Home | History | Annotate | Line # | Download | only in kern
vfs_cache.c revision 1.122
      1 /*	$NetBSD: vfs_cache.c,v 1.122 2019/09/15 17:36:43 maya Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * Copyright (c) 1989, 1993
     31  *	The Regents of the University of California.  All rights reserved.
     32  *
     33  * Redistribution and use in source and binary forms, with or without
     34  * modification, are permitted provided that the following conditions
     35  * are met:
     36  * 1. Redistributions of source code must retain the above copyright
     37  *    notice, this list of conditions and the following disclaimer.
     38  * 2. Redistributions in binary form must reproduce the above copyright
     39  *    notice, this list of conditions and the following disclaimer in the
     40  *    documentation and/or other materials provided with the distribution.
     41  * 3. Neither the name of the University nor the names of its contributors
     42  *    may be used to endorse or promote products derived from this software
     43  *    without specific prior written permission.
     44  *
     45  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     46  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     47  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     48  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     49  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     50  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     51  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     52  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     53  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     54  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     55  * SUCH DAMAGE.
     56  *
     57  *	@(#)vfs_cache.c	8.3 (Berkeley) 8/22/94
     58  */
     59 
     60 #include <sys/cdefs.h>
     61 __KERNEL_RCSID(0, "$NetBSD: vfs_cache.c,v 1.122 2019/09/15 17:36:43 maya Exp $");
     62 
     63 #define __NAMECACHE_PRIVATE
     64 #ifdef _KERNEL_OPT
     65 #include "opt_ddb.h"
     66 #include "opt_dtrace.h"
     67 #include "opt_revcache.h"
     68 #endif
     69 
     70 #include <sys/param.h>
     71 #include <sys/atomic.h>
     72 #include <sys/cpu.h>
     73 #include <sys/errno.h>
     74 #include <sys/evcnt.h>
     75 #include <sys/kernel.h>
     76 #include <sys/kthread.h>
     77 #include <sys/mount.h>
     78 #include <sys/mutex.h>
     79 #include <sys/namei.h>
     80 #include <sys/pool.h>
     81 #include <sys/sdt.h>
     82 #include <sys/sysctl.h>
     83 #include <sys/systm.h>
     84 #include <sys/time.h>
     85 #include <sys/vnode_impl.h>
     86 
     87 #define NAMECACHE_ENTER_REVERSE
     88 /*
     89  * Name caching works as follows:
     90  *
     91  * Names found by directory scans are retained in a cache
     92  * for future reference.  It is managed LRU, so frequently
     93  * used names will hang around.  Cache is indexed by hash value
     94  * obtained from (dvp, name) where dvp refers to the directory
     95  * containing name.
     96  *
     97  * Upon reaching the last segment of a path, if the reference
     98  * is for DELETE, or NOCACHE is set (rewrite), and the
     99  * name is located in the cache, it will be dropped.
    100  */
    101 
    102 /*
    103  * Cache entry lifetime:
    104  *
    105  *	nonexistent
    106  *	---create---> active
    107  *	---invalidate---> queued
    108  *	---reclaim---> nonexistent.
    109  *
    110  * States:
    111  * - Nonexistent.  Cache entry does not exist.
    112  *
    113  * - Active.  cache_lookup, cache_lookup_raw, cache_revlookup can look
    114  *   up, acquire references, and hand off references to vnodes,
    115  *   e.g. via v_interlock.  Marked by nonnull ncp->nc_dvp.
    116  *
    117  * - Queued.  Pending desstruction by cache_reclaim.  Cannot be used by
    118  *   cache_lookup, cache_lookup_raw, or cache_revlookup.  May still be
    119  *   on lists.  Marked by null ncp->nc_dvp.
    120  *
    121  * Transitions:
    122  *
    123  * - Create: nonexistent--->active
    124  *
    125  *   Done by cache_enter(dvp, vp, name, namelen, cnflags), called by
    126  *   VOP_LOOKUP after the answer is found.  Allocates a struct
    127  *   namecache object, initializes it with the above fields, and
    128  *   activates it by inserting it into the forward and reverse tables.
    129  *
    130  * - Invalidate: active--->queued
    131  *
    132  *   Done by cache_invalidate.  If not already invalidated, nullify
    133  *   ncp->nc_dvp and ncp->nc_vp, and add to cache_gcqueue.  Called,
    134  *   among various other places, in cache_lookup(dvp, name, namelen,
    135  *   nameiop, cnflags, &iswht, &vp) when MAKEENTRY is missing from
    136  *   cnflags.
    137  *
    138  * - Reclaim: queued--->nonexistent
    139  *
    140  *   Done by cache_reclaim.  Disassociate ncp from any lists it is on
    141  *   and free memory.
    142  */
    143 
    144 /*
    145  * Locking.
    146  *
    147  * L namecache_lock		Global lock for namecache table and queues.
    148  * C struct nchcpu::cpu_lock	Per-CPU lock to reduce read contention.
    149  * N struct namecache::nc_lock	Per-entry lock.
    150  * V struct vnode::v_interlock	Vnode interlock.
    151  *
    152  * Lock order: L -> C -> N -> V
    153  *
    154  *	Examples:
    155  *	. L->C: cache_reclaim
    156  *	. C->N->V: cache_lookup
    157  *	. L->N->V: cache_purge1, cache_revlookup
    158  *
    159  * All use serialized by namecache_lock:
    160  *
    161  *	nclruhead / struct namecache::nc_lru
    162  *	ncvhashtbl / struct namecache::nc_vhash
    163  *	struct vnode_impl::vi_dnclist / struct namecache::nc_dvlist
    164  *	struct vnode_impl::vi_nclist / struct namecache::nc_vlist
    165  *	nchstats
    166  *
    167  * - Insertion serialized by namecache_lock,
    168  * - read protected by per-CPU lock,
    169  * - insert/read ordering guaranteed by memory barriers, and
    170  * - deletion allowed only under namecache_lock and *all* per-CPU locks
    171  *   in CPU_INFO_FOREACH order:
    172  *
    173  *	nchashtbl / struct namecache::nc_hash
    174  *
    175  *   The per-CPU locks exist only to reduce the probability of
    176  *   contention between readers.  We do not bind to a CPU, so
    177  *   contention is still possible.
    178  *
    179  * All use serialized by struct namecache::nc_lock:
    180  *
    181  *	struct namecache::nc_dvp
    182  *	struct namecache::nc_vp
    183  *	struct namecache::nc_gcqueue (*)
    184  *	struct namecache::nc_hittime (**)
    185  *
    186  * (*) Once on the queue, only cache_thread uses this nc_gcqueue, unlocked.
    187  * (**) cache_prune reads nc_hittime unlocked, since approximate is OK.
    188  *
    189  * Unlocked because stable after initialization:
    190  *
    191  *	struct namecache::nc_dvp
    192  *	struct namecache::nc_vp
    193  *	struct namecache::nc_flags
    194  *	struct namecache::nc_nlen
    195  *	struct namecache::nc_name
    196  *
    197  * Unlocked because approximation is OK:
    198  *
    199  *	struct nchcpu::cpu_stats
    200  *	struct nchcpu::cpu_stats_last
    201  *
    202  * Updates under namecache_lock or any per-CPU lock are marked with
    203  * COUNT, while updates outside those locks are marked with COUNT_UNL.
    204  *
    205  * - The theory seems to have been that you could replace COUNT_UNL by
    206  *   atomic operations -- except that doesn't help unless you also
    207  *   replace COUNT by atomic operations, because mixing atomics and
    208  *   nonatomics is a recipe for failure.
    209  * - We use 32-bit per-CPU counters and 64-bit global counters under
    210  *   the theory that 32-bit counters are less likely to be hosed by
    211  *   nonatomic increment.
    212  */
    213 
    214 /*
    215  * The comment below is preserved for posterity in case it is
    216  * important, but it is clear that everywhere the namecache_count_*()
    217  * functions are called, other cache_*() functions that take the same
    218  * locks are also called, so I can't imagine how this could be a
    219  * problem:
    220  *
    221  * N.B.: Attempting to protect COUNT_UNL() increments by taking
    222  * a per-cpu lock in the namecache_count_*() functions causes
    223  * a deadlock.  Don't do that, use atomic increments instead if
    224  * the imperfections here bug you.
    225  */
    226 
    227 /*
    228  * struct nchstats_percpu:
    229  *
    230  *	Per-CPU counters.
    231  */
    232 struct nchstats_percpu _NAMEI_CACHE_STATS(uint32_t);
    233 
    234 /*
    235  * struct nchcpu:
    236  *
    237  *	Per-CPU namecache state: lock and per-CPU counters.
    238  */
    239 struct nchcpu {
    240 	kmutex_t		cpu_lock;
    241 	struct nchstats_percpu	cpu_stats;
    242 	/* XXX maybe __cacheline_aligned would improve this? */
    243 	struct nchstats_percpu	cpu_stats_last;	/* from last sample */
    244 };
    245 
    246 /*
    247  * The type for the hash code. While the hash function generates a
    248  * u32, the hash code has historically been passed around as a u_long,
    249  * and the value is modified by xor'ing a uintptr_t, so it's not
    250  * entirely clear what the best type is. For now I'll leave it
    251  * unchanged as u_long.
    252  */
    253 
    254 typedef u_long nchash_t;
    255 
    256 /*
    257  * Structures associated with name cacheing.
    258  */
    259 
    260 static kmutex_t *namecache_lock __read_mostly;
    261 static pool_cache_t namecache_cache __read_mostly;
    262 static TAILQ_HEAD(, namecache) nclruhead __cacheline_aligned;
    263 
    264 static LIST_HEAD(nchashhead, namecache) *nchashtbl __read_mostly;
    265 static u_long	nchash __read_mostly;
    266 
    267 #define	NCHASH2(hash, dvp)	\
    268 	(((hash) ^ ((uintptr_t)(dvp) >> 3)) & nchash)
    269 
    270 static LIST_HEAD(ncvhashhead, namecache) *ncvhashtbl __read_mostly;
    271 static u_long	ncvhash __read_mostly;
    272 
    273 #define	NCVHASH(vp)		(((uintptr_t)(vp) >> 3) & ncvhash)
    274 
    275 /* Number of cache entries allocated. */
    276 static long	numcache __cacheline_aligned;
    277 
    278 /* Garbage collection queue and number of entries pending in it. */
    279 static void	*cache_gcqueue;
    280 static u_int	cache_gcpend;
    281 
    282 /* Cache effectiveness statistics.  This holds total from per-cpu stats */
    283 struct nchstats	nchstats __cacheline_aligned;
    284 
    285 /*
    286  * Macros to count an event, update the central stats with per-cpu
    287  * values and add current per-cpu increments to the subsystem total
    288  * last collected by cache_reclaim().
    289  */
    290 #define	CACHE_STATS_CURRENT	/* nothing */
    291 
    292 #define	COUNT(cpup, f)	((cpup)->cpu_stats.f++)
    293 
    294 #define	UPDATE(cpup, f) do { \
    295 	struct nchcpu *Xcpup = (cpup); \
    296 	uint32_t Xcnt = (volatile uint32_t) Xcpup->cpu_stats.f; \
    297 	nchstats.f += Xcnt - Xcpup->cpu_stats_last.f; \
    298 	Xcpup->cpu_stats_last.f = Xcnt; \
    299 } while (/* CONSTCOND */ 0)
    300 
    301 #define	ADD(stats, cpup, f) do { \
    302 	struct nchcpu *Xcpup = (cpup); \
    303 	stats.f += Xcpup->cpu_stats.f - Xcpup->cpu_stats_last.f; \
    304 } while (/* CONSTCOND */ 0)
    305 
    306 /* Do unlocked stats the same way. Use a different name to allow mind changes */
    307 #define	COUNT_UNL(cpup, f)	COUNT((cpup), f)
    308 
    309 static const int cache_lowat = 95;
    310 static const int cache_hiwat = 98;
    311 static const int cache_hottime = 5;	/* number of seconds */
    312 static int doingcache = 1;		/* 1 => enable the cache */
    313 
    314 static struct evcnt cache_ev_scan;
    315 static struct evcnt cache_ev_gc;
    316 static struct evcnt cache_ev_over;
    317 static struct evcnt cache_ev_under;
    318 static struct evcnt cache_ev_forced;
    319 
    320 static struct namecache *cache_lookup_entry(
    321     const struct vnode *, const char *, size_t);
    322 static void cache_thread(void *);
    323 static void cache_invalidate(struct namecache *);
    324 static void cache_disassociate(struct namecache *);
    325 static void cache_reclaim(void);
    326 static int cache_ctor(void *, void *, int);
    327 static void cache_dtor(void *, void *);
    328 
    329 static struct sysctllog *sysctllog;
    330 static void sysctl_cache_stat_setup(void);
    331 
    332 SDT_PROVIDER_DEFINE(vfs);
    333 
    334 SDT_PROBE_DEFINE1(vfs, namecache, invalidate, done, "struct vnode *");
    335 SDT_PROBE_DEFINE1(vfs, namecache, purge, parents, "struct vnode *");
    336 SDT_PROBE_DEFINE1(vfs, namecache, purge, children, "struct vnode *");
    337 SDT_PROBE_DEFINE2(vfs, namecache, purge, name, "char *", "size_t");
    338 SDT_PROBE_DEFINE1(vfs, namecache, purge, vfs, "struct mount *");
    339 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *",
    340     "char *", "size_t");
    341 SDT_PROBE_DEFINE3(vfs, namecache, lookup, miss, "struct vnode *",
    342     "char *", "size_t");
    343 SDT_PROBE_DEFINE3(vfs, namecache, lookup, toolong, "struct vnode *",
    344     "char *", "size_t");
    345 SDT_PROBE_DEFINE2(vfs, namecache, revlookup, success, "struct vnode *",
    346      "struct vnode *");
    347 SDT_PROBE_DEFINE2(vfs, namecache, revlookup, fail, "struct vnode *",
    348      "int");
    349 SDT_PROBE_DEFINE2(vfs, namecache, prune, done, "int", "int");
    350 SDT_PROBE_DEFINE3(vfs, namecache, enter, toolong, "struct vnode *",
    351     "char *", "size_t");
    352 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *",
    353     "char *", "size_t");
    354 
    355 /*
    356  * Compute the hash for an entry.
    357  *
    358  * (This is for now a wrapper around namei_hash, whose interface is
    359  * for the time being slightly inconvenient.)
    360  */
    361 static nchash_t
    362 cache_hash(const char *name, size_t namelen)
    363 {
    364 	const char *endptr;
    365 
    366 	endptr = name + namelen;
    367 	return namei_hash(name, &endptr);
    368 }
    369 
    370 /*
    371  * Invalidate a cache entry and enqueue it for garbage collection.
    372  * The caller needs to hold namecache_lock or a per-cpu lock to hold
    373  * off cache_reclaim().
    374  */
    375 static void
    376 cache_invalidate(struct namecache *ncp)
    377 {
    378 	void *head;
    379 
    380 	KASSERT(mutex_owned(&ncp->nc_lock));
    381 
    382 	if (ncp->nc_dvp != NULL) {
    383 		SDT_PROBE(vfs, namecache, invalidate, done, ncp->nc_dvp,
    384 		    0, 0, 0, 0);
    385 
    386 		ncp->nc_vp = NULL;
    387 		ncp->nc_dvp = NULL;
    388 		do {
    389 			head = cache_gcqueue;
    390 			ncp->nc_gcqueue = head;
    391 		} while (atomic_cas_ptr(&cache_gcqueue, head, ncp) != head);
    392 		atomic_inc_uint(&cache_gcpend);
    393 	}
    394 }
    395 
    396 /*
    397  * Disassociate a namecache entry from any vnodes it is attached to,
    398  * and remove from the global LRU list.
    399  */
    400 static void
    401 cache_disassociate(struct namecache *ncp)
    402 {
    403 
    404 	KASSERT(mutex_owned(namecache_lock));
    405 	KASSERT(ncp->nc_dvp == NULL);
    406 
    407 	if (ncp->nc_lru.tqe_prev != NULL) {
    408 		TAILQ_REMOVE(&nclruhead, ncp, nc_lru);
    409 		ncp->nc_lru.tqe_prev = NULL;
    410 	}
    411 	if (ncp->nc_vhash.le_prev != NULL) {
    412 		LIST_REMOVE(ncp, nc_vhash);
    413 		ncp->nc_vhash.le_prev = NULL;
    414 	}
    415 	if (ncp->nc_vlist.le_prev != NULL) {
    416 		LIST_REMOVE(ncp, nc_vlist);
    417 		ncp->nc_vlist.le_prev = NULL;
    418 	}
    419 	if (ncp->nc_dvlist.le_prev != NULL) {
    420 		LIST_REMOVE(ncp, nc_dvlist);
    421 		ncp->nc_dvlist.le_prev = NULL;
    422 	}
    423 }
    424 
    425 /*
    426  * Lock all CPUs to prevent any cache lookup activity.  Conceptually,
    427  * this locks out all "readers".
    428  */
    429 static void
    430 cache_lock_cpus(void)
    431 {
    432 	CPU_INFO_ITERATOR cii;
    433 	struct cpu_info *ci;
    434 	struct nchcpu *cpup;
    435 
    436 	/*
    437 	 * Lock out all CPUs first, then harvest per-cpu stats.  This
    438 	 * is probably not quite as cache-efficient as doing the lock
    439 	 * and harvest at the same time, but allows cache_stat_sysctl()
    440 	 * to make do with a per-cpu lock.
    441 	 */
    442 	for (CPU_INFO_FOREACH(cii, ci)) {
    443 		cpup = ci->ci_data.cpu_nch;
    444 		mutex_enter(&cpup->cpu_lock);
    445 	}
    446 	for (CPU_INFO_FOREACH(cii, ci)) {
    447 		cpup = ci->ci_data.cpu_nch;
    448 		UPDATE(cpup, ncs_goodhits);
    449 		UPDATE(cpup, ncs_neghits);
    450 		UPDATE(cpup, ncs_badhits);
    451 		UPDATE(cpup, ncs_falsehits);
    452 		UPDATE(cpup, ncs_miss);
    453 		UPDATE(cpup, ncs_long);
    454 		UPDATE(cpup, ncs_pass2);
    455 		UPDATE(cpup, ncs_2passes);
    456 		UPDATE(cpup, ncs_revhits);
    457 		UPDATE(cpup, ncs_revmiss);
    458 	}
    459 }
    460 
    461 /*
    462  * Release all CPU locks.
    463  */
    464 static void
    465 cache_unlock_cpus(void)
    466 {
    467 	CPU_INFO_ITERATOR cii;
    468 	struct cpu_info *ci;
    469 	struct nchcpu *cpup;
    470 
    471 	for (CPU_INFO_FOREACH(cii, ci)) {
    472 		cpup = ci->ci_data.cpu_nch;
    473 		mutex_exit(&cpup->cpu_lock);
    474 	}
    475 }
    476 
    477 /*
    478  * Find a single cache entry and return it locked.
    479  * The caller needs to hold namecache_lock or a per-cpu lock to hold
    480  * off cache_reclaim().
    481  */
    482 static struct namecache *
    483 cache_lookup_entry(const struct vnode *dvp, const char *name, size_t namelen)
    484 {
    485 	struct nchashhead *ncpp;
    486 	struct namecache *ncp;
    487 	nchash_t hash;
    488 
    489 	KASSERT(dvp != NULL);
    490 	hash = cache_hash(name, namelen);
    491 	ncpp = &nchashtbl[NCHASH2(hash, dvp)];
    492 
    493 	LIST_FOREACH(ncp, ncpp, nc_hash) {
    494 		membar_datadep_consumer();	/* for Alpha... */
    495 		if (ncp->nc_dvp != dvp ||
    496 		    ncp->nc_nlen != namelen ||
    497 		    memcmp(ncp->nc_name, name, (u_int)ncp->nc_nlen))
    498 		    	continue;
    499 	    	mutex_enter(&ncp->nc_lock);
    500 		if (__predict_true(ncp->nc_dvp == dvp)) {
    501 			ncp->nc_hittime = hardclock_ticks;
    502 			SDT_PROBE(vfs, namecache, lookup, hit, dvp,
    503 			    name, namelen, 0, 0);
    504 			return ncp;
    505 		}
    506 		/* Raced: entry has been nullified. */
    507 		mutex_exit(&ncp->nc_lock);
    508 	}
    509 
    510 	SDT_PROBE(vfs, namecache, lookup, miss, dvp,
    511 	    name, namelen, 0, 0);
    512 	return NULL;
    513 }
    514 
    515 /*
    516  * Look for a the name in the cache. We don't do this
    517  * if the segment name is long, simply so the cache can avoid
    518  * holding long names (which would either waste space, or
    519  * add greatly to the complexity).
    520  *
    521  * Lookup is called with DVP pointing to the directory to search,
    522  * and CNP providing the name of the entry being sought: cn_nameptr
    523  * is the name, cn_namelen is its length, and cn_flags is the flags
    524  * word from the namei operation.
    525  *
    526  * DVP must be locked.
    527  *
    528  * There are three possible non-error return states:
    529  *    1. Nothing was found in the cache. Nothing is known about
    530  *       the requested name.
    531  *    2. A negative entry was found in the cache, meaning that the
    532  *       requested name definitely does not exist.
    533  *    3. A positive entry was found in the cache, meaning that the
    534  *       requested name does exist and that we are providing the
    535  *       vnode.
    536  * In these cases the results are:
    537  *    1. 0 returned; VN is set to NULL.
    538  *    2. 1 returned; VN is set to NULL.
    539  *    3. 1 returned; VN is set to the vnode found.
    540  *
    541  * The additional result argument ISWHT is set to zero, unless a
    542  * negative entry is found that was entered as a whiteout, in which
    543  * case ISWHT is set to one.
    544  *
    545  * The ISWHT_RET argument pointer may be null. In this case an
    546  * assertion is made that the whiteout flag is not set. File systems
    547  * that do not support whiteouts can/should do this.
    548  *
    549  * Filesystems that do support whiteouts should add ISWHITEOUT to
    550  * cnp->cn_flags if ISWHT comes back nonzero.
    551  *
    552  * When a vnode is returned, it is locked, as per the vnode lookup
    553  * locking protocol.
    554  *
    555  * There is no way for this function to fail, in the sense of
    556  * generating an error that requires aborting the namei operation.
    557  *
    558  * (Prior to October 2012, this function returned an integer status,
    559  * and a vnode, and mucked with the flags word in CNP for whiteouts.
    560  * The integer status was -1 for "nothing found", ENOENT for "a
    561  * negative entry found", 0 for "a positive entry found", and possibly
    562  * other errors, and the value of VN might or might not have been set
    563  * depending on what error occurred.)
    564  */
    565 bool
    566 cache_lookup(struct vnode *dvp, const char *name, size_t namelen,
    567 	     uint32_t nameiop, uint32_t cnflags,
    568 	     int *iswht_ret, struct vnode **vn_ret)
    569 {
    570 	struct namecache *ncp;
    571 	struct vnode *vp;
    572 	struct nchcpu *cpup;
    573 	int error;
    574 	bool hit;
    575 
    576 
    577 	/* Establish default result values */
    578 	if (iswht_ret != NULL) {
    579 		*iswht_ret = 0;
    580 	}
    581 	*vn_ret = NULL;
    582 
    583 	if (__predict_false(!doingcache)) {
    584 		return false;
    585 	}
    586 
    587 	cpup = curcpu()->ci_data.cpu_nch;
    588 	mutex_enter(&cpup->cpu_lock);
    589 	if (__predict_false(namelen > USHRT_MAX)) {
    590 		SDT_PROBE(vfs, namecache, lookup, toolong, dvp,
    591 		    name, namelen, 0, 0);
    592 		COUNT(cpup, ncs_long);
    593 		mutex_exit(&cpup->cpu_lock);
    594 		/* found nothing */
    595 		return false;
    596 	}
    597 
    598 	ncp = cache_lookup_entry(dvp, name, namelen);
    599 	if (__predict_false(ncp == NULL)) {
    600 		COUNT(cpup, ncs_miss);
    601 		mutex_exit(&cpup->cpu_lock);
    602 		/* found nothing */
    603 		return false;
    604 	}
    605 	if ((cnflags & MAKEENTRY) == 0) {
    606 		COUNT(cpup, ncs_badhits);
    607 		/*
    608 		 * Last component and we are renaming or deleting,
    609 		 * the cache entry is invalid, or otherwise don't
    610 		 * want cache entry to exist.
    611 		 */
    612 		cache_invalidate(ncp);
    613 		mutex_exit(&ncp->nc_lock);
    614 		mutex_exit(&cpup->cpu_lock);
    615 		/* found nothing */
    616 		return false;
    617 	}
    618 	if (ncp->nc_vp == NULL) {
    619 		if (iswht_ret != NULL) {
    620 			/*
    621 			 * Restore the ISWHITEOUT flag saved earlier.
    622 			 */
    623 			KASSERT((ncp->nc_flags & ~ISWHITEOUT) == 0);
    624 			*iswht_ret = (ncp->nc_flags & ISWHITEOUT) != 0;
    625 		} else {
    626 			KASSERT(ncp->nc_flags == 0);
    627 		}
    628 
    629 		if (__predict_true(nameiop != CREATE ||
    630 		    (cnflags & ISLASTCN) == 0)) {
    631 			COUNT(cpup, ncs_neghits);
    632 			/* found neg entry; vn is already null from above */
    633 			hit = true;
    634 		} else {
    635 			COUNT(cpup, ncs_badhits);
    636 			/*
    637 			 * Last component and we are preparing to create
    638 			 * the named object, so flush the negative cache
    639 			 * entry.
    640 			 */
    641 			cache_invalidate(ncp);
    642 			/* found nothing */
    643 			hit = false;
    644 		}
    645 		mutex_exit(&ncp->nc_lock);
    646 		mutex_exit(&cpup->cpu_lock);
    647 		return hit;
    648 	}
    649 
    650 	vp = ncp->nc_vp;
    651 	mutex_enter(vp->v_interlock);
    652 	mutex_exit(&ncp->nc_lock);
    653 	mutex_exit(&cpup->cpu_lock);
    654 
    655 	/*
    656 	 * Unlocked except for the vnode interlock.  Call vcache_tryvget().
    657 	 */
    658 	error = vcache_tryvget(vp);
    659 	if (error) {
    660 		KASSERT(error == EBUSY);
    661 		/*
    662 		 * This vnode is being cleaned out.
    663 		 * XXX badhits?
    664 		 */
    665 		COUNT_UNL(cpup, ncs_falsehits);
    666 		/* found nothing */
    667 		return false;
    668 	}
    669 
    670 	COUNT_UNL(cpup, ncs_goodhits);
    671 	/* found it */
    672 	*vn_ret = vp;
    673 	return true;
    674 }
    675 
    676 
    677 /*
    678  * Cut-'n-pasted version of the above without the nameiop argument.
    679  */
    680 bool
    681 cache_lookup_raw(struct vnode *dvp, const char *name, size_t namelen,
    682 		 uint32_t cnflags,
    683 		 int *iswht_ret, struct vnode **vn_ret)
    684 {
    685 	struct namecache *ncp;
    686 	struct vnode *vp;
    687 	struct nchcpu *cpup;
    688 	int error;
    689 
    690 	/* Establish default results. */
    691 	if (iswht_ret != NULL) {
    692 		*iswht_ret = 0;
    693 	}
    694 	*vn_ret = NULL;
    695 
    696 	if (__predict_false(!doingcache)) {
    697 		/* found nothing */
    698 		return false;
    699 	}
    700 
    701 	cpup = curcpu()->ci_data.cpu_nch;
    702 	mutex_enter(&cpup->cpu_lock);
    703 	if (__predict_false(namelen > USHRT_MAX)) {
    704 		COUNT(cpup, ncs_long);
    705 		mutex_exit(&cpup->cpu_lock);
    706 		/* found nothing */
    707 		return false;
    708 	}
    709 	ncp = cache_lookup_entry(dvp, name, namelen);
    710 	if (__predict_false(ncp == NULL)) {
    711 		COUNT(cpup, ncs_miss);
    712 		mutex_exit(&cpup->cpu_lock);
    713 		/* found nothing */
    714 		return false;
    715 	}
    716 	vp = ncp->nc_vp;
    717 	if (vp == NULL) {
    718 		/*
    719 		 * Restore the ISWHITEOUT flag saved earlier.
    720 		 */
    721 		if (iswht_ret != NULL) {
    722 			KASSERT((ncp->nc_flags & ~ISWHITEOUT) == 0);
    723 			/*cnp->cn_flags |= ncp->nc_flags;*/
    724 			*iswht_ret = (ncp->nc_flags & ISWHITEOUT) != 0;
    725 		}
    726 		COUNT(cpup, ncs_neghits);
    727 		mutex_exit(&ncp->nc_lock);
    728 		mutex_exit(&cpup->cpu_lock);
    729 		/* found negative entry; vn is already null from above */
    730 		return true;
    731 	}
    732 	mutex_enter(vp->v_interlock);
    733 	mutex_exit(&ncp->nc_lock);
    734 	mutex_exit(&cpup->cpu_lock);
    735 
    736 	/*
    737 	 * Unlocked except for the vnode interlock.  Call vcache_tryvget().
    738 	 */
    739 	error = vcache_tryvget(vp);
    740 	if (error) {
    741 		KASSERT(error == EBUSY);
    742 		/*
    743 		 * This vnode is being cleaned out.
    744 		 * XXX badhits?
    745 		 */
    746 		COUNT_UNL(cpup, ncs_falsehits);
    747 		/* found nothing */
    748 		return false;
    749 	}
    750 
    751 	COUNT_UNL(cpup, ncs_goodhits); /* XXX can be "badhits" */
    752 	/* found it */
    753 	*vn_ret = vp;
    754 	return true;
    755 }
    756 
    757 /*
    758  * Scan cache looking for name of directory entry pointing at vp.
    759  *
    760  * If the lookup succeeds the vnode is referenced and stored in dvpp.
    761  *
    762  * If bufp is non-NULL, also place the name in the buffer which starts
    763  * at bufp, immediately before *bpp, and move bpp backwards to point
    764  * at the start of it.  (Yes, this is a little baroque, but it's done
    765  * this way to cater to the whims of getcwd).
    766  *
    767  * Returns 0 on success, -1 on cache miss, positive errno on failure.
    768  */
    769 int
    770 cache_revlookup(struct vnode *vp, struct vnode **dvpp, char **bpp, char *bufp)
    771 {
    772 	struct namecache *ncp;
    773 	struct vnode *dvp;
    774 	struct ncvhashhead *nvcpp;
    775 	struct nchcpu *cpup;
    776 	char *bp;
    777 	int error, nlen;
    778 
    779 	if (!doingcache)
    780 		goto out;
    781 
    782 	nvcpp = &ncvhashtbl[NCVHASH(vp)];
    783 
    784 	/*
    785 	 * We increment counters in the local CPU's per-cpu stats.
    786 	 * We don't take the per-cpu lock, however, since this function
    787 	 * is the only place these counters are incremented so no one
    788 	 * will be racing with us to increment them.
    789 	 */
    790 	cpup = curcpu()->ci_data.cpu_nch;
    791 	mutex_enter(namecache_lock);
    792 	LIST_FOREACH(ncp, nvcpp, nc_vhash) {
    793 		mutex_enter(&ncp->nc_lock);
    794 		if (ncp->nc_vp == vp &&
    795 		    (dvp = ncp->nc_dvp) != NULL &&
    796 		    dvp != vp) { 		/* avoid pesky . entries.. */
    797 
    798 #ifdef DIAGNOSTIC
    799 			if (ncp->nc_nlen == 1 &&
    800 			    ncp->nc_name[0] == '.')
    801 				panic("cache_revlookup: found entry for .");
    802 
    803 			if (ncp->nc_nlen == 2 &&
    804 			    ncp->nc_name[0] == '.' &&
    805 			    ncp->nc_name[1] == '.')
    806 				panic("cache_revlookup: found entry for ..");
    807 #endif
    808 			COUNT(cpup, ncs_revhits);
    809 			nlen = ncp->nc_nlen;
    810 
    811 			if (bufp) {
    812 				bp = *bpp;
    813 				bp -= nlen;
    814 				if (bp <= bufp) {
    815 					*dvpp = NULL;
    816 					mutex_exit(&ncp->nc_lock);
    817 					mutex_exit(namecache_lock);
    818 					SDT_PROBE(vfs, namecache, revlookup,
    819 					    fail, vp, ERANGE, 0, 0, 0);
    820 					return (ERANGE);
    821 				}
    822 				memcpy(bp, ncp->nc_name, nlen);
    823 				*bpp = bp;
    824 			}
    825 
    826 			mutex_enter(dvp->v_interlock);
    827 			mutex_exit(&ncp->nc_lock);
    828 			mutex_exit(namecache_lock);
    829 			error = vcache_tryvget(dvp);
    830 			if (error) {
    831 				KASSERT(error == EBUSY);
    832 				if (bufp)
    833 					(*bpp) += nlen;
    834 				*dvpp = NULL;
    835 				SDT_PROBE(vfs, namecache, revlookup, fail, vp,
    836 				    error, 0, 0, 0);
    837 				return -1;
    838 			}
    839 			*dvpp = dvp;
    840 			SDT_PROBE(vfs, namecache, revlookup, success, vp, dvp,
    841 			    0, 0, 0);
    842 			return (0);
    843 		}
    844 		mutex_exit(&ncp->nc_lock);
    845 	}
    846 	COUNT(cpup, ncs_revmiss);
    847 	mutex_exit(namecache_lock);
    848  out:
    849 	*dvpp = NULL;
    850 	return (-1);
    851 }
    852 
    853 /*
    854  * Add an entry to the cache
    855  */
    856 void
    857 cache_enter(struct vnode *dvp, struct vnode *vp,
    858 	    const char *name, size_t namelen, uint32_t cnflags)
    859 {
    860 	struct namecache *ncp;
    861 	struct namecache *oncp;
    862 	struct nchashhead *ncpp;
    863 	struct ncvhashhead *nvcpp;
    864 	nchash_t hash;
    865 
    866 	/* First, check whether we can/should add a cache entry. */
    867 	if ((cnflags & MAKEENTRY) == 0 ||
    868 	    __predict_false(namelen > USHRT_MAX || !doingcache)) {
    869 		SDT_PROBE(vfs, namecache, enter, toolong, vp, name, namelen,
    870 		    0, 0);
    871 		return;
    872 	}
    873 
    874 	SDT_PROBE(vfs, namecache, enter, done, vp, name, namelen, 0, 0);
    875 	if (numcache > desiredvnodes) {
    876 		mutex_enter(namecache_lock);
    877 		cache_ev_forced.ev_count++;
    878 		cache_reclaim();
    879 		mutex_exit(namecache_lock);
    880 	}
    881 
    882 	if (namelen > NCHNAMLEN) {
    883 		ncp = kmem_alloc(sizeof(*ncp) + namelen, KM_SLEEP);
    884 		cache_ctor(NULL, ncp, 0);
    885 	} else
    886 		ncp = pool_cache_get(namecache_cache, PR_WAITOK);
    887 
    888 	mutex_enter(namecache_lock);
    889 	numcache++;
    890 
    891 	/*
    892 	 * Concurrent lookups in the same directory may race for a
    893 	 * cache entry.  if there's a duplicated entry, free it.
    894 	 */
    895 	oncp = cache_lookup_entry(dvp, name, namelen);
    896 	if (oncp) {
    897 		cache_invalidate(oncp);
    898 		mutex_exit(&oncp->nc_lock);
    899 	}
    900 
    901 	/* Grab the vnode we just found. */
    902 	mutex_enter(&ncp->nc_lock);
    903 	ncp->nc_vp = vp;
    904 	ncp->nc_flags = 0;
    905 	ncp->nc_hittime = 0;
    906 	ncp->nc_gcqueue = NULL;
    907 	if (vp == NULL) {
    908 		/*
    909 		 * For negative hits, save the ISWHITEOUT flag so we can
    910 		 * restore it later when the cache entry is used again.
    911 		 */
    912 		ncp->nc_flags = cnflags & ISWHITEOUT;
    913 	}
    914 
    915 	/* Fill in cache info. */
    916 	ncp->nc_dvp = dvp;
    917 	LIST_INSERT_HEAD(&VNODE_TO_VIMPL(dvp)->vi_dnclist, ncp, nc_dvlist);
    918 	if (vp)
    919 		LIST_INSERT_HEAD(&VNODE_TO_VIMPL(vp)->vi_nclist, ncp, nc_vlist);
    920 	else {
    921 		ncp->nc_vlist.le_prev = NULL;
    922 		ncp->nc_vlist.le_next = NULL;
    923 	}
    924 	KASSERT(namelen <= USHRT_MAX);
    925 	ncp->nc_nlen = namelen;
    926 	memcpy(ncp->nc_name, name, (unsigned)ncp->nc_nlen);
    927 	TAILQ_INSERT_TAIL(&nclruhead, ncp, nc_lru);
    928 	hash = cache_hash(name, namelen);
    929 	ncpp = &nchashtbl[NCHASH2(hash, dvp)];
    930 
    931 	/*
    932 	 * Flush updates before making visible in table.  No need for a
    933 	 * memory barrier on the other side: to see modifications the
    934 	 * list must be followed, meaning a dependent pointer load.
    935 	 * The below is LIST_INSERT_HEAD() inlined, with the memory
    936 	 * barrier included in the correct place.
    937 	 */
    938 	if ((ncp->nc_hash.le_next = ncpp->lh_first) != NULL)
    939 		ncpp->lh_first->nc_hash.le_prev = &ncp->nc_hash.le_next;
    940 	ncp->nc_hash.le_prev = &ncpp->lh_first;
    941 	membar_producer();
    942 	ncpp->lh_first = ncp;
    943 
    944 	ncp->nc_vhash.le_prev = NULL;
    945 	ncp->nc_vhash.le_next = NULL;
    946 
    947 	/*
    948 	 * Create reverse-cache entries (used in getcwd) for directories.
    949 	 * (and in linux procfs exe node)
    950 	 */
    951 	if (vp != NULL &&
    952 	    vp != dvp &&
    953 #ifndef NAMECACHE_ENTER_REVERSE
    954 	    vp->v_type == VDIR &&
    955 #endif
    956 	    (ncp->nc_nlen > 2 ||
    957 	    (ncp->nc_nlen > 1 && ncp->nc_name[1] != '.') ||
    958 	    (/* ncp->nc_nlen > 0 && */ ncp->nc_name[0] != '.'))) {
    959 		nvcpp = &ncvhashtbl[NCVHASH(vp)];
    960 		LIST_INSERT_HEAD(nvcpp, ncp, nc_vhash);
    961 	}
    962 	mutex_exit(&ncp->nc_lock);
    963 	mutex_exit(namecache_lock);
    964 }
    965 
    966 /*
    967  * Name cache initialization, from vfs_init() when we are booting
    968  */
    969 void
    970 nchinit(void)
    971 {
    972 	int error;
    973 
    974 	TAILQ_INIT(&nclruhead);
    975 	namecache_cache = pool_cache_init(sizeof(struct namecache) + NCHNAMLEN,
    976 	    coherency_unit, 0, 0, "ncache", NULL, IPL_NONE, cache_ctor,
    977 	    cache_dtor, NULL);
    978 	KASSERT(namecache_cache != NULL);
    979 
    980 	namecache_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    981 
    982 	nchashtbl = hashinit(desiredvnodes, HASH_LIST, true, &nchash);
    983 	ncvhashtbl =
    984 #ifdef NAMECACHE_ENTER_REVERSE
    985 	    hashinit(desiredvnodes, HASH_LIST, true, &ncvhash);
    986 #else
    987 	    hashinit(desiredvnodes/8, HASH_LIST, true, &ncvhash);
    988 #endif
    989 
    990 	error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, cache_thread,
    991 	    NULL, NULL, "cachegc");
    992 	if (error != 0)
    993 		panic("nchinit %d", error);
    994 
    995 	evcnt_attach_dynamic(&cache_ev_scan, EVCNT_TYPE_MISC, NULL,
    996 	   "namecache", "entries scanned");
    997 	evcnt_attach_dynamic(&cache_ev_gc, EVCNT_TYPE_MISC, NULL,
    998 	   "namecache", "entries collected");
    999 	evcnt_attach_dynamic(&cache_ev_over, EVCNT_TYPE_MISC, NULL,
   1000 	   "namecache", "over scan target");
   1001 	evcnt_attach_dynamic(&cache_ev_under, EVCNT_TYPE_MISC, NULL,
   1002 	   "namecache", "under scan target");
   1003 	evcnt_attach_dynamic(&cache_ev_forced, EVCNT_TYPE_MISC, NULL,
   1004 	   "namecache", "forced reclaims");
   1005 
   1006 	sysctl_cache_stat_setup();
   1007 }
   1008 
   1009 static int
   1010 cache_ctor(void *arg, void *obj, int flag)
   1011 {
   1012 	struct namecache *ncp;
   1013 
   1014 	ncp = obj;
   1015 	mutex_init(&ncp->nc_lock, MUTEX_DEFAULT, IPL_NONE);
   1016 
   1017 	return 0;
   1018 }
   1019 
   1020 static void
   1021 cache_dtor(void *arg, void *obj)
   1022 {
   1023 	struct namecache *ncp;
   1024 
   1025 	ncp = obj;
   1026 	mutex_destroy(&ncp->nc_lock);
   1027 }
   1028 
   1029 /*
   1030  * Called once for each CPU in the system as attached.
   1031  */
   1032 void
   1033 cache_cpu_init(struct cpu_info *ci)
   1034 {
   1035 	struct nchcpu *cpup;
   1036 	size_t sz;
   1037 
   1038 	sz = roundup2(sizeof(*cpup), coherency_unit) + coherency_unit;
   1039 	cpup = kmem_zalloc(sz, KM_SLEEP);
   1040 	cpup = (void *)roundup2((uintptr_t)cpup, coherency_unit);
   1041 	mutex_init(&cpup->cpu_lock, MUTEX_DEFAULT, IPL_NONE);
   1042 	ci->ci_data.cpu_nch = cpup;
   1043 }
   1044 
   1045 /*
   1046  * Name cache reinitialization, for when the maximum number of vnodes increases.
   1047  */
   1048 void
   1049 nchreinit(void)
   1050 {
   1051 	struct namecache *ncp;
   1052 	struct nchashhead *oldhash1, *hash1;
   1053 	struct ncvhashhead *oldhash2, *hash2;
   1054 	u_long i, oldmask1, oldmask2, mask1, mask2;
   1055 
   1056 	hash1 = hashinit(desiredvnodes, HASH_LIST, true, &mask1);
   1057 	hash2 =
   1058 #ifdef NAMECACHE_ENTER_REVERSE
   1059 	    hashinit(desiredvnodes, HASH_LIST, true, &mask2);
   1060 #else
   1061 	    hashinit(desiredvnodes/8, HASH_LIST, true, &mask2);
   1062 #endif
   1063 	mutex_enter(namecache_lock);
   1064 	cache_lock_cpus();
   1065 	oldhash1 = nchashtbl;
   1066 	oldmask1 = nchash;
   1067 	nchashtbl = hash1;
   1068 	nchash = mask1;
   1069 	oldhash2 = ncvhashtbl;
   1070 	oldmask2 = ncvhash;
   1071 	ncvhashtbl = hash2;
   1072 	ncvhash = mask2;
   1073 	for (i = 0; i <= oldmask1; i++) {
   1074 		while ((ncp = LIST_FIRST(&oldhash1[i])) != NULL) {
   1075 			LIST_REMOVE(ncp, nc_hash);
   1076 			ncp->nc_hash.le_prev = NULL;
   1077 		}
   1078 	}
   1079 	for (i = 0; i <= oldmask2; i++) {
   1080 		while ((ncp = LIST_FIRST(&oldhash2[i])) != NULL) {
   1081 			LIST_REMOVE(ncp, nc_vhash);
   1082 			ncp->nc_vhash.le_prev = NULL;
   1083 		}
   1084 	}
   1085 	cache_unlock_cpus();
   1086 	mutex_exit(namecache_lock);
   1087 	hashdone(oldhash1, HASH_LIST, oldmask1);
   1088 	hashdone(oldhash2, HASH_LIST, oldmask2);
   1089 }
   1090 
   1091 /*
   1092  * Cache flush, a particular vnode; called when a vnode is renamed to
   1093  * hide entries that would now be invalid
   1094  */
   1095 void
   1096 cache_purge1(struct vnode *vp, const char *name, size_t namelen, int flags)
   1097 {
   1098 	struct namecache *ncp, *ncnext;
   1099 
   1100 	mutex_enter(namecache_lock);
   1101 	if (flags & PURGE_PARENTS) {
   1102 		SDT_PROBE(vfs, namecache, purge, parents, vp, 0, 0, 0, 0);
   1103 
   1104 		for (ncp = LIST_FIRST(&VNODE_TO_VIMPL(vp)->vi_nclist);
   1105 		    ncp != NULL; ncp = ncnext) {
   1106 			ncnext = LIST_NEXT(ncp, nc_vlist);
   1107 			mutex_enter(&ncp->nc_lock);
   1108 			cache_invalidate(ncp);
   1109 			mutex_exit(&ncp->nc_lock);
   1110 			cache_disassociate(ncp);
   1111 		}
   1112 	}
   1113 	if (flags & PURGE_CHILDREN) {
   1114 		SDT_PROBE(vfs, namecache, purge, children, vp, 0, 0, 0, 0);
   1115 		for (ncp = LIST_FIRST(&VNODE_TO_VIMPL(vp)->vi_dnclist);
   1116 		    ncp != NULL; ncp = ncnext) {
   1117 			ncnext = LIST_NEXT(ncp, nc_dvlist);
   1118 			mutex_enter(&ncp->nc_lock);
   1119 			cache_invalidate(ncp);
   1120 			mutex_exit(&ncp->nc_lock);
   1121 			cache_disassociate(ncp);
   1122 		}
   1123 	}
   1124 	if (name != NULL) {
   1125 		SDT_PROBE(vfs, namecache, purge, name, name, namelen, 0, 0, 0);
   1126 		ncp = cache_lookup_entry(vp, name, namelen);
   1127 		if (ncp) {
   1128 			cache_invalidate(ncp);
   1129 			mutex_exit(&ncp->nc_lock);
   1130 			cache_disassociate(ncp);
   1131 		}
   1132 	}
   1133 	mutex_exit(namecache_lock);
   1134 }
   1135 
   1136 /*
   1137  * Cache flush, a whole filesystem; called when filesys is umounted to
   1138  * remove entries that would now be invalid.
   1139  */
   1140 void
   1141 cache_purgevfs(struct mount *mp)
   1142 {
   1143 	struct namecache *ncp, *nxtcp;
   1144 
   1145 	SDT_PROBE(vfs, namecache, purge, vfs, mp, 0, 0, 0, 0);
   1146 	mutex_enter(namecache_lock);
   1147 	for (ncp = TAILQ_FIRST(&nclruhead); ncp != NULL; ncp = nxtcp) {
   1148 		nxtcp = TAILQ_NEXT(ncp, nc_lru);
   1149 		mutex_enter(&ncp->nc_lock);
   1150 		if (ncp->nc_dvp != NULL && ncp->nc_dvp->v_mount == mp) {
   1151 			/* Free the resources we had. */
   1152 			cache_invalidate(ncp);
   1153 			cache_disassociate(ncp);
   1154 		}
   1155 		mutex_exit(&ncp->nc_lock);
   1156 	}
   1157 	cache_reclaim();
   1158 	mutex_exit(namecache_lock);
   1159 }
   1160 
   1161 /*
   1162  * Scan global list invalidating entries until we meet a preset target.
   1163  * Prefer to invalidate entries that have not scored a hit within
   1164  * cache_hottime seconds.  We sort the LRU list only for this routine's
   1165  * benefit.
   1166  */
   1167 static void
   1168 cache_prune(int incache, int target)
   1169 {
   1170 	struct namecache *ncp, *nxtcp, *sentinel;
   1171 	int items, recent, tryharder;
   1172 
   1173 	KASSERT(mutex_owned(namecache_lock));
   1174 
   1175 	SDT_PROBE(vfs, namecache, prune, done, incache, target, 0, 0, 0);
   1176 	items = 0;
   1177 	tryharder = 0;
   1178 	recent = hardclock_ticks - hz * cache_hottime;
   1179 	sentinel = NULL;
   1180 	for (ncp = TAILQ_FIRST(&nclruhead); ncp != NULL; ncp = nxtcp) {
   1181 		if (incache <= target)
   1182 			break;
   1183 		items++;
   1184 		nxtcp = TAILQ_NEXT(ncp, nc_lru);
   1185 		if (ncp == sentinel) {
   1186 			/*
   1187 			 * If we looped back on ourself, then ignore
   1188 			 * recent entries and purge whatever we find.
   1189 			 */
   1190 			tryharder = 1;
   1191 		}
   1192 		if (ncp->nc_dvp == NULL)
   1193 			continue;
   1194 		if (!tryharder && (ncp->nc_hittime - recent) > 0) {
   1195 			if (sentinel == NULL)
   1196 				sentinel = ncp;
   1197 			TAILQ_REMOVE(&nclruhead, ncp, nc_lru);
   1198 			TAILQ_INSERT_TAIL(&nclruhead, ncp, nc_lru);
   1199 			continue;
   1200 		}
   1201 		mutex_enter(&ncp->nc_lock);
   1202 		if (ncp->nc_dvp != NULL) {
   1203 			cache_invalidate(ncp);
   1204 			cache_disassociate(ncp);
   1205 			incache--;
   1206 		}
   1207 		mutex_exit(&ncp->nc_lock);
   1208 	}
   1209 	cache_ev_scan.ev_count += items;
   1210 }
   1211 
   1212 /*
   1213  * Collect dead cache entries from all CPUs and garbage collect.
   1214  */
   1215 static void
   1216 cache_reclaim(void)
   1217 {
   1218 	struct namecache *ncp, *next;
   1219 	int items;
   1220 
   1221 	KASSERT(mutex_owned(namecache_lock));
   1222 
   1223 	/*
   1224 	 * If the number of extant entries not awaiting garbage collection
   1225 	 * exceeds the high water mark, then reclaim stale entries until we
   1226 	 * reach our low water mark.
   1227 	 */
   1228 	items = numcache - cache_gcpend;
   1229 	if (items > (uint64_t)desiredvnodes * cache_hiwat / 100) {
   1230 		cache_prune(items, (int)((uint64_t)desiredvnodes *
   1231 		    cache_lowat / 100));
   1232 		cache_ev_over.ev_count++;
   1233 	} else
   1234 		cache_ev_under.ev_count++;
   1235 
   1236 	/*
   1237 	 * Stop forward lookup activity on all CPUs and garbage collect dead
   1238 	 * entries.
   1239 	 */
   1240 	cache_lock_cpus();
   1241 	ncp = cache_gcqueue;
   1242 	cache_gcqueue = NULL;
   1243 	items = cache_gcpend;
   1244 	cache_gcpend = 0;
   1245 	while (ncp != NULL) {
   1246 		next = ncp->nc_gcqueue;
   1247 		cache_disassociate(ncp);
   1248 		KASSERT(ncp->nc_dvp == NULL);
   1249 		if (ncp->nc_hash.le_prev != NULL) {
   1250 			LIST_REMOVE(ncp, nc_hash);
   1251 			ncp->nc_hash.le_prev = NULL;
   1252 		}
   1253 		if (ncp->nc_nlen > NCHNAMLEN) {
   1254 			cache_dtor(NULL, ncp);
   1255 			kmem_free(ncp, sizeof(*ncp) + ncp->nc_nlen);
   1256 		} else
   1257 		pool_cache_put(namecache_cache, ncp);
   1258 		ncp = next;
   1259 	}
   1260 	cache_unlock_cpus();
   1261 	numcache -= items;
   1262 	cache_ev_gc.ev_count += items;
   1263 }
   1264 
   1265 /*
   1266  * Cache maintainence thread, awakening once per second to:
   1267  *
   1268  * => keep number of entries below the high water mark
   1269  * => sort pseudo-LRU list
   1270  * => garbage collect dead entries
   1271  */
   1272 static void
   1273 cache_thread(void *arg)
   1274 {
   1275 
   1276 	mutex_enter(namecache_lock);
   1277 	for (;;) {
   1278 		cache_reclaim();
   1279 		kpause("cachegc", false, hz, namecache_lock);
   1280 	}
   1281 }
   1282 
   1283 #ifdef DDB
   1284 void
   1285 namecache_print(struct vnode *vp, void (*pr)(const char *, ...))
   1286 {
   1287 	struct vnode *dvp = NULL;
   1288 	struct namecache *ncp;
   1289 
   1290 	TAILQ_FOREACH(ncp, &nclruhead, nc_lru) {
   1291 		if (ncp->nc_vp == vp && ncp->nc_dvp != NULL) {
   1292 			(*pr)("name %.*s\n", ncp->nc_nlen, ncp->nc_name);
   1293 			dvp = ncp->nc_dvp;
   1294 		}
   1295 	}
   1296 	if (dvp == NULL) {
   1297 		(*pr)("name not found\n");
   1298 		return;
   1299 	}
   1300 	vp = dvp;
   1301 	TAILQ_FOREACH(ncp, &nclruhead, nc_lru) {
   1302 		if (ncp->nc_vp == vp) {
   1303 			(*pr)("parent %.*s\n", ncp->nc_nlen, ncp->nc_name);
   1304 		}
   1305 	}
   1306 }
   1307 #endif
   1308 
   1309 void
   1310 namecache_count_pass2(void)
   1311 {
   1312 	struct nchcpu *cpup = curcpu()->ci_data.cpu_nch;
   1313 
   1314 	COUNT_UNL(cpup, ncs_pass2);
   1315 }
   1316 
   1317 void
   1318 namecache_count_2passes(void)
   1319 {
   1320 	struct nchcpu *cpup = curcpu()->ci_data.cpu_nch;
   1321 
   1322 	COUNT_UNL(cpup, ncs_2passes);
   1323 }
   1324 
   1325 /*
   1326  * Fetch the current values of the stats.  We return the most
   1327  * recent values harvested into nchstats by cache_reclaim(), which
   1328  * will be less than a second old.
   1329  */
   1330 static int
   1331 cache_stat_sysctl(SYSCTLFN_ARGS)
   1332 {
   1333 	struct nchstats stats;
   1334 	struct nchcpu *my_cpup;
   1335 #ifdef CACHE_STATS_CURRENT
   1336 	CPU_INFO_ITERATOR cii;
   1337 	struct cpu_info *ci;
   1338 #endif	/* CACHE_STATS_CURRENT */
   1339 
   1340 	if (oldp == NULL) {
   1341 		*oldlenp = sizeof(stats);
   1342 		return 0;
   1343 	}
   1344 
   1345 	if (*oldlenp < sizeof(stats)) {
   1346 		*oldlenp = 0;
   1347 		return 0;
   1348 	}
   1349 
   1350 	/*
   1351 	 * Take this CPU's per-cpu lock to hold off cache_reclaim()
   1352 	 * from doing a stats update while doing minimal damage to
   1353 	 * concurrent operations.
   1354 	 */
   1355 	sysctl_unlock();
   1356 	my_cpup = curcpu()->ci_data.cpu_nch;
   1357 	mutex_enter(&my_cpup->cpu_lock);
   1358 	stats = nchstats;
   1359 #ifdef CACHE_STATS_CURRENT
   1360 	for (CPU_INFO_FOREACH(cii, ci)) {
   1361 		struct nchcpu *cpup = ci->ci_data.cpu_nch;
   1362 
   1363 		ADD(stats, cpup, ncs_goodhits);
   1364 		ADD(stats, cpup, ncs_neghits);
   1365 		ADD(stats, cpup, ncs_badhits);
   1366 		ADD(stats, cpup, ncs_falsehits);
   1367 		ADD(stats, cpup, ncs_miss);
   1368 		ADD(stats, cpup, ncs_long);
   1369 		ADD(stats, cpup, ncs_pass2);
   1370 		ADD(stats, cpup, ncs_2passes);
   1371 		ADD(stats, cpup, ncs_revhits);
   1372 		ADD(stats, cpup, ncs_revmiss);
   1373 	}
   1374 #endif	/* CACHE_STATS_CURRENT */
   1375 	mutex_exit(&my_cpup->cpu_lock);
   1376 	sysctl_relock();
   1377 
   1378 	*oldlenp = sizeof(stats);
   1379 	return sysctl_copyout(l, &stats, oldp, sizeof(stats));
   1380 }
   1381 
   1382 static void
   1383 sysctl_cache_stat_setup(void)
   1384 {
   1385 
   1386 	KASSERT(sysctllog == NULL);
   1387 	sysctl_createv(&sysctllog, 0, NULL, NULL,
   1388 		       CTLFLAG_PERMANENT,
   1389 		       CTLTYPE_STRUCT, "namecache_stats",
   1390 		       SYSCTL_DESCR("namecache statistics"),
   1391 		       cache_stat_sysctl, 0, NULL, 0,
   1392 		       CTL_VFS, CTL_CREATE, CTL_EOL);
   1393 }
   1394