Home | History | Annotate | Line # | Download | only in kern
vfs_cache.c revision 1.143
      1 /*	$NetBSD: vfs_cache.c,v 1.143 2020/05/16 18:31:50 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008, 2019, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1989, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the University nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  *	@(#)vfs_cache.c	8.3 (Berkeley) 8/22/94
     61  */
     62 
     63 /*
     64  * Name caching:
     65  *
     66  *	Names found by directory scans are retained in a cache for future
     67  *	reference.  It is managed LRU, so frequently used names will hang
     68  *	around.  The cache is indexed by hash value obtained from the name.
     69  *
     70  *	The name cache is the brainchild of Robert Elz and was introduced in
     71  *	4.3BSD.  See "Using gprof to Tune the 4.2BSD Kernel", Marshall Kirk
     72  *	McKusick, May 21 1984.
     73  *
     74  * Data structures:
     75  *
     76  *	Most Unix namecaches very sensibly use a global hash table to index
     77  *	names.  The global hash table works well, but can cause concurrency
     78  *	headaches for the kernel hacker.  In the NetBSD 10.0 implementation
     79  *	we are not sensible, and use a per-directory data structure to index
     80  *	names, but the cache otherwise functions the same.
     81  *
     82  *	The index is a red-black tree.  There are no special concurrency
     83  *	requirements placed on it, because it's per-directory and protected
     84  *	by the namecache's per-directory locks.  It should therefore not be
     85  *	difficult to experiment with other types of index.
     86  *
     87  *	Each cached name is stored in a struct namecache, along with a
     88  *	pointer to the associated vnode (nc_vp).  Names longer than a
     89  *	maximum length of NCHNAMLEN are allocated with kmem_alloc(); they
     90  *	occur infrequently, and names shorter than this are stored directly
     91  *	in struct namecache.  If it is a "negative" entry, (i.e. for a name
     92  *	that is known NOT to exist) the vnode pointer will be NULL.
     93  *
     94  *	For a directory with 3 cached names for 3 distinct vnodes, the
     95  *	various vnodes and namecache structs would be connected like this
     96  *	(the root is at the bottom of the diagram):
     97  *
     98  *          ...
     99  *           ^
    100  *           |- vi_nc_tree
    101  *           |
    102  *      +----o----+               +---------+               +---------+
    103  *      |  VDIR   |               |  VCHR   |               |  VREG   |
    104  *      |  vnode  o-----+         |  vnode  o-----+         |  vnode  o------+
    105  *      +---------+     |         +---------+     |         +---------+      |
    106  *           ^          |              ^          |              ^           |
    107  *           |- nc_vp   |- vi_nc_list  |- nc_vp   |- vi_nc_list  |- nc_vp    |
    108  *           |          |              |          |              |           |
    109  *      +----o----+     |         +----o----+     |         +----o----+      |
    110  *  +---onamecache|<----+     +---onamecache|<----+     +---onamecache|<-----+
    111  *  |   +---------+           |   +---------+           |   +---------+
    112  *  |        ^                |        ^                |        ^
    113  *  |        |                |        |                |        |
    114  *  |        |  +----------------------+                |        |
    115  *  |-nc_dvp | +-------------------------------------------------+
    116  *  |        |/- vi_nc_tree   |                         |
    117  *  |        |                |- nc_dvp                 |- nc_dvp
    118  *  |   +----o----+           |                         |
    119  *  +-->|  VDIR   |<----------+                         |
    120  *      |  vnode  |<------------------------------------+
    121  *      +---------+
    122  *
    123  *      START HERE
    124  *
    125  * Replacement:
    126  *
    127  *	As the cache becomes full, old and unused entries are purged as new
    128  *	entries are added.  The synchronization overhead in maintaining a
    129  *	strict ordering would be prohibitive, so the VM system's "clock" or
    130  *	"second chance" page replacement algorithm is aped here.  New
    131  *	entries go to the tail of the active list.  After they age out and
    132  *	reach the head of the list, they are moved to the tail of the
    133  *	inactive list.  Any use of the deactivated cache entry reactivates
    134  *	it, saving it from impending doom; if not reactivated, the entry
    135  *	eventually reaches the head of the inactive list and is purged.
    136  *
    137  * Concurrency:
    138  *
    139  *	From a performance perspective, cache_lookup(nameiop == LOOKUP) is
    140  *	what really matters; insertion of new entries with cache_enter() is
    141  *	comparatively infrequent, and overshadowed by the cost of expensive
    142  *	file system metadata operations (which may involve disk I/O).  We
    143  *	therefore want to make everything simplest in the lookup path.
    144  *
    145  *	struct namecache is mostly stable except for list and tree related
    146  *	entries, changes to which don't affect the cached name or vnode.
    147  *	For changes to name+vnode, entries are purged in preference to
    148  *	modifying them.
    149  *
    150  *	Read access to namecache entries is made via tree, list, or LRU
    151  *	list.  A lock corresponding to the direction of access should be
    152  *	held.  See definition of "struct namecache" in src/sys/namei.src,
    153  *	and the definition of "struct vnode" for the particulars.
    154  *
    155  *	Per-CPU statistics, and LRU list totals are read unlocked, since
    156  *	an approximate value is OK.  We maintain 32-bit sized per-CPU
    157  *	counters and 64-bit global counters under the theory that 32-bit
    158  *	sized counters are less likely to be hosed by nonatomic increment
    159  *	(on 32-bit platforms).
    160  *
    161  *	The lock order is:
    162  *
    163  *	1) vi->vi_nc_lock	(tree or parent -> child direction,
    164  *				 used during forward lookup)
    165  *
    166  *	2) vi->vi_nc_listlock	(list or child -> parent direction,
    167  *				 used during reverse lookup)
    168  *
    169  *	3) cache_lru_lock	(LRU list direction, used during reclaim)
    170  *
    171  *	4) vp->v_interlock	(what the cache entry points to)
    172  */
    173 
    174 #include <sys/cdefs.h>
    175 __KERNEL_RCSID(0, "$NetBSD: vfs_cache.c,v 1.143 2020/05/16 18:31:50 christos Exp $");
    176 
    177 #define __NAMECACHE_PRIVATE
    178 #ifdef _KERNEL_OPT
    179 #include "opt_ddb.h"
    180 #include "opt_dtrace.h"
    181 #endif
    182 
    183 #include <sys/types.h>
    184 #include <sys/atomic.h>
    185 #include <sys/callout.h>
    186 #include <sys/cpu.h>
    187 #include <sys/errno.h>
    188 #include <sys/evcnt.h>
    189 #include <sys/hash.h>
    190 #include <sys/kernel.h>
    191 #include <sys/mount.h>
    192 #include <sys/mutex.h>
    193 #include <sys/namei.h>
    194 #include <sys/param.h>
    195 #include <sys/pool.h>
    196 #include <sys/sdt.h>
    197 #include <sys/sysctl.h>
    198 #include <sys/systm.h>
    199 #include <sys/time.h>
    200 #include <sys/vnode_impl.h>
    201 
    202 #include <miscfs/genfs/genfs.h>
    203 
    204 static void	cache_activate(struct namecache *);
    205 static void	cache_update_stats(void *);
    206 static int	cache_compare_nodes(void *, const void *, const void *);
    207 static void	cache_deactivate(void);
    208 static void	cache_reclaim(void);
    209 static int	cache_stat_sysctl(SYSCTLFN_ARGS);
    210 
    211 /*
    212  * Global pool cache.
    213  */
    214 static pool_cache_t cache_pool __read_mostly;
    215 
    216 /*
    217  * LRU replacement.
    218  */
    219 enum cache_lru_id {
    220 	LRU_ACTIVE,
    221 	LRU_INACTIVE,
    222 	LRU_COUNT
    223 };
    224 
    225 static struct {
    226 	TAILQ_HEAD(, namecache)	list[LRU_COUNT];
    227 	u_int			count[LRU_COUNT];
    228 } cache_lru __cacheline_aligned;
    229 
    230 static kmutex_t cache_lru_lock __cacheline_aligned;
    231 
    232 /*
    233  * Cache effectiveness statistics.  nchstats holds system-wide total.
    234  */
    235 struct nchstats	nchstats;
    236 struct nchstats_percpu _NAMEI_CACHE_STATS(uint32_t);
    237 struct nchcpu {
    238 	struct nchstats_percpu cur;
    239 	struct nchstats_percpu last;
    240 };
    241 static callout_t cache_stat_callout;
    242 static kmutex_t cache_stat_lock __cacheline_aligned;
    243 
    244 #define	COUNT(f) do { \
    245 	lwp_t *l = curlwp; \
    246 	KPREEMPT_DISABLE(l); \
    247 	((struct nchstats_percpu *)curcpu()->ci_data.cpu_nch)->f++; \
    248 	KPREEMPT_ENABLE(l); \
    249 } while (/* CONSTCOND */ 0);
    250 
    251 #define	UPDATE(nchcpu, f) do { \
    252 	uint32_t cur = atomic_load_relaxed(&nchcpu->cur.f); \
    253 	nchstats.f += (uint32_t)(cur - nchcpu->last.f); \
    254 	nchcpu->last.f = cur; \
    255 } while (/* CONSTCOND */ 0)
    256 
    257 /*
    258  * Tunables.  cache_maxlen replaces the historical doingcache:
    259  * set it zero to disable caching for debugging purposes.
    260  */
    261 int cache_lru_maxdeact __read_mostly = 2;	/* max # to deactivate */
    262 int cache_lru_maxscan __read_mostly = 64;	/* max # to scan/reclaim */
    263 int cache_maxlen __read_mostly = USHRT_MAX;	/* max name length to cache */
    264 int cache_stat_interval __read_mostly = 300;	/* in seconds */
    265 
    266 /*
    267  * sysctl stuff.
    268  */
    269 static struct	sysctllog *cache_sysctllog;
    270 
    271 /*
    272  * Red-black tree stuff.
    273  */
    274 static const rb_tree_ops_t cache_rbtree_ops = {
    275 	.rbto_compare_nodes = cache_compare_nodes,
    276 	.rbto_compare_key = cache_compare_nodes,
    277 	.rbto_node_offset = offsetof(struct namecache, nc_tree),
    278 	.rbto_context = NULL
    279 };
    280 
    281 /*
    282  * dtrace probes.
    283  */
    284 SDT_PROVIDER_DEFINE(vfs);
    285 
    286 SDT_PROBE_DEFINE1(vfs, namecache, invalidate, done, "struct vnode *");
    287 SDT_PROBE_DEFINE1(vfs, namecache, purge, parents, "struct vnode *");
    288 SDT_PROBE_DEFINE1(vfs, namecache, purge, children, "struct vnode *");
    289 SDT_PROBE_DEFINE2(vfs, namecache, purge, name, "char *", "size_t");
    290 SDT_PROBE_DEFINE1(vfs, namecache, purge, vfs, "struct mount *");
    291 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *",
    292     "char *", "size_t");
    293 SDT_PROBE_DEFINE3(vfs, namecache, lookup, miss, "struct vnode *",
    294     "char *", "size_t");
    295 SDT_PROBE_DEFINE3(vfs, namecache, lookup, toolong, "struct vnode *",
    296     "char *", "size_t");
    297 SDT_PROBE_DEFINE2(vfs, namecache, revlookup, success, "struct vnode *",
    298      "struct vnode *");
    299 SDT_PROBE_DEFINE2(vfs, namecache, revlookup, fail, "struct vnode *",
    300      "int");
    301 SDT_PROBE_DEFINE2(vfs, namecache, prune, done, "int", "int");
    302 SDT_PROBE_DEFINE3(vfs, namecache, enter, toolong, "struct vnode *",
    303     "char *", "size_t");
    304 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *",
    305     "char *", "size_t");
    306 
    307 /*
    308  * rbtree: compare two nodes.
    309  */
    310 static int
    311 cache_compare_nodes(void *context, const void *n1, const void *n2)
    312 {
    313 	const struct namecache *nc1 = n1;
    314 	const struct namecache *nc2 = n2;
    315 
    316 	if (nc1->nc_key < nc2->nc_key) {
    317 		return -1;
    318 	}
    319 	if (nc1->nc_key > nc2->nc_key) {
    320 		return 1;
    321 	}
    322 	KASSERT(nc1->nc_nlen == nc2->nc_nlen);
    323 	return memcmp(nc1->nc_name, nc2->nc_name, nc1->nc_nlen);
    324 }
    325 
    326 /*
    327  * Compute a key value for the given name.  The name length is encoded in
    328  * the key value to try and improve uniqueness, and so that length doesn't
    329  * need to be compared separately for string comparisons.
    330  */
    331 static inline uint64_t
    332 cache_key(const char *name, size_t nlen)
    333 {
    334 	uint64_t key;
    335 
    336 	KASSERT(nlen <= USHRT_MAX);
    337 
    338 	key = hash32_buf(name, nlen, HASH32_STR_INIT);
    339 	return (key << 32) | nlen;
    340 }
    341 
    342 /*
    343  * Remove an entry from the cache.  vi_nc_lock must be held, and if dir2node
    344  * is true, then we're locking in the conventional direction and the list
    345  * lock will be acquired when removing the entry from the vnode list.
    346  */
    347 static void
    348 cache_remove(struct namecache *ncp, const bool dir2node)
    349 {
    350 	struct vnode *vp, *dvp = ncp->nc_dvp;
    351 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
    352 
    353 	KASSERT(rw_write_held(&dvi->vi_nc_lock));
    354 	KASSERT(cache_key(ncp->nc_name, ncp->nc_nlen) == ncp->nc_key);
    355 	KASSERT(rb_tree_find_node(&dvi->vi_nc_tree, ncp) == ncp);
    356 
    357 	SDT_PROBE(vfs, namecache, invalidate, done, ncp,
    358 	    0, 0, 0, 0);
    359 
    360 	/*
    361 	 * Remove from the vnode's list.  This excludes cache_revlookup(),
    362 	 * and then it's safe to remove from the LRU lists.
    363 	 */
    364 	if ((vp = ncp->nc_vp) != NULL) {
    365 		vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
    366 		if (__predict_true(dir2node)) {
    367 			rw_enter(&vi->vi_nc_listlock, RW_WRITER);
    368 			TAILQ_REMOVE(&vi->vi_nc_list, ncp, nc_list);
    369 			rw_exit(&vi->vi_nc_listlock);
    370 		} else {
    371 			TAILQ_REMOVE(&vi->vi_nc_list, ncp, nc_list);
    372 		}
    373 	}
    374 
    375 	/* Remove from the directory's rbtree. */
    376 	rb_tree_remove_node(&dvi->vi_nc_tree, ncp);
    377 
    378 	/* Remove from the LRU lists. */
    379 	mutex_enter(&cache_lru_lock);
    380 	TAILQ_REMOVE(&cache_lru.list[ncp->nc_lrulist], ncp, nc_lru);
    381 	cache_lru.count[ncp->nc_lrulist]--;
    382 	mutex_exit(&cache_lru_lock);
    383 
    384 	/* Finally, free it. */
    385 	if (ncp->nc_nlen > NCHNAMLEN) {
    386 		size_t sz = offsetof(struct namecache, nc_name[ncp->nc_nlen]);
    387 		kmem_free(ncp, sz);
    388 	} else {
    389 		pool_cache_put(cache_pool, ncp);
    390 	}
    391 }
    392 
    393 /*
    394  * Find a single cache entry and return it.  vi_nc_lock must be held.
    395  */
    396 static struct namecache * __noinline
    397 cache_lookup_entry(struct vnode *dvp, const char *name, size_t namelen,
    398     uint64_t key)
    399 {
    400 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
    401 	struct rb_node *node = dvi->vi_nc_tree.rbt_root;
    402 	struct namecache *ncp;
    403 	int lrulist, diff;
    404 
    405 	KASSERT(rw_lock_held(&dvi->vi_nc_lock));
    406 
    407 	/*
    408 	 * Search the RB tree for the key.  This is an inlined lookup
    409 	 * tailored for exactly what's needed here (64-bit key and so on)
    410 	 * that is quite a bit faster than using rb_tree_find_node().
    411 	 *
    412 	 * For a matching key memcmp() needs to be called once to confirm
    413 	 * that the correct name has been found.  Very rarely there will be
    414 	 * a key value collision and the search will continue.
    415 	 */
    416 	for (;;) {
    417 		if (__predict_false(RB_SENTINEL_P(node))) {
    418 			return NULL;
    419 		}
    420 		ncp = (struct namecache *)node;
    421 		KASSERT((void *)&ncp->nc_tree == (void *)ncp);
    422 		KASSERT(ncp->nc_dvp == dvp);
    423 		if (ncp->nc_key == key) {
    424 			KASSERT(ncp->nc_nlen == namelen);
    425 			diff = memcmp(ncp->nc_name, name, namelen);
    426 			if (__predict_true(diff == 0)) {
    427 				break;
    428 			}
    429 			node = node->rb_nodes[diff < 0];
    430 		} else {
    431 			node = node->rb_nodes[ncp->nc_key < key];
    432 		}
    433 	}
    434 
    435 	/*
    436 	 * If the entry is on the wrong LRU list, requeue it.  This is an
    437 	 * unlocked check, but it will rarely be wrong and even then there
    438 	 * will be no harm caused.
    439 	 */
    440 	lrulist = atomic_load_relaxed(&ncp->nc_lrulist);
    441 	if (__predict_false(lrulist != LRU_ACTIVE)) {
    442 		cache_activate(ncp);
    443 	}
    444 	return ncp;
    445 }
    446 
    447 /*
    448  * Look for a the name in the cache. We don't do this
    449  * if the segment name is long, simply so the cache can avoid
    450  * holding long names (which would either waste space, or
    451  * add greatly to the complexity).
    452  *
    453  * Lookup is called with DVP pointing to the directory to search,
    454  * and CNP providing the name of the entry being sought: cn_nameptr
    455  * is the name, cn_namelen is its length, and cn_flags is the flags
    456  * word from the namei operation.
    457  *
    458  * DVP must be locked.
    459  *
    460  * There are three possible non-error return states:
    461  *    1. Nothing was found in the cache. Nothing is known about
    462  *       the requested name.
    463  *    2. A negative entry was found in the cache, meaning that the
    464  *       requested name definitely does not exist.
    465  *    3. A positive entry was found in the cache, meaning that the
    466  *       requested name does exist and that we are providing the
    467  *       vnode.
    468  * In these cases the results are:
    469  *    1. 0 returned; VN is set to NULL.
    470  *    2. 1 returned; VN is set to NULL.
    471  *    3. 1 returned; VN is set to the vnode found.
    472  *
    473  * The additional result argument ISWHT is set to zero, unless a
    474  * negative entry is found that was entered as a whiteout, in which
    475  * case ISWHT is set to one.
    476  *
    477  * The ISWHT_RET argument pointer may be null. In this case an
    478  * assertion is made that the whiteout flag is not set. File systems
    479  * that do not support whiteouts can/should do this.
    480  *
    481  * Filesystems that do support whiteouts should add ISWHITEOUT to
    482  * cnp->cn_flags if ISWHT comes back nonzero.
    483  *
    484  * When a vnode is returned, it is locked, as per the vnode lookup
    485  * locking protocol.
    486  *
    487  * There is no way for this function to fail, in the sense of
    488  * generating an error that requires aborting the namei operation.
    489  *
    490  * (Prior to October 2012, this function returned an integer status,
    491  * and a vnode, and mucked with the flags word in CNP for whiteouts.
    492  * The integer status was -1 for "nothing found", ENOENT for "a
    493  * negative entry found", 0 for "a positive entry found", and possibly
    494  * other errors, and the value of VN might or might not have been set
    495  * depending on what error occurred.)
    496  */
    497 bool
    498 cache_lookup(struct vnode *dvp, const char *name, size_t namelen,
    499 	     uint32_t nameiop, uint32_t cnflags,
    500 	     int *iswht_ret, struct vnode **vn_ret)
    501 {
    502 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
    503 	struct namecache *ncp;
    504 	struct vnode *vp;
    505 	uint64_t key;
    506 	int error;
    507 	bool hit;
    508 	krw_t op;
    509 
    510 	/* Establish default result values */
    511 	if (iswht_ret != NULL) {
    512 		*iswht_ret = 0;
    513 	}
    514 	*vn_ret = NULL;
    515 
    516 	if (__predict_false(namelen > cache_maxlen)) {
    517 		SDT_PROBE(vfs, namecache, lookup, toolong, dvp,
    518 		    name, namelen, 0, 0);
    519 		COUNT(ncs_long);
    520 		return false;
    521 	}
    522 
    523 	/* Compute the key up front - don't need the lock. */
    524 	key = cache_key(name, namelen);
    525 
    526 	/* Could the entry be purged below? */
    527 	if ((cnflags & ISLASTCN) != 0 &&
    528 	    ((cnflags & MAKEENTRY) == 0 || nameiop == CREATE)) {
    529 	    	op = RW_WRITER;
    530 	} else {
    531 		op = RW_READER;
    532 	}
    533 
    534 	/* Now look for the name. */
    535 	rw_enter(&dvi->vi_nc_lock, op);
    536 	ncp = cache_lookup_entry(dvp, name, namelen, key);
    537 	if (__predict_false(ncp == NULL)) {
    538 		rw_exit(&dvi->vi_nc_lock);
    539 		COUNT(ncs_miss);
    540 		SDT_PROBE(vfs, namecache, lookup, miss, dvp,
    541 		    name, namelen, 0, 0);
    542 		return false;
    543 	}
    544 	if (__predict_false((cnflags & MAKEENTRY) == 0)) {
    545 		/*
    546 		 * Last component and we are renaming or deleting,
    547 		 * the cache entry is invalid, or otherwise don't
    548 		 * want cache entry to exist.
    549 		 */
    550 		KASSERT((cnflags & ISLASTCN) != 0);
    551 		cache_remove(ncp, true);
    552 		rw_exit(&dvi->vi_nc_lock);
    553 		COUNT(ncs_badhits);
    554 		return false;
    555 	}
    556 	if (ncp->nc_vp == NULL) {
    557 		if (iswht_ret != NULL) {
    558 			/*
    559 			 * Restore the ISWHITEOUT flag saved earlier.
    560 			 */
    561 			*iswht_ret = ncp->nc_whiteout;
    562 		} else {
    563 			KASSERT(!ncp->nc_whiteout);
    564 		}
    565 		if (nameiop == CREATE && (cnflags & ISLASTCN) != 0) {
    566 			/*
    567 			 * Last component and we are preparing to create
    568 			 * the named object, so flush the negative cache
    569 			 * entry.
    570 			 */
    571 			COUNT(ncs_badhits);
    572 			cache_remove(ncp, true);
    573 			hit = false;
    574 		} else {
    575 			COUNT(ncs_neghits);
    576 			SDT_PROBE(vfs, namecache, lookup, hit, dvp, name,
    577 			    namelen, 0, 0);
    578 			/* found neg entry; vn is already null from above */
    579 			hit = true;
    580 		}
    581 		rw_exit(&dvi->vi_nc_lock);
    582 		return hit;
    583 	}
    584 	vp = ncp->nc_vp;
    585 	mutex_enter(vp->v_interlock);
    586 	rw_exit(&dvi->vi_nc_lock);
    587 
    588 	/*
    589 	 * Unlocked except for the vnode interlock.  Call vcache_tryvget().
    590 	 */
    591 	error = vcache_tryvget(vp);
    592 	if (error) {
    593 		KASSERT(error == EBUSY);
    594 		/*
    595 		 * This vnode is being cleaned out.
    596 		 * XXX badhits?
    597 		 */
    598 		COUNT(ncs_falsehits);
    599 		return false;
    600 	}
    601 
    602 	COUNT(ncs_goodhits);
    603 	SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0);
    604 	/* found it */
    605 	*vn_ret = vp;
    606 	return true;
    607 }
    608 
    609 /*
    610  * Version of the above without the nameiop argument, for NFS.
    611  */
    612 bool
    613 cache_lookup_raw(struct vnode *dvp, const char *name, size_t namelen,
    614 		 uint32_t cnflags,
    615 		 int *iswht_ret, struct vnode **vn_ret)
    616 {
    617 
    618 	return cache_lookup(dvp, name, namelen, LOOKUP, cnflags | MAKEENTRY,
    619 	    iswht_ret, vn_ret);
    620 }
    621 
    622 /*
    623  * Used by namei() to walk down a path, component by component by looking up
    624  * names in the cache.  The node locks are chained along the way: a parent's
    625  * lock is not dropped until the child's is acquired.
    626  */
    627 bool
    628 cache_lookup_linked(struct vnode *dvp, const char *name, size_t namelen,
    629 		    struct vnode **vn_ret, krwlock_t **plock,
    630 		    kauth_cred_t cred)
    631 {
    632 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
    633 	struct namecache *ncp;
    634 	uint64_t key;
    635 	int error;
    636 
    637 	/* Establish default results. */
    638 	*vn_ret = NULL;
    639 
    640 	/* If disabled, or file system doesn't support this, bail out. */
    641 	if (__predict_false((dvp->v_mount->mnt_iflag & IMNT_NCLOOKUP) == 0)) {
    642 		return false;
    643 	}
    644 
    645 	if (__predict_false(namelen > cache_maxlen)) {
    646 		COUNT(ncs_long);
    647 		return false;
    648 	}
    649 
    650 	/* Compute the key up front - don't need the lock. */
    651 	key = cache_key(name, namelen);
    652 
    653 	/*
    654 	 * Acquire the directory lock.  Once we have that, we can drop the
    655 	 * previous one (if any).
    656 	 *
    657 	 * The two lock holds mean that the directory can't go away while
    658 	 * here: the directory must be purged with cache_purge() before
    659 	 * being freed, and both parent & child's vi_nc_lock must be taken
    660 	 * before that point is passed.
    661 	 *
    662 	 * However if there's no previous lock, like at the root of the
    663 	 * chain, then "dvp" must be referenced to prevent dvp going away
    664 	 * before we get its lock.
    665 	 *
    666 	 * Note that the two locks can be the same if looking up a dot, for
    667 	 * example: /usr/bin/.  If looking up the parent (..) we can't wait
    668 	 * on the lock as child -> parent is the wrong direction.
    669 	 */
    670 	if (*plock != &dvi->vi_nc_lock) {
    671 		if (!rw_tryenter(&dvi->vi_nc_lock, RW_READER)) {
    672 			return false;
    673 		}
    674 		if (*plock != NULL) {
    675 			rw_exit(*plock);
    676 		}
    677 		*plock = &dvi->vi_nc_lock;
    678 	} else if (*plock == NULL) {
    679 		KASSERT(vrefcnt(dvp) > 0);
    680 	}
    681 
    682 	/*
    683 	 * First up check if the user is allowed to look up files in this
    684 	 * directory.
    685 	 */
    686 	if (dvi->vi_nc_mode == VNOVAL) {
    687 		return false;
    688 	}
    689 	KASSERT(dvi->vi_nc_uid != VNOVAL && dvi->vi_nc_gid != VNOVAL);
    690 	error = kauth_authorize_vnode(cred, KAUTH_ACCESS_ACTION(VEXEC,
    691 	    dvp->v_type, dvi->vi_nc_mode & ALLPERMS), dvp, NULL,
    692 	    genfs_can_access(dvp, cred, dvi->vi_nc_uid, dvi->vi_nc_gid,
    693 	    dvi->vi_nc_mode & ALLPERMS, NULL, VEXEC));
    694 	if (error != 0) {
    695 		COUNT(ncs_denied);
    696 		return false;
    697 	}
    698 
    699 	/*
    700 	 * Now look for a matching cache entry.
    701 	 */
    702 	ncp = cache_lookup_entry(dvp, name, namelen, key);
    703 	if (__predict_false(ncp == NULL)) {
    704 		COUNT(ncs_miss);
    705 		SDT_PROBE(vfs, namecache, lookup, miss, dvp,
    706 		    name, namelen, 0, 0);
    707 		return false;
    708 	}
    709 	if (ncp->nc_vp == NULL) {
    710 		/* found negative entry; vn is already null from above */
    711 		COUNT(ncs_neghits);
    712 		SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0);
    713 		return true;
    714 	}
    715 
    716 	COUNT(ncs_goodhits); /* XXX can be "badhits" */
    717 	SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0);
    718 
    719 	/*
    720 	 * Return with the directory lock still held.  It will either be
    721 	 * returned to us with another call to cache_lookup_linked() when
    722 	 * looking up the next component, or the caller will release it
    723 	 * manually when finished.
    724 	 */
    725 	*vn_ret = ncp->nc_vp;
    726 	return true;
    727 }
    728 
    729 /*
    730  * Scan cache looking for name of directory entry pointing at vp.
    731  * Will not search for "." or "..".
    732  *
    733  * If the lookup succeeds the vnode is referenced and stored in dvpp.
    734  *
    735  * If bufp is non-NULL, also place the name in the buffer which starts
    736  * at bufp, immediately before *bpp, and move bpp backwards to point
    737  * at the start of it.  (Yes, this is a little baroque, but it's done
    738  * this way to cater to the whims of getcwd).
    739  *
    740  * Returns 0 on success, -1 on cache miss, positive errno on failure.
    741  */
    742 int
    743 cache_revlookup(struct vnode *vp, struct vnode **dvpp, char **bpp, char *bufp,
    744     bool checkaccess, accmode_t accmode)
    745 {
    746 	vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
    747 	struct namecache *ncp;
    748 	struct vnode *dvp;
    749 	int error, nlen, lrulist;
    750 	char *bp;
    751 
    752 	KASSERT(vp != NULL);
    753 
    754 	if (cache_maxlen == 0)
    755 		goto out;
    756 
    757 	rw_enter(&vi->vi_nc_listlock, RW_READER);
    758 	if (checkaccess) {
    759 		/*
    760 		 * Check if the user is allowed to see.  NOTE: this is
    761 		 * checking for access on the "wrong" directory.  getcwd()
    762 		 * wants to see that there is access on every component
    763 		 * along the way, not that there is access to any individual
    764 		 * component.  Don't use this to check you can look in vp.
    765 		 *
    766 		 * I don't like it, I didn't come up with it, don't blame me!
    767 		 */
    768 		if (vi->vi_nc_mode == VNOVAL) {
    769 			rw_exit(&vi->vi_nc_listlock);
    770 			return -1;
    771 		}
    772 		KASSERT(vi->vi_nc_uid != VNOVAL && vi->vi_nc_gid != VNOVAL);
    773 		error = kauth_authorize_vnode(curlwp->l_cred,
    774 		    KAUTH_ACCESS_ACTION(VEXEC, vp->v_type, vi->vi_nc_mode &
    775 		    ALLPERMS), vp, NULL, genfs_can_access(vp, curlwp->l_cred,
    776 		    vi->vi_nc_uid, vi->vi_nc_gid, vi->vi_nc_mode & ALLPERMS,
    777 		    NULL, accmode));
    778 		    if (error != 0) {
    779 		    	rw_exit(&vi->vi_nc_listlock);
    780 			COUNT(ncs_denied);
    781 			return EACCES;
    782 		}
    783 	}
    784 	TAILQ_FOREACH(ncp, &vi->vi_nc_list, nc_list) {
    785 		KASSERT(ncp->nc_vp == vp);
    786 		KASSERT(ncp->nc_dvp != NULL);
    787 		nlen = ncp->nc_nlen;
    788 
    789 		/*
    790 		 * The queue is partially sorted.  Once we hit dots, nothing
    791 		 * else remains but dots and dotdots, so bail out.
    792 		 */
    793 		if (ncp->nc_name[0] == '.') {
    794 			if (nlen == 1 ||
    795 			    (nlen == 2 && ncp->nc_name[1] == '.')) {
    796 			    	break;
    797 			}
    798 		}
    799 
    800 		/*
    801 		 * Record a hit on the entry.  This is an unlocked read but
    802 		 * even if wrong it doesn't matter too much.
    803 		 */
    804 		lrulist = atomic_load_relaxed(&ncp->nc_lrulist);
    805 		if (lrulist != LRU_ACTIVE) {
    806 			cache_activate(ncp);
    807 		}
    808 
    809 		if (bufp) {
    810 			bp = *bpp;
    811 			bp -= nlen;
    812 			if (bp <= bufp) {
    813 				*dvpp = NULL;
    814 				rw_exit(&vi->vi_nc_listlock);
    815 				SDT_PROBE(vfs, namecache, revlookup,
    816 				    fail, vp, ERANGE, 0, 0, 0);
    817 				return (ERANGE);
    818 			}
    819 			memcpy(bp, ncp->nc_name, nlen);
    820 			*bpp = bp;
    821 		}
    822 
    823 		dvp = ncp->nc_dvp;
    824 		mutex_enter(dvp->v_interlock);
    825 		rw_exit(&vi->vi_nc_listlock);
    826 		error = vcache_tryvget(dvp);
    827 		if (error) {
    828 			KASSERT(error == EBUSY);
    829 			if (bufp)
    830 				(*bpp) += nlen;
    831 			*dvpp = NULL;
    832 			SDT_PROBE(vfs, namecache, revlookup, fail, vp,
    833 			    error, 0, 0, 0);
    834 			return -1;
    835 		}
    836 		*dvpp = dvp;
    837 		SDT_PROBE(vfs, namecache, revlookup, success, vp, dvp,
    838 		    0, 0, 0);
    839 		COUNT(ncs_revhits);
    840 		return (0);
    841 	}
    842 	rw_exit(&vi->vi_nc_listlock);
    843 	COUNT(ncs_revmiss);
    844  out:
    845 	*dvpp = NULL;
    846 	return (-1);
    847 }
    848 
    849 /*
    850  * Add an entry to the cache.
    851  */
    852 void
    853 cache_enter(struct vnode *dvp, struct vnode *vp,
    854 	    const char *name, size_t namelen, uint32_t cnflags)
    855 {
    856 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
    857 	struct namecache *ncp, *oncp;
    858 	int total;
    859 
    860 	/* First, check whether we can/should add a cache entry. */
    861 	if ((cnflags & MAKEENTRY) == 0 ||
    862 	    __predict_false(namelen > cache_maxlen)) {
    863 		SDT_PROBE(vfs, namecache, enter, toolong, vp, name, namelen,
    864 		    0, 0);
    865 		return;
    866 	}
    867 
    868 	SDT_PROBE(vfs, namecache, enter, done, vp, name, namelen, 0, 0);
    869 
    870 	/*
    871 	 * Reclaim some entries if over budget.  This is an unlocked check,
    872 	 * but it doesn't matter.  Just need to catch up with things
    873 	 * eventually: it doesn't matter if we go over temporarily.
    874 	 */
    875 	total = atomic_load_relaxed(&cache_lru.count[LRU_ACTIVE]);
    876 	total += atomic_load_relaxed(&cache_lru.count[LRU_INACTIVE]);
    877 	if (__predict_false(total > desiredvnodes)) {
    878 		cache_reclaim();
    879 	}
    880 
    881 	/* Now allocate a fresh entry. */
    882 	if (__predict_true(namelen <= NCHNAMLEN)) {
    883 		ncp = pool_cache_get(cache_pool, PR_WAITOK);
    884 	} else {
    885 		size_t sz = offsetof(struct namecache, nc_name[namelen]);
    886 		ncp = kmem_alloc(sz, KM_SLEEP);
    887 	}
    888 
    889 	/*
    890 	 * Fill in cache info.  For negative hits, save the ISWHITEOUT flag
    891 	 * so we can restore it later when the cache entry is used again.
    892 	 */
    893 	ncp->nc_vp = vp;
    894 	ncp->nc_dvp = dvp;
    895 	ncp->nc_key = cache_key(name, namelen);
    896 	ncp->nc_nlen = namelen;
    897 	ncp->nc_whiteout = ((cnflags & ISWHITEOUT) != 0);
    898 	memcpy(ncp->nc_name, name, namelen);
    899 
    900 	/*
    901 	 * Insert to the directory.  Concurrent lookups may race for a cache
    902 	 * entry.  If there's a entry there already, purge it.
    903 	 */
    904 	rw_enter(&dvi->vi_nc_lock, RW_WRITER);
    905 	oncp = rb_tree_insert_node(&dvi->vi_nc_tree, ncp);
    906 	if (oncp != ncp) {
    907 		KASSERT(oncp->nc_key == ncp->nc_key);
    908 		KASSERT(oncp->nc_nlen == ncp->nc_nlen);
    909 		KASSERT(memcmp(oncp->nc_name, name, namelen) == 0);
    910 		cache_remove(oncp, true);
    911 		oncp = rb_tree_insert_node(&dvi->vi_nc_tree, ncp);
    912 		KASSERT(oncp == ncp);
    913 	}
    914 
    915 	/*
    916 	 * With the directory lock still held, insert to the tail of the
    917 	 * ACTIVE LRU list (new) and take the opportunity to incrementally
    918 	 * balance the lists.
    919 	 */
    920 	mutex_enter(&cache_lru_lock);
    921 	ncp->nc_lrulist = LRU_ACTIVE;
    922 	cache_lru.count[LRU_ACTIVE]++;
    923 	TAILQ_INSERT_TAIL(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru);
    924 	cache_deactivate();
    925 	mutex_exit(&cache_lru_lock);
    926 
    927 	/*
    928 	 * Finally, insert to the vnode and unlock.  With everything set up
    929 	 * it's safe to let cache_revlookup() see the entry.  Partially sort
    930 	 * the per-vnode list: dots go to back so cache_revlookup() doesn't
    931 	 * have to consider them.
    932 	 */
    933 	if (vp != NULL) {
    934 		vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
    935 		rw_enter(&vi->vi_nc_listlock, RW_WRITER);
    936 		if ((namelen == 1 && name[0] == '.') ||
    937 		    (namelen == 2 && name[0] == '.' && name[1] == '.')) {
    938 			TAILQ_INSERT_TAIL(&vi->vi_nc_list, ncp, nc_list);
    939 		} else {
    940 			TAILQ_INSERT_HEAD(&vi->vi_nc_list, ncp, nc_list);
    941 		}
    942 		rw_exit(&vi->vi_nc_listlock);
    943 	}
    944 	rw_exit(&dvi->vi_nc_lock);
    945 }
    946 
    947 /*
    948  * Set identity info in cache for a vnode.  We only care about directories
    949  * so ignore other updates.  The cached info may be marked invalid if the
    950  * inode has an ACL.
    951  */
    952 void
    953 cache_enter_id(struct vnode *vp, mode_t mode, uid_t uid, gid_t gid, bool valid)
    954 {
    955 	vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
    956 
    957 	if (vp->v_type == VDIR) {
    958 		/* Grab both locks, for forward & reverse lookup. */
    959 		rw_enter(&vi->vi_nc_lock, RW_WRITER);
    960 		rw_enter(&vi->vi_nc_listlock, RW_WRITER);
    961 		if (valid) {
    962 			vi->vi_nc_mode = mode;
    963 			vi->vi_nc_uid = uid;
    964 			vi->vi_nc_gid = gid;
    965 		} else {
    966 			vi->vi_nc_mode = VNOVAL;
    967 			vi->vi_nc_uid = VNOVAL;
    968 			vi->vi_nc_gid = VNOVAL;
    969 		}
    970 		rw_exit(&vi->vi_nc_listlock);
    971 		rw_exit(&vi->vi_nc_lock);
    972 	}
    973 }
    974 
    975 /*
    976  * Return true if we have identity for the given vnode, and use as an
    977  * opportunity to confirm that everything squares up.
    978  *
    979  * Because of shared code, some file systems could provide partial
    980  * information, missing some updates, so check the mount flag too.
    981  */
    982 bool
    983 cache_have_id(struct vnode *vp)
    984 {
    985 
    986 	if (vp->v_type == VDIR &&
    987 	    (vp->v_mount->mnt_iflag & IMNT_NCLOOKUP) != 0 &&
    988 	    atomic_load_relaxed(&VNODE_TO_VIMPL(vp)->vi_nc_mode) != VNOVAL) {
    989 		return true;
    990 	} else {
    991 		return false;
    992 	}
    993 }
    994 
    995 /*
    996  * Name cache initialization, from vfs_init() when the system is booting.
    997  */
    998 void
    999 nchinit(void)
   1000 {
   1001 
   1002 	cache_pool = pool_cache_init(sizeof(struct namecache),
   1003 	    coherency_unit, 0, 0, "namecache", NULL, IPL_NONE, NULL,
   1004 	    NULL, NULL);
   1005 	KASSERT(cache_pool != NULL);
   1006 
   1007 	mutex_init(&cache_lru_lock, MUTEX_DEFAULT, IPL_NONE);
   1008 	TAILQ_INIT(&cache_lru.list[LRU_ACTIVE]);
   1009 	TAILQ_INIT(&cache_lru.list[LRU_INACTIVE]);
   1010 
   1011 	mutex_init(&cache_stat_lock, MUTEX_DEFAULT, IPL_NONE);
   1012 	callout_init(&cache_stat_callout, CALLOUT_MPSAFE);
   1013 	callout_setfunc(&cache_stat_callout, cache_update_stats, NULL);
   1014 	callout_schedule(&cache_stat_callout, cache_stat_interval * hz);
   1015 
   1016 	KASSERT(cache_sysctllog == NULL);
   1017 	sysctl_createv(&cache_sysctllog, 0, NULL, NULL,
   1018 		       CTLFLAG_PERMANENT,
   1019 		       CTLTYPE_STRUCT, "namecache_stats",
   1020 		       SYSCTL_DESCR("namecache statistics"),
   1021 		       cache_stat_sysctl, 0, NULL, 0,
   1022 		       CTL_VFS, CTL_CREATE, CTL_EOL);
   1023 }
   1024 
   1025 /*
   1026  * Called once for each CPU in the system as attached.
   1027  */
   1028 void
   1029 cache_cpu_init(struct cpu_info *ci)
   1030 {
   1031 	void *p;
   1032 	size_t sz;
   1033 
   1034 	sz = roundup2(sizeof(struct nchstats_percpu), coherency_unit) +
   1035 	    coherency_unit;
   1036 	p = kmem_zalloc(sz, KM_SLEEP);
   1037 	ci->ci_data.cpu_nch = (void *)roundup2((uintptr_t)p, coherency_unit);
   1038 }
   1039 
   1040 /*
   1041  * A vnode is being allocated: set up cache structures.
   1042  */
   1043 void
   1044 cache_vnode_init(struct vnode *vp)
   1045 {
   1046 	vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
   1047 
   1048 	rw_init(&vi->vi_nc_lock);
   1049 	rw_init(&vi->vi_nc_listlock);
   1050 	rb_tree_init(&vi->vi_nc_tree, &cache_rbtree_ops);
   1051 	TAILQ_INIT(&vi->vi_nc_list);
   1052 	vi->vi_nc_mode = VNOVAL;
   1053 	vi->vi_nc_uid = VNOVAL;
   1054 	vi->vi_nc_gid = VNOVAL;
   1055 }
   1056 
   1057 /*
   1058  * A vnode is being freed: finish cache structures.
   1059  */
   1060 void
   1061 cache_vnode_fini(struct vnode *vp)
   1062 {
   1063 	vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
   1064 
   1065 	KASSERT(RB_TREE_MIN(&vi->vi_nc_tree) == NULL);
   1066 	KASSERT(TAILQ_EMPTY(&vi->vi_nc_list));
   1067 	rw_destroy(&vi->vi_nc_lock);
   1068 	rw_destroy(&vi->vi_nc_listlock);
   1069 }
   1070 
   1071 /*
   1072  * Helper for cache_purge1(): purge cache entries for the given vnode from
   1073  * all directories that the vnode is cached in.
   1074  */
   1075 static void
   1076 cache_purge_parents(struct vnode *vp)
   1077 {
   1078 	vnode_impl_t *dvi, *vi = VNODE_TO_VIMPL(vp);
   1079 	struct vnode *dvp, *blocked;
   1080 	struct namecache *ncp;
   1081 
   1082 	SDT_PROBE(vfs, namecache, purge, parents, vp, 0, 0, 0, 0);
   1083 
   1084 	blocked = NULL;
   1085 
   1086 	rw_enter(&vi->vi_nc_listlock, RW_WRITER);
   1087 	while ((ncp = TAILQ_FIRST(&vi->vi_nc_list)) != NULL) {
   1088 		/*
   1089 		 * Locking in the wrong direction.  Try for a hold on the
   1090 		 * directory node's lock, and if we get it then all good,
   1091 		 * nuke the entry and move on to the next.
   1092 		 */
   1093 		dvp = ncp->nc_dvp;
   1094 		dvi = VNODE_TO_VIMPL(dvp);
   1095 		if (rw_tryenter(&dvi->vi_nc_lock, RW_WRITER)) {
   1096 			cache_remove(ncp, false);
   1097 			rw_exit(&dvi->vi_nc_lock);
   1098 			blocked = NULL;
   1099 			continue;
   1100 		}
   1101 
   1102 		/*
   1103 		 * We can't wait on the directory node's lock with our list
   1104 		 * lock held or the system could deadlock.
   1105 		 *
   1106 		 * Take a hold on the directory vnode to prevent it from
   1107 		 * being freed (taking the vnode & lock with it).  Then
   1108 		 * wait for the lock to become available with no other locks
   1109 		 * held, and retry.
   1110 		 *
   1111 		 * If this happens twice in a row, give the other side a
   1112 		 * breather; we can do nothing until it lets go.
   1113 		 */
   1114 		vhold(dvp);
   1115 		rw_exit(&vi->vi_nc_listlock);
   1116 		rw_enter(&dvi->vi_nc_lock, RW_WRITER);
   1117 		/* Do nothing. */
   1118 		rw_exit(&dvi->vi_nc_lock);
   1119 		holdrele(dvp);
   1120 		if (blocked == dvp) {
   1121 			kpause("ncpurge", false, 1, NULL);
   1122 		}
   1123 		rw_enter(&vi->vi_nc_listlock, RW_WRITER);
   1124 		blocked = dvp;
   1125 	}
   1126 	rw_exit(&vi->vi_nc_listlock);
   1127 }
   1128 
   1129 /*
   1130  * Helper for cache_purge1(): purge all cache entries hanging off the given
   1131  * directory vnode.
   1132  */
   1133 static void
   1134 cache_purge_children(struct vnode *dvp)
   1135 {
   1136 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
   1137 	struct namecache *ncp;
   1138 
   1139 	SDT_PROBE(vfs, namecache, purge, children, dvp, 0, 0, 0, 0);
   1140 
   1141 	rw_enter(&dvi->vi_nc_lock, RW_WRITER);
   1142 	while ((ncp = RB_TREE_MIN(&dvi->vi_nc_tree)) != NULL) {
   1143 		cache_remove(ncp, true);
   1144 	}
   1145 	rw_exit(&dvi->vi_nc_lock);
   1146 }
   1147 
   1148 /*
   1149  * Helper for cache_purge1(): purge cache entry from the given vnode,
   1150  * finding it by name.
   1151  */
   1152 static void
   1153 cache_purge_name(struct vnode *dvp, const char *name, size_t namelen)
   1154 {
   1155 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
   1156 	struct namecache *ncp;
   1157 	uint64_t key;
   1158 
   1159 	SDT_PROBE(vfs, namecache, purge, name, name, namelen, 0, 0, 0);
   1160 
   1161 	key = cache_key(name, namelen);
   1162 	rw_enter(&dvi->vi_nc_lock, RW_WRITER);
   1163 	ncp = cache_lookup_entry(dvp, name, namelen, key);
   1164 	if (ncp) {
   1165 		cache_remove(ncp, true);
   1166 	}
   1167 	rw_exit(&dvi->vi_nc_lock);
   1168 }
   1169 
   1170 /*
   1171  * Cache flush, a particular vnode; called when a vnode is renamed to
   1172  * hide entries that would now be invalid.
   1173  */
   1174 void
   1175 cache_purge1(struct vnode *vp, const char *name, size_t namelen, int flags)
   1176 {
   1177 
   1178 	if (flags & PURGE_PARENTS) {
   1179 		cache_purge_parents(vp);
   1180 	}
   1181 	if (flags & PURGE_CHILDREN) {
   1182 		cache_purge_children(vp);
   1183 	}
   1184 	if (name != NULL) {
   1185 		cache_purge_name(vp, name, namelen);
   1186 	}
   1187 }
   1188 
   1189 /*
   1190  * vnode filter for cache_purgevfs().
   1191  */
   1192 static bool
   1193 cache_vdir_filter(void *cookie, vnode_t *vp)
   1194 {
   1195 
   1196 	return vp->v_type == VDIR;
   1197 }
   1198 
   1199 /*
   1200  * Cache flush, a whole filesystem; called when filesys is umounted to
   1201  * remove entries that would now be invalid.
   1202  */
   1203 void
   1204 cache_purgevfs(struct mount *mp)
   1205 {
   1206 	struct vnode_iterator *iter;
   1207 	vnode_t *dvp;
   1208 
   1209 	vfs_vnode_iterator_init(mp, &iter);
   1210 	for (;;) {
   1211 		dvp = vfs_vnode_iterator_next(iter, cache_vdir_filter, NULL);
   1212 		if (dvp == NULL) {
   1213 			break;
   1214 		}
   1215 		cache_purge_children(dvp);
   1216 		vrele(dvp);
   1217 	}
   1218 	vfs_vnode_iterator_destroy(iter);
   1219 }
   1220 
   1221 /*
   1222  * Re-queue an entry onto the tail of the active LRU list, after it has
   1223  * scored a hit.
   1224  */
   1225 static void
   1226 cache_activate(struct namecache *ncp)
   1227 {
   1228 
   1229 	mutex_enter(&cache_lru_lock);
   1230 	TAILQ_REMOVE(&cache_lru.list[ncp->nc_lrulist], ncp, nc_lru);
   1231 	TAILQ_INSERT_TAIL(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru);
   1232 	cache_lru.count[ncp->nc_lrulist]--;
   1233 	cache_lru.count[LRU_ACTIVE]++;
   1234 	ncp->nc_lrulist = LRU_ACTIVE;
   1235 	mutex_exit(&cache_lru_lock);
   1236 }
   1237 
   1238 /*
   1239  * Try to balance the LRU lists.  Pick some victim entries, and re-queue
   1240  * them from the head of the active list to the tail of the inactive list.
   1241  */
   1242 static void
   1243 cache_deactivate(void)
   1244 {
   1245 	struct namecache *ncp;
   1246 	int total, i;
   1247 
   1248 	KASSERT(mutex_owned(&cache_lru_lock));
   1249 
   1250 	/* If we're nowhere near budget yet, don't bother. */
   1251 	total = cache_lru.count[LRU_ACTIVE] + cache_lru.count[LRU_INACTIVE];
   1252 	if (total < (desiredvnodes >> 1)) {
   1253 	    	return;
   1254 	}
   1255 
   1256 	/*
   1257 	 * Aim for a 1:1 ratio of active to inactive.  This is to allow each
   1258 	 * potential victim a reasonable amount of time to cycle through the
   1259 	 * inactive list in order to score a hit and be reactivated, while
   1260 	 * trying not to cause reactivations too frequently.
   1261 	 */
   1262 	if (cache_lru.count[LRU_ACTIVE] < cache_lru.count[LRU_INACTIVE]) {
   1263 		return;
   1264 	}
   1265 
   1266 	/* Move only a few at a time; will catch up eventually. */
   1267 	for (i = 0; i < cache_lru_maxdeact; i++) {
   1268 		ncp = TAILQ_FIRST(&cache_lru.list[LRU_ACTIVE]);
   1269 		if (ncp == NULL) {
   1270 			break;
   1271 		}
   1272 		KASSERT(ncp->nc_lrulist == LRU_ACTIVE);
   1273 		ncp->nc_lrulist = LRU_INACTIVE;
   1274 		TAILQ_REMOVE(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru);
   1275 		TAILQ_INSERT_TAIL(&cache_lru.list[LRU_INACTIVE], ncp, nc_lru);
   1276 		cache_lru.count[LRU_ACTIVE]--;
   1277 		cache_lru.count[LRU_INACTIVE]++;
   1278 	}
   1279 }
   1280 
   1281 /*
   1282  * Free some entries from the cache, when we have gone over budget.
   1283  *
   1284  * We don't want to cause too much work for any individual caller, and it
   1285  * doesn't matter if we temporarily go over budget.  This is also "just a
   1286  * cache" so it's not a big deal if we screw up and throw out something we
   1287  * shouldn't.  So we take a relaxed attitude to this process to reduce its
   1288  * impact.
   1289  */
   1290 static void
   1291 cache_reclaim(void)
   1292 {
   1293 	struct namecache *ncp;
   1294 	vnode_impl_t *dvi;
   1295 	int toscan;
   1296 
   1297 	/*
   1298 	 * Scan up to a preset maxium number of entries, but no more than
   1299 	 * 0.8% of the total at once (to allow for very small systems).
   1300 	 *
   1301 	 * On bigger systems, do a larger chunk of work to reduce the number
   1302 	 * of times that cache_lru_lock is held for any length of time.
   1303 	 */
   1304 	mutex_enter(&cache_lru_lock);
   1305 	toscan = MIN(cache_lru_maxscan, desiredvnodes >> 7);
   1306 	toscan = MAX(toscan, 1);
   1307 	SDT_PROBE(vfs, namecache, prune, done, cache_lru.count[LRU_ACTIVE] +
   1308 	    cache_lru.count[LRU_INACTIVE], toscan, 0, 0, 0);
   1309 	while (toscan-- != 0) {
   1310 		/* First try to balance the lists. */
   1311 		cache_deactivate();
   1312 
   1313 		/* Now look for a victim on head of inactive list (old). */
   1314 		ncp = TAILQ_FIRST(&cache_lru.list[LRU_INACTIVE]);
   1315 		if (ncp == NULL) {
   1316 			break;
   1317 		}
   1318 		dvi = VNODE_TO_VIMPL(ncp->nc_dvp);
   1319 		KASSERT(ncp->nc_lrulist == LRU_INACTIVE);
   1320 		KASSERT(dvi != NULL);
   1321 
   1322 		/*
   1323 		 * Locking in the wrong direction.  If we can't get the
   1324 		 * lock, the directory is actively busy, and it could also
   1325 		 * cause problems for the next guy in here, so send the
   1326 		 * entry to the back of the list.
   1327 		 */
   1328 		if (!rw_tryenter(&dvi->vi_nc_lock, RW_WRITER)) {
   1329 			TAILQ_REMOVE(&cache_lru.list[LRU_INACTIVE],
   1330 			    ncp, nc_lru);
   1331 			TAILQ_INSERT_TAIL(&cache_lru.list[LRU_INACTIVE],
   1332 			    ncp, nc_lru);
   1333 			continue;
   1334 		}
   1335 
   1336 		/*
   1337 		 * Now have the victim entry locked.  Drop the LRU list
   1338 		 * lock, purge the entry, and start over.  The hold on
   1339 		 * vi_nc_lock will prevent the vnode from vanishing until
   1340 		 * finished (cache_purge() will be called on dvp before it
   1341 		 * disappears, and that will wait on vi_nc_lock).
   1342 		 */
   1343 		mutex_exit(&cache_lru_lock);
   1344 		cache_remove(ncp, true);
   1345 		rw_exit(&dvi->vi_nc_lock);
   1346 		mutex_enter(&cache_lru_lock);
   1347 	}
   1348 	mutex_exit(&cache_lru_lock);
   1349 }
   1350 
   1351 /*
   1352  * For file system code: count a lookup that required a full re-scan of
   1353  * directory metadata.
   1354  */
   1355 void
   1356 namecache_count_pass2(void)
   1357 {
   1358 
   1359 	COUNT(ncs_pass2);
   1360 }
   1361 
   1362 /*
   1363  * For file system code: count a lookup that scored a hit in the directory
   1364  * metadata near the location of the last lookup.
   1365  */
   1366 void
   1367 namecache_count_2passes(void)
   1368 {
   1369 
   1370 	COUNT(ncs_2passes);
   1371 }
   1372 
   1373 /*
   1374  * Sum the stats from all CPUs into nchstats.  This needs to run at least
   1375  * once within every window where a 32-bit counter could roll over.  It's
   1376  * called regularly by timer to ensure this.
   1377  */
   1378 static void
   1379 cache_update_stats(void *cookie)
   1380 {
   1381 	CPU_INFO_ITERATOR cii;
   1382 	struct cpu_info *ci;
   1383 
   1384 	mutex_enter(&cache_stat_lock);
   1385 	for (CPU_INFO_FOREACH(cii, ci)) {
   1386 		struct nchcpu *nchcpu = ci->ci_data.cpu_nch;
   1387 		UPDATE(nchcpu, ncs_goodhits);
   1388 		UPDATE(nchcpu, ncs_neghits);
   1389 		UPDATE(nchcpu, ncs_badhits);
   1390 		UPDATE(nchcpu, ncs_falsehits);
   1391 		UPDATE(nchcpu, ncs_miss);
   1392 		UPDATE(nchcpu, ncs_long);
   1393 		UPDATE(nchcpu, ncs_pass2);
   1394 		UPDATE(nchcpu, ncs_2passes);
   1395 		UPDATE(nchcpu, ncs_revhits);
   1396 		UPDATE(nchcpu, ncs_revmiss);
   1397 		UPDATE(nchcpu, ncs_denied);
   1398 	}
   1399 	if (cookie != NULL) {
   1400 		memcpy(cookie, &nchstats, sizeof(nchstats));
   1401 	}
   1402 	/* Reset the timer; arrive back here in N minutes at latest. */
   1403 	callout_schedule(&cache_stat_callout, cache_stat_interval * hz);
   1404 	mutex_exit(&cache_stat_lock);
   1405 }
   1406 
   1407 /*
   1408  * Fetch the current values of the stats for sysctl.
   1409  */
   1410 static int
   1411 cache_stat_sysctl(SYSCTLFN_ARGS)
   1412 {
   1413 	struct nchstats stats;
   1414 
   1415 	if (oldp == NULL) {
   1416 		*oldlenp = sizeof(nchstats);
   1417 		return 0;
   1418 	}
   1419 
   1420 	if (*oldlenp <= 0) {
   1421 		*oldlenp = 0;
   1422 		return 0;
   1423 	}
   1424 
   1425 	/* Refresh the global stats. */
   1426 	sysctl_unlock();
   1427 	cache_update_stats(&stats);
   1428 	sysctl_relock();
   1429 
   1430 	*oldlenp = MIN(sizeof(stats), *oldlenp);
   1431 	return sysctl_copyout(l, &stats, oldp, *oldlenp);
   1432 }
   1433 
   1434 /*
   1435  * For the debugger, given the address of a vnode, print all associated
   1436  * names in the cache.
   1437  */
   1438 #ifdef DDB
   1439 void
   1440 namecache_print(struct vnode *vp, void (*pr)(const char *, ...))
   1441 {
   1442 	struct vnode *dvp = NULL;
   1443 	struct namecache *ncp;
   1444 	enum cache_lru_id id;
   1445 
   1446 	for (id = 0; id < LRU_COUNT; id++) {
   1447 		TAILQ_FOREACH(ncp, &cache_lru.list[id], nc_lru) {
   1448 			if (ncp->nc_vp == vp) {
   1449 				(*pr)("name %.*s\n", ncp->nc_nlen,
   1450 				    ncp->nc_name);
   1451 				dvp = ncp->nc_dvp;
   1452 			}
   1453 		}
   1454 	}
   1455 	if (dvp == NULL) {
   1456 		(*pr)("name not found\n");
   1457 		return;
   1458 	}
   1459 	for (id = 0; id < LRU_COUNT; id++) {
   1460 		TAILQ_FOREACH(ncp, &cache_lru.list[id], nc_lru) {
   1461 			if (ncp->nc_vp == dvp) {
   1462 				(*pr)("parent %.*s\n", ncp->nc_nlen,
   1463 				    ncp->nc_name);
   1464 			}
   1465 		}
   1466 	}
   1467 }
   1468 #endif
   1469