Home | History | Annotate | Line # | Download | only in kern
vfs_cache.c revision 1.115
      1 /*	$NetBSD: vfs_cache.c,v 1.115 2017/03/18 20:00:10 riastradh Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * Copyright (c) 1989, 1993
     31  *	The Regents of the University of California.  All rights reserved.
     32  *
     33  * Redistribution and use in source and binary forms, with or without
     34  * modification, are permitted provided that the following conditions
     35  * are met:
     36  * 1. Redistributions of source code must retain the above copyright
     37  *    notice, this list of conditions and the following disclaimer.
     38  * 2. Redistributions in binary form must reproduce the above copyright
     39  *    notice, this list of conditions and the following disclaimer in the
     40  *    documentation and/or other materials provided with the distribution.
     41  * 3. Neither the name of the University nor the names of its contributors
     42  *    may be used to endorse or promote products derived from this software
     43  *    without specific prior written permission.
     44  *
     45  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55  * SUCH DAMAGE.
     56  *
     57  *	@(#)vfs_cache.c	8.3 (Berkeley) 8/22/94
     58  */
     59 
     60 #include <sys/cdefs.h>
     61 __KERNEL_RCSID(0, "$NetBSD: vfs_cache.c,v 1.115 2017/03/18 20:00:10 riastradh Exp $");
     62 
     63 #ifdef _KERNEL_OPT
     64 #include "opt_ddb.h"
     65 #include "opt_dtrace.h"
     66 #include "opt_revcache.h"
     67 #endif
     68 
     69 #include <sys/param.h>
     70 #include <sys/atomic.h>
     71 #include <sys/cpu.h>
     72 #include <sys/errno.h>
     73 #include <sys/evcnt.h>
     74 #include <sys/kernel.h>
     75 #include <sys/kthread.h>
     76 #include <sys/mount.h>
     77 #include <sys/mutex.h>
     78 #include <sys/namei.h>
     79 #include <sys/pool.h>
     80 #include <sys/sdt.h>
     81 #include <sys/sysctl.h>
     82 #include <sys/systm.h>
     83 #include <sys/time.h>
     84 #include <sys/vnode_impl.h>
     85 
     86 #define NAMECACHE_ENTER_REVERSE
     87 /*
     88  * Name caching works as follows:
     89  *
     90  * Names found by directory scans are retained in a cache
     91  * for future reference.  It is managed LRU, so frequently
     92  * used names will hang around.  Cache is indexed by hash value
     93  * obtained from (dvp, name) where dvp refers to the directory
     94  * containing name.
     95  *
     96  * For simplicity (and economy of storage), names longer than
     97  * a maximum length of NCHNAMLEN are not cached; they occur
     98  * infrequently in any case, and are almost never of interest.
     99  *
    100  * Upon reaching the last segment of a path, if the reference
    101  * is for DELETE, or NOCACHE is set (rewrite), and the
    102  * name is located in the cache, it will be dropped.
    103  */
    104 
    105 /*
    106  * The locking in this subsystem works as follows:
    107  *
    108  * When an entry is added to the cache, via cache_enter(),
    109  * namecache_lock is taken to exclude other writers.  The new
    110  * entry is added to the hash list in a way which permits
    111  * concurrent lookups and invalidations in the cache done on
    112  * other CPUs to continue in parallel.
    113  *
    114  * When a lookup is done in the cache, via cache_lookup() or
    115  * cache_lookup_raw(), the per-cpu lock below is taken.  This
    116  * protects calls to cache_lookup_entry() and cache_invalidate()
    117  * against cache_reclaim() but allows lookups to continue in
    118  * parallel with cache_enter().
    119  *
    120  * cache_revlookup() takes namecache_lock to exclude cache_enter()
    121  * and cache_reclaim() since the list it operates on is not
    122  * maintained to allow concurrent reads.
    123  *
    124  * When cache_reclaim() is called namecache_lock is held to hold
    125  * off calls to cache_enter()/cache_revlookup() and each of the
    126  * per-cpu locks is taken to hold off lookups.  Holding all these
    127  * locks essentially idles the subsystem, ensuring there are no
    128  * concurrent references to the cache entries being freed.
    129  *
    130  * 32 bit per-cpu statistic counters (struct nchstats_percpu) are
    131  * incremented when the operations they count are performed while
    132  * running on the corresponding CPU.  Frequently individual counters
    133  * are incremented while holding a lock (either a per-cpu lock or
    134  * namecache_lock) sufficient to preclude concurrent increments
    135  * being done to the same counter, so non-atomic increments are
    136  * done using the COUNT() macro.  Counters which are incremented
    137  * when one of these locks is not held use the COUNT_UNL() macro
    138  * instead.  COUNT_UNL() could be defined to do atomic increments
    139  * but currently just does what COUNT() does, on the theory that
    140  * it is unlikely the non-atomic increment will be interrupted
    141  * by something on the same CPU that increments the same counter,
    142  * but even if it does happen the consequences aren't serious.
    143  *
    144  * N.B.: Attempting to protect COUNT_UNL() increments by taking
    145  * a per-cpu lock in the namecache_count_*() functions causes
    146  * a deadlock.  Don't do that, use atomic increments instead if
    147  * the imperfections here bug you.
    148  *
    149  * The 64 bit system-wide statistic counts (struct nchstats) are
    150  * maintained by sampling the per-cpu counters periodically, adding
    151  * in the deltas since the last samples and recording the current
    152  * samples to use to compute the next delta.  The sampling is done
    153  * as a side effect of cache_reclaim() which is run periodically,
    154  * for its own purposes, often enough to avoid overflow of the 32
    155  * bit counters.  While sampling in this fashion requires no locking
    156  * it is never-the-less done only after all locks have been taken by
    157  * cache_reclaim() to allow cache_stat_sysctl() to hold off
    158  * cache_reclaim() with minimal locking.
    159  *
    160  * cache_stat_sysctl() takes its CPU's per-cpu lock to hold off
    161  * cache_reclaim() so that it can copy the subsystem total stats
    162  * without them being concurrently modified.  If CACHE_STATS_CURRENT
    163  * is defined it also harvests the per-cpu increments into the total,
    164  * which again requires cache_reclaim() to be held off.
    165  *
    166  * The per-cpu data (a lock and the per-cpu stats structures)
    167  * are defined next.
    168  */
    169 struct nchstats_percpu _NAMEI_CACHE_STATS(uint32_t);
    170 
    171 struct nchcpu {
    172 	kmutex_t		cpu_lock;
    173 	struct nchstats_percpu	cpu_stats;
    174 	/* XXX maybe __cacheline_aligned would improve this? */
    175 	struct nchstats_percpu	cpu_stats_last;	/* from last sample */
    176 };
    177 
    178 /*
    179  * The type for the hash code. While the hash function generates a
    180  * u32, the hash code has historically been passed around as a u_long,
    181  * and the value is modified by xor'ing a uintptr_t, so it's not
    182  * entirely clear what the best type is. For now I'll leave it
    183  * unchanged as u_long.
    184  */
    185 
    186 typedef u_long nchash_t;
    187 
    188 /*
    189  * Structures associated with name cacheing.
    190  */
    191 
    192 static kmutex_t *namecache_lock __read_mostly;
    193 static pool_cache_t namecache_cache __read_mostly;
    194 static TAILQ_HEAD(, namecache) nclruhead __cacheline_aligned;
    195 
    196 static LIST_HEAD(nchashhead, namecache) *nchashtbl __read_mostly;
    197 static u_long	nchash __read_mostly;
    198 
    199 #define	NCHASH2(hash, dvp)	\
    200 	(((hash) ^ ((uintptr_t)(dvp) >> 3)) & nchash)
    201 
    202 static LIST_HEAD(ncvhashhead, namecache) *ncvhashtbl __read_mostly;
    203 static u_long	ncvhash __read_mostly;
    204 
    205 #define	NCVHASH(vp)		(((uintptr_t)(vp) >> 3) & ncvhash)
    206 
    207 /* Number of cache entries allocated. */
    208 static long	numcache __cacheline_aligned;
    209 
    210 /* Garbage collection queue and number of entries pending in it. */
    211 static void	*cache_gcqueue;
    212 static u_int	cache_gcpend;
    213 
    214 /* Cache effectiveness statistics.  This holds total from per-cpu stats */
    215 struct nchstats	nchstats __cacheline_aligned;
    216 
    217 /*
    218  * Macros to count an event, update the central stats with per-cpu
    219  * values and add current per-cpu increments to the subsystem total
    220  * last collected by cache_reclaim().
    221  */
    222 #define	CACHE_STATS_CURRENT	/* nothing */
    223 
    224 #define	COUNT(cpup, f)	((cpup)->cpu_stats.f++)
    225 
    226 #define	UPDATE(cpup, f) do { \
    227 	struct nchcpu *Xcpup = (cpup); \
    228 	uint32_t Xcnt = (volatile uint32_t) Xcpup->cpu_stats.f; \
    229 	nchstats.f += Xcnt - Xcpup->cpu_stats_last.f; \
    230 	Xcpup->cpu_stats_last.f = Xcnt; \
    231 } while (/* CONSTCOND */ 0)
    232 
    233 #define	ADD(stats, cpup, f) do { \
    234 	struct nchcpu *Xcpup = (cpup); \
    235 	stats.f += Xcpup->cpu_stats.f - Xcpup->cpu_stats_last.f; \
    236 } while (/* CONSTCOND */ 0)
    237 
    238 /* Do unlocked stats the same way. Use a different name to allow mind changes */
    239 #define	COUNT_UNL(cpup, f)	COUNT((cpup), f)
    240 
    241 static const int cache_lowat = 95;
    242 static const int cache_hiwat = 98;
    243 static const int cache_hottime = 5;	/* number of seconds */
    244 static int doingcache = 1;		/* 1 => enable the cache */
    245 
    246 static struct evcnt cache_ev_scan;
    247 static struct evcnt cache_ev_gc;
    248 static struct evcnt cache_ev_over;
    249 static struct evcnt cache_ev_under;
    250 static struct evcnt cache_ev_forced;
    251 
    252 static void cache_invalidate(struct namecache *);
    253 static struct namecache *cache_lookup_entry(
    254     const struct vnode *, const char *, size_t);
    255 static void cache_thread(void *);
    256 static void cache_invalidate(struct namecache *);
    257 static void cache_disassociate(struct namecache *);
    258 static void cache_reclaim(void);
    259 static int cache_ctor(void *, void *, int);
    260 static void cache_dtor(void *, void *);
    261 
    262 static struct sysctllog *sysctllog;
    263 static void sysctl_cache_stat_setup(void);
    264 
    265 SDT_PROVIDER_DEFINE(vfs);
    266 
    267 SDT_PROBE_DEFINE1(vfs, namecache, invalidate, done, "struct vnode *");
    268 SDT_PROBE_DEFINE1(vfs, namecache, purge, parents, "struct vnode *");
    269 SDT_PROBE_DEFINE1(vfs, namecache, purge, children, "struct vnode *");
    270 SDT_PROBE_DEFINE2(vfs, namecache, purge, name, "char *", "size_t");
    271 SDT_PROBE_DEFINE1(vfs, namecache, purge, vfs, "struct mount *");
    272 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *",
    273     "char *", "size_t");
    274 SDT_PROBE_DEFINE3(vfs, namecache, lookup, miss, "struct vnode *",
    275     "char *", "size_t");
    276 SDT_PROBE_DEFINE3(vfs, namecache, lookup, toolong, "struct vnode *",
    277     "char *", "size_t");
    278 SDT_PROBE_DEFINE2(vfs, namecache, revlookup, success, "struct vnode *",
    279      "struct vnode *");
    280 SDT_PROBE_DEFINE2(vfs, namecache, revlookup, fail, "struct vnode *",
    281      "int");
    282 SDT_PROBE_DEFINE2(vfs, namecache, prune, done, "int", "int");
    283 SDT_PROBE_DEFINE3(vfs, namecache, enter, toolong, "struct vnode *",
    284     "char *", "size_t");
    285 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *",
    286     "char *", "size_t");
    287 
    288 /*
    289  * Compute the hash for an entry.
    290  *
    291  * (This is for now a wrapper around namei_hash, whose interface is
    292  * for the time being slightly inconvenient.)
    293  */
    294 static nchash_t
    295 cache_hash(const char *name, size_t namelen)
    296 {
    297 	const char *endptr;
    298 
    299 	endptr = name + namelen;
    300 	return namei_hash(name, &endptr);
    301 }
    302 
    303 /*
    304  * Invalidate a cache entry and enqueue it for garbage collection.
    305  * The caller needs to hold namecache_lock or a per-cpu lock to hold
    306  * off cache_reclaim().
    307  */
    308 static void
    309 cache_invalidate(struct namecache *ncp)
    310 {
    311 	void *head;
    312 
    313 	KASSERT(mutex_owned(&ncp->nc_lock));
    314 
    315 	if (ncp->nc_dvp != NULL) {
    316 		SDT_PROBE(vfs, namecache, invalidate, done, ncp->nc_dvp,
    317 		    0, 0, 0, 0);
    318 
    319 		ncp->nc_vp = NULL;
    320 		ncp->nc_dvp = NULL;
    321 		do {
    322 			head = cache_gcqueue;
    323 			ncp->nc_gcqueue = head;
    324 		} while (atomic_cas_ptr(&cache_gcqueue, head, ncp) != head);
    325 		atomic_inc_uint(&cache_gcpend);
    326 	}
    327 }
    328 
    329 /*
    330  * Disassociate a namecache entry from any vnodes it is attached to,
    331  * and remove from the global LRU list.
    332  */
    333 static void
    334 cache_disassociate(struct namecache *ncp)
    335 {
    336 
    337 	KASSERT(mutex_owned(namecache_lock));
    338 	KASSERT(ncp->nc_dvp == NULL);
    339 
    340 	if (ncp->nc_lru.tqe_prev != NULL) {
    341 		TAILQ_REMOVE(&nclruhead, ncp, nc_lru);
    342 		ncp->nc_lru.tqe_prev = NULL;
    343 	}
    344 	if (ncp->nc_vhash.le_prev != NULL) {
    345 		LIST_REMOVE(ncp, nc_vhash);
    346 		ncp->nc_vhash.le_prev = NULL;
    347 	}
    348 	if (ncp->nc_vlist.le_prev != NULL) {
    349 		LIST_REMOVE(ncp, nc_vlist);
    350 		ncp->nc_vlist.le_prev = NULL;
    351 	}
    352 	if (ncp->nc_dvlist.le_prev != NULL) {
    353 		LIST_REMOVE(ncp, nc_dvlist);
    354 		ncp->nc_dvlist.le_prev = NULL;
    355 	}
    356 }
    357 
    358 /*
    359  * Lock all CPUs to prevent any cache lookup activity.  Conceptually,
    360  * this locks out all "readers".
    361  */
    362 static void
    363 cache_lock_cpus(void)
    364 {
    365 	CPU_INFO_ITERATOR cii;
    366 	struct cpu_info *ci;
    367 	struct nchcpu *cpup;
    368 
    369 	/*
    370 	 * Lock out all CPUs first, then harvest per-cpu stats.  This
    371 	 * is probably not quite as cache-efficient as doing the lock
    372 	 * and harvest at the same time, but allows cache_stat_sysctl()
    373 	 * to make do with a per-cpu lock.
    374 	 */
    375 	for (CPU_INFO_FOREACH(cii, ci)) {
    376 		cpup = ci->ci_data.cpu_nch;
    377 		mutex_enter(&cpup->cpu_lock);
    378 	}
    379 	for (CPU_INFO_FOREACH(cii, ci)) {
    380 		cpup = ci->ci_data.cpu_nch;
    381 		UPDATE(cpup, ncs_goodhits);
    382 		UPDATE(cpup, ncs_neghits);
    383 		UPDATE(cpup, ncs_badhits);
    384 		UPDATE(cpup, ncs_falsehits);
    385 		UPDATE(cpup, ncs_miss);
    386 		UPDATE(cpup, ncs_long);
    387 		UPDATE(cpup, ncs_pass2);
    388 		UPDATE(cpup, ncs_2passes);
    389 		UPDATE(cpup, ncs_revhits);
    390 		UPDATE(cpup, ncs_revmiss);
    391 	}
    392 }
    393 
    394 /*
    395  * Release all CPU locks.
    396  */
    397 static void
    398 cache_unlock_cpus(void)
    399 {
    400 	CPU_INFO_ITERATOR cii;
    401 	struct cpu_info *ci;
    402 	struct nchcpu *cpup;
    403 
    404 	for (CPU_INFO_FOREACH(cii, ci)) {
    405 		cpup = ci->ci_data.cpu_nch;
    406 		mutex_exit(&cpup->cpu_lock);
    407 	}
    408 }
    409 
    410 /*
    411  * Find a single cache entry and return it locked.
    412  * The caller needs to hold namecache_lock or a per-cpu lock to hold
    413  * off cache_reclaim().
    414  */
    415 static struct namecache *
    416 cache_lookup_entry(const struct vnode *dvp, const char *name, size_t namelen)
    417 {
    418 	struct nchashhead *ncpp;
    419 	struct namecache *ncp;
    420 	nchash_t hash;
    421 
    422 	KASSERT(dvp != NULL);
    423 	hash = cache_hash(name, namelen);
    424 	ncpp = &nchashtbl[NCHASH2(hash, dvp)];
    425 
    426 	LIST_FOREACH(ncp, ncpp, nc_hash) {
    427 		membar_datadep_consumer();	/* for Alpha... */
    428 		if (ncp->nc_dvp != dvp ||
    429 		    ncp->nc_nlen != namelen ||
    430 		    memcmp(ncp->nc_name, name, (u_int)ncp->nc_nlen))
    431 		    	continue;
    432 	    	mutex_enter(&ncp->nc_lock);
    433 		if (__predict_true(ncp->nc_dvp == dvp)) {
    434 			ncp->nc_hittime = hardclock_ticks;
    435 			SDT_PROBE(vfs, namecache, lookup, hit, dvp,
    436 			    name, namelen, 0, 0);
    437 			return ncp;
    438 		}
    439 		/* Raced: entry has been nullified. */
    440 		mutex_exit(&ncp->nc_lock);
    441 	}
    442 
    443 	SDT_PROBE(vfs, namecache, lookup, miss, dvp,
    444 	    name, namelen, 0, 0);
    445 	return NULL;
    446 }
    447 
    448 /*
    449  * Look for a the name in the cache. We don't do this
    450  * if the segment name is long, simply so the cache can avoid
    451  * holding long names (which would either waste space, or
    452  * add greatly to the complexity).
    453  *
    454  * Lookup is called with DVP pointing to the directory to search,
    455  * and CNP providing the name of the entry being sought: cn_nameptr
    456  * is the name, cn_namelen is its length, and cn_flags is the flags
    457  * word from the namei operation.
    458  *
    459  * DVP must be locked.
    460  *
    461  * There are three possible non-error return states:
    462  *    1. Nothing was found in the cache. Nothing is known about
    463  *       the requested name.
    464  *    2. A negative entry was found in the cache, meaning that the
    465  *       requested name definitely does not exist.
    466  *    3. A positive entry was found in the cache, meaning that the
    467  *       requested name does exist and that we are providing the
    468  *       vnode.
    469  * In these cases the results are:
    470  *    1. 0 returned; VN is set to NULL.
    471  *    2. 1 returned; VN is set to NULL.
    472  *    3. 1 returned; VN is set to the vnode found.
    473  *
    474  * The additional result argument ISWHT is set to zero, unless a
    475  * negative entry is found that was entered as a whiteout, in which
    476  * case ISWHT is set to one.
    477  *
    478  * The ISWHT_RET argument pointer may be null. In this case an
    479  * assertion is made that the whiteout flag is not set. File systems
    480  * that do not support whiteouts can/should do this.
    481  *
    482  * Filesystems that do support whiteouts should add ISWHITEOUT to
    483  * cnp->cn_flags if ISWHT comes back nonzero.
    484  *
    485  * When a vnode is returned, it is locked, as per the vnode lookup
    486  * locking protocol.
    487  *
    488  * There is no way for this function to fail, in the sense of
    489  * generating an error that requires aborting the namei operation.
    490  *
    491  * (Prior to October 2012, this function returned an integer status,
    492  * and a vnode, and mucked with the flags word in CNP for whiteouts.
    493  * The integer status was -1 for "nothing found", ENOENT for "a
    494  * negative entry found", 0 for "a positive entry found", and possibly
    495  * other errors, and the value of VN might or might not have been set
    496  * depending on what error occurred.)
    497  */
    498 bool
    499 cache_lookup(struct vnode *dvp, const char *name, size_t namelen,
    500 	     uint32_t nameiop, uint32_t cnflags,
    501 	     int *iswht_ret, struct vnode **vn_ret)
    502 {
    503 	struct namecache *ncp;
    504 	struct vnode *vp;
    505 	struct nchcpu *cpup;
    506 	int error;
    507 	bool hit;
    508 
    509 
    510 	/* Establish default result values */
    511 	if (iswht_ret != NULL) {
    512 		*iswht_ret = 0;
    513 	}
    514 	*vn_ret = NULL;
    515 
    516 	if (__predict_false(!doingcache)) {
    517 		return false;
    518 	}
    519 
    520 	cpup = curcpu()->ci_data.cpu_nch;
    521 	mutex_enter(&cpup->cpu_lock);
    522 	if (__predict_false(namelen > NCHNAMLEN)) {
    523 		SDT_PROBE(vfs, namecache, lookup, toolong, dvp,
    524 		    name, namelen, 0, 0);
    525 		COUNT(cpup, ncs_long);
    526 		mutex_exit(&cpup->cpu_lock);
    527 		/* found nothing */
    528 		return false;
    529 	}
    530 
    531 	ncp = cache_lookup_entry(dvp, name, namelen);
    532 	if (__predict_false(ncp == NULL)) {
    533 		COUNT(cpup, ncs_miss);
    534 		mutex_exit(&cpup->cpu_lock);
    535 		/* found nothing */
    536 		return false;
    537 	}
    538 	if ((cnflags & MAKEENTRY) == 0) {
    539 		COUNT(cpup, ncs_badhits);
    540 		/*
    541 		 * Last component and we are renaming or deleting,
    542 		 * the cache entry is invalid, or otherwise don't
    543 		 * want cache entry to exist.
    544 		 */
    545 		cache_invalidate(ncp);
    546 		mutex_exit(&ncp->nc_lock);
    547 		mutex_exit(&cpup->cpu_lock);
    548 		/* found nothing */
    549 		return false;
    550 	}
    551 	if (ncp->nc_vp == NULL) {
    552 		if (iswht_ret != NULL) {
    553 			/*
    554 			 * Restore the ISWHITEOUT flag saved earlier.
    555 			 */
    556 			KASSERT((ncp->nc_flags & ~ISWHITEOUT) == 0);
    557 			*iswht_ret = (ncp->nc_flags & ISWHITEOUT) != 0;
    558 		} else {
    559 			KASSERT(ncp->nc_flags == 0);
    560 		}
    561 
    562 		if (__predict_true(nameiop != CREATE ||
    563 		    (cnflags & ISLASTCN) == 0)) {
    564 			COUNT(cpup, ncs_neghits);
    565 			/* found neg entry; vn is already null from above */
    566 			hit = true;
    567 		} else {
    568 			COUNT(cpup, ncs_badhits);
    569 			/*
    570 			 * Last component and we are preparing to create
    571 			 * the named object, so flush the negative cache
    572 			 * entry.
    573 			 */
    574 			cache_invalidate(ncp);
    575 			/* found nothing */
    576 			hit = false;
    577 		}
    578 		mutex_exit(&ncp->nc_lock);
    579 		mutex_exit(&cpup->cpu_lock);
    580 		return hit;
    581 	}
    582 
    583 	vp = ncp->nc_vp;
    584 	mutex_enter(vp->v_interlock);
    585 	mutex_exit(&ncp->nc_lock);
    586 	mutex_exit(&cpup->cpu_lock);
    587 
    588 	/*
    589 	 * Unlocked except for the vnode interlock.  Call vcache_tryvget().
    590 	 */
    591 	error = vcache_tryvget(vp);
    592 	if (error) {
    593 		KASSERT(error == EBUSY);
    594 		/*
    595 		 * This vnode is being cleaned out.
    596 		 * XXX badhits?
    597 		 */
    598 		COUNT_UNL(cpup, ncs_falsehits);
    599 		/* found nothing */
    600 		return false;
    601 	}
    602 
    603 	COUNT_UNL(cpup, ncs_goodhits);
    604 	/* found it */
    605 	*vn_ret = vp;
    606 	return true;
    607 }
    608 
    609 
    610 /*
    611  * Cut-'n-pasted version of the above without the nameiop argument.
    612  */
    613 bool
    614 cache_lookup_raw(struct vnode *dvp, const char *name, size_t namelen,
    615 		 uint32_t cnflags,
    616 		 int *iswht_ret, struct vnode **vn_ret)
    617 {
    618 	struct namecache *ncp;
    619 	struct vnode *vp;
    620 	struct nchcpu *cpup;
    621 	int error;
    622 
    623 	/* Establish default results. */
    624 	if (iswht_ret != NULL) {
    625 		*iswht_ret = 0;
    626 	}
    627 	*vn_ret = NULL;
    628 
    629 	if (__predict_false(!doingcache)) {
    630 		/* found nothing */
    631 		return false;
    632 	}
    633 
    634 	cpup = curcpu()->ci_data.cpu_nch;
    635 	mutex_enter(&cpup->cpu_lock);
    636 	if (__predict_false(namelen > NCHNAMLEN)) {
    637 		COUNT(cpup, ncs_long);
    638 		mutex_exit(&cpup->cpu_lock);
    639 		/* found nothing */
    640 		return false;
    641 	}
    642 	ncp = cache_lookup_entry(dvp, name, namelen);
    643 	if (__predict_false(ncp == NULL)) {
    644 		COUNT(cpup, ncs_miss);
    645 		mutex_exit(&cpup->cpu_lock);
    646 		/* found nothing */
    647 		return false;
    648 	}
    649 	vp = ncp->nc_vp;
    650 	if (vp == NULL) {
    651 		/*
    652 		 * Restore the ISWHITEOUT flag saved earlier.
    653 		 */
    654 		if (iswht_ret != NULL) {
    655 			KASSERT((ncp->nc_flags & ~ISWHITEOUT) == 0);
    656 			/*cnp->cn_flags |= ncp->nc_flags;*/
    657 			*iswht_ret = (ncp->nc_flags & ISWHITEOUT) != 0;
    658 		}
    659 		COUNT(cpup, ncs_neghits);
    660 		mutex_exit(&ncp->nc_lock);
    661 		mutex_exit(&cpup->cpu_lock);
    662 		/* found negative entry; vn is already null from above */
    663 		return true;
    664 	}
    665 	mutex_enter(vp->v_interlock);
    666 	mutex_exit(&ncp->nc_lock);
    667 	mutex_exit(&cpup->cpu_lock);
    668 
    669 	/*
    670 	 * Unlocked except for the vnode interlock.  Call vcache_tryvget().
    671 	 */
    672 	error = vcache_tryvget(vp);
    673 	if (error) {
    674 		KASSERT(error == EBUSY);
    675 		/*
    676 		 * This vnode is being cleaned out.
    677 		 * XXX badhits?
    678 		 */
    679 		COUNT_UNL(cpup, ncs_falsehits);
    680 		/* found nothing */
    681 		return false;
    682 	}
    683 
    684 	COUNT_UNL(cpup, ncs_goodhits); /* XXX can be "badhits" */
    685 	/* found it */
    686 	*vn_ret = vp;
    687 	return true;
    688 }
    689 
    690 /*
    691  * Scan cache looking for name of directory entry pointing at vp.
    692  *
    693  * If the lookup succeeds the vnode is referenced and stored in dvpp.
    694  *
    695  * If bufp is non-NULL, also place the name in the buffer which starts
    696  * at bufp, immediately before *bpp, and move bpp backwards to point
    697  * at the start of it.  (Yes, this is a little baroque, but it's done
    698  * this way to cater to the whims of getcwd).
    699  *
    700  * Returns 0 on success, -1 on cache miss, positive errno on failure.
    701  */
    702 int
    703 cache_revlookup(struct vnode *vp, struct vnode **dvpp, char **bpp, char *bufp)
    704 {
    705 	struct namecache *ncp;
    706 	struct vnode *dvp;
    707 	struct ncvhashhead *nvcpp;
    708 	struct nchcpu *cpup;
    709 	char *bp;
    710 	int error, nlen;
    711 
    712 	if (!doingcache)
    713 		goto out;
    714 
    715 	nvcpp = &ncvhashtbl[NCVHASH(vp)];
    716 
    717 	/*
    718 	 * We increment counters in the local CPU's per-cpu stats.
    719 	 * We don't take the per-cpu lock, however, since this function
    720 	 * is the only place these counters are incremented so no one
    721 	 * will be racing with us to increment them.
    722 	 */
    723 	cpup = curcpu()->ci_data.cpu_nch;
    724 	mutex_enter(namecache_lock);
    725 	LIST_FOREACH(ncp, nvcpp, nc_vhash) {
    726 		mutex_enter(&ncp->nc_lock);
    727 		if (ncp->nc_vp == vp &&
    728 		    (dvp = ncp->nc_dvp) != NULL &&
    729 		    dvp != vp) { 		/* avoid pesky . entries.. */
    730 
    731 #ifdef DIAGNOSTIC
    732 			if (ncp->nc_nlen == 1 &&
    733 			    ncp->nc_name[0] == '.')
    734 				panic("cache_revlookup: found entry for .");
    735 
    736 			if (ncp->nc_nlen == 2 &&
    737 			    ncp->nc_name[0] == '.' &&
    738 			    ncp->nc_name[1] == '.')
    739 				panic("cache_revlookup: found entry for ..");
    740 #endif
    741 			COUNT(cpup, ncs_revhits);
    742 			nlen = ncp->nc_nlen;
    743 
    744 			if (bufp) {
    745 				bp = *bpp;
    746 				bp -= nlen;
    747 				if (bp <= bufp) {
    748 					*dvpp = NULL;
    749 					mutex_exit(&ncp->nc_lock);
    750 					mutex_exit(namecache_lock);
    751 					SDT_PROBE(vfs, namecache, revlookup,
    752 					    fail, vp, ERANGE, 0, 0, 0);
    753 					return (ERANGE);
    754 				}
    755 				memcpy(bp, ncp->nc_name, nlen);
    756 				*bpp = bp;
    757 			}
    758 
    759 			mutex_enter(dvp->v_interlock);
    760 			mutex_exit(&ncp->nc_lock);
    761 			mutex_exit(namecache_lock);
    762 			error = vcache_tryvget(dvp);
    763 			if (error) {
    764 				KASSERT(error == EBUSY);
    765 				if (bufp)
    766 					(*bpp) += nlen;
    767 				*dvpp = NULL;
    768 				SDT_PROBE(vfs, namecache, revlookup, fail, vp,
    769 				    error, 0, 0, 0);
    770 				return -1;
    771 			}
    772 			*dvpp = dvp;
    773 			SDT_PROBE(vfs, namecache, revlookup, success, vp, dvp,
    774 			    0, 0, 0);
    775 			return (0);
    776 		}
    777 		mutex_exit(&ncp->nc_lock);
    778 	}
    779 	COUNT(cpup, ncs_revmiss);
    780 	mutex_exit(namecache_lock);
    781  out:
    782 	*dvpp = NULL;
    783 	return (-1);
    784 }
    785 
    786 /*
    787  * Add an entry to the cache
    788  */
    789 void
    790 cache_enter(struct vnode *dvp, struct vnode *vp,
    791 	    const char *name, size_t namelen, uint32_t cnflags)
    792 {
    793 	struct namecache *ncp;
    794 	struct namecache *oncp;
    795 	struct nchashhead *ncpp;
    796 	struct ncvhashhead *nvcpp;
    797 	nchash_t hash;
    798 
    799 	/* First, check whether we can/should add a cache entry. */
    800 	if ((cnflags & MAKEENTRY) == 0 ||
    801 	    __predict_false(namelen > NCHNAMLEN || !doingcache)) {
    802 		SDT_PROBE(vfs, namecache, enter, toolong, vp, name, namelen,
    803 		    0, 0);
    804 		return;
    805 	}
    806 
    807 	SDT_PROBE(vfs, namecache, enter, done, vp, name, namelen, 0, 0);
    808 	if (numcache > desiredvnodes) {
    809 		mutex_enter(namecache_lock);
    810 		cache_ev_forced.ev_count++;
    811 		cache_reclaim();
    812 		mutex_exit(namecache_lock);
    813 	}
    814 
    815 	ncp = pool_cache_get(namecache_cache, PR_WAITOK);
    816 	mutex_enter(namecache_lock);
    817 	numcache++;
    818 
    819 	/*
    820 	 * Concurrent lookups in the same directory may race for a
    821 	 * cache entry.  if there's a duplicated entry, free it.
    822 	 */
    823 	oncp = cache_lookup_entry(dvp, name, namelen);
    824 	if (oncp) {
    825 		cache_invalidate(oncp);
    826 		mutex_exit(&oncp->nc_lock);
    827 	}
    828 
    829 	/* Grab the vnode we just found. */
    830 	mutex_enter(&ncp->nc_lock);
    831 	ncp->nc_vp = vp;
    832 	ncp->nc_flags = 0;
    833 	ncp->nc_hittime = 0;
    834 	ncp->nc_gcqueue = NULL;
    835 	if (vp == NULL) {
    836 		/*
    837 		 * For negative hits, save the ISWHITEOUT flag so we can
    838 		 * restore it later when the cache entry is used again.
    839 		 */
    840 		ncp->nc_flags = cnflags & ISWHITEOUT;
    841 	}
    842 
    843 	/* Fill in cache info. */
    844 	ncp->nc_dvp = dvp;
    845 	LIST_INSERT_HEAD(&VNODE_TO_VIMPL(dvp)->vi_dnclist, ncp, nc_dvlist);
    846 	if (vp)
    847 		LIST_INSERT_HEAD(&VNODE_TO_VIMPL(vp)->vi_nclist, ncp, nc_vlist);
    848 	else {
    849 		ncp->nc_vlist.le_prev = NULL;
    850 		ncp->nc_vlist.le_next = NULL;
    851 	}
    852 	KASSERT(namelen <= NCHNAMLEN);
    853 	ncp->nc_nlen = namelen;
    854 	memcpy(ncp->nc_name, name, (unsigned)ncp->nc_nlen);
    855 	TAILQ_INSERT_TAIL(&nclruhead, ncp, nc_lru);
    856 	hash = cache_hash(name, namelen);
    857 	ncpp = &nchashtbl[NCHASH2(hash, dvp)];
    858 
    859 	/*
    860 	 * Flush updates before making visible in table.  No need for a
    861 	 * memory barrier on the other side: to see modifications the
    862 	 * list must be followed, meaning a dependent pointer load.
    863 	 * The below is LIST_INSERT_HEAD() inlined, with the memory
    864 	 * barrier included in the correct place.
    865 	 */
    866 	if ((ncp->nc_hash.le_next = ncpp->lh_first) != NULL)
    867 		ncpp->lh_first->nc_hash.le_prev = &ncp->nc_hash.le_next;
    868 	ncp->nc_hash.le_prev = &ncpp->lh_first;
    869 	membar_producer();
    870 	ncpp->lh_first = ncp;
    871 
    872 	ncp->nc_vhash.le_prev = NULL;
    873 	ncp->nc_vhash.le_next = NULL;
    874 
    875 	/*
    876 	 * Create reverse-cache entries (used in getcwd) for directories.
    877 	 * (and in linux procfs exe node)
    878 	 */
    879 	if (vp != NULL &&
    880 	    vp != dvp &&
    881 #ifndef NAMECACHE_ENTER_REVERSE
    882 	    vp->v_type == VDIR &&
    883 #endif
    884 	    (ncp->nc_nlen > 2 ||
    885 	    (ncp->nc_nlen > 1 && ncp->nc_name[1] != '.') ||
    886 	    (/* ncp->nc_nlen > 0 && */ ncp->nc_name[0] != '.'))) {
    887 		nvcpp = &ncvhashtbl[NCVHASH(vp)];
    888 		LIST_INSERT_HEAD(nvcpp, ncp, nc_vhash);
    889 	}
    890 	mutex_exit(&ncp->nc_lock);
    891 	mutex_exit(namecache_lock);
    892 }
    893 
    894 /*
    895  * Name cache initialization, from vfs_init() when we are booting
    896  */
    897 void
    898 nchinit(void)
    899 {
    900 	int error;
    901 
    902 	TAILQ_INIT(&nclruhead);
    903 	namecache_cache = pool_cache_init(sizeof(struct namecache),
    904 	    coherency_unit, 0, 0, "ncache", NULL, IPL_NONE, cache_ctor,
    905 	    cache_dtor, NULL);
    906 	KASSERT(namecache_cache != NULL);
    907 
    908 	namecache_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    909 
    910 	nchashtbl = hashinit(desiredvnodes, HASH_LIST, true, &nchash);
    911 	ncvhashtbl =
    912 #ifdef NAMECACHE_ENTER_REVERSE
    913 	    hashinit(desiredvnodes, HASH_LIST, true, &ncvhash);
    914 #else
    915 	    hashinit(desiredvnodes/8, HASH_LIST, true, &ncvhash);
    916 #endif
    917 
    918 	error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, cache_thread,
    919 	    NULL, NULL, "cachegc");
    920 	if (error != 0)
    921 		panic("nchinit %d", error);
    922 
    923 	evcnt_attach_dynamic(&cache_ev_scan, EVCNT_TYPE_MISC, NULL,
    924 	   "namecache", "entries scanned");
    925 	evcnt_attach_dynamic(&cache_ev_gc, EVCNT_TYPE_MISC, NULL,
    926 	   "namecache", "entries collected");
    927 	evcnt_attach_dynamic(&cache_ev_over, EVCNT_TYPE_MISC, NULL,
    928 	   "namecache", "over scan target");
    929 	evcnt_attach_dynamic(&cache_ev_under, EVCNT_TYPE_MISC, NULL,
    930 	   "namecache", "under scan target");
    931 	evcnt_attach_dynamic(&cache_ev_forced, EVCNT_TYPE_MISC, NULL,
    932 	   "namecache", "forced reclaims");
    933 
    934 	sysctl_cache_stat_setup();
    935 }
    936 
    937 static int
    938 cache_ctor(void *arg, void *obj, int flag)
    939 {
    940 	struct namecache *ncp;
    941 
    942 	ncp = obj;
    943 	mutex_init(&ncp->nc_lock, MUTEX_DEFAULT, IPL_NONE);
    944 
    945 	return 0;
    946 }
    947 
    948 static void
    949 cache_dtor(void *arg, void *obj)
    950 {
    951 	struct namecache *ncp;
    952 
    953 	ncp = obj;
    954 	mutex_destroy(&ncp->nc_lock);
    955 }
    956 
    957 /*
    958  * Called once for each CPU in the system as attached.
    959  */
    960 void
    961 cache_cpu_init(struct cpu_info *ci)
    962 {
    963 	struct nchcpu *cpup;
    964 	size_t sz;
    965 
    966 	sz = roundup2(sizeof(*cpup), coherency_unit) + coherency_unit;
    967 	cpup = kmem_zalloc(sz, KM_SLEEP);
    968 	cpup = (void *)roundup2((uintptr_t)cpup, coherency_unit);
    969 	mutex_init(&cpup->cpu_lock, MUTEX_DEFAULT, IPL_NONE);
    970 	ci->ci_data.cpu_nch = cpup;
    971 }
    972 
    973 /*
    974  * Name cache reinitialization, for when the maximum number of vnodes increases.
    975  */
    976 void
    977 nchreinit(void)
    978 {
    979 	struct namecache *ncp;
    980 	struct nchashhead *oldhash1, *hash1;
    981 	struct ncvhashhead *oldhash2, *hash2;
    982 	u_long i, oldmask1, oldmask2, mask1, mask2;
    983 
    984 	hash1 = hashinit(desiredvnodes, HASH_LIST, true, &mask1);
    985 	hash2 =
    986 #ifdef NAMECACHE_ENTER_REVERSE
    987 	    hashinit(desiredvnodes, HASH_LIST, true, &mask2);
    988 #else
    989 	    hashinit(desiredvnodes/8, HASH_LIST, true, &mask2);
    990 #endif
    991 	mutex_enter(namecache_lock);
    992 	cache_lock_cpus();
    993 	oldhash1 = nchashtbl;
    994 	oldmask1 = nchash;
    995 	nchashtbl = hash1;
    996 	nchash = mask1;
    997 	oldhash2 = ncvhashtbl;
    998 	oldmask2 = ncvhash;
    999 	ncvhashtbl = hash2;
   1000 	ncvhash = mask2;
   1001 	for (i = 0; i <= oldmask1; i++) {
   1002 		while ((ncp = LIST_FIRST(&oldhash1[i])) != NULL) {
   1003 			LIST_REMOVE(ncp, nc_hash);
   1004 			ncp->nc_hash.le_prev = NULL;
   1005 		}
   1006 	}
   1007 	for (i = 0; i <= oldmask2; i++) {
   1008 		while ((ncp = LIST_FIRST(&oldhash2[i])) != NULL) {
   1009 			LIST_REMOVE(ncp, nc_vhash);
   1010 			ncp->nc_vhash.le_prev = NULL;
   1011 		}
   1012 	}
   1013 	cache_unlock_cpus();
   1014 	mutex_exit(namecache_lock);
   1015 	hashdone(oldhash1, HASH_LIST, oldmask1);
   1016 	hashdone(oldhash2, HASH_LIST, oldmask2);
   1017 }
   1018 
   1019 /*
   1020  * Cache flush, a particular vnode; called when a vnode is renamed to
   1021  * hide entries that would now be invalid
   1022  */
   1023 void
   1024 cache_purge1(struct vnode *vp, const char *name, size_t namelen, int flags)
   1025 {
   1026 	struct namecache *ncp, *ncnext;
   1027 
   1028 	mutex_enter(namecache_lock);
   1029 	if (flags & PURGE_PARENTS) {
   1030 		SDT_PROBE(vfs, namecache, purge, parents, vp, 0, 0, 0, 0);
   1031 
   1032 		for (ncp = LIST_FIRST(&VNODE_TO_VIMPL(vp)->vi_nclist);
   1033 		    ncp != NULL; ncp = ncnext) {
   1034 			ncnext = LIST_NEXT(ncp, nc_vlist);
   1035 			mutex_enter(&ncp->nc_lock);
   1036 			cache_invalidate(ncp);
   1037 			mutex_exit(&ncp->nc_lock);
   1038 			cache_disassociate(ncp);
   1039 		}
   1040 	}
   1041 	if (flags & PURGE_CHILDREN) {
   1042 		SDT_PROBE(vfs, namecache, purge, children, vp, 0, 0, 0, 0);
   1043 		for (ncp = LIST_FIRST(&VNODE_TO_VIMPL(vp)->vi_dnclist);
   1044 		    ncp != NULL; ncp = ncnext) {
   1045 			ncnext = LIST_NEXT(ncp, nc_dvlist);
   1046 			mutex_enter(&ncp->nc_lock);
   1047 			cache_invalidate(ncp);
   1048 			mutex_exit(&ncp->nc_lock);
   1049 			cache_disassociate(ncp);
   1050 		}
   1051 	}
   1052 	if (name != NULL) {
   1053 		SDT_PROBE(vfs, namecache, purge, name, name, namelen, 0, 0, 0);
   1054 		ncp = cache_lookup_entry(vp, name, namelen);
   1055 		if (ncp) {
   1056 			cache_invalidate(ncp);
   1057 			mutex_exit(&ncp->nc_lock);
   1058 			cache_disassociate(ncp);
   1059 		}
   1060 	}
   1061 	mutex_exit(namecache_lock);
   1062 }
   1063 
   1064 /*
   1065  * Cache flush, a whole filesystem; called when filesys is umounted to
   1066  * remove entries that would now be invalid.
   1067  */
   1068 void
   1069 cache_purgevfs(struct mount *mp)
   1070 {
   1071 	struct namecache *ncp, *nxtcp;
   1072 
   1073 	SDT_PROBE(vfs, namecache, purge, vfs, mp, 0, 0, 0, 0);
   1074 	mutex_enter(namecache_lock);
   1075 	for (ncp = TAILQ_FIRST(&nclruhead); ncp != NULL; ncp = nxtcp) {
   1076 		nxtcp = TAILQ_NEXT(ncp, nc_lru);
   1077 		mutex_enter(&ncp->nc_lock);
   1078 		if (ncp->nc_dvp != NULL && ncp->nc_dvp->v_mount == mp) {
   1079 			/* Free the resources we had. */
   1080 			cache_invalidate(ncp);
   1081 			cache_disassociate(ncp);
   1082 		}
   1083 		mutex_exit(&ncp->nc_lock);
   1084 	}
   1085 	cache_reclaim();
   1086 	mutex_exit(namecache_lock);
   1087 }
   1088 
   1089 /*
   1090  * Scan global list invalidating entries until we meet a preset target.
   1091  * Prefer to invalidate entries that have not scored a hit within
   1092  * cache_hottime seconds.  We sort the LRU list only for this routine's
   1093  * benefit.
   1094  */
   1095 static void
   1096 cache_prune(int incache, int target)
   1097 {
   1098 	struct namecache *ncp, *nxtcp, *sentinel;
   1099 	int items, recent, tryharder;
   1100 
   1101 	KASSERT(mutex_owned(namecache_lock));
   1102 
   1103 	SDT_PROBE(vfs, namecache, prune, done, incache, target, 0, 0, 0);
   1104 	items = 0;
   1105 	tryharder = 0;
   1106 	recent = hardclock_ticks - hz * cache_hottime;
   1107 	sentinel = NULL;
   1108 	for (ncp = TAILQ_FIRST(&nclruhead); ncp != NULL; ncp = nxtcp) {
   1109 		if (incache <= target)
   1110 			break;
   1111 		items++;
   1112 		nxtcp = TAILQ_NEXT(ncp, nc_lru);
   1113 		if (ncp == sentinel) {
   1114 			/*
   1115 			 * If we looped back on ourself, then ignore
   1116 			 * recent entries and purge whatever we find.
   1117 			 */
   1118 			tryharder = 1;
   1119 		}
   1120 		if (ncp->nc_dvp == NULL)
   1121 			continue;
   1122 		if (!tryharder && (ncp->nc_hittime - recent) > 0) {
   1123 			if (sentinel == NULL)
   1124 				sentinel = ncp;
   1125 			TAILQ_REMOVE(&nclruhead, ncp, nc_lru);
   1126 			TAILQ_INSERT_TAIL(&nclruhead, ncp, nc_lru);
   1127 			continue;
   1128 		}
   1129 		mutex_enter(&ncp->nc_lock);
   1130 		if (ncp->nc_dvp != NULL) {
   1131 			cache_invalidate(ncp);
   1132 			cache_disassociate(ncp);
   1133 			incache--;
   1134 		}
   1135 		mutex_exit(&ncp->nc_lock);
   1136 	}
   1137 	cache_ev_scan.ev_count += items;
   1138 }
   1139 
   1140 /*
   1141  * Collect dead cache entries from all CPUs and garbage collect.
   1142  */
   1143 static void
   1144 cache_reclaim(void)
   1145 {
   1146 	struct namecache *ncp, *next;
   1147 	int items;
   1148 
   1149 	KASSERT(mutex_owned(namecache_lock));
   1150 
   1151 	/*
   1152 	 * If the number of extant entries not awaiting garbage collection
   1153 	 * exceeds the high water mark, then reclaim stale entries until we
   1154 	 * reach our low water mark.
   1155 	 */
   1156 	items = numcache - cache_gcpend;
   1157 	if (items > (uint64_t)desiredvnodes * cache_hiwat / 100) {
   1158 		cache_prune(items, (int)((uint64_t)desiredvnodes *
   1159 		    cache_lowat / 100));
   1160 		cache_ev_over.ev_count++;
   1161 	} else
   1162 		cache_ev_under.ev_count++;
   1163 
   1164 	/*
   1165 	 * Stop forward lookup activity on all CPUs and garbage collect dead
   1166 	 * entries.
   1167 	 */
   1168 	cache_lock_cpus();
   1169 	ncp = cache_gcqueue;
   1170 	cache_gcqueue = NULL;
   1171 	items = cache_gcpend;
   1172 	cache_gcpend = 0;
   1173 	while (ncp != NULL) {
   1174 		next = ncp->nc_gcqueue;
   1175 		cache_disassociate(ncp);
   1176 		KASSERT(ncp->nc_dvp == NULL);
   1177 		if (ncp->nc_hash.le_prev != NULL) {
   1178 			LIST_REMOVE(ncp, nc_hash);
   1179 			ncp->nc_hash.le_prev = NULL;
   1180 		}
   1181 		pool_cache_put(namecache_cache, ncp);
   1182 		ncp = next;
   1183 	}
   1184 	cache_unlock_cpus();
   1185 	numcache -= items;
   1186 	cache_ev_gc.ev_count += items;
   1187 }
   1188 
   1189 /*
   1190  * Cache maintainence thread, awakening once per second to:
   1191  *
   1192  * => keep number of entries below the high water mark
   1193  * => sort pseudo-LRU list
   1194  * => garbage collect dead entries
   1195  */
   1196 static void
   1197 cache_thread(void *arg)
   1198 {
   1199 
   1200 	mutex_enter(namecache_lock);
   1201 	for (;;) {
   1202 		cache_reclaim();
   1203 		kpause("cachegc", false, hz, namecache_lock);
   1204 	}
   1205 }
   1206 
   1207 #ifdef DDB
   1208 void
   1209 namecache_print(struct vnode *vp, void (*pr)(const char *, ...))
   1210 {
   1211 	struct vnode *dvp = NULL;
   1212 	struct namecache *ncp;
   1213 
   1214 	TAILQ_FOREACH(ncp, &nclruhead, nc_lru) {
   1215 		if (ncp->nc_vp == vp && ncp->nc_dvp != NULL) {
   1216 			(*pr)("name %.*s\n", ncp->nc_nlen, ncp->nc_name);
   1217 			dvp = ncp->nc_dvp;
   1218 		}
   1219 	}
   1220 	if (dvp == NULL) {
   1221 		(*pr)("name not found\n");
   1222 		return;
   1223 	}
   1224 	vp = dvp;
   1225 	TAILQ_FOREACH(ncp, &nclruhead, nc_lru) {
   1226 		if (ncp->nc_vp == vp) {
   1227 			(*pr)("parent %.*s\n", ncp->nc_nlen, ncp->nc_name);
   1228 		}
   1229 	}
   1230 }
   1231 #endif
   1232 
   1233 void
   1234 namecache_count_pass2(void)
   1235 {
   1236 	struct nchcpu *cpup = curcpu()->ci_data.cpu_nch;
   1237 
   1238 	COUNT_UNL(cpup, ncs_pass2);
   1239 }
   1240 
   1241 void
   1242 namecache_count_2passes(void)
   1243 {
   1244 	struct nchcpu *cpup = curcpu()->ci_data.cpu_nch;
   1245 
   1246 	COUNT_UNL(cpup, ncs_2passes);
   1247 }
   1248 
   1249 /*
   1250  * Fetch the current values of the stats.  We return the most
   1251  * recent values harvested into nchstats by cache_reclaim(), which
   1252  * will be less than a second old.
   1253  */
   1254 static int
   1255 cache_stat_sysctl(SYSCTLFN_ARGS)
   1256 {
   1257 	struct nchstats stats;
   1258 	struct nchcpu *my_cpup;
   1259 #ifdef CACHE_STATS_CURRENT
   1260 	CPU_INFO_ITERATOR cii;
   1261 	struct cpu_info *ci;
   1262 #endif	/* CACHE_STATS_CURRENT */
   1263 
   1264 	if (oldp == NULL) {
   1265 		*oldlenp = sizeof(stats);
   1266 		return 0;
   1267 	}
   1268 
   1269 	if (*oldlenp < sizeof(stats)) {
   1270 		*oldlenp = 0;
   1271 		return 0;
   1272 	}
   1273 
   1274 	/*
   1275 	 * Take this CPU's per-cpu lock to hold off cache_reclaim()
   1276 	 * from doing a stats update while doing minimal damage to
   1277 	 * concurrent operations.
   1278 	 */
   1279 	sysctl_unlock();
   1280 	my_cpup = curcpu()->ci_data.cpu_nch;
   1281 	mutex_enter(&my_cpup->cpu_lock);
   1282 	stats = nchstats;
   1283 #ifdef CACHE_STATS_CURRENT
   1284 	for (CPU_INFO_FOREACH(cii, ci)) {
   1285 		struct nchcpu *cpup = ci->ci_data.cpu_nch;
   1286 
   1287 		ADD(stats, cpup, ncs_goodhits);
   1288 		ADD(stats, cpup, ncs_neghits);
   1289 		ADD(stats, cpup, ncs_badhits);
   1290 		ADD(stats, cpup, ncs_falsehits);
   1291 		ADD(stats, cpup, ncs_miss);
   1292 		ADD(stats, cpup, ncs_long);
   1293 		ADD(stats, cpup, ncs_pass2);
   1294 		ADD(stats, cpup, ncs_2passes);
   1295 		ADD(stats, cpup, ncs_revhits);
   1296 		ADD(stats, cpup, ncs_revmiss);
   1297 	}
   1298 #endif	/* CACHE_STATS_CURRENT */
   1299 	mutex_exit(&my_cpup->cpu_lock);
   1300 	sysctl_relock();
   1301 
   1302 	*oldlenp = sizeof(stats);
   1303 	return sysctl_copyout(l, &stats, oldp, sizeof(stats));
   1304 }
   1305 
   1306 static void
   1307 sysctl_cache_stat_setup(void)
   1308 {
   1309 
   1310 	KASSERT(sysctllog == NULL);
   1311 	sysctl_createv(&sysctllog, 0, NULL, NULL,
   1312 		       CTLFLAG_PERMANENT,
   1313 		       CTLTYPE_STRUCT, "namecache_stats",
   1314 		       SYSCTL_DESCR("namecache statistics"),
   1315 		       cache_stat_sysctl, 0, NULL, 0,
   1316 		       CTL_VFS, CTL_CREATE, CTL_EOL);
   1317 }
   1318