcpu()->ci_data.cpu_nch;
   1283 	mutex_enter(&my_cpup->cpu_lock);
   1284 	stats = nchstats;
   1285 #ifdef CACHE_STATS_CURRENT
   1286 	for (CPU_INFO_FOREACH(cii, ci)) {
   1287 		struct nchcpu *cpup = ci->ci_data.cpu_nch;
   1288 
   1289 		ADD(stats, cpup, ncs_goodhits);
   1290 		ADD(stats, cpup, ncs_neghits);
   1291 		ADD(stats, cpup, ncs_badhits);
   1292 		ADD(stats, cpup, ncs_falsehits);
   1293 		ADD(stats, cpup, ncs_miss);
   1294 		ADD(stats, cpup, ncs_long);
   1295 		ADD(stats, cpup, ncs_pass2);
   1296 		ADD(stats, cpup, ncs_2passes);
   1297 		ADD(stats, cpup, ncs_revhits);
   1298 		ADD(stats, cpup, ncs_revmiss);
   1299 	}
   1300 #endif	/* CACHE_STATS_CURRENT */
   1301 	mutex_exit(&my_cpup->cpu_lock);
   1302 	sysctl_relock();
   1303 
   1304 	*oldlenp = sizeof(stats);
   1305 	return sysctl_copyout(l, &stats, oldp, sizeof(stats));
   1306 }
   1307 
   1308 static void
   1309 sysctl_cache_stat_setup(void)
   1310 {
   1311 
   1312 	KASSERT(sysctllog == NULL);
   1313 	sysctl_createv(&sysctllog, 0, NULL, NULL,
   1314 		       CTLFLAG_PERMANENT,
   1315 		       CTLTYPE_STRUCT, "namecache_stats",
   1316 		       SYSCTL_DESCR("namecache statistics"),
   1317 		       cache_stat_sysctl, 0, NULL, 0,
   1318 		       CTL_VFS, CTL_CREATE, CTL_EOL);
   1319 }
   1320