vfs_cache.c revision 1.145 1 /* $NetBSD: vfs_cache.c,v 1.145 2020/05/30 18:06:17 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2019, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)vfs_cache.c 8.3 (Berkeley) 8/22/94
61 */
62
63 /*
64 * Name caching:
65 *
66 * Names found by directory scans are retained in a cache for future
67 * reference. It is managed LRU, so frequently used names will hang
68 * around. The cache is indexed by hash value obtained from the name.
69 *
70 * The name cache is the brainchild of Robert Elz and was introduced in
71 * 4.3BSD. See "Using gprof to Tune the 4.2BSD Kernel", Marshall Kirk
72 * McKusick, May 21 1984.
73 *
74 * Data structures:
75 *
76 * Most Unix namecaches very sensibly use a global hash table to index
77 * names. The global hash table works well, but can cause concurrency
78 * headaches for the kernel hacker. In the NetBSD 10.0 implementation
79 * we are not sensible, and use a per-directory data structure to index
80 * names, but the cache otherwise functions the same.
81 *
82 * The index is a red-black tree. There are no special concurrency
83 * requirements placed on it, because it's per-directory and protected
84 * by the namecache's per-directory locks. It should therefore not be
85 * difficult to experiment with other types of index.
86 *
87 * Each cached name is stored in a struct namecache, along with a
88 * pointer to the associated vnode (nc_vp). Names longer than a
89 * maximum length of NCHNAMLEN are allocated with kmem_alloc(); they
90 * occur infrequently, and names shorter than this are stored directly
91 * in struct namecache. If it is a "negative" entry, (i.e. for a name
92 * that is known NOT to exist) the vnode pointer will be NULL.
93 *
94 * For a directory with 3 cached names for 3 distinct vnodes, the
95 * various vnodes and namecache structs would be connected like this
96 * (the root is at the bottom of the diagram):
97 *
98 * ...
99 * ^
100 * |- vi_nc_tree
101 * |
102 * +----o----+ +---------+ +---------+
103 * | VDIR | | VCHR | | VREG |
104 * | vnode o-----+ | vnode o-----+ | vnode o------+
105 * +---------+ | +---------+ | +---------+ |
106 * ^ | ^ | ^ |
107 * |- nc_vp |- vi_nc_list |- nc_vp |- vi_nc_list |- nc_vp |
108 * | | | | | |
109 * +----o----+ | +----o----+ | +----o----+ |
110 * +---onamecache|<----+ +---onamecache|<----+ +---onamecache|<-----+
111 * | +---------+ | +---------+ | +---------+
112 * | ^ | ^ | ^
113 * | | | | | |
114 * | | +----------------------+ | |
115 * |-nc_dvp | +-------------------------------------------------+
116 * | |/- vi_nc_tree | |
117 * | | |- nc_dvp |- nc_dvp
118 * | +----o----+ | |
119 * +-->| VDIR |<----------+ |
120 * | vnode |<------------------------------------+
121 * +---------+
122 *
123 * START HERE
124 *
125 * Replacement:
126 *
127 * As the cache becomes full, old and unused entries are purged as new
128 * entries are added. The synchronization overhead in maintaining a
129 * strict ordering would be prohibitive, so the VM system's "clock" or
130 * "second chance" page replacement algorithm is aped here. New
131 * entries go to the tail of the active list. After they age out and
132 * reach the head of the list, they are moved to the tail of the
133 * inactive list. Any use of the deactivated cache entry reactivates
134 * it, saving it from impending doom; if not reactivated, the entry
135 * eventually reaches the head of the inactive list and is purged.
136 *
137 * Concurrency:
138 *
139 * From a performance perspective, cache_lookup(nameiop == LOOKUP) is
140 * what really matters; insertion of new entries with cache_enter() is
141 * comparatively infrequent, and overshadowed by the cost of expensive
142 * file system metadata operations (which may involve disk I/O). We
143 * therefore want to make everything simplest in the lookup path.
144 *
145 * struct namecache is mostly stable except for list and tree related
146 * entries, changes to which don't affect the cached name or vnode.
147 * For changes to name+vnode, entries are purged in preference to
148 * modifying them.
149 *
150 * Read access to namecache entries is made via tree, list, or LRU
151 * list. A lock corresponding to the direction of access should be
152 * held. See definition of "struct namecache" in src/sys/namei.src,
153 * and the definition of "struct vnode" for the particulars.
154 *
155 * Per-CPU statistics, and LRU list totals are read unlocked, since
156 * an approximate value is OK. We maintain 32-bit sized per-CPU
157 * counters and 64-bit global counters under the theory that 32-bit
158 * sized counters are less likely to be hosed by nonatomic increment
159 * (on 32-bit platforms).
160 *
161 * The lock order is:
162 *
163 * 1) vi->vi_nc_lock (tree or parent -> child direction,
164 * used during forward lookup)
165 *
166 * 2) vi->vi_nc_listlock (list or child -> parent direction,
167 * used during reverse lookup)
168 *
169 * 3) cache_lru_lock (LRU list direction, used during reclaim)
170 *
171 * 4) vp->v_interlock (what the cache entry points to)
172 */
173
174 #include <sys/cdefs.h>
175 __KERNEL_RCSID(0, "$NetBSD: vfs_cache.c,v 1.145 2020/05/30 18:06:17 ad Exp $");
176
177 #define __NAMECACHE_PRIVATE
178 #ifdef _KERNEL_OPT
179 #include "opt_ddb.h"
180 #include "opt_dtrace.h"
181 #endif
182
183 #include <sys/types.h>
184 #include <sys/atomic.h>
185 #include <sys/callout.h>
186 #include <sys/cpu.h>
187 #include <sys/errno.h>
188 #include <sys/evcnt.h>
189 #include <sys/hash.h>
190 #include <sys/kernel.h>
191 #include <sys/mount.h>
192 #include <sys/mutex.h>
193 #include <sys/namei.h>
194 #include <sys/param.h>
195 #include <sys/pool.h>
196 #include <sys/sdt.h>
197 #include <sys/sysctl.h>
198 #include <sys/systm.h>
199 #include <sys/time.h>
200 #include <sys/vnode_impl.h>
201
202 #include <miscfs/genfs/genfs.h>
203
204 static void cache_activate(struct namecache *);
205 static void cache_update_stats(void *);
206 static int cache_compare_nodes(void *, const void *, const void *);
207 static void cache_deactivate(void);
208 static void cache_reclaim(void);
209 static int cache_stat_sysctl(SYSCTLFN_ARGS);
210
211 /*
212 * Global pool cache.
213 */
214 static pool_cache_t cache_pool __read_mostly;
215
216 /*
217 * LRU replacement.
218 */
219 enum cache_lru_id {
220 LRU_ACTIVE,
221 LRU_INACTIVE,
222 LRU_COUNT
223 };
224
225 static struct {
226 TAILQ_HEAD(, namecache) list[LRU_COUNT];
227 u_int count[LRU_COUNT];
228 } cache_lru __cacheline_aligned;
229
230 static kmutex_t cache_lru_lock __cacheline_aligned;
231
232 /*
233 * Cache effectiveness statistics. nchstats holds system-wide total.
234 */
235 struct nchstats nchstats;
236 struct nchstats_percpu _NAMEI_CACHE_STATS(uint32_t);
237 struct nchcpu {
238 struct nchstats_percpu cur;
239 struct nchstats_percpu last;
240 };
241 static callout_t cache_stat_callout;
242 static kmutex_t cache_stat_lock __cacheline_aligned;
243
244 #define COUNT(f) do { \
245 lwp_t *l = curlwp; \
246 KPREEMPT_DISABLE(l); \
247 ((struct nchstats_percpu *)curcpu()->ci_data.cpu_nch)->f++; \
248 KPREEMPT_ENABLE(l); \
249 } while (/* CONSTCOND */ 0);
250
251 #define UPDATE(nchcpu, f) do { \
252 uint32_t cur = atomic_load_relaxed(&nchcpu->cur.f); \
253 nchstats.f += (uint32_t)(cur - nchcpu->last.f); \
254 nchcpu->last.f = cur; \
255 } while (/* CONSTCOND */ 0)
256
257 /*
258 * Tunables. cache_maxlen replaces the historical doingcache:
259 * set it zero to disable caching for debugging purposes.
260 */
261 int cache_lru_maxdeact __read_mostly = 2; /* max # to deactivate */
262 int cache_lru_maxscan __read_mostly = 64; /* max # to scan/reclaim */
263 int cache_maxlen __read_mostly = USHRT_MAX; /* max name length to cache */
264 int cache_stat_interval __read_mostly = 300; /* in seconds */
265
266 /*
267 * sysctl stuff.
268 */
269 static struct sysctllog *cache_sysctllog;
270
271 /*
272 * Red-black tree stuff.
273 */
274 static const rb_tree_ops_t cache_rbtree_ops = {
275 .rbto_compare_nodes = cache_compare_nodes,
276 .rbto_compare_key = cache_compare_nodes,
277 .rbto_node_offset = offsetof(struct namecache, nc_tree),
278 .rbto_context = NULL
279 };
280
281 /*
282 * dtrace probes.
283 */
284 SDT_PROVIDER_DEFINE(vfs);
285
286 SDT_PROBE_DEFINE1(vfs, namecache, invalidate, done, "struct vnode *");
287 SDT_PROBE_DEFINE1(vfs, namecache, purge, parents, "struct vnode *");
288 SDT_PROBE_DEFINE1(vfs, namecache, purge, children, "struct vnode *");
289 SDT_PROBE_DEFINE2(vfs, namecache, purge, name, "char *", "size_t");
290 SDT_PROBE_DEFINE1(vfs, namecache, purge, vfs, "struct mount *");
291 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *",
292 "char *", "size_t");
293 SDT_PROBE_DEFINE3(vfs, namecache, lookup, miss, "struct vnode *",
294 "char *", "size_t");
295 SDT_PROBE_DEFINE3(vfs, namecache, lookup, toolong, "struct vnode *",
296 "char *", "size_t");
297 SDT_PROBE_DEFINE2(vfs, namecache, revlookup, success, "struct vnode *",
298 "struct vnode *");
299 SDT_PROBE_DEFINE2(vfs, namecache, revlookup, fail, "struct vnode *",
300 "int");
301 SDT_PROBE_DEFINE2(vfs, namecache, prune, done, "int", "int");
302 SDT_PROBE_DEFINE3(vfs, namecache, enter, toolong, "struct vnode *",
303 "char *", "size_t");
304 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *",
305 "char *", "size_t");
306
307 /*
308 * rbtree: compare two nodes.
309 */
310 static int
311 cache_compare_nodes(void *context, const void *n1, const void *n2)
312 {
313 const struct namecache *nc1 = n1;
314 const struct namecache *nc2 = n2;
315
316 if (nc1->nc_key < nc2->nc_key) {
317 return -1;
318 }
319 if (nc1->nc_key > nc2->nc_key) {
320 return 1;
321 }
322 KASSERT(nc1->nc_nlen == nc2->nc_nlen);
323 return memcmp(nc1->nc_name, nc2->nc_name, nc1->nc_nlen);
324 }
325
326 /*
327 * Compute a key value for the given name. The name length is encoded in
328 * the key value to try and improve uniqueness, and so that length doesn't
329 * need to be compared separately for string comparisons.
330 */
331 static inline uint64_t
332 cache_key(const char *name, size_t nlen)
333 {
334 uint64_t key;
335
336 KASSERT(nlen <= USHRT_MAX);
337
338 key = hash32_buf(name, nlen, HASH32_STR_INIT);
339 return (key << 32) | nlen;
340 }
341
342 /*
343 * Remove an entry from the cache. vi_nc_lock must be held, and if dir2node
344 * is true, then we're locking in the conventional direction and the list
345 * lock will be acquired when removing the entry from the vnode list.
346 */
347 static void
348 cache_remove(struct namecache *ncp, const bool dir2node)
349 {
350 struct vnode *vp, *dvp = ncp->nc_dvp;
351 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
352
353 KASSERT(rw_write_held(&dvi->vi_nc_lock));
354 KASSERT(cache_key(ncp->nc_name, ncp->nc_nlen) == ncp->nc_key);
355 KASSERT(rb_tree_find_node(&dvi->vi_nc_tree, ncp) == ncp);
356
357 SDT_PROBE(vfs, namecache, invalidate, done, ncp,
358 0, 0, 0, 0);
359
360 /*
361 * Remove from the vnode's list. This excludes cache_revlookup(),
362 * and then it's safe to remove from the LRU lists.
363 */
364 if ((vp = ncp->nc_vp) != NULL) {
365 vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
366 if (__predict_true(dir2node)) {
367 rw_enter(&vi->vi_nc_listlock, RW_WRITER);
368 TAILQ_REMOVE(&vi->vi_nc_list, ncp, nc_list);
369 rw_exit(&vi->vi_nc_listlock);
370 } else {
371 TAILQ_REMOVE(&vi->vi_nc_list, ncp, nc_list);
372 }
373 }
374
375 /* Remove from the directory's rbtree. */
376 rb_tree_remove_node(&dvi->vi_nc_tree, ncp);
377
378 /* Remove from the LRU lists. */
379 mutex_enter(&cache_lru_lock);
380 TAILQ_REMOVE(&cache_lru.list[ncp->nc_lrulist], ncp, nc_lru);
381 cache_lru.count[ncp->nc_lrulist]--;
382 mutex_exit(&cache_lru_lock);
383
384 /* Finally, free it. */
385 if (ncp->nc_nlen > NCHNAMLEN) {
386 size_t sz = offsetof(struct namecache, nc_name[ncp->nc_nlen]);
387 kmem_free(ncp, sz);
388 } else {
389 pool_cache_put(cache_pool, ncp);
390 }
391 }
392
393 /*
394 * Find a single cache entry and return it. vi_nc_lock must be held.
395 */
396 static struct namecache * __noinline
397 cache_lookup_entry(struct vnode *dvp, const char *name, size_t namelen,
398 uint64_t key)
399 {
400 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
401 struct rb_node *node = dvi->vi_nc_tree.rbt_root;
402 struct namecache *ncp;
403 int lrulist, diff;
404
405 KASSERT(rw_lock_held(&dvi->vi_nc_lock));
406
407 /*
408 * Search the RB tree for the key. This is an inlined lookup
409 * tailored for exactly what's needed here (64-bit key and so on)
410 * that is quite a bit faster than using rb_tree_find_node().
411 *
412 * For a matching key memcmp() needs to be called once to confirm
413 * that the correct name has been found. Very rarely there will be
414 * a key value collision and the search will continue.
415 */
416 for (;;) {
417 if (__predict_false(RB_SENTINEL_P(node))) {
418 return NULL;
419 }
420 ncp = (struct namecache *)node;
421 KASSERT((void *)&ncp->nc_tree == (void *)ncp);
422 KASSERT(ncp->nc_dvp == dvp);
423 if (ncp->nc_key == key) {
424 KASSERT(ncp->nc_nlen == namelen);
425 diff = memcmp(ncp->nc_name, name, namelen);
426 if (__predict_true(diff == 0)) {
427 break;
428 }
429 node = node->rb_nodes[diff < 0];
430 } else {
431 node = node->rb_nodes[ncp->nc_key < key];
432 }
433 }
434
435 /*
436 * If the entry is on the wrong LRU list, requeue it. This is an
437 * unlocked check, but it will rarely be wrong and even then there
438 * will be no harm caused.
439 */
440 lrulist = atomic_load_relaxed(&ncp->nc_lrulist);
441 if (__predict_false(lrulist != LRU_ACTIVE)) {
442 cache_activate(ncp);
443 }
444 return ncp;
445 }
446
447 /*
448 * Look for a the name in the cache. We don't do this
449 * if the segment name is long, simply so the cache can avoid
450 * holding long names (which would either waste space, or
451 * add greatly to the complexity).
452 *
453 * Lookup is called with DVP pointing to the directory to search,
454 * and CNP providing the name of the entry being sought: cn_nameptr
455 * is the name, cn_namelen is its length, and cn_flags is the flags
456 * word from the namei operation.
457 *
458 * DVP must be locked.
459 *
460 * There are three possible non-error return states:
461 * 1. Nothing was found in the cache. Nothing is known about
462 * the requested name.
463 * 2. A negative entry was found in the cache, meaning that the
464 * requested name definitely does not exist.
465 * 3. A positive entry was found in the cache, meaning that the
466 * requested name does exist and that we are providing the
467 * vnode.
468 * In these cases the results are:
469 * 1. 0 returned; VN is set to NULL.
470 * 2. 1 returned; VN is set to NULL.
471 * 3. 1 returned; VN is set to the vnode found.
472 *
473 * The additional result argument ISWHT is set to zero, unless a
474 * negative entry is found that was entered as a whiteout, in which
475 * case ISWHT is set to one.
476 *
477 * The ISWHT_RET argument pointer may be null. In this case an
478 * assertion is made that the whiteout flag is not set. File systems
479 * that do not support whiteouts can/should do this.
480 *
481 * Filesystems that do support whiteouts should add ISWHITEOUT to
482 * cnp->cn_flags if ISWHT comes back nonzero.
483 *
484 * When a vnode is returned, it is locked, as per the vnode lookup
485 * locking protocol.
486 *
487 * There is no way for this function to fail, in the sense of
488 * generating an error that requires aborting the namei operation.
489 *
490 * (Prior to October 2012, this function returned an integer status,
491 * and a vnode, and mucked with the flags word in CNP for whiteouts.
492 * The integer status was -1 for "nothing found", ENOENT for "a
493 * negative entry found", 0 for "a positive entry found", and possibly
494 * other errors, and the value of VN might or might not have been set
495 * depending on what error occurred.)
496 */
497 bool
498 cache_lookup(struct vnode *dvp, const char *name, size_t namelen,
499 uint32_t nameiop, uint32_t cnflags,
500 int *iswht_ret, struct vnode **vn_ret)
501 {
502 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
503 struct namecache *ncp;
504 struct vnode *vp;
505 uint64_t key;
506 int error;
507 bool hit;
508 krw_t op;
509
510 /* Establish default result values */
511 if (iswht_ret != NULL) {
512 *iswht_ret = 0;
513 }
514 *vn_ret = NULL;
515
516 if (__predict_false(namelen > cache_maxlen)) {
517 SDT_PROBE(vfs, namecache, lookup, toolong, dvp,
518 name, namelen, 0, 0);
519 COUNT(ncs_long);
520 return false;
521 }
522
523 /* Compute the key up front - don't need the lock. */
524 key = cache_key(name, namelen);
525
526 /* Could the entry be purged below? */
527 if ((cnflags & ISLASTCN) != 0 &&
528 ((cnflags & MAKEENTRY) == 0 || nameiop == CREATE)) {
529 op = RW_WRITER;
530 } else {
531 op = RW_READER;
532 }
533
534 /* Now look for the name. */
535 rw_enter(&dvi->vi_nc_lock, op);
536 ncp = cache_lookup_entry(dvp, name, namelen, key);
537 if (__predict_false(ncp == NULL)) {
538 rw_exit(&dvi->vi_nc_lock);
539 COUNT(ncs_miss);
540 SDT_PROBE(vfs, namecache, lookup, miss, dvp,
541 name, namelen, 0, 0);
542 return false;
543 }
544 if (__predict_false((cnflags & MAKEENTRY) == 0)) {
545 /*
546 * Last component and we are renaming or deleting,
547 * the cache entry is invalid, or otherwise don't
548 * want cache entry to exist.
549 */
550 KASSERT((cnflags & ISLASTCN) != 0);
551 cache_remove(ncp, true);
552 rw_exit(&dvi->vi_nc_lock);
553 COUNT(ncs_badhits);
554 return false;
555 }
556 if (ncp->nc_vp == NULL) {
557 if (iswht_ret != NULL) {
558 /*
559 * Restore the ISWHITEOUT flag saved earlier.
560 */
561 *iswht_ret = ncp->nc_whiteout;
562 } else {
563 KASSERT(!ncp->nc_whiteout);
564 }
565 if (nameiop == CREATE && (cnflags & ISLASTCN) != 0) {
566 /*
567 * Last component and we are preparing to create
568 * the named object, so flush the negative cache
569 * entry.
570 */
571 COUNT(ncs_badhits);
572 cache_remove(ncp, true);
573 hit = false;
574 } else {
575 COUNT(ncs_neghits);
576 SDT_PROBE(vfs, namecache, lookup, hit, dvp, name,
577 namelen, 0, 0);
578 /* found neg entry; vn is already null from above */
579 hit = true;
580 }
581 rw_exit(&dvi->vi_nc_lock);
582 return hit;
583 }
584 vp = ncp->nc_vp;
585 error = vcache_tryvget(vp);
586 rw_exit(&dvi->vi_nc_lock);
587 if (error) {
588 KASSERT(error == EBUSY);
589 /*
590 * This vnode is being cleaned out.
591 * XXX badhits?
592 */
593 COUNT(ncs_falsehits);
594 return false;
595 }
596
597 COUNT(ncs_goodhits);
598 SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0);
599 /* found it */
600 *vn_ret = vp;
601 return true;
602 }
603
604 /*
605 * Version of the above without the nameiop argument, for NFS.
606 */
607 bool
608 cache_lookup_raw(struct vnode *dvp, const char *name, size_t namelen,
609 uint32_t cnflags,
610 int *iswht_ret, struct vnode **vn_ret)
611 {
612
613 return cache_lookup(dvp, name, namelen, LOOKUP, cnflags | MAKEENTRY,
614 iswht_ret, vn_ret);
615 }
616
617 /*
618 * Used by namei() to walk down a path, component by component by looking up
619 * names in the cache. The node locks are chained along the way: a parent's
620 * lock is not dropped until the child's is acquired.
621 */
622 bool
623 cache_lookup_linked(struct vnode *dvp, const char *name, size_t namelen,
624 struct vnode **vn_ret, krwlock_t **plock,
625 kauth_cred_t cred)
626 {
627 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
628 struct namecache *ncp;
629 krwlock_t *oldlock, *newlock;
630 uint64_t key;
631 int error;
632
633 /* If disabled, or file system doesn't support this, bail out. */
634 if (__predict_false((dvp->v_mount->mnt_iflag & IMNT_NCLOOKUP) == 0)) {
635 return false;
636 }
637
638 if (__predict_false(namelen > cache_maxlen)) {
639 COUNT(ncs_long);
640 return false;
641 }
642
643 /* Compute the key up front - don't need the lock. */
644 key = cache_key(name, namelen);
645
646 /*
647 * Acquire the directory lock. Once we have that, we can drop the
648 * previous one (if any).
649 *
650 * The two lock holds mean that the directory can't go away while
651 * here: the directory must be purged with cache_purge() before
652 * being freed, and both parent & child's vi_nc_lock must be taken
653 * before that point is passed.
654 *
655 * However if there's no previous lock, like at the root of the
656 * chain, then "dvp" must be referenced to prevent dvp going away
657 * before we get its lock.
658 *
659 * Note that the two locks can be the same if looking up a dot, for
660 * example: /usr/bin/. If looking up the parent (..) we can't wait
661 * on the lock as child -> parent is the wrong direction.
662 */
663 if (*plock != &dvi->vi_nc_lock) {
664 oldlock = *plock;
665 newlock = &dvi->vi_nc_lock;
666 if (!rw_tryenter(&dvi->vi_nc_lock, RW_READER)) {
667 return false;
668 }
669 } else {
670 oldlock = NULL;
671 newlock = NULL;
672 if (*plock == NULL) {
673 KASSERT(vrefcnt(dvp) > 0);
674 }
675 }
676
677 /*
678 * First up check if the user is allowed to look up files in this
679 * directory.
680 */
681 if (cred != FSCRED) {
682 if (dvi->vi_nc_mode == VNOVAL) {
683 if (newlock != NULL) {
684 rw_exit(newlock);
685 }
686 return false;
687 }
688 KASSERT(dvi->vi_nc_uid != VNOVAL && dvi->vi_nc_gid != VNOVAL);
689 error = kauth_authorize_vnode(cred, KAUTH_ACCESS_ACTION(VEXEC,
690 dvp->v_type, dvi->vi_nc_mode & ALLPERMS), dvp, NULL,
691 genfs_can_access(dvp, cred, dvi->vi_nc_uid, dvi->vi_nc_gid,
692 dvi->vi_nc_mode & ALLPERMS, NULL, VEXEC));
693 if (error != 0) {
694 if (newlock != NULL) {
695 rw_exit(newlock);
696 }
697 COUNT(ncs_denied);
698 return false;
699 }
700 }
701
702 /*
703 * Now look for a matching cache entry.
704 */
705 ncp = cache_lookup_entry(dvp, name, namelen, key);
706 if (__predict_false(ncp == NULL)) {
707 if (newlock != NULL) {
708 rw_exit(newlock);
709 }
710 COUNT(ncs_miss);
711 SDT_PROBE(vfs, namecache, lookup, miss, dvp,
712 name, namelen, 0, 0);
713 return false;
714 }
715 if (ncp->nc_vp == NULL) {
716 /* found negative entry; vn is already null from above */
717 COUNT(ncs_neghits);
718 } else {
719 COUNT(ncs_goodhits); /* XXX can be "badhits" */
720 }
721 SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0);
722
723 /*
724 * Return with the directory lock still held. It will either be
725 * returned to us with another call to cache_lookup_linked() when
726 * looking up the next component, or the caller will release it
727 * manually when finished.
728 */
729 if (oldlock) {
730 rw_exit(oldlock);
731 }
732 if (newlock) {
733 *plock = newlock;
734 }
735 *vn_ret = ncp->nc_vp;
736 return true;
737 }
738
739 /*
740 * Scan cache looking for name of directory entry pointing at vp.
741 * Will not search for "." or "..".
742 *
743 * If the lookup succeeds the vnode is referenced and stored in dvpp.
744 *
745 * If bufp is non-NULL, also place the name in the buffer which starts
746 * at bufp, immediately before *bpp, and move bpp backwards to point
747 * at the start of it. (Yes, this is a little baroque, but it's done
748 * this way to cater to the whims of getcwd).
749 *
750 * Returns 0 on success, -1 on cache miss, positive errno on failure.
751 */
752 int
753 cache_revlookup(struct vnode *vp, struct vnode **dvpp, char **bpp, char *bufp,
754 bool checkaccess, accmode_t accmode)
755 {
756 vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
757 struct namecache *ncp;
758 struct vnode *dvp;
759 int error, nlen, lrulist;
760 char *bp;
761
762 KASSERT(vp != NULL);
763
764 if (cache_maxlen == 0)
765 goto out;
766
767 rw_enter(&vi->vi_nc_listlock, RW_READER);
768 if (checkaccess) {
769 /*
770 * Check if the user is allowed to see. NOTE: this is
771 * checking for access on the "wrong" directory. getcwd()
772 * wants to see that there is access on every component
773 * along the way, not that there is access to any individual
774 * component. Don't use this to check you can look in vp.
775 *
776 * I don't like it, I didn't come up with it, don't blame me!
777 */
778 if (vi->vi_nc_mode == VNOVAL) {
779 rw_exit(&vi->vi_nc_listlock);
780 return -1;
781 }
782 KASSERT(vi->vi_nc_uid != VNOVAL && vi->vi_nc_gid != VNOVAL);
783 error = kauth_authorize_vnode(curlwp->l_cred,
784 KAUTH_ACCESS_ACTION(VEXEC, vp->v_type, vi->vi_nc_mode &
785 ALLPERMS), vp, NULL, genfs_can_access(vp, curlwp->l_cred,
786 vi->vi_nc_uid, vi->vi_nc_gid, vi->vi_nc_mode & ALLPERMS,
787 NULL, accmode));
788 if (error != 0) {
789 rw_exit(&vi->vi_nc_listlock);
790 COUNT(ncs_denied);
791 return EACCES;
792 }
793 }
794 TAILQ_FOREACH(ncp, &vi->vi_nc_list, nc_list) {
795 KASSERT(ncp->nc_vp == vp);
796 KASSERT(ncp->nc_dvp != NULL);
797 nlen = ncp->nc_nlen;
798
799 /*
800 * The queue is partially sorted. Once we hit dots, nothing
801 * else remains but dots and dotdots, so bail out.
802 */
803 if (ncp->nc_name[0] == '.') {
804 if (nlen == 1 ||
805 (nlen == 2 && ncp->nc_name[1] == '.')) {
806 break;
807 }
808 }
809
810 /*
811 * Record a hit on the entry. This is an unlocked read but
812 * even if wrong it doesn't matter too much.
813 */
814 lrulist = atomic_load_relaxed(&ncp->nc_lrulist);
815 if (lrulist != LRU_ACTIVE) {
816 cache_activate(ncp);
817 }
818
819 if (bufp) {
820 bp = *bpp;
821 bp -= nlen;
822 if (bp <= bufp) {
823 *dvpp = NULL;
824 rw_exit(&vi->vi_nc_listlock);
825 SDT_PROBE(vfs, namecache, revlookup,
826 fail, vp, ERANGE, 0, 0, 0);
827 return (ERANGE);
828 }
829 memcpy(bp, ncp->nc_name, nlen);
830 *bpp = bp;
831 }
832
833 dvp = ncp->nc_dvp;
834 error = vcache_tryvget(dvp);
835 rw_exit(&vi->vi_nc_listlock);
836 if (error) {
837 KASSERT(error == EBUSY);
838 if (bufp)
839 (*bpp) += nlen;
840 *dvpp = NULL;
841 SDT_PROBE(vfs, namecache, revlookup, fail, vp,
842 error, 0, 0, 0);
843 return -1;
844 }
845 *dvpp = dvp;
846 SDT_PROBE(vfs, namecache, revlookup, success, vp, dvp,
847 0, 0, 0);
848 COUNT(ncs_revhits);
849 return (0);
850 }
851 rw_exit(&vi->vi_nc_listlock);
852 COUNT(ncs_revmiss);
853 out:
854 *dvpp = NULL;
855 return (-1);
856 }
857
858 /*
859 * Add an entry to the cache.
860 */
861 void
862 cache_enter(struct vnode *dvp, struct vnode *vp,
863 const char *name, size_t namelen, uint32_t cnflags)
864 {
865 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
866 struct namecache *ncp, *oncp;
867 int total;
868
869 /* First, check whether we can/should add a cache entry. */
870 if ((cnflags & MAKEENTRY) == 0 ||
871 __predict_false(namelen > cache_maxlen)) {
872 SDT_PROBE(vfs, namecache, enter, toolong, vp, name, namelen,
873 0, 0);
874 return;
875 }
876
877 SDT_PROBE(vfs, namecache, enter, done, vp, name, namelen, 0, 0);
878
879 /*
880 * Reclaim some entries if over budget. This is an unlocked check,
881 * but it doesn't matter. Just need to catch up with things
882 * eventually: it doesn't matter if we go over temporarily.
883 */
884 total = atomic_load_relaxed(&cache_lru.count[LRU_ACTIVE]);
885 total += atomic_load_relaxed(&cache_lru.count[LRU_INACTIVE]);
886 if (__predict_false(total > desiredvnodes)) {
887 cache_reclaim();
888 }
889
890 /* Now allocate a fresh entry. */
891 if (__predict_true(namelen <= NCHNAMLEN)) {
892 ncp = pool_cache_get(cache_pool, PR_WAITOK);
893 } else {
894 size_t sz = offsetof(struct namecache, nc_name[namelen]);
895 ncp = kmem_alloc(sz, KM_SLEEP);
896 }
897
898 /*
899 * Fill in cache info. For negative hits, save the ISWHITEOUT flag
900 * so we can restore it later when the cache entry is used again.
901 */
902 ncp->nc_vp = vp;
903 ncp->nc_dvp = dvp;
904 ncp->nc_key = cache_key(name, namelen);
905 ncp->nc_nlen = namelen;
906 ncp->nc_whiteout = ((cnflags & ISWHITEOUT) != 0);
907 memcpy(ncp->nc_name, name, namelen);
908
909 /*
910 * Insert to the directory. Concurrent lookups may race for a cache
911 * entry. If there's a entry there already, purge it.
912 */
913 rw_enter(&dvi->vi_nc_lock, RW_WRITER);
914 oncp = rb_tree_insert_node(&dvi->vi_nc_tree, ncp);
915 if (oncp != ncp) {
916 KASSERT(oncp->nc_key == ncp->nc_key);
917 KASSERT(oncp->nc_nlen == ncp->nc_nlen);
918 KASSERT(memcmp(oncp->nc_name, name, namelen) == 0);
919 cache_remove(oncp, true);
920 oncp = rb_tree_insert_node(&dvi->vi_nc_tree, ncp);
921 KASSERT(oncp == ncp);
922 }
923
924 /*
925 * With the directory lock still held, insert to the tail of the
926 * ACTIVE LRU list (new) and take the opportunity to incrementally
927 * balance the lists.
928 */
929 mutex_enter(&cache_lru_lock);
930 ncp->nc_lrulist = LRU_ACTIVE;
931 cache_lru.count[LRU_ACTIVE]++;
932 TAILQ_INSERT_TAIL(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru);
933 cache_deactivate();
934 mutex_exit(&cache_lru_lock);
935
936 /*
937 * Finally, insert to the vnode and unlock. With everything set up
938 * it's safe to let cache_revlookup() see the entry. Partially sort
939 * the per-vnode list: dots go to back so cache_revlookup() doesn't
940 * have to consider them.
941 */
942 if (vp != NULL) {
943 vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
944 rw_enter(&vi->vi_nc_listlock, RW_WRITER);
945 if ((namelen == 1 && name[0] == '.') ||
946 (namelen == 2 && name[0] == '.' && name[1] == '.')) {
947 TAILQ_INSERT_TAIL(&vi->vi_nc_list, ncp, nc_list);
948 } else {
949 TAILQ_INSERT_HEAD(&vi->vi_nc_list, ncp, nc_list);
950 }
951 rw_exit(&vi->vi_nc_listlock);
952 }
953 rw_exit(&dvi->vi_nc_lock);
954 }
955
956 /*
957 * Set identity info in cache for a vnode. We only care about directories
958 * so ignore other updates. The cached info may be marked invalid if the
959 * inode has an ACL.
960 */
961 void
962 cache_enter_id(struct vnode *vp, mode_t mode, uid_t uid, gid_t gid, bool valid)
963 {
964 vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
965
966 if (vp->v_type == VDIR) {
967 /* Grab both locks, for forward & reverse lookup. */
968 rw_enter(&vi->vi_nc_lock, RW_WRITER);
969 rw_enter(&vi->vi_nc_listlock, RW_WRITER);
970 if (valid) {
971 vi->vi_nc_mode = mode;
972 vi->vi_nc_uid = uid;
973 vi->vi_nc_gid = gid;
974 } else {
975 vi->vi_nc_mode = VNOVAL;
976 vi->vi_nc_uid = VNOVAL;
977 vi->vi_nc_gid = VNOVAL;
978 }
979 rw_exit(&vi->vi_nc_listlock);
980 rw_exit(&vi->vi_nc_lock);
981 }
982 }
983
984 /*
985 * Return true if we have identity for the given vnode, and use as an
986 * opportunity to confirm that everything squares up.
987 *
988 * Because of shared code, some file systems could provide partial
989 * information, missing some updates, so check the mount flag too.
990 */
991 bool
992 cache_have_id(struct vnode *vp)
993 {
994
995 if (vp->v_type == VDIR &&
996 (vp->v_mount->mnt_iflag & IMNT_NCLOOKUP) != 0 &&
997 atomic_load_relaxed(&VNODE_TO_VIMPL(vp)->vi_nc_mode) != VNOVAL) {
998 return true;
999 } else {
1000 return false;
1001 }
1002 }
1003
1004 /*
1005 * Name cache initialization, from vfs_init() when the system is booting.
1006 */
1007 void
1008 nchinit(void)
1009 {
1010
1011 cache_pool = pool_cache_init(sizeof(struct namecache),
1012 coherency_unit, 0, 0, "namecache", NULL, IPL_NONE, NULL,
1013 NULL, NULL);
1014 KASSERT(cache_pool != NULL);
1015
1016 mutex_init(&cache_lru_lock, MUTEX_DEFAULT, IPL_NONE);
1017 TAILQ_INIT(&cache_lru.list[LRU_ACTIVE]);
1018 TAILQ_INIT(&cache_lru.list[LRU_INACTIVE]);
1019
1020 mutex_init(&cache_stat_lock, MUTEX_DEFAULT, IPL_NONE);
1021 callout_init(&cache_stat_callout, CALLOUT_MPSAFE);
1022 callout_setfunc(&cache_stat_callout, cache_update_stats, NULL);
1023 callout_schedule(&cache_stat_callout, cache_stat_interval * hz);
1024
1025 KASSERT(cache_sysctllog == NULL);
1026 sysctl_createv(&cache_sysctllog, 0, NULL, NULL,
1027 CTLFLAG_PERMANENT,
1028 CTLTYPE_STRUCT, "namecache_stats",
1029 SYSCTL_DESCR("namecache statistics"),
1030 cache_stat_sysctl, 0, NULL, 0,
1031 CTL_VFS, CTL_CREATE, CTL_EOL);
1032 }
1033
1034 /*
1035 * Called once for each CPU in the system as attached.
1036 */
1037 void
1038 cache_cpu_init(struct cpu_info *ci)
1039 {
1040 void *p;
1041 size_t sz;
1042
1043 sz = roundup2(sizeof(struct nchstats_percpu), coherency_unit) +
1044 coherency_unit;
1045 p = kmem_zalloc(sz, KM_SLEEP);
1046 ci->ci_data.cpu_nch = (void *)roundup2((uintptr_t)p, coherency_unit);
1047 }
1048
1049 /*
1050 * A vnode is being allocated: set up cache structures.
1051 */
1052 void
1053 cache_vnode_init(struct vnode *vp)
1054 {
1055 vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
1056
1057 rw_init(&vi->vi_nc_lock);
1058 rw_init(&vi->vi_nc_listlock);
1059 rb_tree_init(&vi->vi_nc_tree, &cache_rbtree_ops);
1060 TAILQ_INIT(&vi->vi_nc_list);
1061 vi->vi_nc_mode = VNOVAL;
1062 vi->vi_nc_uid = VNOVAL;
1063 vi->vi_nc_gid = VNOVAL;
1064 }
1065
1066 /*
1067 * A vnode is being freed: finish cache structures.
1068 */
1069 void
1070 cache_vnode_fini(struct vnode *vp)
1071 {
1072 vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
1073
1074 KASSERT(RB_TREE_MIN(&vi->vi_nc_tree) == NULL);
1075 KASSERT(TAILQ_EMPTY(&vi->vi_nc_list));
1076 rw_destroy(&vi->vi_nc_lock);
1077 rw_destroy(&vi->vi_nc_listlock);
1078 }
1079
1080 /*
1081 * Helper for cache_purge1(): purge cache entries for the given vnode from
1082 * all directories that the vnode is cached in.
1083 */
1084 static void
1085 cache_purge_parents(struct vnode *vp)
1086 {
1087 vnode_impl_t *dvi, *vi = VNODE_TO_VIMPL(vp);
1088 struct vnode *dvp, *blocked;
1089 struct namecache *ncp;
1090
1091 SDT_PROBE(vfs, namecache, purge, parents, vp, 0, 0, 0, 0);
1092
1093 blocked = NULL;
1094
1095 rw_enter(&vi->vi_nc_listlock, RW_WRITER);
1096 while ((ncp = TAILQ_FIRST(&vi->vi_nc_list)) != NULL) {
1097 /*
1098 * Locking in the wrong direction. Try for a hold on the
1099 * directory node's lock, and if we get it then all good,
1100 * nuke the entry and move on to the next.
1101 */
1102 dvp = ncp->nc_dvp;
1103 dvi = VNODE_TO_VIMPL(dvp);
1104 if (rw_tryenter(&dvi->vi_nc_lock, RW_WRITER)) {
1105 cache_remove(ncp, false);
1106 rw_exit(&dvi->vi_nc_lock);
1107 blocked = NULL;
1108 continue;
1109 }
1110
1111 /*
1112 * We can't wait on the directory node's lock with our list
1113 * lock held or the system could deadlock.
1114 *
1115 * Take a hold on the directory vnode to prevent it from
1116 * being freed (taking the vnode & lock with it). Then
1117 * wait for the lock to become available with no other locks
1118 * held, and retry.
1119 *
1120 * If this happens twice in a row, give the other side a
1121 * breather; we can do nothing until it lets go.
1122 */
1123 vhold(dvp);
1124 rw_exit(&vi->vi_nc_listlock);
1125 rw_enter(&dvi->vi_nc_lock, RW_WRITER);
1126 /* Do nothing. */
1127 rw_exit(&dvi->vi_nc_lock);
1128 holdrele(dvp);
1129 if (blocked == dvp) {
1130 kpause("ncpurge", false, 1, NULL);
1131 }
1132 rw_enter(&vi->vi_nc_listlock, RW_WRITER);
1133 blocked = dvp;
1134 }
1135 rw_exit(&vi->vi_nc_listlock);
1136 }
1137
1138 /*
1139 * Helper for cache_purge1(): purge all cache entries hanging off the given
1140 * directory vnode.
1141 */
1142 static void
1143 cache_purge_children(struct vnode *dvp)
1144 {
1145 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
1146 struct namecache *ncp;
1147
1148 SDT_PROBE(vfs, namecache, purge, children, dvp, 0, 0, 0, 0);
1149
1150 rw_enter(&dvi->vi_nc_lock, RW_WRITER);
1151 while ((ncp = RB_TREE_MIN(&dvi->vi_nc_tree)) != NULL) {
1152 cache_remove(ncp, true);
1153 }
1154 rw_exit(&dvi->vi_nc_lock);
1155 }
1156
1157 /*
1158 * Helper for cache_purge1(): purge cache entry from the given vnode,
1159 * finding it by name.
1160 */
1161 static void
1162 cache_purge_name(struct vnode *dvp, const char *name, size_t namelen)
1163 {
1164 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
1165 struct namecache *ncp;
1166 uint64_t key;
1167
1168 SDT_PROBE(vfs, namecache, purge, name, name, namelen, 0, 0, 0);
1169
1170 key = cache_key(name, namelen);
1171 rw_enter(&dvi->vi_nc_lock, RW_WRITER);
1172 ncp = cache_lookup_entry(dvp, name, namelen, key);
1173 if (ncp) {
1174 cache_remove(ncp, true);
1175 }
1176 rw_exit(&dvi->vi_nc_lock);
1177 }
1178
1179 /*
1180 * Cache flush, a particular vnode; called when a vnode is renamed to
1181 * hide entries that would now be invalid.
1182 */
1183 void
1184 cache_purge1(struct vnode *vp, const char *name, size_t namelen, int flags)
1185 {
1186
1187 if (flags & PURGE_PARENTS) {
1188 cache_purge_parents(vp);
1189 }
1190 if (flags & PURGE_CHILDREN) {
1191 cache_purge_children(vp);
1192 }
1193 if (name != NULL) {
1194 cache_purge_name(vp, name, namelen);
1195 }
1196 }
1197
1198 /*
1199 * vnode filter for cache_purgevfs().
1200 */
1201 static bool
1202 cache_vdir_filter(void *cookie, vnode_t *vp)
1203 {
1204
1205 return vp->v_type == VDIR;
1206 }
1207
1208 /*
1209 * Cache flush, a whole filesystem; called when filesys is umounted to
1210 * remove entries that would now be invalid.
1211 */
1212 void
1213 cache_purgevfs(struct mount *mp)
1214 {
1215 struct vnode_iterator *iter;
1216 vnode_t *dvp;
1217
1218 vfs_vnode_iterator_init(mp, &iter);
1219 for (;;) {
1220 dvp = vfs_vnode_iterator_next(iter, cache_vdir_filter, NULL);
1221 if (dvp == NULL) {
1222 break;
1223 }
1224 cache_purge_children(dvp);
1225 vrele(dvp);
1226 }
1227 vfs_vnode_iterator_destroy(iter);
1228 }
1229
1230 /*
1231 * Re-queue an entry onto the tail of the active LRU list, after it has
1232 * scored a hit.
1233 */
1234 static void
1235 cache_activate(struct namecache *ncp)
1236 {
1237
1238 mutex_enter(&cache_lru_lock);
1239 TAILQ_REMOVE(&cache_lru.list[ncp->nc_lrulist], ncp, nc_lru);
1240 TAILQ_INSERT_TAIL(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru);
1241 cache_lru.count[ncp->nc_lrulist]--;
1242 cache_lru.count[LRU_ACTIVE]++;
1243 ncp->nc_lrulist = LRU_ACTIVE;
1244 mutex_exit(&cache_lru_lock);
1245 }
1246
1247 /*
1248 * Try to balance the LRU lists. Pick some victim entries, and re-queue
1249 * them from the head of the active list to the tail of the inactive list.
1250 */
1251 static void
1252 cache_deactivate(void)
1253 {
1254 struct namecache *ncp;
1255 int total, i;
1256
1257 KASSERT(mutex_owned(&cache_lru_lock));
1258
1259 /* If we're nowhere near budget yet, don't bother. */
1260 total = cache_lru.count[LRU_ACTIVE] + cache_lru.count[LRU_INACTIVE];
1261 if (total < (desiredvnodes >> 1)) {
1262 return;
1263 }
1264
1265 /*
1266 * Aim for a 1:1 ratio of active to inactive. This is to allow each
1267 * potential victim a reasonable amount of time to cycle through the
1268 * inactive list in order to score a hit and be reactivated, while
1269 * trying not to cause reactivations too frequently.
1270 */
1271 if (cache_lru.count[LRU_ACTIVE] < cache_lru.count[LRU_INACTIVE]) {
1272 return;
1273 }
1274
1275 /* Move only a few at a time; will catch up eventually. */
1276 for (i = 0; i < cache_lru_maxdeact; i++) {
1277 ncp = TAILQ_FIRST(&cache_lru.list[LRU_ACTIVE]);
1278 if (ncp == NULL) {
1279 break;
1280 }
1281 KASSERT(ncp->nc_lrulist == LRU_ACTIVE);
1282 ncp->nc_lrulist = LRU_INACTIVE;
1283 TAILQ_REMOVE(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru);
1284 TAILQ_INSERT_TAIL(&cache_lru.list[LRU_INACTIVE], ncp, nc_lru);
1285 cache_lru.count[LRU_ACTIVE]--;
1286 cache_lru.count[LRU_INACTIVE]++;
1287 }
1288 }
1289
1290 /*
1291 * Free some entries from the cache, when we have gone over budget.
1292 *
1293 * We don't want to cause too much work for any individual caller, and it
1294 * doesn't matter if we temporarily go over budget. This is also "just a
1295 * cache" so it's not a big deal if we screw up and throw out something we
1296 * shouldn't. So we take a relaxed attitude to this process to reduce its
1297 * impact.
1298 */
1299 static void
1300 cache_reclaim(void)
1301 {
1302 struct namecache *ncp;
1303 vnode_impl_t *dvi;
1304 int toscan;
1305
1306 /*
1307 * Scan up to a preset maxium number of entries, but no more than
1308 * 0.8% of the total at once (to allow for very small systems).
1309 *
1310 * On bigger systems, do a larger chunk of work to reduce the number
1311 * of times that cache_lru_lock is held for any length of time.
1312 */
1313 mutex_enter(&cache_lru_lock);
1314 toscan = MIN(cache_lru_maxscan, desiredvnodes >> 7);
1315 toscan = MAX(toscan, 1);
1316 SDT_PROBE(vfs, namecache, prune, done, cache_lru.count[LRU_ACTIVE] +
1317 cache_lru.count[LRU_INACTIVE], toscan, 0, 0, 0);
1318 while (toscan-- != 0) {
1319 /* First try to balance the lists. */
1320 cache_deactivate();
1321
1322 /* Now look for a victim on head of inactive list (old). */
1323 ncp = TAILQ_FIRST(&cache_lru.list[LRU_INACTIVE]);
1324 if (ncp == NULL) {
1325 break;
1326 }
1327 dvi = VNODE_TO_VIMPL(ncp->nc_dvp);
1328 KASSERT(ncp->nc_lrulist == LRU_INACTIVE);
1329 KASSERT(dvi != NULL);
1330
1331 /*
1332 * Locking in the wrong direction. If we can't get the
1333 * lock, the directory is actively busy, and it could also
1334 * cause problems for the next guy in here, so send the
1335 * entry to the back of the list.
1336 */
1337 if (!rw_tryenter(&dvi->vi_nc_lock, RW_WRITER)) {
1338 TAILQ_REMOVE(&cache_lru.list[LRU_INACTIVE],
1339 ncp, nc_lru);
1340 TAILQ_INSERT_TAIL(&cache_lru.list[LRU_INACTIVE],
1341 ncp, nc_lru);
1342 continue;
1343 }
1344
1345 /*
1346 * Now have the victim entry locked. Drop the LRU list
1347 * lock, purge the entry, and start over. The hold on
1348 * vi_nc_lock will prevent the vnode from vanishing until
1349 * finished (cache_purge() will be called on dvp before it
1350 * disappears, and that will wait on vi_nc_lock).
1351 */
1352 mutex_exit(&cache_lru_lock);
1353 cache_remove(ncp, true);
1354 rw_exit(&dvi->vi_nc_lock);
1355 mutex_enter(&cache_lru_lock);
1356 }
1357 mutex_exit(&cache_lru_lock);
1358 }
1359
1360 /*
1361 * For file system code: count a lookup that required a full re-scan of
1362 * directory metadata.
1363 */
1364 void
1365 namecache_count_pass2(void)
1366 {
1367
1368 COUNT(ncs_pass2);
1369 }
1370
1371 /*
1372 * For file system code: count a lookup that scored a hit in the directory
1373 * metadata near the location of the last lookup.
1374 */
1375 void
1376 namecache_count_2passes(void)
1377 {
1378
1379 COUNT(ncs_2passes);
1380 }
1381
1382 /*
1383 * Sum the stats from all CPUs into nchstats. This needs to run at least
1384 * once within every window where a 32-bit counter could roll over. It's
1385 * called regularly by timer to ensure this.
1386 */
1387 static void
1388 cache_update_stats(void *cookie)
1389 {
1390 CPU_INFO_ITERATOR cii;
1391 struct cpu_info *ci;
1392
1393 mutex_enter(&cache_stat_lock);
1394 for (CPU_INFO_FOREACH(cii, ci)) {
1395 struct nchcpu *nchcpu = ci->ci_data.cpu_nch;
1396 UPDATE(nchcpu, ncs_goodhits);
1397 UPDATE(nchcpu, ncs_neghits);
1398 UPDATE(nchcpu, ncs_badhits);
1399 UPDATE(nchcpu, ncs_falsehits);
1400 UPDATE(nchcpu, ncs_miss);
1401 UPDATE(nchcpu, ncs_long);
1402 UPDATE(nchcpu, ncs_pass2);
1403 UPDATE(nchcpu, ncs_2passes);
1404 UPDATE(nchcpu, ncs_revhits);
1405 UPDATE(nchcpu, ncs_revmiss);
1406 UPDATE(nchcpu, ncs_denied);
1407 }
1408 if (cookie != NULL) {
1409 memcpy(cookie, &nchstats, sizeof(nchstats));
1410 }
1411 /* Reset the timer; arrive back here in N minutes at latest. */
1412 callout_schedule(&cache_stat_callout, cache_stat_interval * hz);
1413 mutex_exit(&cache_stat_lock);
1414 }
1415
1416 /*
1417 * Fetch the current values of the stats for sysctl.
1418 */
1419 static int
1420 cache_stat_sysctl(SYSCTLFN_ARGS)
1421 {
1422 struct nchstats stats;
1423
1424 if (oldp == NULL) {
1425 *oldlenp = sizeof(nchstats);
1426 return 0;
1427 }
1428
1429 if (*oldlenp <= 0) {
1430 *oldlenp = 0;
1431 return 0;
1432 }
1433
1434 /* Refresh the global stats. */
1435 sysctl_unlock();
1436 cache_update_stats(&stats);
1437 sysctl_relock();
1438
1439 *oldlenp = MIN(sizeof(stats), *oldlenp);
1440 return sysctl_copyout(l, &stats, oldp, *oldlenp);
1441 }
1442
1443 /*
1444 * For the debugger, given the address of a vnode, print all associated
1445 * names in the cache.
1446 */
1447 #ifdef DDB
1448 void
1449 namecache_print(struct vnode *vp, void (*pr)(const char *, ...))
1450 {
1451 struct vnode *dvp = NULL;
1452 struct namecache *ncp;
1453 enum cache_lru_id id;
1454
1455 for (id = 0; id < LRU_COUNT; id++) {
1456 TAILQ_FOREACH(ncp, &cache_lru.list[id], nc_lru) {
1457 if (ncp->nc_vp == vp) {
1458 (*pr)("name %.*s\n", ncp->nc_nlen,
1459 ncp->nc_name);
1460 dvp = ncp->nc_dvp;
1461 }
1462 }
1463 }
1464 if (dvp == NULL) {
1465 (*pr)("name not found\n");
1466 return;
1467 }
1468 for (id = 0; id < LRU_COUNT; id++) {
1469 TAILQ_FOREACH(ncp, &cache_lru.list[id], nc_lru) {
1470 if (ncp->nc_vp == dvp) {
1471 (*pr)("parent %.*s\n", ncp->nc_nlen,
1472 ncp->nc_name);
1473 }
1474 }
1475 }
1476 }
1477 #endif
1478