Home | History | Annotate | Line # | Download | only in kern
vfs_cache.c revision 1.145
      1 /*	$NetBSD: vfs_cache.c,v 1.145 2020/05/30 18:06:17 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2008, 2019, 2020 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Andrew Doran.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Copyright (c) 1989, 1993
     34  *	The Regents of the University of California.  All rights reserved.
     35  *
     36  * Redistribution and use in source and binary forms, with or without
     37  * modification, are permitted provided that the following conditions
     38  * are met:
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. Neither the name of the University nor the names of its contributors
     45  *    may be used to endorse or promote products derived from this software
     46  *    without specific prior written permission.
     47  *
     48  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     49  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     50  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     51  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     52  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     53  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     54  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     55  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     56  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     57  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     58  * SUCH DAMAGE.
     59  *
     60  *	@(#)vfs_cache.c	8.3 (Berkeley) 8/22/94
     61  */
     62 
     63 /*
     64  * Name caching:
     65  *
     66  *	Names found by directory scans are retained in a cache for future
     67  *	reference.  It is managed LRU, so frequently used names will hang
     68  *	around.  The cache is indexed by hash value obtained from the name.
     69  *
     70  *	The name cache is the brainchild of Robert Elz and was introduced in
     71  *	4.3BSD.  See "Using gprof to Tune the 4.2BSD Kernel", Marshall Kirk
     72  *	McKusick, May 21 1984.
     73  *
     74  * Data structures:
     75  *
     76  *	Most Unix namecaches very sensibly use a global hash table to index
     77  *	names.  The global hash table works well, but can cause concurrency
     78  *	headaches for the kernel hacker.  In the NetBSD 10.0 implementation
     79  *	we are not sensible, and use a per-directory data structure to index
     80  *	names, but the cache otherwise functions the same.
     81  *
     82  *	The index is a red-black tree.  There are no special concurrency
     83  *	requirements placed on it, because it's per-directory and protected
     84  *	by the namecache's per-directory locks.  It should therefore not be
     85  *	difficult to experiment with other types of index.
     86  *
     87  *	Each cached name is stored in a struct namecache, along with a
     88  *	pointer to the associated vnode (nc_vp).  Names longer than a
     89  *	maximum length of NCHNAMLEN are allocated with kmem_alloc(); they
     90  *	occur infrequently, and names shorter than this are stored directly
     91  *	in struct namecache.  If it is a "negative" entry, (i.e. for a name
     92  *	that is known NOT to exist) the vnode pointer will be NULL.
     93  *
     94  *	For a directory with 3 cached names for 3 distinct vnodes, the
     95  *	various vnodes and namecache structs would be connected like this
     96  *	(the root is at the bottom of the diagram):
     97  *
     98  *          ...
     99  *           ^
    100  *           |- vi_nc_tree
    101  *           |
    102  *      +----o----+               +---------+               +---------+
    103  *      |  VDIR   |               |  VCHR   |               |  VREG   |
    104  *      |  vnode  o-----+         |  vnode  o-----+         |  vnode  o------+
    105  *      +---------+     |         +---------+     |         +---------+      |
    106  *           ^          |              ^          |              ^           |
    107  *           |- nc_vp   |- vi_nc_list  |- nc_vp   |- vi_nc_list  |- nc_vp    |
    108  *           |          |              |          |              |           |
    109  *      +----o----+     |         +----o----+     |         +----o----+      |
    110  *  +---onamecache|<----+     +---onamecache|<----+     +---onamecache|<-----+
    111  *  |   +---------+           |   +---------+           |   +---------+
    112  *  |        ^                |        ^                |        ^
    113  *  |        |                |        |                |        |
    114  *  |        |  +----------------------+                |        |
    115  *  |-nc_dvp | +-------------------------------------------------+
    116  *  |        |/- vi_nc_tree   |                         |
    117  *  |        |                |- nc_dvp                 |- nc_dvp
    118  *  |   +----o----+           |                         |
    119  *  +-->|  VDIR   |<----------+                         |
    120  *      |  vnode  |<------------------------------------+
    121  *      +---------+
    122  *
    123  *      START HERE
    124  *
    125  * Replacement:
    126  *
    127  *	As the cache becomes full, old and unused entries are purged as new
    128  *	entries are added.  The synchronization overhead in maintaining a
    129  *	strict ordering would be prohibitive, so the VM system's "clock" or
    130  *	"second chance" page replacement algorithm is aped here.  New
    131  *	entries go to the tail of the active list.  After they age out and
    132  *	reach the head of the list, they are moved to the tail of the
    133  *	inactive list.  Any use of the deactivated cache entry reactivates
    134  *	it, saving it from impending doom; if not reactivated, the entry
    135  *	eventually reaches the head of the inactive list and is purged.
    136  *
    137  * Concurrency:
    138  *
    139  *	From a performance perspective, cache_lookup(nameiop == LOOKUP) is
    140  *	what really matters; insertion of new entries with cache_enter() is
    141  *	comparatively infrequent, and overshadowed by the cost of expensive
    142  *	file system metadata operations (which may involve disk I/O).  We
    143  *	therefore want to make everything simplest in the lookup path.
    144  *
    145  *	struct namecache is mostly stable except for list and tree related
    146  *	entries, changes to which don't affect the cached name or vnode.
    147  *	For changes to name+vnode, entries are purged in preference to
    148  *	modifying them.
    149  *
    150  *	Read access to namecache entries is made via tree, list, or LRU
    151  *	list.  A lock corresponding to the direction of access should be
    152  *	held.  See definition of "struct namecache" in src/sys/namei.src,
    153  *	and the definition of "struct vnode" for the particulars.
    154  *
    155  *	Per-CPU statistics, and LRU list totals are read unlocked, since
    156  *	an approximate value is OK.  We maintain 32-bit sized per-CPU
    157  *	counters and 64-bit global counters under the theory that 32-bit
    158  *	sized counters are less likely to be hosed by nonatomic increment
    159  *	(on 32-bit platforms).
    160  *
    161  *	The lock order is:
    162  *
    163  *	1) vi->vi_nc_lock	(tree or parent -> child direction,
    164  *				 used during forward lookup)
    165  *
    166  *	2) vi->vi_nc_listlock	(list or child -> parent direction,
    167  *				 used during reverse lookup)
    168  *
    169  *	3) cache_lru_lock	(LRU list direction, used during reclaim)
    170  *
    171  *	4) vp->v_interlock	(what the cache entry points to)
    172  */
    173 
    174 #include <sys/cdefs.h>
    175 __KERNEL_RCSID(0, "$NetBSD: vfs_cache.c,v 1.145 2020/05/30 18:06:17 ad Exp $");
    176 
    177 #define __NAMECACHE_PRIVATE
    178 #ifdef _KERNEL_OPT
    179 #include "opt_ddb.h"
    180 #include "opt_dtrace.h"
    181 #endif
    182 
    183 #include <sys/types.h>
    184 #include <sys/atomic.h>
    185 #include <sys/callout.h>
    186 #include <sys/cpu.h>
    187 #include <sys/errno.h>
    188 #include <sys/evcnt.h>
    189 #include <sys/hash.h>
    190 #include <sys/kernel.h>
    191 #include <sys/mount.h>
    192 #include <sys/mutex.h>
    193 #include <sys/namei.h>
    194 #include <sys/param.h>
    195 #include <sys/pool.h>
    196 #include <sys/sdt.h>
    197 #include <sys/sysctl.h>
    198 #include <sys/systm.h>
    199 #include <sys/time.h>
    200 #include <sys/vnode_impl.h>
    201 
    202 #include <miscfs/genfs/genfs.h>
    203 
    204 static void	cache_activate(struct namecache *);
    205 static void	cache_update_stats(void *);
    206 static int	cache_compare_nodes(void *, const void *, const void *);
    207 static void	cache_deactivate(void);
    208 static void	cache_reclaim(void);
    209 static int	cache_stat_sysctl(SYSCTLFN_ARGS);
    210 
    211 /*
    212  * Global pool cache.
    213  */
    214 static pool_cache_t cache_pool __read_mostly;
    215 
    216 /*
    217  * LRU replacement.
    218  */
    219 enum cache_lru_id {
    220 	LRU_ACTIVE,
    221 	LRU_INACTIVE,
    222 	LRU_COUNT
    223 };
    224 
    225 static struct {
    226 	TAILQ_HEAD(, namecache)	list[LRU_COUNT];
    227 	u_int			count[LRU_COUNT];
    228 } cache_lru __cacheline_aligned;
    229 
    230 static kmutex_t cache_lru_lock __cacheline_aligned;
    231 
    232 /*
    233  * Cache effectiveness statistics.  nchstats holds system-wide total.
    234  */
    235 struct nchstats	nchstats;
    236 struct nchstats_percpu _NAMEI_CACHE_STATS(uint32_t);
    237 struct nchcpu {
    238 	struct nchstats_percpu cur;
    239 	struct nchstats_percpu last;
    240 };
    241 static callout_t cache_stat_callout;
    242 static kmutex_t cache_stat_lock __cacheline_aligned;
    243 
    244 #define	COUNT(f) do { \
    245 	lwp_t *l = curlwp; \
    246 	KPREEMPT_DISABLE(l); \
    247 	((struct nchstats_percpu *)curcpu()->ci_data.cpu_nch)->f++; \
    248 	KPREEMPT_ENABLE(l); \
    249 } while (/* CONSTCOND */ 0);
    250 
    251 #define	UPDATE(nchcpu, f) do { \
    252 	uint32_t cur = atomic_load_relaxed(&nchcpu->cur.f); \
    253 	nchstats.f += (uint32_t)(cur - nchcpu->last.f); \
    254 	nchcpu->last.f = cur; \
    255 } while (/* CONSTCOND */ 0)
    256 
    257 /*
    258  * Tunables.  cache_maxlen replaces the historical doingcache:
    259  * set it zero to disable caching for debugging purposes.
    260  */
    261 int cache_lru_maxdeact __read_mostly = 2;	/* max # to deactivate */
    262 int cache_lru_maxscan __read_mostly = 64;	/* max # to scan/reclaim */
    263 int cache_maxlen __read_mostly = USHRT_MAX;	/* max name length to cache */
    264 int cache_stat_interval __read_mostly = 300;	/* in seconds */
    265 
    266 /*
    267  * sysctl stuff.
    268  */
    269 static struct	sysctllog *cache_sysctllog;
    270 
    271 /*
    272  * Red-black tree stuff.
    273  */
    274 static const rb_tree_ops_t cache_rbtree_ops = {
    275 	.rbto_compare_nodes = cache_compare_nodes,
    276 	.rbto_compare_key = cache_compare_nodes,
    277 	.rbto_node_offset = offsetof(struct namecache, nc_tree),
    278 	.rbto_context = NULL
    279 };
    280 
    281 /*
    282  * dtrace probes.
    283  */
    284 SDT_PROVIDER_DEFINE(vfs);
    285 
    286 SDT_PROBE_DEFINE1(vfs, namecache, invalidate, done, "struct vnode *");
    287 SDT_PROBE_DEFINE1(vfs, namecache, purge, parents, "struct vnode *");
    288 SDT_PROBE_DEFINE1(vfs, namecache, purge, children, "struct vnode *");
    289 SDT_PROBE_DEFINE2(vfs, namecache, purge, name, "char *", "size_t");
    290 SDT_PROBE_DEFINE1(vfs, namecache, purge, vfs, "struct mount *");
    291 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *",
    292     "char *", "size_t");
    293 SDT_PROBE_DEFINE3(vfs, namecache, lookup, miss, "struct vnode *",
    294     "char *", "size_t");
    295 SDT_PROBE_DEFINE3(vfs, namecache, lookup, toolong, "struct vnode *",
    296     "char *", "size_t");
    297 SDT_PROBE_DEFINE2(vfs, namecache, revlookup, success, "struct vnode *",
    298      "struct vnode *");
    299 SDT_PROBE_DEFINE2(vfs, namecache, revlookup, fail, "struct vnode *",
    300      "int");
    301 SDT_PROBE_DEFINE2(vfs, namecache, prune, done, "int", "int");
    302 SDT_PROBE_DEFINE3(vfs, namecache, enter, toolong, "struct vnode *",
    303     "char *", "size_t");
    304 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *",
    305     "char *", "size_t");
    306 
    307 /*
    308  * rbtree: compare two nodes.
    309  */
    310 static int
    311 cache_compare_nodes(void *context, const void *n1, const void *n2)
    312 {
    313 	const struct namecache *nc1 = n1;
    314 	const struct namecache *nc2 = n2;
    315 
    316 	if (nc1->nc_key < nc2->nc_key) {
    317 		return -1;
    318 	}
    319 	if (nc1->nc_key > nc2->nc_key) {
    320 		return 1;
    321 	}
    322 	KASSERT(nc1->nc_nlen == nc2->nc_nlen);
    323 	return memcmp(nc1->nc_name, nc2->nc_name, nc1->nc_nlen);
    324 }
    325 
    326 /*
    327  * Compute a key value for the given name.  The name length is encoded in
    328  * the key value to try and improve uniqueness, and so that length doesn't
    329  * need to be compared separately for string comparisons.
    330  */
    331 static inline uint64_t
    332 cache_key(const char *name, size_t nlen)
    333 {
    334 	uint64_t key;
    335 
    336 	KASSERT(nlen <= USHRT_MAX);
    337 
    338 	key = hash32_buf(name, nlen, HASH32_STR_INIT);
    339 	return (key << 32) | nlen;
    340 }
    341 
    342 /*
    343  * Remove an entry from the cache.  vi_nc_lock must be held, and if dir2node
    344  * is true, then we're locking in the conventional direction and the list
    345  * lock will be acquired when removing the entry from the vnode list.
    346  */
    347 static void
    348 cache_remove(struct namecache *ncp, const bool dir2node)
    349 {
    350 	struct vnode *vp, *dvp = ncp->nc_dvp;
    351 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
    352 
    353 	KASSERT(rw_write_held(&dvi->vi_nc_lock));
    354 	KASSERT(cache_key(ncp->nc_name, ncp->nc_nlen) == ncp->nc_key);
    355 	KASSERT(rb_tree_find_node(&dvi->vi_nc_tree, ncp) == ncp);
    356 
    357 	SDT_PROBE(vfs, namecache, invalidate, done, ncp,
    358 	    0, 0, 0, 0);
    359 
    360 	/*
    361 	 * Remove from the vnode's list.  This excludes cache_revlookup(),
    362 	 * and then it's safe to remove from the LRU lists.
    363 	 */
    364 	if ((vp = ncp->nc_vp) != NULL) {
    365 		vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
    366 		if (__predict_true(dir2node)) {
    367 			rw_enter(&vi->vi_nc_listlock, RW_WRITER);
    368 			TAILQ_REMOVE(&vi->vi_nc_list, ncp, nc_list);
    369 			rw_exit(&vi->vi_nc_listlock);
    370 		} else {
    371 			TAILQ_REMOVE(&vi->vi_nc_list, ncp, nc_list);
    372 		}
    373 	}
    374 
    375 	/* Remove from the directory's rbtree. */
    376 	rb_tree_remove_node(&dvi->vi_nc_tree, ncp);
    377 
    378 	/* Remove from the LRU lists. */
    379 	mutex_enter(&cache_lru_lock);
    380 	TAILQ_REMOVE(&cache_lru.list[ncp->nc_lrulist], ncp, nc_lru);
    381 	cache_lru.count[ncp->nc_lrulist]--;
    382 	mutex_exit(&cache_lru_lock);
    383 
    384 	/* Finally, free it. */
    385 	if (ncp->nc_nlen > NCHNAMLEN) {
    386 		size_t sz = offsetof(struct namecache, nc_name[ncp->nc_nlen]);
    387 		kmem_free(ncp, sz);
    388 	} else {
    389 		pool_cache_put(cache_pool, ncp);
    390 	}
    391 }
    392 
    393 /*
    394  * Find a single cache entry and return it.  vi_nc_lock must be held.
    395  */
    396 static struct namecache * __noinline
    397 cache_lookup_entry(struct vnode *dvp, const char *name, size_t namelen,
    398     uint64_t key)
    399 {
    400 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
    401 	struct rb_node *node = dvi->vi_nc_tree.rbt_root;
    402 	struct namecache *ncp;
    403 	int lrulist, diff;
    404 
    405 	KASSERT(rw_lock_held(&dvi->vi_nc_lock));
    406 
    407 	/*
    408 	 * Search the RB tree for the key.  This is an inlined lookup
    409 	 * tailored for exactly what's needed here (64-bit key and so on)
    410 	 * that is quite a bit faster than using rb_tree_find_node().
    411 	 *
    412 	 * For a matching key memcmp() needs to be called once to confirm
    413 	 * that the correct name has been found.  Very rarely there will be
    414 	 * a key value collision and the search will continue.
    415 	 */
    416 	for (;;) {
    417 		if (__predict_false(RB_SENTINEL_P(node))) {
    418 			return NULL;
    419 		}
    420 		ncp = (struct namecache *)node;
    421 		KASSERT((void *)&ncp->nc_tree == (void *)ncp);
    422 		KASSERT(ncp->nc_dvp == dvp);
    423 		if (ncp->nc_key == key) {
    424 			KASSERT(ncp->nc_nlen == namelen);
    425 			diff = memcmp(ncp->nc_name, name, namelen);
    426 			if (__predict_true(diff == 0)) {
    427 				break;
    428 			}
    429 			node = node->rb_nodes[diff < 0];
    430 		} else {
    431 			node = node->rb_nodes[ncp->nc_key < key];
    432 		}
    433 	}
    434 
    435 	/*
    436 	 * If the entry is on the wrong LRU list, requeue it.  This is an
    437 	 * unlocked check, but it will rarely be wrong and even then there
    438 	 * will be no harm caused.
    439 	 */
    440 	lrulist = atomic_load_relaxed(&ncp->nc_lrulist);
    441 	if (__predict_false(lrulist != LRU_ACTIVE)) {
    442 		cache_activate(ncp);
    443 	}
    444 	return ncp;
    445 }
    446 
    447 /*
    448  * Look for a the name in the cache. We don't do this
    449  * if the segment name is long, simply so the cache can avoid
    450  * holding long names (which would either waste space, or
    451  * add greatly to the complexity).
    452  *
    453  * Lookup is called with DVP pointing to the directory to search,
    454  * and CNP providing the name of the entry being sought: cn_nameptr
    455  * is the name, cn_namelen is its length, and cn_flags is the flags
    456  * word from the namei operation.
    457  *
    458  * DVP must be locked.
    459  *
    460  * There are three possible non-error return states:
    461  *    1. Nothing was found in the cache. Nothing is known about
    462  *       the requested name.
    463  *    2. A negative entry was found in the cache, meaning that the
    464  *       requested name definitely does not exist.
    465  *    3. A positive entry was found in the cache, meaning that the
    466  *       requested name does exist and that we are providing the
    467  *       vnode.
    468  * In these cases the results are:
    469  *    1. 0 returned; VN is set to NULL.
    470  *    2. 1 returned; VN is set to NULL.
    471  *    3. 1 returned; VN is set to the vnode found.
    472  *
    473  * The additional result argument ISWHT is set to zero, unless a
    474  * negative entry is found that was entered as a whiteout, in which
    475  * case ISWHT is set to one.
    476  *
    477  * The ISWHT_RET argument pointer may be null. In this case an
    478  * assertion is made that the whiteout flag is not set. File systems
    479  * that do not support whiteouts can/should do this.
    480  *
    481  * Filesystems that do support whiteouts should add ISWHITEOUT to
    482  * cnp->cn_flags if ISWHT comes back nonzero.
    483  *
    484  * When a vnode is returned, it is locked, as per the vnode lookup
    485  * locking protocol.
    486  *
    487  * There is no way for this function to fail, in the sense of
    488  * generating an error that requires aborting the namei operation.
    489  *
    490  * (Prior to October 2012, this function returned an integer status,
    491  * and a vnode, and mucked with the flags word in CNP for whiteouts.
    492  * The integer status was -1 for "nothing found", ENOENT for "a
    493  * negative entry found", 0 for "a positive entry found", and possibly
    494  * other errors, and the value of VN might or might not have been set
    495  * depending on what error occurred.)
    496  */
    497 bool
    498 cache_lookup(struct vnode *dvp, const char *name, size_t namelen,
    499 	     uint32_t nameiop, uint32_t cnflags,
    500 	     int *iswht_ret, struct vnode **vn_ret)
    501 {
    502 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
    503 	struct namecache *ncp;
    504 	struct vnode *vp;
    505 	uint64_t key;
    506 	int error;
    507 	bool hit;
    508 	krw_t op;
    509 
    510 	/* Establish default result values */
    511 	if (iswht_ret != NULL) {
    512 		*iswht_ret = 0;
    513 	}
    514 	*vn_ret = NULL;
    515 
    516 	if (__predict_false(namelen > cache_maxlen)) {
    517 		SDT_PROBE(vfs, namecache, lookup, toolong, dvp,
    518 		    name, namelen, 0, 0);
    519 		COUNT(ncs_long);
    520 		return false;
    521 	}
    522 
    523 	/* Compute the key up front - don't need the lock. */
    524 	key = cache_key(name, namelen);
    525 
    526 	/* Could the entry be purged below? */
    527 	if ((cnflags & ISLASTCN) != 0 &&
    528 	    ((cnflags & MAKEENTRY) == 0 || nameiop == CREATE)) {
    529 	    	op = RW_WRITER;
    530 	} else {
    531 		op = RW_READER;
    532 	}
    533 
    534 	/* Now look for the name. */
    535 	rw_enter(&dvi->vi_nc_lock, op);
    536 	ncp = cache_lookup_entry(dvp, name, namelen, key);
    537 	if (__predict_false(ncp == NULL)) {
    538 		rw_exit(&dvi->vi_nc_lock);
    539 		COUNT(ncs_miss);
    540 		SDT_PROBE(vfs, namecache, lookup, miss, dvp,
    541 		    name, namelen, 0, 0);
    542 		return false;
    543 	}
    544 	if (__predict_false((cnflags & MAKEENTRY) == 0)) {
    545 		/*
    546 		 * Last component and we are renaming or deleting,
    547 		 * the cache entry is invalid, or otherwise don't
    548 		 * want cache entry to exist.
    549 		 */
    550 		KASSERT((cnflags & ISLASTCN) != 0);
    551 		cache_remove(ncp, true);
    552 		rw_exit(&dvi->vi_nc_lock);
    553 		COUNT(ncs_badhits);
    554 		return false;
    555 	}
    556 	if (ncp->nc_vp == NULL) {
    557 		if (iswht_ret != NULL) {
    558 			/*
    559 			 * Restore the ISWHITEOUT flag saved earlier.
    560 			 */
    561 			*iswht_ret = ncp->nc_whiteout;
    562 		} else {
    563 			KASSERT(!ncp->nc_whiteout);
    564 		}
    565 		if (nameiop == CREATE && (cnflags & ISLASTCN) != 0) {
    566 			/*
    567 			 * Last component and we are preparing to create
    568 			 * the named object, so flush the negative cache
    569 			 * entry.
    570 			 */
    571 			COUNT(ncs_badhits);
    572 			cache_remove(ncp, true);
    573 			hit = false;
    574 		} else {
    575 			COUNT(ncs_neghits);
    576 			SDT_PROBE(vfs, namecache, lookup, hit, dvp, name,
    577 			    namelen, 0, 0);
    578 			/* found neg entry; vn is already null from above */
    579 			hit = true;
    580 		}
    581 		rw_exit(&dvi->vi_nc_lock);
    582 		return hit;
    583 	}
    584 	vp = ncp->nc_vp;
    585 	error = vcache_tryvget(vp);
    586 	rw_exit(&dvi->vi_nc_lock);
    587 	if (error) {
    588 		KASSERT(error == EBUSY);
    589 		/*
    590 		 * This vnode is being cleaned out.
    591 		 * XXX badhits?
    592 		 */
    593 		COUNT(ncs_falsehits);
    594 		return false;
    595 	}
    596 
    597 	COUNT(ncs_goodhits);
    598 	SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0);
    599 	/* found it */
    600 	*vn_ret = vp;
    601 	return true;
    602 }
    603 
    604 /*
    605  * Version of the above without the nameiop argument, for NFS.
    606  */
    607 bool
    608 cache_lookup_raw(struct vnode *dvp, const char *name, size_t namelen,
    609 		 uint32_t cnflags,
    610 		 int *iswht_ret, struct vnode **vn_ret)
    611 {
    612 
    613 	return cache_lookup(dvp, name, namelen, LOOKUP, cnflags | MAKEENTRY,
    614 	    iswht_ret, vn_ret);
    615 }
    616 
    617 /*
    618  * Used by namei() to walk down a path, component by component by looking up
    619  * names in the cache.  The node locks are chained along the way: a parent's
    620  * lock is not dropped until the child's is acquired.
    621  */
    622 bool
    623 cache_lookup_linked(struct vnode *dvp, const char *name, size_t namelen,
    624 		    struct vnode **vn_ret, krwlock_t **plock,
    625 		    kauth_cred_t cred)
    626 {
    627 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
    628 	struct namecache *ncp;
    629 	krwlock_t *oldlock, *newlock;
    630 	uint64_t key;
    631 	int error;
    632 
    633 	/* If disabled, or file system doesn't support this, bail out. */
    634 	if (__predict_false((dvp->v_mount->mnt_iflag & IMNT_NCLOOKUP) == 0)) {
    635 		return false;
    636 	}
    637 
    638 	if (__predict_false(namelen > cache_maxlen)) {
    639 		COUNT(ncs_long);
    640 		return false;
    641 	}
    642 
    643 	/* Compute the key up front - don't need the lock. */
    644 	key = cache_key(name, namelen);
    645 
    646 	/*
    647 	 * Acquire the directory lock.  Once we have that, we can drop the
    648 	 * previous one (if any).
    649 	 *
    650 	 * The two lock holds mean that the directory can't go away while
    651 	 * here: the directory must be purged with cache_purge() before
    652 	 * being freed, and both parent & child's vi_nc_lock must be taken
    653 	 * before that point is passed.
    654 	 *
    655 	 * However if there's no previous lock, like at the root of the
    656 	 * chain, then "dvp" must be referenced to prevent dvp going away
    657 	 * before we get its lock.
    658 	 *
    659 	 * Note that the two locks can be the same if looking up a dot, for
    660 	 * example: /usr/bin/.  If looking up the parent (..) we can't wait
    661 	 * on the lock as child -> parent is the wrong direction.
    662 	 */
    663 	if (*plock != &dvi->vi_nc_lock) {
    664 		oldlock = *plock;
    665 		newlock = &dvi->vi_nc_lock;
    666 		if (!rw_tryenter(&dvi->vi_nc_lock, RW_READER)) {
    667 			return false;
    668 		}
    669 	} else {
    670 		oldlock = NULL;
    671 		newlock = NULL;
    672 		if (*plock == NULL) {
    673 			KASSERT(vrefcnt(dvp) > 0);
    674 		}
    675 	}
    676 
    677 	/*
    678 	 * First up check if the user is allowed to look up files in this
    679 	 * directory.
    680 	 */
    681 	if (cred != FSCRED) {
    682 		if (dvi->vi_nc_mode == VNOVAL) {
    683 			if (newlock != NULL) {
    684 				rw_exit(newlock);
    685 			}
    686 			return false;
    687 		}
    688 		KASSERT(dvi->vi_nc_uid != VNOVAL && dvi->vi_nc_gid != VNOVAL);
    689 		error = kauth_authorize_vnode(cred, KAUTH_ACCESS_ACTION(VEXEC,
    690 		    dvp->v_type, dvi->vi_nc_mode & ALLPERMS), dvp, NULL,
    691 		    genfs_can_access(dvp, cred, dvi->vi_nc_uid, dvi->vi_nc_gid,
    692 		    dvi->vi_nc_mode & ALLPERMS, NULL, VEXEC));
    693 		if (error != 0) {
    694 			if (newlock != NULL) {
    695 				rw_exit(newlock);
    696 			}
    697 			COUNT(ncs_denied);
    698 			return false;
    699 		}
    700 	}
    701 
    702 	/*
    703 	 * Now look for a matching cache entry.
    704 	 */
    705 	ncp = cache_lookup_entry(dvp, name, namelen, key);
    706 	if (__predict_false(ncp == NULL)) {
    707 		if (newlock != NULL) {
    708 			rw_exit(newlock);
    709 		}
    710 		COUNT(ncs_miss);
    711 		SDT_PROBE(vfs, namecache, lookup, miss, dvp,
    712 		    name, namelen, 0, 0);
    713 		return false;
    714 	}
    715 	if (ncp->nc_vp == NULL) {
    716 		/* found negative entry; vn is already null from above */
    717 		COUNT(ncs_neghits);
    718 	} else {
    719 		COUNT(ncs_goodhits); /* XXX can be "badhits" */
    720 	}
    721 	SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0);
    722 
    723 	/*
    724 	 * Return with the directory lock still held.  It will either be
    725 	 * returned to us with another call to cache_lookup_linked() when
    726 	 * looking up the next component, or the caller will release it
    727 	 * manually when finished.
    728 	 */
    729 	if (oldlock) {
    730 		rw_exit(oldlock);
    731 	}
    732 	if (newlock) {
    733 		*plock = newlock;
    734 	}
    735 	*vn_ret = ncp->nc_vp;
    736 	return true;
    737 }
    738 
    739 /*
    740  * Scan cache looking for name of directory entry pointing at vp.
    741  * Will not search for "." or "..".
    742  *
    743  * If the lookup succeeds the vnode is referenced and stored in dvpp.
    744  *
    745  * If bufp is non-NULL, also place the name in the buffer which starts
    746  * at bufp, immediately before *bpp, and move bpp backwards to point
    747  * at the start of it.  (Yes, this is a little baroque, but it's done
    748  * this way to cater to the whims of getcwd).
    749  *
    750  * Returns 0 on success, -1 on cache miss, positive errno on failure.
    751  */
    752 int
    753 cache_revlookup(struct vnode *vp, struct vnode **dvpp, char **bpp, char *bufp,
    754     bool checkaccess, accmode_t accmode)
    755 {
    756 	vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
    757 	struct namecache *ncp;
    758 	struct vnode *dvp;
    759 	int error, nlen, lrulist;
    760 	char *bp;
    761 
    762 	KASSERT(vp != NULL);
    763 
    764 	if (cache_maxlen == 0)
    765 		goto out;
    766 
    767 	rw_enter(&vi->vi_nc_listlock, RW_READER);
    768 	if (checkaccess) {
    769 		/*
    770 		 * Check if the user is allowed to see.  NOTE: this is
    771 		 * checking for access on the "wrong" directory.  getcwd()
    772 		 * wants to see that there is access on every component
    773 		 * along the way, not that there is access to any individual
    774 		 * component.  Don't use this to check you can look in vp.
    775 		 *
    776 		 * I don't like it, I didn't come up with it, don't blame me!
    777 		 */
    778 		if (vi->vi_nc_mode == VNOVAL) {
    779 			rw_exit(&vi->vi_nc_listlock);
    780 			return -1;
    781 		}
    782 		KASSERT(vi->vi_nc_uid != VNOVAL && vi->vi_nc_gid != VNOVAL);
    783 		error = kauth_authorize_vnode(curlwp->l_cred,
    784 		    KAUTH_ACCESS_ACTION(VEXEC, vp->v_type, vi->vi_nc_mode &
    785 		    ALLPERMS), vp, NULL, genfs_can_access(vp, curlwp->l_cred,
    786 		    vi->vi_nc_uid, vi->vi_nc_gid, vi->vi_nc_mode & ALLPERMS,
    787 		    NULL, accmode));
    788 		    if (error != 0) {
    789 		    	rw_exit(&vi->vi_nc_listlock);
    790 			COUNT(ncs_denied);
    791 			return EACCES;
    792 		}
    793 	}
    794 	TAILQ_FOREACH(ncp, &vi->vi_nc_list, nc_list) {
    795 		KASSERT(ncp->nc_vp == vp);
    796 		KASSERT(ncp->nc_dvp != NULL);
    797 		nlen = ncp->nc_nlen;
    798 
    799 		/*
    800 		 * The queue is partially sorted.  Once we hit dots, nothing
    801 		 * else remains but dots and dotdots, so bail out.
    802 		 */
    803 		if (ncp->nc_name[0] == '.') {
    804 			if (nlen == 1 ||
    805 			    (nlen == 2 && ncp->nc_name[1] == '.')) {
    806 			    	break;
    807 			}
    808 		}
    809 
    810 		/*
    811 		 * Record a hit on the entry.  This is an unlocked read but
    812 		 * even if wrong it doesn't matter too much.
    813 		 */
    814 		lrulist = atomic_load_relaxed(&ncp->nc_lrulist);
    815 		if (lrulist != LRU_ACTIVE) {
    816 			cache_activate(ncp);
    817 		}
    818 
    819 		if (bufp) {
    820 			bp = *bpp;
    821 			bp -= nlen;
    822 			if (bp <= bufp) {
    823 				*dvpp = NULL;
    824 				rw_exit(&vi->vi_nc_listlock);
    825 				SDT_PROBE(vfs, namecache, revlookup,
    826 				    fail, vp, ERANGE, 0, 0, 0);
    827 				return (ERANGE);
    828 			}
    829 			memcpy(bp, ncp->nc_name, nlen);
    830 			*bpp = bp;
    831 		}
    832 
    833 		dvp = ncp->nc_dvp;
    834 		error = vcache_tryvget(dvp);
    835 		rw_exit(&vi->vi_nc_listlock);
    836 		if (error) {
    837 			KASSERT(error == EBUSY);
    838 			if (bufp)
    839 				(*bpp) += nlen;
    840 			*dvpp = NULL;
    841 			SDT_PROBE(vfs, namecache, revlookup, fail, vp,
    842 			    error, 0, 0, 0);
    843 			return -1;
    844 		}
    845 		*dvpp = dvp;
    846 		SDT_PROBE(vfs, namecache, revlookup, success, vp, dvp,
    847 		    0, 0, 0);
    848 		COUNT(ncs_revhits);
    849 		return (0);
    850 	}
    851 	rw_exit(&vi->vi_nc_listlock);
    852 	COUNT(ncs_revmiss);
    853  out:
    854 	*dvpp = NULL;
    855 	return (-1);
    856 }
    857 
    858 /*
    859  * Add an entry to the cache.
    860  */
    861 void
    862 cache_enter(struct vnode *dvp, struct vnode *vp,
    863 	    const char *name, size_t namelen, uint32_t cnflags)
    864 {
    865 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
    866 	struct namecache *ncp, *oncp;
    867 	int total;
    868 
    869 	/* First, check whether we can/should add a cache entry. */
    870 	if ((cnflags & MAKEENTRY) == 0 ||
    871 	    __predict_false(namelen > cache_maxlen)) {
    872 		SDT_PROBE(vfs, namecache, enter, toolong, vp, name, namelen,
    873 		    0, 0);
    874 		return;
    875 	}
    876 
    877 	SDT_PROBE(vfs, namecache, enter, done, vp, name, namelen, 0, 0);
    878 
    879 	/*
    880 	 * Reclaim some entries if over budget.  This is an unlocked check,
    881 	 * but it doesn't matter.  Just need to catch up with things
    882 	 * eventually: it doesn't matter if we go over temporarily.
    883 	 */
    884 	total = atomic_load_relaxed(&cache_lru.count[LRU_ACTIVE]);
    885 	total += atomic_load_relaxed(&cache_lru.count[LRU_INACTIVE]);
    886 	if (__predict_false(total > desiredvnodes)) {
    887 		cache_reclaim();
    888 	}
    889 
    890 	/* Now allocate a fresh entry. */
    891 	if (__predict_true(namelen <= NCHNAMLEN)) {
    892 		ncp = pool_cache_get(cache_pool, PR_WAITOK);
    893 	} else {
    894 		size_t sz = offsetof(struct namecache, nc_name[namelen]);
    895 		ncp = kmem_alloc(sz, KM_SLEEP);
    896 	}
    897 
    898 	/*
    899 	 * Fill in cache info.  For negative hits, save the ISWHITEOUT flag
    900 	 * so we can restore it later when the cache entry is used again.
    901 	 */
    902 	ncp->nc_vp = vp;
    903 	ncp->nc_dvp = dvp;
    904 	ncp->nc_key = cache_key(name, namelen);
    905 	ncp->nc_nlen = namelen;
    906 	ncp->nc_whiteout = ((cnflags & ISWHITEOUT) != 0);
    907 	memcpy(ncp->nc_name, name, namelen);
    908 
    909 	/*
    910 	 * Insert to the directory.  Concurrent lookups may race for a cache
    911 	 * entry.  If there's a entry there already, purge it.
    912 	 */
    913 	rw_enter(&dvi->vi_nc_lock, RW_WRITER);
    914 	oncp = rb_tree_insert_node(&dvi->vi_nc_tree, ncp);
    915 	if (oncp != ncp) {
    916 		KASSERT(oncp->nc_key == ncp->nc_key);
    917 		KASSERT(oncp->nc_nlen == ncp->nc_nlen);
    918 		KASSERT(memcmp(oncp->nc_name, name, namelen) == 0);
    919 		cache_remove(oncp, true);
    920 		oncp = rb_tree_insert_node(&dvi->vi_nc_tree, ncp);
    921 		KASSERT(oncp == ncp);
    922 	}
    923 
    924 	/*
    925 	 * With the directory lock still held, insert to the tail of the
    926 	 * ACTIVE LRU list (new) and take the opportunity to incrementally
    927 	 * balance the lists.
    928 	 */
    929 	mutex_enter(&cache_lru_lock);
    930 	ncp->nc_lrulist = LRU_ACTIVE;
    931 	cache_lru.count[LRU_ACTIVE]++;
    932 	TAILQ_INSERT_TAIL(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru);
    933 	cache_deactivate();
    934 	mutex_exit(&cache_lru_lock);
    935 
    936 	/*
    937 	 * Finally, insert to the vnode and unlock.  With everything set up
    938 	 * it's safe to let cache_revlookup() see the entry.  Partially sort
    939 	 * the per-vnode list: dots go to back so cache_revlookup() doesn't
    940 	 * have to consider them.
    941 	 */
    942 	if (vp != NULL) {
    943 		vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
    944 		rw_enter(&vi->vi_nc_listlock, RW_WRITER);
    945 		if ((namelen == 1 && name[0] == '.') ||
    946 		    (namelen == 2 && name[0] == '.' && name[1] == '.')) {
    947 			TAILQ_INSERT_TAIL(&vi->vi_nc_list, ncp, nc_list);
    948 		} else {
    949 			TAILQ_INSERT_HEAD(&vi->vi_nc_list, ncp, nc_list);
    950 		}
    951 		rw_exit(&vi->vi_nc_listlock);
    952 	}
    953 	rw_exit(&dvi->vi_nc_lock);
    954 }
    955 
    956 /*
    957  * Set identity info in cache for a vnode.  We only care about directories
    958  * so ignore other updates.  The cached info may be marked invalid if the
    959  * inode has an ACL.
    960  */
    961 void
    962 cache_enter_id(struct vnode *vp, mode_t mode, uid_t uid, gid_t gid, bool valid)
    963 {
    964 	vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
    965 
    966 	if (vp->v_type == VDIR) {
    967 		/* Grab both locks, for forward & reverse lookup. */
    968 		rw_enter(&vi->vi_nc_lock, RW_WRITER);
    969 		rw_enter(&vi->vi_nc_listlock, RW_WRITER);
    970 		if (valid) {
    971 			vi->vi_nc_mode = mode;
    972 			vi->vi_nc_uid = uid;
    973 			vi->vi_nc_gid = gid;
    974 		} else {
    975 			vi->vi_nc_mode = VNOVAL;
    976 			vi->vi_nc_uid = VNOVAL;
    977 			vi->vi_nc_gid = VNOVAL;
    978 		}
    979 		rw_exit(&vi->vi_nc_listlock);
    980 		rw_exit(&vi->vi_nc_lock);
    981 	}
    982 }
    983 
    984 /*
    985  * Return true if we have identity for the given vnode, and use as an
    986  * opportunity to confirm that everything squares up.
    987  *
    988  * Because of shared code, some file systems could provide partial
    989  * information, missing some updates, so check the mount flag too.
    990  */
    991 bool
    992 cache_have_id(struct vnode *vp)
    993 {
    994 
    995 	if (vp->v_type == VDIR &&
    996 	    (vp->v_mount->mnt_iflag & IMNT_NCLOOKUP) != 0 &&
    997 	    atomic_load_relaxed(&VNODE_TO_VIMPL(vp)->vi_nc_mode) != VNOVAL) {
    998 		return true;
    999 	} else {
   1000 		return false;
   1001 	}
   1002 }
   1003 
   1004 /*
   1005  * Name cache initialization, from vfs_init() when the system is booting.
   1006  */
   1007 void
   1008 nchinit(void)
   1009 {
   1010 
   1011 	cache_pool = pool_cache_init(sizeof(struct namecache),
   1012 	    coherency_unit, 0, 0, "namecache", NULL, IPL_NONE, NULL,
   1013 	    NULL, NULL);
   1014 	KASSERT(cache_pool != NULL);
   1015 
   1016 	mutex_init(&cache_lru_lock, MUTEX_DEFAULT, IPL_NONE);
   1017 	TAILQ_INIT(&cache_lru.list[LRU_ACTIVE]);
   1018 	TAILQ_INIT(&cache_lru.list[LRU_INACTIVE]);
   1019 
   1020 	mutex_init(&cache_stat_lock, MUTEX_DEFAULT, IPL_NONE);
   1021 	callout_init(&cache_stat_callout, CALLOUT_MPSAFE);
   1022 	callout_setfunc(&cache_stat_callout, cache_update_stats, NULL);
   1023 	callout_schedule(&cache_stat_callout, cache_stat_interval * hz);
   1024 
   1025 	KASSERT(cache_sysctllog == NULL);
   1026 	sysctl_createv(&cache_sysctllog, 0, NULL, NULL,
   1027 		       CTLFLAG_PERMANENT,
   1028 		       CTLTYPE_STRUCT, "namecache_stats",
   1029 		       SYSCTL_DESCR("namecache statistics"),
   1030 		       cache_stat_sysctl, 0, NULL, 0,
   1031 		       CTL_VFS, CTL_CREATE, CTL_EOL);
   1032 }
   1033 
   1034 /*
   1035  * Called once for each CPU in the system as attached.
   1036  */
   1037 void
   1038 cache_cpu_init(struct cpu_info *ci)
   1039 {
   1040 	void *p;
   1041 	size_t sz;
   1042 
   1043 	sz = roundup2(sizeof(struct nchstats_percpu), coherency_unit) +
   1044 	    coherency_unit;
   1045 	p = kmem_zalloc(sz, KM_SLEEP);
   1046 	ci->ci_data.cpu_nch = (void *)roundup2((uintptr_t)p, coherency_unit);
   1047 }
   1048 
   1049 /*
   1050  * A vnode is being allocated: set up cache structures.
   1051  */
   1052 void
   1053 cache_vnode_init(struct vnode *vp)
   1054 {
   1055 	vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
   1056 
   1057 	rw_init(&vi->vi_nc_lock);
   1058 	rw_init(&vi->vi_nc_listlock);
   1059 	rb_tree_init(&vi->vi_nc_tree, &cache_rbtree_ops);
   1060 	TAILQ_INIT(&vi->vi_nc_list);
   1061 	vi->vi_nc_mode = VNOVAL;
   1062 	vi->vi_nc_uid = VNOVAL;
   1063 	vi->vi_nc_gid = VNOVAL;
   1064 }
   1065 
   1066 /*
   1067  * A vnode is being freed: finish cache structures.
   1068  */
   1069 void
   1070 cache_vnode_fini(struct vnode *vp)
   1071 {
   1072 	vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
   1073 
   1074 	KASSERT(RB_TREE_MIN(&vi->vi_nc_tree) == NULL);
   1075 	KASSERT(TAILQ_EMPTY(&vi->vi_nc_list));
   1076 	rw_destroy(&vi->vi_nc_lock);
   1077 	rw_destroy(&vi->vi_nc_listlock);
   1078 }
   1079 
   1080 /*
   1081  * Helper for cache_purge1(): purge cache entries for the given vnode from
   1082  * all directories that the vnode is cached in.
   1083  */
   1084 static void
   1085 cache_purge_parents(struct vnode *vp)
   1086 {
   1087 	vnode_impl_t *dvi, *vi = VNODE_TO_VIMPL(vp);
   1088 	struct vnode *dvp, *blocked;
   1089 	struct namecache *ncp;
   1090 
   1091 	SDT_PROBE(vfs, namecache, purge, parents, vp, 0, 0, 0, 0);
   1092 
   1093 	blocked = NULL;
   1094 
   1095 	rw_enter(&vi->vi_nc_listlock, RW_WRITER);
   1096 	while ((ncp = TAILQ_FIRST(&vi->vi_nc_list)) != NULL) {
   1097 		/*
   1098 		 * Locking in the wrong direction.  Try for a hold on the
   1099 		 * directory node's lock, and if we get it then all good,
   1100 		 * nuke the entry and move on to the next.
   1101 		 */
   1102 		dvp = ncp->nc_dvp;
   1103 		dvi = VNODE_TO_VIMPL(dvp);
   1104 		if (rw_tryenter(&dvi->vi_nc_lock, RW_WRITER)) {
   1105 			cache_remove(ncp, false);
   1106 			rw_exit(&dvi->vi_nc_lock);
   1107 			blocked = NULL;
   1108 			continue;
   1109 		}
   1110 
   1111 		/*
   1112 		 * We can't wait on the directory node's lock with our list
   1113 		 * lock held or the system could deadlock.
   1114 		 *
   1115 		 * Take a hold on the directory vnode to prevent it from
   1116 		 * being freed (taking the vnode & lock with it).  Then
   1117 		 * wait for the lock to become available with no other locks
   1118 		 * held, and retry.
   1119 		 *
   1120 		 * If this happens twice in a row, give the other side a
   1121 		 * breather; we can do nothing until it lets go.
   1122 		 */
   1123 		vhold(dvp);
   1124 		rw_exit(&vi->vi_nc_listlock);
   1125 		rw_enter(&dvi->vi_nc_lock, RW_WRITER);
   1126 		/* Do nothing. */
   1127 		rw_exit(&dvi->vi_nc_lock);
   1128 		holdrele(dvp);
   1129 		if (blocked == dvp) {
   1130 			kpause("ncpurge", false, 1, NULL);
   1131 		}
   1132 		rw_enter(&vi->vi_nc_listlock, RW_WRITER);
   1133 		blocked = dvp;
   1134 	}
   1135 	rw_exit(&vi->vi_nc_listlock);
   1136 }
   1137 
   1138 /*
   1139  * Helper for cache_purge1(): purge all cache entries hanging off the given
   1140  * directory vnode.
   1141  */
   1142 static void
   1143 cache_purge_children(struct vnode *dvp)
   1144 {
   1145 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
   1146 	struct namecache *ncp;
   1147 
   1148 	SDT_PROBE(vfs, namecache, purge, children, dvp, 0, 0, 0, 0);
   1149 
   1150 	rw_enter(&dvi->vi_nc_lock, RW_WRITER);
   1151 	while ((ncp = RB_TREE_MIN(&dvi->vi_nc_tree)) != NULL) {
   1152 		cache_remove(ncp, true);
   1153 	}
   1154 	rw_exit(&dvi->vi_nc_lock);
   1155 }
   1156 
   1157 /*
   1158  * Helper for cache_purge1(): purge cache entry from the given vnode,
   1159  * finding it by name.
   1160  */
   1161 static void
   1162 cache_purge_name(struct vnode *dvp, const char *name, size_t namelen)
   1163 {
   1164 	vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
   1165 	struct namecache *ncp;
   1166 	uint64_t key;
   1167 
   1168 	SDT_PROBE(vfs, namecache, purge, name, name, namelen, 0, 0, 0);
   1169 
   1170 	key = cache_key(name, namelen);
   1171 	rw_enter(&dvi->vi_nc_lock, RW_WRITER);
   1172 	ncp = cache_lookup_entry(dvp, name, namelen, key);
   1173 	if (ncp) {
   1174 		cache_remove(ncp, true);
   1175 	}
   1176 	rw_exit(&dvi->vi_nc_lock);
   1177 }
   1178 
   1179 /*
   1180  * Cache flush, a particular vnode; called when a vnode is renamed to
   1181  * hide entries that would now be invalid.
   1182  */
   1183 void
   1184 cache_purge1(struct vnode *vp, const char *name, size_t namelen, int flags)
   1185 {
   1186 
   1187 	if (flags & PURGE_PARENTS) {
   1188 		cache_purge_parents(vp);
   1189 	}
   1190 	if (flags & PURGE_CHILDREN) {
   1191 		cache_purge_children(vp);
   1192 	}
   1193 	if (name != NULL) {
   1194 		cache_purge_name(vp, name, namelen);
   1195 	}
   1196 }
   1197 
   1198 /*
   1199  * vnode filter for cache_purgevfs().
   1200  */
   1201 static bool
   1202 cache_vdir_filter(void *cookie, vnode_t *vp)
   1203 {
   1204 
   1205 	return vp->v_type == VDIR;
   1206 }
   1207 
   1208 /*
   1209  * Cache flush, a whole filesystem; called when filesys is umounted to
   1210  * remove entries that would now be invalid.
   1211  */
   1212 void
   1213 cache_purgevfs(struct mount *mp)
   1214 {
   1215 	struct vnode_iterator *iter;
   1216 	vnode_t *dvp;
   1217 
   1218 	vfs_vnode_iterator_init(mp, &iter);
   1219 	for (;;) {
   1220 		dvp = vfs_vnode_iterator_next(iter, cache_vdir_filter, NULL);
   1221 		if (dvp == NULL) {
   1222 			break;
   1223 		}
   1224 		cache_purge_children(dvp);
   1225 		vrele(dvp);
   1226 	}
   1227 	vfs_vnode_iterator_destroy(iter);
   1228 }
   1229 
   1230 /*
   1231  * Re-queue an entry onto the tail of the active LRU list, after it has
   1232  * scored a hit.
   1233  */
   1234 static void
   1235 cache_activate(struct namecache *ncp)
   1236 {
   1237 
   1238 	mutex_enter(&cache_lru_lock);
   1239 	TAILQ_REMOVE(&cache_lru.list[ncp->nc_lrulist], ncp, nc_lru);
   1240 	TAILQ_INSERT_TAIL(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru);
   1241 	cache_lru.count[ncp->nc_lrulist]--;
   1242 	cache_lru.count[LRU_ACTIVE]++;
   1243 	ncp->nc_lrulist = LRU_ACTIVE;
   1244 	mutex_exit(&cache_lru_lock);
   1245 }
   1246 
   1247 /*
   1248  * Try to balance the LRU lists.  Pick some victim entries, and re-queue
   1249  * them from the head of the active list to the tail of the inactive list.
   1250  */
   1251 static void
   1252 cache_deactivate(void)
   1253 {
   1254 	struct namecache *ncp;
   1255 	int total, i;
   1256 
   1257 	KASSERT(mutex_owned(&cache_lru_lock));
   1258 
   1259 	/* If we're nowhere near budget yet, don't bother. */
   1260 	total = cache_lru.count[LRU_ACTIVE] + cache_lru.count[LRU_INACTIVE];
   1261 	if (total < (desiredvnodes >> 1)) {
   1262 	    	return;
   1263 	}
   1264 
   1265 	/*
   1266 	 * Aim for a 1:1 ratio of active to inactive.  This is to allow each
   1267 	 * potential victim a reasonable amount of time to cycle through the
   1268 	 * inactive list in order to score a hit and be reactivated, while
   1269 	 * trying not to cause reactivations too frequently.
   1270 	 */
   1271 	if (cache_lru.count[LRU_ACTIVE] < cache_lru.count[LRU_INACTIVE]) {
   1272 		return;
   1273 	}
   1274 
   1275 	/* Move only a few at a time; will catch up eventually. */
   1276 	for (i = 0; i < cache_lru_maxdeact; i++) {
   1277 		ncp = TAILQ_FIRST(&cache_lru.list[LRU_ACTIVE]);
   1278 		if (ncp == NULL) {
   1279 			break;
   1280 		}
   1281 		KASSERT(ncp->nc_lrulist == LRU_ACTIVE);
   1282 		ncp->nc_lrulist = LRU_INACTIVE;
   1283 		TAILQ_REMOVE(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru);
   1284 		TAILQ_INSERT_TAIL(&cache_lru.list[LRU_INACTIVE], ncp, nc_lru);
   1285 		cache_lru.count[LRU_ACTIVE]--;
   1286 		cache_lru.count[LRU_INACTIVE]++;
   1287 	}
   1288 }
   1289 
   1290 /*
   1291  * Free some entries from the cache, when we have gone over budget.
   1292  *
   1293  * We don't want to cause too much work for any individual caller, and it
   1294  * doesn't matter if we temporarily go over budget.  This is also "just a
   1295  * cache" so it's not a big deal if we screw up and throw out something we
   1296  * shouldn't.  So we take a relaxed attitude to this process to reduce its
   1297  * impact.
   1298  */
   1299 static void
   1300 cache_reclaim(void)
   1301 {
   1302 	struct namecache *ncp;
   1303 	vnode_impl_t *dvi;
   1304 	int toscan;
   1305 
   1306 	/*
   1307 	 * Scan up to a preset maxium number of entries, but no more than
   1308 	 * 0.8% of the total at once (to allow for very small systems).
   1309 	 *
   1310 	 * On bigger systems, do a larger chunk of work to reduce the number
   1311 	 * of times that cache_lru_lock is held for any length of time.
   1312 	 */
   1313 	mutex_enter(&cache_lru_lock);
   1314 	toscan = MIN(cache_lru_maxscan, desiredvnodes >> 7);
   1315 	toscan = MAX(toscan, 1);
   1316 	SDT_PROBE(vfs, namecache, prune, done, cache_lru.count[LRU_ACTIVE] +
   1317 	    cache_lru.count[LRU_INACTIVE], toscan, 0, 0, 0);
   1318 	while (toscan-- != 0) {
   1319 		/* First try to balance the lists. */
   1320 		cache_deactivate();
   1321 
   1322 		/* Now look for a victim on head of inactive list (old). */
   1323 		ncp = TAILQ_FIRST(&cache_lru.list[LRU_INACTIVE]);
   1324 		if (ncp == NULL) {
   1325 			break;
   1326 		}
   1327 		dvi = VNODE_TO_VIMPL(ncp->nc_dvp);
   1328 		KASSERT(ncp->nc_lrulist == LRU_INACTIVE);
   1329 		KASSERT(dvi != NULL);
   1330 
   1331 		/*
   1332 		 * Locking in the wrong direction.  If we can't get the
   1333 		 * lock, the directory is actively busy, and it could also
   1334 		 * cause problems for the next guy in here, so send the
   1335 		 * entry to the back of the list.
   1336 		 */
   1337 		if (!rw_tryenter(&dvi->vi_nc_lock, RW_WRITER)) {
   1338 			TAILQ_REMOVE(&cache_lru.list[LRU_INACTIVE],
   1339 			    ncp, nc_lru);
   1340 			TAILQ_INSERT_TAIL(&cache_lru.list[LRU_INACTIVE],
   1341 			    ncp, nc_lru);
   1342 			continue;
   1343 		}
   1344 
   1345 		/*
   1346 		 * Now have the victim entry locked.  Drop the LRU list
   1347 		 * lock, purge the entry, and start over.  The hold on
   1348 		 * vi_nc_lock will prevent the vnode from vanishing until
   1349 		 * finished (cache_purge() will be called on dvp before it
   1350 		 * disappears, and that will wait on vi_nc_lock).
   1351 		 */
   1352 		mutex_exit(&cache_lru_lock);
   1353 		cache_remove(ncp, true);
   1354 		rw_exit(&dvi->vi_nc_lock);
   1355 		mutex_enter(&cache_lru_lock);
   1356 	}
   1357 	mutex_exit(&cache_lru_lock);
   1358 }
   1359 
   1360 /*
   1361  * For file system code: count a lookup that required a full re-scan of
   1362  * directory metadata.
   1363  */
   1364 void
   1365 namecache_count_pass2(void)
   1366 {
   1367 
   1368 	COUNT(ncs_pass2);
   1369 }
   1370 
   1371 /*
   1372  * For file system code: count a lookup that scored a hit in the directory
   1373  * metadata near the location of the last lookup.
   1374  */
   1375 void
   1376 namecache_count_2passes(void)
   1377 {
   1378 
   1379 	COUNT(ncs_2passes);
   1380 }
   1381 
   1382 /*
   1383  * Sum the stats from all CPUs into nchstats.  This needs to run at least
   1384  * once within every window where a 32-bit counter could roll over.  It's
   1385  * called regularly by timer to ensure this.
   1386  */
   1387 static void
   1388 cache_update_stats(void *cookie)
   1389 {
   1390 	CPU_INFO_ITERATOR cii;
   1391 	struct cpu_info *ci;
   1392 
   1393 	mutex_enter(&cache_stat_lock);
   1394 	for (CPU_INFO_FOREACH(cii, ci)) {
   1395 		struct nchcpu *nchcpu = ci->ci_data.cpu_nch;
   1396 		UPDATE(nchcpu, ncs_goodhits);
   1397 		UPDATE(nchcpu, ncs_neghits);
   1398 		UPDATE(nchcpu, ncs_badhits);
   1399 		UPDATE(nchcpu, ncs_falsehits);
   1400 		UPDATE(nchcpu, ncs_miss);
   1401 		UPDATE(nchcpu, ncs_long);
   1402 		UPDATE(nchcpu, ncs_pass2);
   1403 		UPDATE(nchcpu, ncs_2passes);
   1404 		UPDATE(nchcpu, ncs_revhits);
   1405 		UPDATE(nchcpu, ncs_revmiss);
   1406 		UPDATE(nchcpu, ncs_denied);
   1407 	}
   1408 	if (cookie != NULL) {
   1409 		memcpy(cookie, &nchstats, sizeof(nchstats));
   1410 	}
   1411 	/* Reset the timer; arrive back here in N minutes at latest. */
   1412 	callout_schedule(&cache_stat_callout, cache_stat_interval * hz);
   1413 	mutex_exit(&cache_stat_lock);
   1414 }
   1415 
   1416 /*
   1417  * Fetch the current values of the stats for sysctl.
   1418  */
   1419 static int
   1420 cache_stat_sysctl(SYSCTLFN_ARGS)
   1421 {
   1422 	struct nchstats stats;
   1423 
   1424 	if (oldp == NULL) {
   1425 		*oldlenp = sizeof(nchstats);
   1426 		return 0;
   1427 	}
   1428 
   1429 	if (*oldlenp <= 0) {
   1430 		*oldlenp = 0;
   1431 		return 0;
   1432 	}
   1433 
   1434 	/* Refresh the global stats. */
   1435 	sysctl_unlock();
   1436 	cache_update_stats(&stats);
   1437 	sysctl_relock();
   1438 
   1439 	*oldlenp = MIN(sizeof(stats), *oldlenp);
   1440 	return sysctl_copyout(l, &stats, oldp, *oldlenp);
   1441 }
   1442 
   1443 /*
   1444  * For the debugger, given the address of a vnode, print all associated
   1445  * names in the cache.
   1446  */
   1447 #ifdef DDB
   1448 void
   1449 namecache_print(struct vnode *vp, void (*pr)(const char *, ...))
   1450 {
   1451 	struct vnode *dvp = NULL;
   1452 	struct namecache *ncp;
   1453 	enum cache_lru_id id;
   1454 
   1455 	for (id = 0; id < LRU_COUNT; id++) {
   1456 		TAILQ_FOREACH(ncp, &cache_lru.list[id], nc_lru) {
   1457 			if (ncp->nc_vp == vp) {
   1458 				(*pr)("name %.*s\n", ncp->nc_nlen,
   1459 				    ncp->nc_name);
   1460 				dvp = ncp->nc_dvp;
   1461 			}
   1462 		}
   1463 	}
   1464 	if (dvp == NULL) {
   1465 		(*pr)("name not found\n");
   1466 		return;
   1467 	}
   1468 	for (id = 0; id < LRU_COUNT; id++) {
   1469 		TAILQ_FOREACH(ncp, &cache_lru.list[id], nc_lru) {
   1470 			if (ncp->nc_vp == dvp) {
   1471 				(*pr)("parent %.*s\n", ncp->nc_nlen,
   1472 				    ncp->nc_name);
   1473 			}
   1474 		}
   1475 	}
   1476 }
   1477 #endif
   1478