vfs_cache.c revision 1.124 1 /* $NetBSD: vfs_cache.c,v 1.124 2019/12/01 13:39:53 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2019 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * Copyright (c) 1989, 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. Neither the name of the University nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 *
57 * @(#)vfs_cache.c 8.3 (Berkeley) 8/22/94
58 */
59
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: vfs_cache.c,v 1.124 2019/12/01 13:39:53 ad Exp $");
62
63 #define __NAMECACHE_PRIVATE
64 #ifdef _KERNEL_OPT
65 #include "opt_ddb.h"
66 #include "opt_dtrace.h"
67 #include "opt_revcache.h"
68 #endif
69
70 #include <sys/param.h>
71 #include <sys/atomic.h>
72 #include <sys/cpu.h>
73 #include <sys/errno.h>
74 #include <sys/evcnt.h>
75 #include <sys/kernel.h>
76 #include <sys/kthread.h>
77 #include <sys/mount.h>
78 #include <sys/mutex.h>
79 #include <sys/namei.h>
80 #include <sys/pool.h>
81 #include <sys/sdt.h>
82 #include <sys/sysctl.h>
83 #include <sys/systm.h>
84 #include <sys/time.h>
85 #include <sys/vnode_impl.h>
86
87 #define NAMECACHE_ENTER_REVERSE
88 /*
89 * Name caching works as follows:
90 *
91 * Names found by directory scans are retained in a cache
92 * for future reference. It is managed LRU, so frequently
93 * used names will hang around. Cache is indexed by hash value
94 * obtained from (dvp, name) where dvp refers to the directory
95 * containing name.
96 *
97 * Upon reaching the last segment of a path, if the reference
98 * is for DELETE, or NOCACHE is set (rewrite), and the
99 * name is located in the cache, it will be dropped.
100 */
101
102 /*
103 * Cache entry lifetime:
104 *
105 * nonexistent
106 * ---create---> active
107 * ---invalidate---> queued
108 * ---reclaim---> nonexistent.
109 *
110 * States:
111 * - Nonexistent. Cache entry does not exist.
112 *
113 * - Active. cache_lookup, cache_lookup_raw, cache_revlookup can look
114 * up, acquire references, and hand off references to vnodes,
115 * e.g. via v_interlock. Marked by nonnull ncp->nc_dvp.
116 *
117 * - Queued. Pending desstruction by cache_reclaim. Cannot be used by
118 * cache_lookup, cache_lookup_raw, or cache_revlookup. May still be
119 * on lists. Marked by null ncp->nc_dvp.
120 *
121 * Transitions:
122 *
123 * - Create: nonexistent--->active
124 *
125 * Done by cache_enter(dvp, vp, name, namelen, cnflags), called by
126 * VOP_LOOKUP after the answer is found. Allocates a struct
127 * namecache object, initializes it with the above fields, and
128 * activates it by inserting it into the forward and reverse tables.
129 *
130 * - Invalidate: active--->queued
131 *
132 * Done by cache_invalidate. If not already invalidated, nullify
133 * ncp->nc_dvp and ncp->nc_vp, and add to namecache_gc_queue. Called,
134 * among various other places, in cache_lookup(dvp, name, namelen,
135 * nameiop, cnflags, &iswht, &vp) when MAKEENTRY is missing from
136 * cnflags.
137 *
138 * - Reclaim: queued--->nonexistent
139 *
140 * Done by cache_reclaim. Disassociate ncp from any lists it is on
141 * and free memory.
142 */
143
144 /*
145 * Locking.
146 *
147 * L namecache_lock Global lock for namecache table and queues.
148 * G namecache_gc_lock Global lock for garbage collection.
149 * C struct nchcpu::cpu_lock Per-CPU lock to reduce read contention.
150 * N struct namecache::nc_lock Per-entry lock, matching nc_vp->v_interlock.
151 * If nc_vp==NULL, lock is private / not shared.
152 *
153 * Lock order: L -> C -> N
154 *
155 * Examples:
156 * . L->C: cache_reclaim
157 * . C->N: cache_lookup
158 * . L->N: cache_purge1, cache_revlookup
159 *
160 * All use serialized by namecache_lock:
161 *
162 * nclruhead / struct namecache::nc_lru
163 * ncvhashtbl / struct namecache::nc_vhash
164 * struct vnode_impl::vi_dnclist / struct namecache::nc_dvlist
165 * struct vnode_impl::vi_nclist / struct namecache::nc_vlist
166 * nchstats
167 *
168 * - Insertion serialized by namecache_lock,
169 * - read protected by per-CPU lock,
170 * - insert/read ordering guaranteed by memory barriers, and
171 * - deletion allowed only under namecache_lock, with namecache_gc_lock
172 * taken to chop out the garbage collection list, and *all* per-CPU locks
173 * observed as "unowned" at least once:
174 *
175 * nchashtbl / struct namecache::nc_hash
176 *
177 * The per-CPU locks exist only to reduce the probability of
178 * contention between readers. We do not bind to a CPU, so
179 * contention is still possible.
180 *
181 * All use serialized by struct namecache::nc_lock:
182 *
183 * struct namecache::nc_dvp
184 * struct namecache::nc_vp
185 * struct namecache::nc_hittime (*)
186 *
187 * All use serialized by struct namecache_gc_lock:
188 *
189 * struct namecache::nc_gclist
190 *
191 * (*) cache_prune reads nc_hittime unlocked, since approximate is OK.
192 *
193 * Unlocked because stable after initialization:
194 *
195 * struct namecache::nc_dvp
196 * struct namecache::nc_vp
197 * struct namecache::nc_flags
198 * struct namecache::nc_nlen
199 * struct namecache::nc_name
200 *
201 * Unlocked because approximation is OK:
202 *
203 * struct nchcpu::cpu_stats
204 * struct nchcpu::cpu_stats_last
205 *
206 * Updates under namecache_lock or any per-CPU lock are marked with
207 * COUNT, while updates outside those locks are marked with COUNT_UNL.
208 *
209 * - The theory seems to have been that you could replace COUNT_UNL by
210 * atomic operations -- except that doesn't help unless you also
211 * replace COUNT by atomic operations, because mixing atomics and
212 * nonatomics is a recipe for failure.
213 * - We use 32-bit per-CPU counters and 64-bit global counters under
214 * the theory that 32-bit counters are less likely to be hosed by
215 * nonatomic increment.
216 */
217
218 /*
219 * The comment below is preserved for posterity in case it is
220 * important, but it is clear that everywhere the namecache_count_*()
221 * functions are called, other cache_*() functions that take the same
222 * locks are also called, so I can't imagine how this could be a
223 * problem:
224 *
225 * N.B.: Attempting to protect COUNT_UNL() increments by taking
226 * a per-cpu lock in the namecache_count_*() functions causes
227 * a deadlock. Don't do that, use atomic increments instead if
228 * the imperfections here bug you.
229 */
230
231 /*
232 * struct nchstats_percpu:
233 *
234 * Per-CPU counters.
235 */
236 struct nchstats_percpu _NAMEI_CACHE_STATS(uint32_t);
237
238 /*
239 * struct nchcpu:
240 *
241 * Per-CPU namecache state: lock and per-CPU counters.
242 */
243 struct nchcpu {
244 kmutex_t cpu_lock;
245 struct nchstats_percpu cpu_stats;
246 /* XXX maybe __cacheline_aligned would improve this? */
247 struct nchstats_percpu cpu_stats_last; /* from last sample */
248 };
249
250 /*
251 * The type for the hash code. While the hash function generates a
252 * u32, the hash code has historically been passed around as a u_long,
253 * and the value is modified by xor'ing a uintptr_t, so it's not
254 * entirely clear what the best type is. For now I'll leave it
255 * unchanged as u_long.
256 */
257
258 typedef u_long nchash_t;
259
260 /*
261 * Structures associated with name cacheing.
262 */
263
264 static kmutex_t namecache_lock __cacheline_aligned;
265 static pool_cache_t namecache_cache __read_mostly;
266 static TAILQ_HEAD(, namecache) nclruhead __cacheline_aligned;
267
268 static LIST_HEAD(nchashhead, namecache) *nchashtbl __read_mostly;
269 static u_long nchash __read_mostly;
270
271 #define NCHASH2(hash, dvp) \
272 (((hash) ^ ((uintptr_t)(dvp) >> 3)) & nchash)
273
274 static LIST_HEAD(ncvhashhead, namecache) *ncvhashtbl __read_mostly;
275 static u_long ncvhash __read_mostly;
276
277 #define NCVHASH(vp) (((uintptr_t)(vp) >> 3) & ncvhash)
278
279 /* Number of cache entries allocated. */
280 static long numcache __cacheline_aligned;
281
282 /* Garbage collection queue and number of entries pending in it. */
283 static kmutex_t namecache_gc_lock __cacheline_aligned;
284 static SLIST_HEAD(namecache_gc_queue, namecache) namecache_gc_queue;
285 static u_int namecache_gc_pend;
286
287 /* Cache effectiveness statistics. This holds total from per-cpu stats */
288 struct nchstats nchstats __cacheline_aligned;
289
290 /*
291 * Macros to count an event, update the central stats with per-cpu
292 * values and add current per-cpu increments to the subsystem total
293 * last collected by cache_reclaim().
294 */
295 #define COUNT(cpup, f) ((cpup)->cpu_stats.f++)
296
297 #define UPDATE(cpup, f) do { \
298 struct nchcpu *Xcpup = (cpup); \
299 uint32_t Xcnt = (volatile uint32_t) Xcpup->cpu_stats.f; \
300 nchstats.f += Xcnt - Xcpup->cpu_stats_last.f; \
301 Xcpup->cpu_stats_last.f = Xcnt; \
302 } while (/* CONSTCOND */ 0)
303
304 /* Do unlocked stats the same way. Use a different name to allow mind changes */
305 #define COUNT_UNL(cpup, f) COUNT((cpup), f)
306
307 static const int cache_lowat = 97;
308 static const int cache_hiwat = 98;
309 static const int cache_hottime = 5; /* number of seconds */
310 static int doingcache = 1; /* 1 => enable the cache */
311
312 static struct evcnt cache_ev_scan;
313 static struct evcnt cache_ev_gc;
314 static struct evcnt cache_ev_over;
315 static struct evcnt cache_ev_under;
316 static struct evcnt cache_ev_forced;
317
318 static struct namecache *cache_lookup_entry(
319 const struct vnode *, const char *, size_t);
320 static void cache_thread(void *);
321 static void cache_invalidate(struct namecache *);
322 static void cache_disassociate(struct namecache *);
323 static void cache_reclaim(void);
324 static int cache_ctor(void *, void *, int);
325 static void cache_dtor(void *, void *);
326
327 static struct sysctllog *sysctllog;
328 static void sysctl_cache_stat_setup(void);
329
330 SDT_PROVIDER_DEFINE(vfs);
331
332 SDT_PROBE_DEFINE1(vfs, namecache, invalidate, done, "struct vnode *");
333 SDT_PROBE_DEFINE1(vfs, namecache, purge, parents, "struct vnode *");
334 SDT_PROBE_DEFINE1(vfs, namecache, purge, children, "struct vnode *");
335 SDT_PROBE_DEFINE2(vfs, namecache, purge, name, "char *", "size_t");
336 SDT_PROBE_DEFINE1(vfs, namecache, purge, vfs, "struct mount *");
337 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *",
338 "char *", "size_t");
339 SDT_PROBE_DEFINE3(vfs, namecache, lookup, miss, "struct vnode *",
340 "char *", "size_t");
341 SDT_PROBE_DEFINE3(vfs, namecache, lookup, toolong, "struct vnode *",
342 "char *", "size_t");
343 SDT_PROBE_DEFINE2(vfs, namecache, revlookup, success, "struct vnode *",
344 "struct vnode *");
345 SDT_PROBE_DEFINE2(vfs, namecache, revlookup, fail, "struct vnode *",
346 "int");
347 SDT_PROBE_DEFINE2(vfs, namecache, prune, done, "int", "int");
348 SDT_PROBE_DEFINE3(vfs, namecache, enter, toolong, "struct vnode *",
349 "char *", "size_t");
350 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *",
351 "char *", "size_t");
352
353 /*
354 * Compute the hash for an entry.
355 *
356 * (This is for now a wrapper around namei_hash, whose interface is
357 * for the time being slightly inconvenient.)
358 */
359 static nchash_t
360 cache_hash(const char *name, size_t namelen)
361 {
362 const char *endptr;
363
364 endptr = name + namelen;
365 return namei_hash(name, &endptr);
366 }
367
368 /*
369 * Invalidate a cache entry and enqueue it for garbage collection.
370 */
371 static void
372 cache_invalidate(struct namecache *ncp)
373 {
374
375 KASSERT(mutex_owned(ncp->nc_lock));
376
377 if (ncp->nc_dvp != NULL) {
378 SDT_PROBE(vfs, namecache, invalidate, done, ncp->nc_dvp,
379 0, 0, 0, 0);
380
381 ncp->nc_vp = NULL;
382 ncp->nc_dvp = NULL;
383 mutex_enter(&namecache_gc_lock);
384 SLIST_INSERT_HEAD(&namecache_gc_queue, ncp, nc_gclist);
385 namecache_gc_pend++;
386 mutex_exit(&namecache_gc_lock);
387 }
388 }
389
390 /*
391 * Disassociate a namecache entry from any vnodes it is attached to,
392 * and remove from the global LRU list.
393 */
394 static void
395 cache_disassociate(struct namecache *ncp)
396 {
397
398 KASSERT(mutex_owned(&namecache_lock));
399 KASSERT(ncp->nc_dvp == NULL);
400
401 if (ncp->nc_lru.tqe_prev != NULL) {
402 TAILQ_REMOVE(&nclruhead, ncp, nc_lru);
403 ncp->nc_lru.tqe_prev = NULL;
404 }
405 if (ncp->nc_vhash.le_prev != NULL) {
406 LIST_REMOVE(ncp, nc_vhash);
407 ncp->nc_vhash.le_prev = NULL;
408 }
409 if (ncp->nc_vlist.le_prev != NULL) {
410 LIST_REMOVE(ncp, nc_vlist);
411 ncp->nc_vlist.le_prev = NULL;
412 }
413 if (ncp->nc_dvlist.le_prev != NULL) {
414 LIST_REMOVE(ncp, nc_dvlist);
415 ncp->nc_dvlist.le_prev = NULL;
416 }
417 }
418
419 /*
420 * Lock all CPUs to prevent any cache lookup activity. Conceptually,
421 * this locks out all "readers". This is a very heavyweight operation
422 * that we only use for nchreinit().
423 */
424 static void
425 cache_lock_cpus(void)
426 {
427 CPU_INFO_ITERATOR cii;
428 struct cpu_info *ci;
429 struct nchcpu *cpup;
430
431 /* Not necessary but don't want more than one LWP trying this. */
432 KASSERT(mutex_owned(&namecache_lock));
433
434 /*
435 * Lock out all CPUs first, then harvest per-cpu stats. This
436 * is probably not quite as cache-efficient as doing the lock
437 * and harvest at the same time, but allows cache_stat_sysctl()
438 * to make do with a per-cpu lock.
439 */
440 for (CPU_INFO_FOREACH(cii, ci)) {
441 cpup = ci->ci_data.cpu_nch;
442 mutex_enter(&cpup->cpu_lock);
443 }
444 for (CPU_INFO_FOREACH(cii, ci)) {
445 cpup = ci->ci_data.cpu_nch;
446 UPDATE(cpup, ncs_goodhits);
447 UPDATE(cpup, ncs_neghits);
448 UPDATE(cpup, ncs_badhits);
449 UPDATE(cpup, ncs_falsehits);
450 UPDATE(cpup, ncs_miss);
451 UPDATE(cpup, ncs_long);
452 UPDATE(cpup, ncs_pass2);
453 UPDATE(cpup, ncs_2passes);
454 UPDATE(cpup, ncs_revhits);
455 UPDATE(cpup, ncs_revmiss);
456 }
457 }
458
459 /*
460 * Release all CPU locks.
461 */
462 static void
463 cache_unlock_cpus(void)
464 {
465 CPU_INFO_ITERATOR cii;
466 struct cpu_info *ci;
467 struct nchcpu *cpup;
468
469 for (CPU_INFO_FOREACH(cii, ci)) {
470 cpup = ci->ci_data.cpu_nch;
471 mutex_exit(&cpup->cpu_lock);
472 }
473 }
474
475 /*
476 * Find a single cache entry and return it locked.
477 * The caller needs to hold namecache_lock or a per-cpu lock to hold
478 * off cache_reclaim().
479 */
480 static struct namecache *
481 cache_lookup_entry(const struct vnode *dvp, const char *name, size_t namelen)
482 {
483 struct nchashhead *ncpp;
484 struct namecache *ncp;
485 nchash_t hash;
486 int ticks;
487
488 KASSERT(dvp != NULL);
489 hash = cache_hash(name, namelen);
490 ncpp = &nchashtbl[NCHASH2(hash, dvp)];
491
492 LIST_FOREACH(ncp, ncpp, nc_hash) {
493 membar_datadep_consumer(); /* for Alpha... */
494 if (ncp->nc_dvp != dvp ||
495 ncp->nc_nlen != namelen ||
496 memcmp(ncp->nc_name, name, (u_int)ncp->nc_nlen))
497 continue;
498 mutex_enter(ncp->nc_lock);
499 if (__predict_true(ncp->nc_dvp == dvp)) {
500 ticks = hardclock_ticks;
501 if (ncp->nc_hittime != ticks) {
502 /*
503 * Avoid false sharing on MP: do not store
504 * to *ncp unless the value changed.
505 */
506 ncp->nc_hittime = ticks;
507 }
508 SDT_PROBE(vfs, namecache, lookup, hit, dvp,
509 name, namelen, 0, 0);
510 return ncp;
511 }
512 /* Raced: entry has been nullified. */
513 mutex_exit(ncp->nc_lock);
514 }
515
516 SDT_PROBE(vfs, namecache, lookup, miss, dvp,
517 name, namelen, 0, 0);
518 return NULL;
519 }
520
521 /*
522 * Look for a the name in the cache. We don't do this
523 * if the segment name is long, simply so the cache can avoid
524 * holding long names (which would either waste space, or
525 * add greatly to the complexity).
526 *
527 * Lookup is called with DVP pointing to the directory to search,
528 * and CNP providing the name of the entry being sought: cn_nameptr
529 * is the name, cn_namelen is its length, and cn_flags is the flags
530 * word from the namei operation.
531 *
532 * DVP must be locked.
533 *
534 * There are three possible non-error return states:
535 * 1. Nothing was found in the cache. Nothing is known about
536 * the requested name.
537 * 2. A negative entry was found in the cache, meaning that the
538 * requested name definitely does not exist.
539 * 3. A positive entry was found in the cache, meaning that the
540 * requested name does exist and that we are providing the
541 * vnode.
542 * In these cases the results are:
543 * 1. 0 returned; VN is set to NULL.
544 * 2. 1 returned; VN is set to NULL.
545 * 3. 1 returned; VN is set to the vnode found.
546 *
547 * The additional result argument ISWHT is set to zero, unless a
548 * negative entry is found that was entered as a whiteout, in which
549 * case ISWHT is set to one.
550 *
551 * The ISWHT_RET argument pointer may be null. In this case an
552 * assertion is made that the whiteout flag is not set. File systems
553 * that do not support whiteouts can/should do this.
554 *
555 * Filesystems that do support whiteouts should add ISWHITEOUT to
556 * cnp->cn_flags if ISWHT comes back nonzero.
557 *
558 * When a vnode is returned, it is locked, as per the vnode lookup
559 * locking protocol.
560 *
561 * There is no way for this function to fail, in the sense of
562 * generating an error that requires aborting the namei operation.
563 *
564 * (Prior to October 2012, this function returned an integer status,
565 * and a vnode, and mucked with the flags word in CNP for whiteouts.
566 * The integer status was -1 for "nothing found", ENOENT for "a
567 * negative entry found", 0 for "a positive entry found", and possibly
568 * other errors, and the value of VN might or might not have been set
569 * depending on what error occurred.)
570 */
571 bool
572 cache_lookup(struct vnode *dvp, const char *name, size_t namelen,
573 uint32_t nameiop, uint32_t cnflags,
574 int *iswht_ret, struct vnode **vn_ret)
575 {
576 struct namecache *ncp;
577 struct vnode *vp;
578 struct nchcpu *cpup;
579 int error;
580 bool hit;
581
582 /* Establish default result values */
583 if (iswht_ret != NULL) {
584 *iswht_ret = 0;
585 }
586 *vn_ret = NULL;
587
588 if (__predict_false(!doingcache)) {
589 return false;
590 }
591
592 cpup = curcpu()->ci_data.cpu_nch;
593 mutex_enter(&cpup->cpu_lock);
594 if (__predict_false(namelen > USHRT_MAX)) {
595 SDT_PROBE(vfs, namecache, lookup, toolong, dvp,
596 name, namelen, 0, 0);
597 COUNT(cpup, ncs_long);
598 mutex_exit(&cpup->cpu_lock);
599 /* found nothing */
600 return false;
601 }
602
603 ncp = cache_lookup_entry(dvp, name, namelen);
604 if (__predict_false(ncp == NULL)) {
605 COUNT(cpup, ncs_miss);
606 mutex_exit(&cpup->cpu_lock);
607 /* found nothing */
608 return false;
609 }
610 if ((cnflags & MAKEENTRY) == 0) {
611 COUNT(cpup, ncs_badhits);
612 /*
613 * Last component and we are renaming or deleting,
614 * the cache entry is invalid, or otherwise don't
615 * want cache entry to exist.
616 */
617 cache_invalidate(ncp);
618 mutex_exit(ncp->nc_lock);
619 mutex_exit(&cpup->cpu_lock);
620 /* found nothing */
621 return false;
622 }
623 vp = ncp->nc_vp;
624 if (__predict_false(vp == NULL)) {
625 if (iswht_ret != NULL) {
626 /*
627 * Restore the ISWHITEOUT flag saved earlier.
628 */
629 KASSERT((ncp->nc_flags & ~ISWHITEOUT) == 0);
630 *iswht_ret = (ncp->nc_flags & ISWHITEOUT) != 0;
631 } else {
632 KASSERT(ncp->nc_flags == 0);
633 }
634
635 if (__predict_true(nameiop != CREATE ||
636 (cnflags & ISLASTCN) == 0)) {
637 COUNT(cpup, ncs_neghits);
638 /* found neg entry; vn is already null from above */
639 hit = true;
640 } else {
641 COUNT(cpup, ncs_badhits);
642 /*
643 * Last component and we are preparing to create
644 * the named object, so flush the negative cache
645 * entry.
646 */
647 cache_invalidate(ncp);
648 /* found nothing */
649 hit = false;
650 }
651 mutex_exit(ncp->nc_lock);
652 mutex_exit(&cpup->cpu_lock);
653 return hit;
654 }
655 KASSERT(vp->v_interlock == ncp->nc_lock);
656 mutex_exit(&cpup->cpu_lock);
657
658 /*
659 * Unlocked except for the vnode interlock. Call vcache_tryvget().
660 */
661 error = vcache_tryvget(vp);
662 if (error) {
663 KASSERT(error == EBUSY);
664 /*
665 * This vnode is being cleaned out.
666 * XXX badhits?
667 */
668 COUNT_UNL(cpup, ncs_falsehits);
669 /* found nothing */
670 return false;
671 }
672
673 COUNT_UNL(cpup, ncs_goodhits);
674 /* found it */
675 *vn_ret = vp;
676 return true;
677 }
678
679
680 /*
681 * Cut-'n-pasted version of the above without the nameiop argument.
682 */
683 bool
684 cache_lookup_raw(struct vnode *dvp, const char *name, size_t namelen,
685 uint32_t cnflags,
686 int *iswht_ret, struct vnode **vn_ret)
687 {
688 struct namecache *ncp;
689 struct vnode *vp;
690 struct nchcpu *cpup;
691 int error;
692
693 /* Establish default results. */
694 if (iswht_ret != NULL) {
695 *iswht_ret = 0;
696 }
697 *vn_ret = NULL;
698
699 if (__predict_false(!doingcache)) {
700 /* found nothing */
701 return false;
702 }
703
704 cpup = curcpu()->ci_data.cpu_nch;
705 mutex_enter(&cpup->cpu_lock);
706 if (__predict_false(namelen > USHRT_MAX)) {
707 COUNT(cpup, ncs_long);
708 mutex_exit(&cpup->cpu_lock);
709 /* found nothing */
710 return false;
711 }
712 ncp = cache_lookup_entry(dvp, name, namelen);
713 if (__predict_false(ncp == NULL)) {
714 COUNT(cpup, ncs_miss);
715 mutex_exit(&cpup->cpu_lock);
716 /* found nothing */
717 return false;
718 }
719 vp = ncp->nc_vp;
720 if (vp == NULL) {
721 /*
722 * Restore the ISWHITEOUT flag saved earlier.
723 */
724 if (iswht_ret != NULL) {
725 KASSERT((ncp->nc_flags & ~ISWHITEOUT) == 0);
726 /*cnp->cn_flags |= ncp->nc_flags;*/
727 *iswht_ret = (ncp->nc_flags & ISWHITEOUT) != 0;
728 }
729 COUNT(cpup, ncs_neghits);
730 mutex_exit(ncp->nc_lock);
731 mutex_exit(&cpup->cpu_lock);
732 /* found negative entry; vn is already null from above */
733 return true;
734 }
735 KASSERT(vp->v_interlock == ncp->nc_lock);
736 mutex_exit(&cpup->cpu_lock);
737
738 /*
739 * Unlocked except for the vnode interlock. Call vcache_tryvget().
740 */
741 error = vcache_tryvget(vp);
742 if (error) {
743 KASSERT(error == EBUSY);
744 /*
745 * This vnode is being cleaned out.
746 * XXX badhits?
747 */
748 COUNT_UNL(cpup, ncs_falsehits);
749 /* found nothing */
750 return false;
751 }
752
753 COUNT_UNL(cpup, ncs_goodhits); /* XXX can be "badhits" */
754 /* found it */
755 *vn_ret = vp;
756 return true;
757 }
758
759 /*
760 * Scan cache looking for name of directory entry pointing at vp.
761 *
762 * If the lookup succeeds the vnode is referenced and stored in dvpp.
763 *
764 * If bufp is non-NULL, also place the name in the buffer which starts
765 * at bufp, immediately before *bpp, and move bpp backwards to point
766 * at the start of it. (Yes, this is a little baroque, but it's done
767 * this way to cater to the whims of getcwd).
768 *
769 * Returns 0 on success, -1 on cache miss, positive errno on failure.
770 */
771 int
772 cache_revlookup(struct vnode *vp, struct vnode **dvpp, char **bpp, char *bufp)
773 {
774 struct namecache *ncp;
775 struct vnode *dvp;
776 struct ncvhashhead *nvcpp;
777 struct nchcpu *cpup;
778 char *bp;
779 int error, nlen;
780 bool locked, again;
781
782 if (!doingcache)
783 goto out;
784
785 nvcpp = &ncvhashtbl[NCVHASH(vp)];
786
787 /*
788 * We increment counters in the local CPU's per-cpu stats.
789 * We don't take the per-cpu lock, however, since this function
790 * is the only place these counters are incremented so no one
791 * will be racing with us to increment them.
792 */
793 again = false;
794 retry:
795 cpup = curcpu()->ci_data.cpu_nch;
796 mutex_enter(&namecache_lock);
797 LIST_FOREACH(ncp, nvcpp, nc_vhash) {
798 mutex_enter(ncp->nc_lock);
799 if (ncp->nc_vp == vp &&
800 (dvp = ncp->nc_dvp) != NULL &&
801 dvp != vp) { /* avoid pesky . entries.. */
802
803 #ifdef DIAGNOSTIC
804 if (ncp->nc_nlen == 1 &&
805 ncp->nc_name[0] == '.')
806 panic("cache_revlookup: found entry for .");
807
808 if (ncp->nc_nlen == 2 &&
809 ncp->nc_name[0] == '.' &&
810 ncp->nc_name[1] == '.')
811 panic("cache_revlookup: found entry for ..");
812 #endif
813 COUNT(cpup, ncs_revhits);
814 nlen = ncp->nc_nlen;
815
816 if (bufp) {
817 bp = *bpp;
818 bp -= nlen;
819 if (bp <= bufp) {
820 *dvpp = NULL;
821 mutex_exit(ncp->nc_lock);
822 mutex_exit(&namecache_lock);
823 SDT_PROBE(vfs, namecache, revlookup,
824 fail, vp, ERANGE, 0, 0, 0);
825 return (ERANGE);
826 }
827 memcpy(bp, ncp->nc_name, nlen);
828 *bpp = bp;
829 }
830
831
832 KASSERT(ncp->nc_lock != dvp->v_interlock);
833 locked = mutex_tryenter(dvp->v_interlock);
834 mutex_exit(ncp->nc_lock);
835 mutex_exit(&namecache_lock);
836 if (!locked) {
837 if (again) {
838 kpause("nchrace", false, 1, NULL);
839 }
840 again = true;
841 goto retry;
842 }
843 error = vcache_tryvget(dvp);
844 if (error) {
845 KASSERT(error == EBUSY);
846 if (bufp)
847 (*bpp) += nlen;
848 *dvpp = NULL;
849 SDT_PROBE(vfs, namecache, revlookup, fail, vp,
850 error, 0, 0, 0);
851 return -1;
852 }
853 *dvpp = dvp;
854 SDT_PROBE(vfs, namecache, revlookup, success, vp, dvp,
855 0, 0, 0);
856 return (0);
857 }
858 mutex_exit(ncp->nc_lock);
859 }
860 COUNT(cpup, ncs_revmiss);
861 mutex_exit(&namecache_lock);
862 out:
863 *dvpp = NULL;
864 return (-1);
865 }
866
867 /*
868 * Add an entry to the cache
869 */
870 void
871 cache_enter(struct vnode *dvp, struct vnode *vp,
872 const char *name, size_t namelen, uint32_t cnflags)
873 {
874 struct namecache *ncp;
875 struct namecache *oncp;
876 struct nchashhead *ncpp;
877 struct ncvhashhead *nvcpp;
878 nchash_t hash;
879
880 /* First, check whether we can/should add a cache entry. */
881 if ((cnflags & MAKEENTRY) == 0 ||
882 __predict_false(namelen > USHRT_MAX || !doingcache)) {
883 SDT_PROBE(vfs, namecache, enter, toolong, vp, name, namelen,
884 0, 0);
885 return;
886 }
887
888 SDT_PROBE(vfs, namecache, enter, done, vp, name, namelen, 0, 0);
889 if (numcache > desiredvnodes) {
890 mutex_enter(&namecache_lock);
891 cache_ev_forced.ev_count++;
892 cache_reclaim();
893 mutex_exit(&namecache_lock);
894 }
895
896 if (namelen > NCHNAMLEN) {
897 ncp = kmem_alloc(sizeof(*ncp) + namelen, KM_SLEEP);
898 cache_ctor(NULL, ncp, 0);
899 } else
900 ncp = pool_cache_get(namecache_cache, PR_WAITOK);
901
902 mutex_enter(&namecache_lock);
903 numcache++;
904
905 /*
906 * Concurrent lookups in the same directory may race for a
907 * cache entry. if there's a duplicated entry, free it.
908 */
909 oncp = cache_lookup_entry(dvp, name, namelen);
910 if (oncp) {
911 cache_invalidate(oncp);
912 mutex_exit(oncp->nc_lock);
913 }
914
915 /* Grab the vnode we just found. */
916 ncp->nc_vp = vp;
917 ncp->nc_flags = 0;
918 ncp->nc_hittime = 0;
919 if (vp == NULL) {
920 /*
921 * For negative hits, save the ISWHITEOUT flag so we can
922 * restore it later when the cache entry is used again.
923 */
924 ncp->nc_flags = cnflags & ISWHITEOUT;
925 ncp->nc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
926 } else {
927 ncp->nc_lock = vp->v_interlock;
928 mutex_obj_hold(ncp->nc_lock);
929 }
930
931 /* Fill in cache info. */
932 mutex_enter(ncp->nc_lock);
933 ncp->nc_dvp = dvp;
934 LIST_INSERT_HEAD(&VNODE_TO_VIMPL(dvp)->vi_dnclist, ncp, nc_dvlist);
935 if (vp)
936 LIST_INSERT_HEAD(&VNODE_TO_VIMPL(vp)->vi_nclist, ncp, nc_vlist);
937 else {
938 ncp->nc_vlist.le_prev = NULL;
939 ncp->nc_vlist.le_next = NULL;
940 }
941 KASSERT(namelen <= USHRT_MAX);
942 ncp->nc_nlen = namelen;
943 memcpy(ncp->nc_name, name, (unsigned)ncp->nc_nlen);
944 TAILQ_INSERT_TAIL(&nclruhead, ncp, nc_lru);
945 hash = cache_hash(name, namelen);
946 ncpp = &nchashtbl[NCHASH2(hash, dvp)];
947
948 /*
949 * Flush updates before making visible in table. No need for a
950 * memory barrier on the other side: to see modifications the
951 * list must be followed, meaning a dependent pointer load.
952 * The below is LIST_INSERT_HEAD() inlined, with the memory
953 * barrier included in the correct place.
954 */
955 if ((ncp->nc_hash.le_next = ncpp->lh_first) != NULL)
956 ncpp->lh_first->nc_hash.le_prev = &ncp->nc_hash.le_next;
957 ncp->nc_hash.le_prev = &ncpp->lh_first;
958 membar_producer();
959 ncpp->lh_first = ncp;
960
961 ncp->nc_vhash.le_prev = NULL;
962 ncp->nc_vhash.le_next = NULL;
963
964 /*
965 * Create reverse-cache entries (used in getcwd) for directories.
966 * (and in linux procfs exe node)
967 */
968 if (vp != NULL &&
969 vp != dvp &&
970 #ifndef NAMECACHE_ENTER_REVERSE
971 vp->v_type == VDIR &&
972 #endif
973 (ncp->nc_nlen > 2 ||
974 (ncp->nc_nlen > 1 && ncp->nc_name[1] != '.') ||
975 (/* ncp->nc_nlen > 0 && */ ncp->nc_name[0] != '.'))) {
976 nvcpp = &ncvhashtbl[NCVHASH(vp)];
977 LIST_INSERT_HEAD(nvcpp, ncp, nc_vhash);
978 }
979 mutex_exit(ncp->nc_lock);
980 mutex_exit(&namecache_lock);
981 }
982
983 /*
984 * Name cache initialization, from vfs_init() when we are booting
985 */
986 void
987 nchinit(void)
988 {
989 int error;
990
991 TAILQ_INIT(&nclruhead);
992 namecache_cache = pool_cache_init(sizeof(struct namecache) + NCHNAMLEN,
993 coherency_unit, 0, 0, "ncache", NULL, IPL_NONE, cache_ctor,
994 cache_dtor, NULL);
995 KASSERT(namecache_cache != NULL);
996
997 mutex_init(&namecache_lock, MUTEX_DEFAULT, IPL_NONE);
998 mutex_init(&namecache_gc_lock, MUTEX_DEFAULT, IPL_NONE);
999 nchashtbl = hashinit(desiredvnodes, HASH_LIST, true, &nchash);
1000 ncvhashtbl =
1001 #ifdef NAMECACHE_ENTER_REVERSE
1002 hashinit(desiredvnodes, HASH_LIST, true, &ncvhash);
1003 #else
1004 hashinit(desiredvnodes/8, HASH_LIST, true, &ncvhash);
1005 #endif
1006
1007 error = kthread_create(PRI_VM, KTHREAD_MPSAFE, NULL, cache_thread,
1008 NULL, NULL, "cachegc");
1009 if (error != 0)
1010 panic("nchinit %d", error);
1011
1012 evcnt_attach_dynamic(&cache_ev_scan, EVCNT_TYPE_MISC, NULL,
1013 "namecache", "entries scanned");
1014 evcnt_attach_dynamic(&cache_ev_gc, EVCNT_TYPE_MISC, NULL,
1015 "namecache", "entries collected");
1016 evcnt_attach_dynamic(&cache_ev_over, EVCNT_TYPE_MISC, NULL,
1017 "namecache", "over scan target");
1018 evcnt_attach_dynamic(&cache_ev_under, EVCNT_TYPE_MISC, NULL,
1019 "namecache", "under scan target");
1020 evcnt_attach_dynamic(&cache_ev_forced, EVCNT_TYPE_MISC, NULL,
1021 "namecache", "forced reclaims");
1022
1023 sysctl_cache_stat_setup();
1024 }
1025
1026 static int
1027 cache_ctor(void *arg, void *obj, int flag)
1028 {
1029
1030 return 0;
1031 }
1032
1033 static void
1034 cache_dtor(void *arg, void *obj)
1035 {
1036
1037 }
1038
1039 /*
1040 * Called once for each CPU in the system as attached.
1041 */
1042 void
1043 cache_cpu_init(struct cpu_info *ci)
1044 {
1045 struct nchcpu *cpup;
1046 size_t sz;
1047
1048 sz = roundup2(sizeof(*cpup), coherency_unit) + coherency_unit;
1049 cpup = kmem_zalloc(sz, KM_SLEEP);
1050 cpup = (void *)roundup2((uintptr_t)cpup, coherency_unit);
1051 mutex_init(&cpup->cpu_lock, MUTEX_DEFAULT, IPL_NONE);
1052 ci->ci_data.cpu_nch = cpup;
1053 }
1054
1055 /*
1056 * Name cache reinitialization, for when the maximum number of vnodes increases.
1057 */
1058 void
1059 nchreinit(void)
1060 {
1061 struct namecache *ncp;
1062 struct nchashhead *oldhash1, *hash1;
1063 struct ncvhashhead *oldhash2, *hash2;
1064 u_long i, oldmask1, oldmask2, mask1, mask2;
1065
1066 hash1 = hashinit(desiredvnodes, HASH_LIST, true, &mask1);
1067 hash2 =
1068 #ifdef NAMECACHE_ENTER_REVERSE
1069 hashinit(desiredvnodes, HASH_LIST, true, &mask2);
1070 #else
1071 hashinit(desiredvnodes/8, HASH_LIST, true, &mask2);
1072 #endif
1073 mutex_enter(&namecache_lock);
1074 cache_lock_cpus();
1075 oldhash1 = nchashtbl;
1076 oldmask1 = nchash;
1077 nchashtbl = hash1;
1078 nchash = mask1;
1079 oldhash2 = ncvhashtbl;
1080 oldmask2 = ncvhash;
1081 ncvhashtbl = hash2;
1082 ncvhash = mask2;
1083 for (i = 0; i <= oldmask1; i++) {
1084 while ((ncp = LIST_FIRST(&oldhash1[i])) != NULL) {
1085 LIST_REMOVE(ncp, nc_hash);
1086 ncp->nc_hash.le_prev = NULL;
1087 }
1088 }
1089 for (i = 0; i <= oldmask2; i++) {
1090 while ((ncp = LIST_FIRST(&oldhash2[i])) != NULL) {
1091 LIST_REMOVE(ncp, nc_vhash);
1092 ncp->nc_vhash.le_prev = NULL;
1093 }
1094 }
1095 cache_unlock_cpus();
1096 mutex_exit(&namecache_lock);
1097 hashdone(oldhash1, HASH_LIST, oldmask1);
1098 hashdone(oldhash2, HASH_LIST, oldmask2);
1099 }
1100
1101 /*
1102 * Cache flush, a particular vnode; called when a vnode is renamed to
1103 * hide entries that would now be invalid
1104 */
1105 void
1106 cache_purge1(struct vnode *vp, const char *name, size_t namelen, int flags)
1107 {
1108 struct namecache *ncp, *ncnext;
1109
1110 mutex_enter(&namecache_lock);
1111 if (flags & PURGE_PARENTS) {
1112 SDT_PROBE(vfs, namecache, purge, parents, vp, 0, 0, 0, 0);
1113
1114 for (ncp = LIST_FIRST(&VNODE_TO_VIMPL(vp)->vi_nclist);
1115 ncp != NULL; ncp = ncnext) {
1116 ncnext = LIST_NEXT(ncp, nc_vlist);
1117 mutex_enter(ncp->nc_lock);
1118 cache_invalidate(ncp);
1119 mutex_exit(ncp->nc_lock);
1120 cache_disassociate(ncp);
1121 }
1122 }
1123 if (flags & PURGE_CHILDREN) {
1124 SDT_PROBE(vfs, namecache, purge, children, vp, 0, 0, 0, 0);
1125 for (ncp = LIST_FIRST(&VNODE_TO_VIMPL(vp)->vi_dnclist);
1126 ncp != NULL; ncp = ncnext) {
1127 ncnext = LIST_NEXT(ncp, nc_dvlist);
1128 mutex_enter(ncp->nc_lock);
1129 cache_invalidate(ncp);
1130 mutex_exit(ncp->nc_lock);
1131 cache_disassociate(ncp);
1132 }
1133 }
1134 if (name != NULL) {
1135 SDT_PROBE(vfs, namecache, purge, name, name, namelen, 0, 0, 0);
1136 ncp = cache_lookup_entry(vp, name, namelen);
1137 if (ncp) {
1138 cache_invalidate(ncp);
1139 mutex_exit(ncp->nc_lock);
1140 cache_disassociate(ncp);
1141 }
1142 }
1143 mutex_exit(&namecache_lock);
1144 }
1145
1146 /*
1147 * Cache flush, a whole filesystem; called when filesys is umounted to
1148 * remove entries that would now be invalid.
1149 */
1150 void
1151 cache_purgevfs(struct mount *mp)
1152 {
1153 struct namecache *ncp, *nxtcp;
1154
1155 SDT_PROBE(vfs, namecache, purge, vfs, mp, 0, 0, 0, 0);
1156 mutex_enter(&namecache_lock);
1157 for (ncp = TAILQ_FIRST(&nclruhead); ncp != NULL; ncp = nxtcp) {
1158 nxtcp = TAILQ_NEXT(ncp, nc_lru);
1159 mutex_enter(ncp->nc_lock);
1160 if (ncp->nc_dvp != NULL && ncp->nc_dvp->v_mount == mp) {
1161 /* Free the resources we had. */
1162 cache_invalidate(ncp);
1163 cache_disassociate(ncp);
1164 }
1165 mutex_exit(ncp->nc_lock);
1166 }
1167 cache_reclaim();
1168 mutex_exit(&namecache_lock);
1169 }
1170
1171 /*
1172 * Scan global list invalidating entries until we meet a preset target.
1173 * Prefer to invalidate entries that have not scored a hit within
1174 * cache_hottime seconds. We sort the LRU list only for this routine's
1175 * benefit.
1176 */
1177 static void
1178 cache_prune(int incache, int target)
1179 {
1180 struct namecache *ncp, *nxtcp, *sentinel;
1181 int items, recent, tryharder;
1182
1183 KASSERT(mutex_owned(&namecache_lock));
1184
1185 SDT_PROBE(vfs, namecache, prune, done, incache, target, 0, 0, 0);
1186 items = 0;
1187 tryharder = 0;
1188 recent = hardclock_ticks - hz * cache_hottime;
1189 sentinel = NULL;
1190 for (ncp = TAILQ_FIRST(&nclruhead); ncp != NULL; ncp = nxtcp) {
1191 if (incache <= target)
1192 break;
1193 items++;
1194 nxtcp = TAILQ_NEXT(ncp, nc_lru);
1195 if (ncp == sentinel) {
1196 /*
1197 * If we looped back on ourself, then ignore
1198 * recent entries and purge whatever we find.
1199 */
1200 tryharder = 1;
1201 }
1202 if (ncp->nc_dvp == NULL)
1203 continue;
1204 if (!tryharder && (ncp->nc_hittime - recent) > 0) {
1205 if (sentinel == NULL)
1206 sentinel = ncp;
1207 TAILQ_REMOVE(&nclruhead, ncp, nc_lru);
1208 TAILQ_INSERT_TAIL(&nclruhead, ncp, nc_lru);
1209 continue;
1210 }
1211 mutex_enter(ncp->nc_lock);
1212 if (ncp->nc_dvp != NULL) {
1213 cache_invalidate(ncp);
1214 cache_disassociate(ncp);
1215 incache--;
1216 }
1217 mutex_exit(ncp->nc_lock);
1218 }
1219 cache_ev_scan.ev_count += items;
1220 }
1221
1222 /*
1223 * Collect dead cache entries from all CPUs and garbage collect.
1224 */
1225 static void
1226 cache_reclaim(void)
1227 {
1228 CPU_INFO_ITERATOR cii;
1229 struct cpu_info *ci;
1230 struct nchcpu *cpup;
1231 struct namecache_gc_queue queue;
1232 struct namecache *ncp, *next;
1233 int items;
1234
1235 KASSERT(mutex_owned(&namecache_lock));
1236
1237 /*
1238 * If the number of extant entries not awaiting garbage collection
1239 * exceeds the high water mark, then reclaim stale entries until we
1240 * reach our low water mark.
1241 */
1242 items = numcache - namecache_gc_pend;
1243 if (items > (uint64_t)desiredvnodes * cache_hiwat / 100) {
1244 cache_prune(items, (int)((uint64_t)desiredvnodes *
1245 cache_lowat / 100));
1246 cache_ev_over.ev_count++;
1247 } else
1248 cache_ev_under.ev_count++;
1249
1250 /* Chop the existing garbage collection list out. */
1251 mutex_enter(&namecache_gc_lock);
1252 queue = namecache_gc_queue;
1253 items = namecache_gc_pend;
1254 SLIST_INIT(&namecache_gc_queue);
1255 namecache_gc_pend = 0;
1256 mutex_exit(&namecache_gc_lock);
1257
1258 /*
1259 * Now disassociate all entries. We haven't locked out the reader
1260 * side (cache_lookup_entry()) but the "next" pointers in the hash
1261 * list will remain sufficiently consitent regardless of which
1262 * version of the list the reader sees (see defs of LIST_FOREACH,
1263 * LIST_NEXT);
1264 */
1265 SLIST_FOREACH(ncp, &queue, nc_gclist) {
1266 cache_disassociate(ncp);
1267 KASSERT(ncp->nc_dvp == NULL);
1268 if (ncp->nc_hash.le_prev != NULL) {
1269 LIST_REMOVE(ncp, nc_hash);
1270 ncp->nc_hash.le_prev = NULL;
1271 }
1272 }
1273
1274 /*
1275 * With that done, make sure our updates are visible on the bus, and
1276 * make a pass to observe the status of all of the CPU locks. If we
1277 * see a lock is unheld, we know the garbage collected entries can
1278 * no longer visible to that CPU. If we see a lock IS held, we need
1279 * to acquire and release it once to make sure that CPU is out of
1280 * cache_lookup_entry(). Take the opportunity to refresh stats.
1281 */
1282 membar_sync(); /* stores above vs. reads below */
1283 for (CPU_INFO_FOREACH(cii, ci)) {
1284 cpup = ci->ci_data.cpu_nch;
1285 if (__predict_false(mutex_owner(&cpup->cpu_lock) != NULL)) {
1286 mutex_enter(&cpup->cpu_lock);
1287 /* nothing */
1288 mutex_exit(&cpup->cpu_lock);
1289 }
1290 UPDATE(cpup, ncs_goodhits);
1291 UPDATE(cpup, ncs_neghits);
1292 UPDATE(cpup, ncs_badhits);
1293 UPDATE(cpup, ncs_falsehits);
1294 UPDATE(cpup, ncs_miss);
1295 UPDATE(cpup, ncs_long);
1296 UPDATE(cpup, ncs_pass2);
1297 UPDATE(cpup, ncs_2passes);
1298 UPDATE(cpup, ncs_revhits);
1299 UPDATE(cpup, ncs_revmiss);
1300 }
1301 membar_sync(); /* reads above vs. stores below */
1302
1303 /*
1304 * Nobody else can see the cache entries any more. Make a final
1305 * pass over the list and toss the contents.
1306 */
1307 SLIST_FOREACH_SAFE(ncp, &queue, nc_gclist, next) {
1308 mutex_obj_free(ncp->nc_lock);
1309 ncp->nc_lock = NULL;
1310 if (ncp->nc_nlen > NCHNAMLEN) {
1311 cache_dtor(NULL, ncp);
1312 kmem_free(ncp, sizeof(*ncp) + ncp->nc_nlen);
1313 } else
1314 pool_cache_put(namecache_cache, ncp);
1315 }
1316
1317 numcache -= items;
1318 cache_ev_gc.ev_count += items;
1319 }
1320
1321 /*
1322 * Cache maintainence thread, awakening once per second to:
1323 *
1324 * => keep number of entries below the high water mark
1325 * => sort pseudo-LRU list
1326 * => garbage collect dead entries
1327 */
1328 static void
1329 cache_thread(void *arg)
1330 {
1331
1332 mutex_enter(&namecache_lock);
1333 for (;;) {
1334 cache_reclaim();
1335 kpause("cachegc", false, hz, &namecache_lock);
1336 }
1337 }
1338
1339 #ifdef DDB
1340 void
1341 namecache_print(struct vnode *vp, void (*pr)(const char *, ...))
1342 {
1343 struct vnode *dvp = NULL;
1344 struct namecache *ncp;
1345
1346 TAILQ_FOREACH(ncp, &nclruhead, nc_lru) {
1347 if (ncp->nc_vp == vp && ncp->nc_dvp != NULL) {
1348 (*pr)("name %.*s\n", ncp->nc_nlen, ncp->nc_name);
1349 dvp = ncp->nc_dvp;
1350 }
1351 }
1352 if (dvp == NULL) {
1353 (*pr)("name not found\n");
1354 return;
1355 }
1356 vp = dvp;
1357 TAILQ_FOREACH(ncp, &nclruhead, nc_lru) {
1358 if (ncp->nc_vp == vp) {
1359 (*pr)("parent %.*s\n", ncp->nc_nlen, ncp->nc_name);
1360 }
1361 }
1362 }
1363 #endif
1364
1365 void
1366 namecache_count_pass2(void)
1367 {
1368 struct nchcpu *cpup = curcpu()->ci_data.cpu_nch;
1369
1370 COUNT_UNL(cpup, ncs_pass2);
1371 }
1372
1373 void
1374 namecache_count_2passes(void)
1375 {
1376 struct nchcpu *cpup = curcpu()->ci_data.cpu_nch;
1377
1378 COUNT_UNL(cpup, ncs_2passes);
1379 }
1380
1381 /*
1382 * Fetch the current values of the stats. We return the most
1383 * recent values harvested into nchstats by cache_reclaim(), which
1384 * will be less than a second old.
1385 */
1386 static int
1387 cache_stat_sysctl(SYSCTLFN_ARGS)
1388 {
1389 CPU_INFO_ITERATOR cii;
1390 struct cpu_info *ci;
1391
1392 if (oldp == NULL) {
1393 *oldlenp = sizeof(nchstats);
1394 return 0;
1395 }
1396
1397 if (*oldlenp < sizeof(nchstats)) {
1398 *oldlenp = 0;
1399 return 0;
1400 }
1401
1402 sysctl_unlock();
1403 mutex_enter(&namecache_lock);
1404 for (CPU_INFO_FOREACH(cii, ci)) {
1405 struct nchcpu *cpup = ci->ci_data.cpu_nch;
1406
1407 UPDATE(cpup, ncs_goodhits);
1408 UPDATE(cpup, ncs_neghits);
1409 UPDATE(cpup, ncs_badhits);
1410 UPDATE(cpup, ncs_falsehits);
1411 UPDATE(cpup, ncs_miss);
1412
1413 UPDATE(cpup, ncs_pass2);
1414 UPDATE(cpup, ncs_2passes);
1415 UPDATE(cpup, ncs_revhits);
1416 UPDATE(cpup, ncs_revmiss);
1417 }
1418 mutex_exit(&namecache_lock);
1419 sysctl_relock();
1420
1421 *oldlenp = sizeof(nchstats);
1422 return sysctl_copyout(l, &nchstats, oldp, sizeof(nchstats));
1423 }
1424
1425 static void
1426 sysctl_cache_stat_setup(void)
1427 {
1428
1429 KASSERT(sysctllog == NULL);
1430 sysctl_createv(&sysctllog, 0, NULL, NULL,
1431 CTLFLAG_PERMANENT,
1432 CTLTYPE_STRUCT, "namecache_stats",
1433 SYSCTL_DESCR("namecache statistics"),
1434 cache_stat_sysctl, 0, NULL, 0,
1435 CTL_VFS, CTL_CREATE, CTL_EOL);
1436 }
1437