vfs_cache.c revision 1.146 1 /* $NetBSD: vfs_cache.c,v 1.146 2020/05/30 20:16:14 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2019, 2020 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)vfs_cache.c 8.3 (Berkeley) 8/22/94
61 */
62
63 /*
64 * Name caching:
65 *
66 * Names found by directory scans are retained in a cache for future
67 * reference. It is managed LRU, so frequently used names will hang
68 * around. The cache is indexed by hash value obtained from the name.
69 *
70 * The name cache is the brainchild of Robert Elz and was introduced in
71 * 4.3BSD. See "Using gprof to Tune the 4.2BSD Kernel", Marshall Kirk
72 * McKusick, May 21 1984.
73 *
74 * Data structures:
75 *
76 * Most Unix namecaches very sensibly use a global hash table to index
77 * names. The global hash table works well, but can cause concurrency
78 * headaches for the kernel hacker. In the NetBSD 10.0 implementation
79 * we are not sensible, and use a per-directory data structure to index
80 * names, but the cache otherwise functions the same.
81 *
82 * The index is a red-black tree. There are no special concurrency
83 * requirements placed on it, because it's per-directory and protected
84 * by the namecache's per-directory locks. It should therefore not be
85 * difficult to experiment with other types of index.
86 *
87 * Each cached name is stored in a struct namecache, along with a
88 * pointer to the associated vnode (nc_vp). Names longer than a
89 * maximum length of NCHNAMLEN are allocated with kmem_alloc(); they
90 * occur infrequently, and names shorter than this are stored directly
91 * in struct namecache. If it is a "negative" entry, (i.e. for a name
92 * that is known NOT to exist) the vnode pointer will be NULL.
93 *
94 * For a directory with 3 cached names for 3 distinct vnodes, the
95 * various vnodes and namecache structs would be connected like this
96 * (the root is at the bottom of the diagram):
97 *
98 * ...
99 * ^
100 * |- vi_nc_tree
101 * |
102 * +----o----+ +---------+ +---------+
103 * | VDIR | | VCHR | | VREG |
104 * | vnode o-----+ | vnode o-----+ | vnode o------+
105 * +---------+ | +---------+ | +---------+ |
106 * ^ | ^ | ^ |
107 * |- nc_vp |- vi_nc_list |- nc_vp |- vi_nc_list |- nc_vp |
108 * | | | | | |
109 * +----o----+ | +----o----+ | +----o----+ |
110 * +---onamecache|<----+ +---onamecache|<----+ +---onamecache|<-----+
111 * | +---------+ | +---------+ | +---------+
112 * | ^ | ^ | ^
113 * | | | | | |
114 * | | +----------------------+ | |
115 * |-nc_dvp | +-------------------------------------------------+
116 * | |/- vi_nc_tree | |
117 * | | |- nc_dvp |- nc_dvp
118 * | +----o----+ | |
119 * +-->| VDIR |<----------+ |
120 * | vnode |<------------------------------------+
121 * +---------+
122 *
123 * START HERE
124 *
125 * Replacement:
126 *
127 * As the cache becomes full, old and unused entries are purged as new
128 * entries are added. The synchronization overhead in maintaining a
129 * strict ordering would be prohibitive, so the VM system's "clock" or
130 * "second chance" page replacement algorithm is aped here. New
131 * entries go to the tail of the active list. After they age out and
132 * reach the head of the list, they are moved to the tail of the
133 * inactive list. Any use of the deactivated cache entry reactivates
134 * it, saving it from impending doom; if not reactivated, the entry
135 * eventually reaches the head of the inactive list and is purged.
136 *
137 * Concurrency:
138 *
139 * From a performance perspective, cache_lookup(nameiop == LOOKUP) is
140 * what really matters; insertion of new entries with cache_enter() is
141 * comparatively infrequent, and overshadowed by the cost of expensive
142 * file system metadata operations (which may involve disk I/O). We
143 * therefore want to make everything simplest in the lookup path.
144 *
145 * struct namecache is mostly stable except for list and tree related
146 * entries, changes to which don't affect the cached name or vnode.
147 * For changes to name+vnode, entries are purged in preference to
148 * modifying them.
149 *
150 * Read access to namecache entries is made via tree, list, or LRU
151 * list. A lock corresponding to the direction of access should be
152 * held. See definition of "struct namecache" in src/sys/namei.src,
153 * and the definition of "struct vnode" for the particulars.
154 *
155 * Per-CPU statistics, and LRU list totals are read unlocked, since
156 * an approximate value is OK. We maintain 32-bit sized per-CPU
157 * counters and 64-bit global counters under the theory that 32-bit
158 * sized counters are less likely to be hosed by nonatomic increment
159 * (on 32-bit platforms).
160 *
161 * The lock order is:
162 *
163 * 1) vi->vi_nc_lock (tree or parent -> child direction,
164 * used during forward lookup)
165 *
166 * 2) vi->vi_nc_listlock (list or child -> parent direction,
167 * used during reverse lookup)
168 *
169 * 3) cache_lru_lock (LRU list direction, used during reclaim)
170 *
171 * 4) vp->v_interlock (what the cache entry points to)
172 */
173
174 #include <sys/cdefs.h>
175 __KERNEL_RCSID(0, "$NetBSD: vfs_cache.c,v 1.146 2020/05/30 20:16:14 ad Exp $");
176
177 #define __NAMECACHE_PRIVATE
178 #ifdef _KERNEL_OPT
179 #include "opt_ddb.h"
180 #include "opt_dtrace.h"
181 #endif
182
183 #include <sys/types.h>
184 #include <sys/atomic.h>
185 #include <sys/callout.h>
186 #include <sys/cpu.h>
187 #include <sys/errno.h>
188 #include <sys/evcnt.h>
189 #include <sys/hash.h>
190 #include <sys/kernel.h>
191 #include <sys/mount.h>
192 #include <sys/mutex.h>
193 #include <sys/namei.h>
194 #include <sys/param.h>
195 #include <sys/pool.h>
196 #include <sys/sdt.h>
197 #include <sys/sysctl.h>
198 #include <sys/systm.h>
199 #include <sys/time.h>
200 #include <sys/vnode_impl.h>
201
202 #include <miscfs/genfs/genfs.h>
203
204 static void cache_activate(struct namecache *);
205 static void cache_update_stats(void *);
206 static int cache_compare_nodes(void *, const void *, const void *);
207 static void cache_deactivate(void);
208 static void cache_reclaim(void);
209 static int cache_stat_sysctl(SYSCTLFN_ARGS);
210
211 /*
212 * Global pool cache.
213 */
214 static pool_cache_t cache_pool __read_mostly;
215
216 /*
217 * LRU replacement.
218 */
219 enum cache_lru_id {
220 LRU_ACTIVE,
221 LRU_INACTIVE,
222 LRU_COUNT
223 };
224
225 static struct {
226 TAILQ_HEAD(, namecache) list[LRU_COUNT];
227 u_int count[LRU_COUNT];
228 } cache_lru __cacheline_aligned;
229
230 static kmutex_t cache_lru_lock __cacheline_aligned;
231
232 /*
233 * Cache effectiveness statistics. nchstats holds system-wide total.
234 */
235 struct nchstats nchstats;
236 struct nchstats_percpu _NAMEI_CACHE_STATS(uint32_t);
237 struct nchcpu {
238 struct nchstats_percpu cur;
239 struct nchstats_percpu last;
240 };
241 static callout_t cache_stat_callout;
242 static kmutex_t cache_stat_lock __cacheline_aligned;
243
244 #define COUNT(f) do { \
245 lwp_t *l = curlwp; \
246 KPREEMPT_DISABLE(l); \
247 ((struct nchstats_percpu *)curcpu()->ci_data.cpu_nch)->f++; \
248 KPREEMPT_ENABLE(l); \
249 } while (/* CONSTCOND */ 0);
250
251 #define UPDATE(nchcpu, f) do { \
252 uint32_t cur = atomic_load_relaxed(&nchcpu->cur.f); \
253 nchstats.f += (uint32_t)(cur - nchcpu->last.f); \
254 nchcpu->last.f = cur; \
255 } while (/* CONSTCOND */ 0)
256
257 /*
258 * Tunables. cache_maxlen replaces the historical doingcache:
259 * set it zero to disable caching for debugging purposes.
260 */
261 int cache_lru_maxdeact __read_mostly = 2; /* max # to deactivate */
262 int cache_lru_maxscan __read_mostly = 64; /* max # to scan/reclaim */
263 int cache_maxlen __read_mostly = USHRT_MAX; /* max name length to cache */
264 int cache_stat_interval __read_mostly = 300; /* in seconds */
265
266 /*
267 * sysctl stuff.
268 */
269 static struct sysctllog *cache_sysctllog;
270
271 /*
272 * This is a dummy name that cannot usually occur anywhere in the cache nor
273 * file system. It's used when caching the root vnode of mounted file
274 * systems. The name is attached to the directory that the file system is
275 * mounted on.
276 */
277 static const char cache_mp_name[] = "";
278 static const int cache_mp_nlen = sizeof(cache_mp_name) - 1;
279
280 /*
281 * Red-black tree stuff.
282 */
283 static const rb_tree_ops_t cache_rbtree_ops = {
284 .rbto_compare_nodes = cache_compare_nodes,
285 .rbto_compare_key = cache_compare_nodes,
286 .rbto_node_offset = offsetof(struct namecache, nc_tree),
287 .rbto_context = NULL
288 };
289
290 /*
291 * dtrace probes.
292 */
293 SDT_PROVIDER_DEFINE(vfs);
294
295 SDT_PROBE_DEFINE1(vfs, namecache, invalidate, done, "struct vnode *");
296 SDT_PROBE_DEFINE1(vfs, namecache, purge, parents, "struct vnode *");
297 SDT_PROBE_DEFINE1(vfs, namecache, purge, children, "struct vnode *");
298 SDT_PROBE_DEFINE2(vfs, namecache, purge, name, "char *", "size_t");
299 SDT_PROBE_DEFINE1(vfs, namecache, purge, vfs, "struct mount *");
300 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *",
301 "char *", "size_t");
302 SDT_PROBE_DEFINE3(vfs, namecache, lookup, miss, "struct vnode *",
303 "char *", "size_t");
304 SDT_PROBE_DEFINE3(vfs, namecache, lookup, toolong, "struct vnode *",
305 "char *", "size_t");
306 SDT_PROBE_DEFINE2(vfs, namecache, revlookup, success, "struct vnode *",
307 "struct vnode *");
308 SDT_PROBE_DEFINE2(vfs, namecache, revlookup, fail, "struct vnode *",
309 "int");
310 SDT_PROBE_DEFINE2(vfs, namecache, prune, done, "int", "int");
311 SDT_PROBE_DEFINE3(vfs, namecache, enter, toolong, "struct vnode *",
312 "char *", "size_t");
313 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *",
314 "char *", "size_t");
315
316 /*
317 * rbtree: compare two nodes.
318 */
319 static int
320 cache_compare_nodes(void *context, const void *n1, const void *n2)
321 {
322 const struct namecache *nc1 = n1;
323 const struct namecache *nc2 = n2;
324
325 if (nc1->nc_key < nc2->nc_key) {
326 return -1;
327 }
328 if (nc1->nc_key > nc2->nc_key) {
329 return 1;
330 }
331 KASSERT(nc1->nc_nlen == nc2->nc_nlen);
332 return memcmp(nc1->nc_name, nc2->nc_name, nc1->nc_nlen);
333 }
334
335 /*
336 * Compute a key value for the given name. The name length is encoded in
337 * the key value to try and improve uniqueness, and so that length doesn't
338 * need to be compared separately for string comparisons.
339 */
340 static inline uint64_t
341 cache_key(const char *name, size_t nlen)
342 {
343 uint64_t key;
344
345 KASSERT(nlen <= USHRT_MAX);
346
347 key = hash32_buf(name, nlen, HASH32_STR_INIT);
348 return (key << 32) | nlen;
349 }
350
351 /*
352 * Remove an entry from the cache. vi_nc_lock must be held, and if dir2node
353 * is true, then we're locking in the conventional direction and the list
354 * lock will be acquired when removing the entry from the vnode list.
355 */
356 static void
357 cache_remove(struct namecache *ncp, const bool dir2node)
358 {
359 struct vnode *vp, *dvp = ncp->nc_dvp;
360 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
361
362 KASSERT(rw_write_held(&dvi->vi_nc_lock));
363 KASSERT(cache_key(ncp->nc_name, ncp->nc_nlen) == ncp->nc_key);
364 KASSERT(rb_tree_find_node(&dvi->vi_nc_tree, ncp) == ncp);
365
366 SDT_PROBE(vfs, namecache, invalidate, done, ncp,
367 0, 0, 0, 0);
368
369 /*
370 * Remove from the vnode's list. This excludes cache_revlookup(),
371 * and then it's safe to remove from the LRU lists.
372 */
373 if ((vp = ncp->nc_vp) != NULL) {
374 vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
375 if (__predict_true(dir2node)) {
376 rw_enter(&vi->vi_nc_listlock, RW_WRITER);
377 TAILQ_REMOVE(&vi->vi_nc_list, ncp, nc_list);
378 rw_exit(&vi->vi_nc_listlock);
379 } else {
380 TAILQ_REMOVE(&vi->vi_nc_list, ncp, nc_list);
381 }
382 }
383
384 /* Remove from the directory's rbtree. */
385 rb_tree_remove_node(&dvi->vi_nc_tree, ncp);
386
387 /* Remove from the LRU lists. */
388 mutex_enter(&cache_lru_lock);
389 TAILQ_REMOVE(&cache_lru.list[ncp->nc_lrulist], ncp, nc_lru);
390 cache_lru.count[ncp->nc_lrulist]--;
391 mutex_exit(&cache_lru_lock);
392
393 /* Finally, free it. */
394 if (ncp->nc_nlen > NCHNAMLEN) {
395 size_t sz = offsetof(struct namecache, nc_name[ncp->nc_nlen]);
396 kmem_free(ncp, sz);
397 } else {
398 pool_cache_put(cache_pool, ncp);
399 }
400 }
401
402 /*
403 * Find a single cache entry and return it. vi_nc_lock must be held.
404 */
405 static struct namecache * __noinline
406 cache_lookup_entry(struct vnode *dvp, const char *name, size_t namelen,
407 uint64_t key)
408 {
409 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
410 struct rb_node *node = dvi->vi_nc_tree.rbt_root;
411 struct namecache *ncp;
412 int lrulist, diff;
413
414 KASSERT(rw_lock_held(&dvi->vi_nc_lock));
415
416 /*
417 * Search the RB tree for the key. This is an inlined lookup
418 * tailored for exactly what's needed here (64-bit key and so on)
419 * that is quite a bit faster than using rb_tree_find_node().
420 *
421 * For a matching key memcmp() needs to be called once to confirm
422 * that the correct name has been found. Very rarely there will be
423 * a key value collision and the search will continue.
424 */
425 for (;;) {
426 if (__predict_false(RB_SENTINEL_P(node))) {
427 return NULL;
428 }
429 ncp = (struct namecache *)node;
430 KASSERT((void *)&ncp->nc_tree == (void *)ncp);
431 KASSERT(ncp->nc_dvp == dvp);
432 if (ncp->nc_key == key) {
433 KASSERT(ncp->nc_nlen == namelen);
434 diff = memcmp(ncp->nc_name, name, namelen);
435 if (__predict_true(diff == 0)) {
436 break;
437 }
438 node = node->rb_nodes[diff < 0];
439 } else {
440 node = node->rb_nodes[ncp->nc_key < key];
441 }
442 }
443
444 /*
445 * If the entry is on the wrong LRU list, requeue it. This is an
446 * unlocked check, but it will rarely be wrong and even then there
447 * will be no harm caused.
448 */
449 lrulist = atomic_load_relaxed(&ncp->nc_lrulist);
450 if (__predict_false(lrulist != LRU_ACTIVE)) {
451 cache_activate(ncp);
452 }
453 return ncp;
454 }
455
456 /*
457 * Look for a the name in the cache. We don't do this
458 * if the segment name is long, simply so the cache can avoid
459 * holding long names (which would either waste space, or
460 * add greatly to the complexity).
461 *
462 * Lookup is called with DVP pointing to the directory to search,
463 * and CNP providing the name of the entry being sought: cn_nameptr
464 * is the name, cn_namelen is its length, and cn_flags is the flags
465 * word from the namei operation.
466 *
467 * DVP must be locked.
468 *
469 * There are three possible non-error return states:
470 * 1. Nothing was found in the cache. Nothing is known about
471 * the requested name.
472 * 2. A negative entry was found in the cache, meaning that the
473 * requested name definitely does not exist.
474 * 3. A positive entry was found in the cache, meaning that the
475 * requested name does exist and that we are providing the
476 * vnode.
477 * In these cases the results are:
478 * 1. 0 returned; VN is set to NULL.
479 * 2. 1 returned; VN is set to NULL.
480 * 3. 1 returned; VN is set to the vnode found.
481 *
482 * The additional result argument ISWHT is set to zero, unless a
483 * negative entry is found that was entered as a whiteout, in which
484 * case ISWHT is set to one.
485 *
486 * The ISWHT_RET argument pointer may be null. In this case an
487 * assertion is made that the whiteout flag is not set. File systems
488 * that do not support whiteouts can/should do this.
489 *
490 * Filesystems that do support whiteouts should add ISWHITEOUT to
491 * cnp->cn_flags if ISWHT comes back nonzero.
492 *
493 * When a vnode is returned, it is locked, as per the vnode lookup
494 * locking protocol.
495 *
496 * There is no way for this function to fail, in the sense of
497 * generating an error that requires aborting the namei operation.
498 *
499 * (Prior to October 2012, this function returned an integer status,
500 * and a vnode, and mucked with the flags word in CNP for whiteouts.
501 * The integer status was -1 for "nothing found", ENOENT for "a
502 * negative entry found", 0 for "a positive entry found", and possibly
503 * other errors, and the value of VN might or might not have been set
504 * depending on what error occurred.)
505 */
506 bool
507 cache_lookup(struct vnode *dvp, const char *name, size_t namelen,
508 uint32_t nameiop, uint32_t cnflags,
509 int *iswht_ret, struct vnode **vn_ret)
510 {
511 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
512 struct namecache *ncp;
513 struct vnode *vp;
514 uint64_t key;
515 int error;
516 bool hit;
517 krw_t op;
518
519 KASSERT(namelen != cache_mp_nlen || name == cache_mp_name);
520
521 /* Establish default result values */
522 if (iswht_ret != NULL) {
523 *iswht_ret = 0;
524 }
525 *vn_ret = NULL;
526
527 if (__predict_false(namelen > cache_maxlen)) {
528 SDT_PROBE(vfs, namecache, lookup, toolong, dvp,
529 name, namelen, 0, 0);
530 COUNT(ncs_long);
531 return false;
532 }
533
534 /* Compute the key up front - don't need the lock. */
535 key = cache_key(name, namelen);
536
537 /* Could the entry be purged below? */
538 if ((cnflags & ISLASTCN) != 0 &&
539 ((cnflags & MAKEENTRY) == 0 || nameiop == CREATE)) {
540 op = RW_WRITER;
541 } else {
542 op = RW_READER;
543 }
544
545 /* Now look for the name. */
546 rw_enter(&dvi->vi_nc_lock, op);
547 ncp = cache_lookup_entry(dvp, name, namelen, key);
548 if (__predict_false(ncp == NULL)) {
549 rw_exit(&dvi->vi_nc_lock);
550 COUNT(ncs_miss);
551 SDT_PROBE(vfs, namecache, lookup, miss, dvp,
552 name, namelen, 0, 0);
553 return false;
554 }
555 if (__predict_false((cnflags & MAKEENTRY) == 0)) {
556 /*
557 * Last component and we are renaming or deleting,
558 * the cache entry is invalid, or otherwise don't
559 * want cache entry to exist.
560 */
561 KASSERT((cnflags & ISLASTCN) != 0);
562 cache_remove(ncp, true);
563 rw_exit(&dvi->vi_nc_lock);
564 COUNT(ncs_badhits);
565 return false;
566 }
567 if (ncp->nc_vp == NULL) {
568 if (iswht_ret != NULL) {
569 /*
570 * Restore the ISWHITEOUT flag saved earlier.
571 */
572 *iswht_ret = ncp->nc_whiteout;
573 } else {
574 KASSERT(!ncp->nc_whiteout);
575 }
576 if (nameiop == CREATE && (cnflags & ISLASTCN) != 0) {
577 /*
578 * Last component and we are preparing to create
579 * the named object, so flush the negative cache
580 * entry.
581 */
582 COUNT(ncs_badhits);
583 cache_remove(ncp, true);
584 hit = false;
585 } else {
586 COUNT(ncs_neghits);
587 SDT_PROBE(vfs, namecache, lookup, hit, dvp, name,
588 namelen, 0, 0);
589 /* found neg entry; vn is already null from above */
590 hit = true;
591 }
592 rw_exit(&dvi->vi_nc_lock);
593 return hit;
594 }
595 vp = ncp->nc_vp;
596 error = vcache_tryvget(vp);
597 rw_exit(&dvi->vi_nc_lock);
598 if (error) {
599 KASSERT(error == EBUSY);
600 /*
601 * This vnode is being cleaned out.
602 * XXX badhits?
603 */
604 COUNT(ncs_falsehits);
605 return false;
606 }
607
608 COUNT(ncs_goodhits);
609 SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0);
610 /* found it */
611 *vn_ret = vp;
612 return true;
613 }
614
615 /*
616 * Version of the above without the nameiop argument, for NFS.
617 */
618 bool
619 cache_lookup_raw(struct vnode *dvp, const char *name, size_t namelen,
620 uint32_t cnflags,
621 int *iswht_ret, struct vnode **vn_ret)
622 {
623
624 return cache_lookup(dvp, name, namelen, LOOKUP, cnflags | MAKEENTRY,
625 iswht_ret, vn_ret);
626 }
627
628 /*
629 * Used by namei() to walk down a path, component by component by looking up
630 * names in the cache. The node locks are chained along the way: a parent's
631 * lock is not dropped until the child's is acquired.
632 */
633 bool
634 cache_lookup_linked(struct vnode *dvp, const char *name, size_t namelen,
635 struct vnode **vn_ret, krwlock_t **plock,
636 kauth_cred_t cred)
637 {
638 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
639 struct namecache *ncp;
640 krwlock_t *oldlock, *newlock;
641 uint64_t key;
642 int error;
643
644 KASSERT(namelen != cache_mp_nlen || name == cache_mp_name);
645
646 /* If disabled, or file system doesn't support this, bail out. */
647 if (__predict_false((dvp->v_mount->mnt_iflag & IMNT_NCLOOKUP) == 0)) {
648 return false;
649 }
650
651 if (__predict_false(namelen > cache_maxlen)) {
652 COUNT(ncs_long);
653 return false;
654 }
655
656 /* Compute the key up front - don't need the lock. */
657 key = cache_key(name, namelen);
658
659 /*
660 * Acquire the directory lock. Once we have that, we can drop the
661 * previous one (if any).
662 *
663 * The two lock holds mean that the directory can't go away while
664 * here: the directory must be purged with cache_purge() before
665 * being freed, and both parent & child's vi_nc_lock must be taken
666 * before that point is passed.
667 *
668 * However if there's no previous lock, like at the root of the
669 * chain, then "dvp" must be referenced to prevent dvp going away
670 * before we get its lock.
671 *
672 * Note that the two locks can be the same if looking up a dot, for
673 * example: /usr/bin/. If looking up the parent (..) we can't wait
674 * on the lock as child -> parent is the wrong direction.
675 */
676 if (*plock != &dvi->vi_nc_lock) {
677 oldlock = *plock;
678 newlock = &dvi->vi_nc_lock;
679 if (!rw_tryenter(&dvi->vi_nc_lock, RW_READER)) {
680 return false;
681 }
682 } else {
683 oldlock = NULL;
684 newlock = NULL;
685 if (*plock == NULL) {
686 KASSERT(vrefcnt(dvp) > 0);
687 }
688 }
689
690 /*
691 * First up check if the user is allowed to look up files in this
692 * directory.
693 */
694 if (cred != FSCRED) {
695 if (dvi->vi_nc_mode == VNOVAL) {
696 if (newlock != NULL) {
697 rw_exit(newlock);
698 }
699 return false;
700 }
701 KASSERT(dvi->vi_nc_uid != VNOVAL && dvi->vi_nc_gid != VNOVAL);
702 error = kauth_authorize_vnode(cred, KAUTH_ACCESS_ACTION(VEXEC,
703 dvp->v_type, dvi->vi_nc_mode & ALLPERMS), dvp, NULL,
704 genfs_can_access(dvp, cred, dvi->vi_nc_uid, dvi->vi_nc_gid,
705 dvi->vi_nc_mode & ALLPERMS, NULL, VEXEC));
706 if (error != 0) {
707 if (newlock != NULL) {
708 rw_exit(newlock);
709 }
710 COUNT(ncs_denied);
711 return false;
712 }
713 }
714
715 /*
716 * Now look for a matching cache entry.
717 */
718 ncp = cache_lookup_entry(dvp, name, namelen, key);
719 if (__predict_false(ncp == NULL)) {
720 if (newlock != NULL) {
721 rw_exit(newlock);
722 }
723 COUNT(ncs_miss);
724 SDT_PROBE(vfs, namecache, lookup, miss, dvp,
725 name, namelen, 0, 0);
726 return false;
727 }
728 if (ncp->nc_vp == NULL) {
729 /* found negative entry; vn is already null from above */
730 KASSERT(namelen != cache_mp_nlen && name != cache_mp_name);
731 COUNT(ncs_neghits);
732 } else {
733 COUNT(ncs_goodhits); /* XXX can be "badhits" */
734 }
735 SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0);
736
737 /*
738 * Return with the directory lock still held. It will either be
739 * returned to us with another call to cache_lookup_linked() when
740 * looking up the next component, or the caller will release it
741 * manually when finished.
742 */
743 if (oldlock) {
744 rw_exit(oldlock);
745 }
746 if (newlock) {
747 *plock = newlock;
748 }
749 *vn_ret = ncp->nc_vp;
750 return true;
751 }
752
753 /*
754 * Scan cache looking for name of directory entry pointing at vp.
755 * Will not search for "." or "..".
756 *
757 * If the lookup succeeds the vnode is referenced and stored in dvpp.
758 *
759 * If bufp is non-NULL, also place the name in the buffer which starts
760 * at bufp, immediately before *bpp, and move bpp backwards to point
761 * at the start of it. (Yes, this is a little baroque, but it's done
762 * this way to cater to the whims of getcwd).
763 *
764 * Returns 0 on success, -1 on cache miss, positive errno on failure.
765 */
766 int
767 cache_revlookup(struct vnode *vp, struct vnode **dvpp, char **bpp, char *bufp,
768 bool checkaccess, accmode_t accmode)
769 {
770 vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
771 struct namecache *ncp;
772 struct vnode *dvp;
773 int error, nlen, lrulist;
774 char *bp;
775
776 KASSERT(vp != NULL);
777
778 if (cache_maxlen == 0)
779 goto out;
780
781 rw_enter(&vi->vi_nc_listlock, RW_READER);
782 if (checkaccess) {
783 /*
784 * Check if the user is allowed to see. NOTE: this is
785 * checking for access on the "wrong" directory. getcwd()
786 * wants to see that there is access on every component
787 * along the way, not that there is access to any individual
788 * component. Don't use this to check you can look in vp.
789 *
790 * I don't like it, I didn't come up with it, don't blame me!
791 */
792 if (vi->vi_nc_mode == VNOVAL) {
793 rw_exit(&vi->vi_nc_listlock);
794 return -1;
795 }
796 KASSERT(vi->vi_nc_uid != VNOVAL && vi->vi_nc_gid != VNOVAL);
797 error = kauth_authorize_vnode(curlwp->l_cred,
798 KAUTH_ACCESS_ACTION(VEXEC, vp->v_type, vi->vi_nc_mode &
799 ALLPERMS), vp, NULL, genfs_can_access(vp, curlwp->l_cred,
800 vi->vi_nc_uid, vi->vi_nc_gid, vi->vi_nc_mode & ALLPERMS,
801 NULL, accmode));
802 if (error != 0) {
803 rw_exit(&vi->vi_nc_listlock);
804 COUNT(ncs_denied);
805 return EACCES;
806 }
807 }
808 TAILQ_FOREACH(ncp, &vi->vi_nc_list, nc_list) {
809 KASSERT(ncp->nc_vp == vp);
810 KASSERT(ncp->nc_dvp != NULL);
811 nlen = ncp->nc_nlen;
812
813 /*
814 * Ignore mountpoint entries.
815 */
816 if (ncp->nc_nlen == cache_mp_nlen) {
817 continue;
818 }
819
820 /*
821 * The queue is partially sorted. Once we hit dots, nothing
822 * else remains but dots and dotdots, so bail out.
823 */
824 if (ncp->nc_name[0] == '.') {
825 if (nlen == 1 ||
826 (nlen == 2 && ncp->nc_name[1] == '.')) {
827 break;
828 }
829 }
830
831 /*
832 * Record a hit on the entry. This is an unlocked read but
833 * even if wrong it doesn't matter too much.
834 */
835 lrulist = atomic_load_relaxed(&ncp->nc_lrulist);
836 if (lrulist != LRU_ACTIVE) {
837 cache_activate(ncp);
838 }
839
840 if (bufp) {
841 bp = *bpp;
842 bp -= nlen;
843 if (bp <= bufp) {
844 *dvpp = NULL;
845 rw_exit(&vi->vi_nc_listlock);
846 SDT_PROBE(vfs, namecache, revlookup,
847 fail, vp, ERANGE, 0, 0, 0);
848 return (ERANGE);
849 }
850 memcpy(bp, ncp->nc_name, nlen);
851 *bpp = bp;
852 }
853
854 dvp = ncp->nc_dvp;
855 error = vcache_tryvget(dvp);
856 rw_exit(&vi->vi_nc_listlock);
857 if (error) {
858 KASSERT(error == EBUSY);
859 if (bufp)
860 (*bpp) += nlen;
861 *dvpp = NULL;
862 SDT_PROBE(vfs, namecache, revlookup, fail, vp,
863 error, 0, 0, 0);
864 return -1;
865 }
866 *dvpp = dvp;
867 SDT_PROBE(vfs, namecache, revlookup, success, vp, dvp,
868 0, 0, 0);
869 COUNT(ncs_revhits);
870 return (0);
871 }
872 rw_exit(&vi->vi_nc_listlock);
873 COUNT(ncs_revmiss);
874 out:
875 *dvpp = NULL;
876 return (-1);
877 }
878
879 /*
880 * Add an entry to the cache.
881 */
882 void
883 cache_enter(struct vnode *dvp, struct vnode *vp,
884 const char *name, size_t namelen, uint32_t cnflags)
885 {
886 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
887 struct namecache *ncp, *oncp;
888 int total;
889
890 KASSERT(namelen != cache_mp_nlen || name == cache_mp_name);
891
892 /* First, check whether we can/should add a cache entry. */
893 if ((cnflags & MAKEENTRY) == 0 ||
894 __predict_false(namelen > cache_maxlen)) {
895 SDT_PROBE(vfs, namecache, enter, toolong, vp, name, namelen,
896 0, 0);
897 return;
898 }
899
900 SDT_PROBE(vfs, namecache, enter, done, vp, name, namelen, 0, 0);
901
902 /*
903 * Reclaim some entries if over budget. This is an unlocked check,
904 * but it doesn't matter. Just need to catch up with things
905 * eventually: it doesn't matter if we go over temporarily.
906 */
907 total = atomic_load_relaxed(&cache_lru.count[LRU_ACTIVE]);
908 total += atomic_load_relaxed(&cache_lru.count[LRU_INACTIVE]);
909 if (__predict_false(total > desiredvnodes)) {
910 cache_reclaim();
911 }
912
913 /* Now allocate a fresh entry. */
914 if (__predict_true(namelen <= NCHNAMLEN)) {
915 ncp = pool_cache_get(cache_pool, PR_WAITOK);
916 } else {
917 size_t sz = offsetof(struct namecache, nc_name[namelen]);
918 ncp = kmem_alloc(sz, KM_SLEEP);
919 }
920
921 /*
922 * Fill in cache info. For negative hits, save the ISWHITEOUT flag
923 * so we can restore it later when the cache entry is used again.
924 */
925 ncp->nc_vp = vp;
926 ncp->nc_dvp = dvp;
927 ncp->nc_key = cache_key(name, namelen);
928 ncp->nc_nlen = namelen;
929 ncp->nc_whiteout = ((cnflags & ISWHITEOUT) != 0);
930 memcpy(ncp->nc_name, name, namelen);
931
932 /*
933 * Insert to the directory. Concurrent lookups may race for a cache
934 * entry. If there's a entry there already, purge it.
935 */
936 rw_enter(&dvi->vi_nc_lock, RW_WRITER);
937 oncp = rb_tree_insert_node(&dvi->vi_nc_tree, ncp);
938 if (oncp != ncp) {
939 KASSERT(oncp->nc_key == ncp->nc_key);
940 KASSERT(oncp->nc_nlen == ncp->nc_nlen);
941 KASSERT(memcmp(oncp->nc_name, name, namelen) == 0);
942 cache_remove(oncp, true);
943 oncp = rb_tree_insert_node(&dvi->vi_nc_tree, ncp);
944 KASSERT(oncp == ncp);
945 }
946
947 /*
948 * With the directory lock still held, insert to the tail of the
949 * ACTIVE LRU list (new) and take the opportunity to incrementally
950 * balance the lists.
951 */
952 mutex_enter(&cache_lru_lock);
953 ncp->nc_lrulist = LRU_ACTIVE;
954 cache_lru.count[LRU_ACTIVE]++;
955 TAILQ_INSERT_TAIL(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru);
956 cache_deactivate();
957 mutex_exit(&cache_lru_lock);
958
959 /*
960 * Finally, insert to the vnode and unlock. With everything set up
961 * it's safe to let cache_revlookup() see the entry. Partially sort
962 * the per-vnode list: dots go to back so cache_revlookup() doesn't
963 * have to consider them.
964 */
965 if (vp != NULL) {
966 vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
967 rw_enter(&vi->vi_nc_listlock, RW_WRITER);
968 if ((namelen == 1 && name[0] == '.') ||
969 (namelen == 2 && name[0] == '.' && name[1] == '.')) {
970 TAILQ_INSERT_TAIL(&vi->vi_nc_list, ncp, nc_list);
971 } else {
972 TAILQ_INSERT_HEAD(&vi->vi_nc_list, ncp, nc_list);
973 }
974 rw_exit(&vi->vi_nc_listlock);
975 }
976 rw_exit(&dvi->vi_nc_lock);
977 }
978
979 /*
980 * Set identity info in cache for a vnode. We only care about directories
981 * so ignore other updates. The cached info may be marked invalid if the
982 * inode has an ACL.
983 */
984 void
985 cache_enter_id(struct vnode *vp, mode_t mode, uid_t uid, gid_t gid, bool valid)
986 {
987 vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
988
989 if (vp->v_type == VDIR) {
990 /* Grab both locks, for forward & reverse lookup. */
991 rw_enter(&vi->vi_nc_lock, RW_WRITER);
992 rw_enter(&vi->vi_nc_listlock, RW_WRITER);
993 if (valid) {
994 vi->vi_nc_mode = mode;
995 vi->vi_nc_uid = uid;
996 vi->vi_nc_gid = gid;
997 } else {
998 vi->vi_nc_mode = VNOVAL;
999 vi->vi_nc_uid = VNOVAL;
1000 vi->vi_nc_gid = VNOVAL;
1001 }
1002 rw_exit(&vi->vi_nc_listlock);
1003 rw_exit(&vi->vi_nc_lock);
1004 }
1005 }
1006
1007 /*
1008 * Return true if we have identity for the given vnode, and use as an
1009 * opportunity to confirm that everything squares up.
1010 *
1011 * Because of shared code, some file systems could provide partial
1012 * information, missing some updates, so check the mount flag too.
1013 */
1014 bool
1015 cache_have_id(struct vnode *vp)
1016 {
1017
1018 if (vp->v_type == VDIR &&
1019 (vp->v_mount->mnt_iflag & IMNT_NCLOOKUP) != 0 &&
1020 atomic_load_relaxed(&VNODE_TO_VIMPL(vp)->vi_nc_mode) != VNOVAL) {
1021 return true;
1022 } else {
1023 return false;
1024 }
1025 }
1026
1027 /*
1028 * Enter a mount point. cvp is the covered vnode, and rvp is the root of
1029 * the mounted file system.
1030 */
1031 void
1032 cache_enter_mount(struct vnode *cvp, struct vnode *rvp)
1033 {
1034
1035 KASSERT(vrefcnt(cvp) > 0);
1036 KASSERT(vrefcnt(rvp) > 0);
1037 KASSERT(cvp->v_type == VDIR);
1038 KASSERT((rvp->v_vflag & VV_ROOT) != 0);
1039
1040 if (rvp->v_type == VDIR) {
1041 cache_enter(cvp, rvp, cache_mp_name, cache_mp_nlen, MAKEENTRY);
1042 }
1043 }
1044
1045 /*
1046 * Look up a cached mount point. Used in the strongly locked path.
1047 */
1048 bool
1049 cache_lookup_mount(struct vnode *dvp, struct vnode **vn_ret)
1050 {
1051 bool ret;
1052
1053 ret = cache_lookup(dvp, cache_mp_name, cache_mp_nlen, LOOKUP,
1054 MAKEENTRY, NULL, vn_ret);
1055 KASSERT((*vn_ret != NULL) == ret);
1056 return ret;
1057 }
1058
1059 /*
1060 * Try to cross a mount point. For use with cache_lookup_linked().
1061 */
1062 bool
1063 cache_cross_mount(struct vnode **dvp, krwlock_t **plock)
1064 {
1065
1066 return cache_lookup_linked(*dvp, cache_mp_name, cache_mp_nlen,
1067 dvp, plock, FSCRED);
1068 }
1069
1070 /*
1071 * Name cache initialization, from vfs_init() when the system is booting.
1072 */
1073 void
1074 nchinit(void)
1075 {
1076
1077 cache_pool = pool_cache_init(sizeof(struct namecache),
1078 coherency_unit, 0, 0, "namecache", NULL, IPL_NONE, NULL,
1079 NULL, NULL);
1080 KASSERT(cache_pool != NULL);
1081
1082 mutex_init(&cache_lru_lock, MUTEX_DEFAULT, IPL_NONE);
1083 TAILQ_INIT(&cache_lru.list[LRU_ACTIVE]);
1084 TAILQ_INIT(&cache_lru.list[LRU_INACTIVE]);
1085
1086 mutex_init(&cache_stat_lock, MUTEX_DEFAULT, IPL_NONE);
1087 callout_init(&cache_stat_callout, CALLOUT_MPSAFE);
1088 callout_setfunc(&cache_stat_callout, cache_update_stats, NULL);
1089 callout_schedule(&cache_stat_callout, cache_stat_interval * hz);
1090
1091 KASSERT(cache_sysctllog == NULL);
1092 sysctl_createv(&cache_sysctllog, 0, NULL, NULL,
1093 CTLFLAG_PERMANENT,
1094 CTLTYPE_STRUCT, "namecache_stats",
1095 SYSCTL_DESCR("namecache statistics"),
1096 cache_stat_sysctl, 0, NULL, 0,
1097 CTL_VFS, CTL_CREATE, CTL_EOL);
1098 }
1099
1100 /*
1101 * Called once for each CPU in the system as attached.
1102 */
1103 void
1104 cache_cpu_init(struct cpu_info *ci)
1105 {
1106 void *p;
1107 size_t sz;
1108
1109 sz = roundup2(sizeof(struct nchstats_percpu), coherency_unit) +
1110 coherency_unit;
1111 p = kmem_zalloc(sz, KM_SLEEP);
1112 ci->ci_data.cpu_nch = (void *)roundup2((uintptr_t)p, coherency_unit);
1113 }
1114
1115 /*
1116 * A vnode is being allocated: set up cache structures.
1117 */
1118 void
1119 cache_vnode_init(struct vnode *vp)
1120 {
1121 vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
1122
1123 rw_init(&vi->vi_nc_lock);
1124 rw_init(&vi->vi_nc_listlock);
1125 rb_tree_init(&vi->vi_nc_tree, &cache_rbtree_ops);
1126 TAILQ_INIT(&vi->vi_nc_list);
1127 vi->vi_nc_mode = VNOVAL;
1128 vi->vi_nc_uid = VNOVAL;
1129 vi->vi_nc_gid = VNOVAL;
1130 }
1131
1132 /*
1133 * A vnode is being freed: finish cache structures.
1134 */
1135 void
1136 cache_vnode_fini(struct vnode *vp)
1137 {
1138 vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
1139
1140 KASSERT(RB_TREE_MIN(&vi->vi_nc_tree) == NULL);
1141 KASSERT(TAILQ_EMPTY(&vi->vi_nc_list));
1142 rw_destroy(&vi->vi_nc_lock);
1143 rw_destroy(&vi->vi_nc_listlock);
1144 }
1145
1146 /*
1147 * Helper for cache_purge1(): purge cache entries for the given vnode from
1148 * all directories that the vnode is cached in.
1149 */
1150 static void
1151 cache_purge_parents(struct vnode *vp)
1152 {
1153 vnode_impl_t *dvi, *vi = VNODE_TO_VIMPL(vp);
1154 struct vnode *dvp, *blocked;
1155 struct namecache *ncp;
1156
1157 SDT_PROBE(vfs, namecache, purge, parents, vp, 0, 0, 0, 0);
1158
1159 blocked = NULL;
1160
1161 rw_enter(&vi->vi_nc_listlock, RW_WRITER);
1162 while ((ncp = TAILQ_FIRST(&vi->vi_nc_list)) != NULL) {
1163 /*
1164 * Locking in the wrong direction. Try for a hold on the
1165 * directory node's lock, and if we get it then all good,
1166 * nuke the entry and move on to the next.
1167 */
1168 dvp = ncp->nc_dvp;
1169 dvi = VNODE_TO_VIMPL(dvp);
1170 if (rw_tryenter(&dvi->vi_nc_lock, RW_WRITER)) {
1171 cache_remove(ncp, false);
1172 rw_exit(&dvi->vi_nc_lock);
1173 blocked = NULL;
1174 continue;
1175 }
1176
1177 /*
1178 * We can't wait on the directory node's lock with our list
1179 * lock held or the system could deadlock.
1180 *
1181 * Take a hold on the directory vnode to prevent it from
1182 * being freed (taking the vnode & lock with it). Then
1183 * wait for the lock to become available with no other locks
1184 * held, and retry.
1185 *
1186 * If this happens twice in a row, give the other side a
1187 * breather; we can do nothing until it lets go.
1188 */
1189 vhold(dvp);
1190 rw_exit(&vi->vi_nc_listlock);
1191 rw_enter(&dvi->vi_nc_lock, RW_WRITER);
1192 /* Do nothing. */
1193 rw_exit(&dvi->vi_nc_lock);
1194 holdrele(dvp);
1195 if (blocked == dvp) {
1196 kpause("ncpurge", false, 1, NULL);
1197 }
1198 rw_enter(&vi->vi_nc_listlock, RW_WRITER);
1199 blocked = dvp;
1200 }
1201 rw_exit(&vi->vi_nc_listlock);
1202 }
1203
1204 /*
1205 * Helper for cache_purge1(): purge all cache entries hanging off the given
1206 * directory vnode.
1207 */
1208 static void
1209 cache_purge_children(struct vnode *dvp)
1210 {
1211 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
1212 struct namecache *ncp;
1213
1214 SDT_PROBE(vfs, namecache, purge, children, dvp, 0, 0, 0, 0);
1215
1216 rw_enter(&dvi->vi_nc_lock, RW_WRITER);
1217 while ((ncp = RB_TREE_MIN(&dvi->vi_nc_tree)) != NULL) {
1218 cache_remove(ncp, true);
1219 }
1220 rw_exit(&dvi->vi_nc_lock);
1221 }
1222
1223 /*
1224 * Helper for cache_purge1(): purge cache entry from the given vnode,
1225 * finding it by name.
1226 */
1227 static void
1228 cache_purge_name(struct vnode *dvp, const char *name, size_t namelen)
1229 {
1230 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
1231 struct namecache *ncp;
1232 uint64_t key;
1233
1234 SDT_PROBE(vfs, namecache, purge, name, name, namelen, 0, 0, 0);
1235
1236 key = cache_key(name, namelen);
1237 rw_enter(&dvi->vi_nc_lock, RW_WRITER);
1238 ncp = cache_lookup_entry(dvp, name, namelen, key);
1239 if (ncp) {
1240 cache_remove(ncp, true);
1241 }
1242 rw_exit(&dvi->vi_nc_lock);
1243 }
1244
1245 /*
1246 * Cache flush, a particular vnode; called when a vnode is renamed to
1247 * hide entries that would now be invalid.
1248 */
1249 void
1250 cache_purge1(struct vnode *vp, const char *name, size_t namelen, int flags)
1251 {
1252
1253 if (flags & PURGE_PARENTS) {
1254 cache_purge_parents(vp);
1255 }
1256 if (flags & PURGE_CHILDREN) {
1257 cache_purge_children(vp);
1258 }
1259 if (name != NULL) {
1260 cache_purge_name(vp, name, namelen);
1261 }
1262 }
1263
1264 /*
1265 * vnode filter for cache_purgevfs().
1266 */
1267 static bool
1268 cache_vdir_filter(void *cookie, vnode_t *vp)
1269 {
1270
1271 return vp->v_type == VDIR;
1272 }
1273
1274 /*
1275 * Cache flush, a whole filesystem; called when filesys is umounted to
1276 * remove entries that would now be invalid.
1277 */
1278 void
1279 cache_purgevfs(struct mount *mp)
1280 {
1281 struct vnode_iterator *iter;
1282 vnode_t *dvp;
1283
1284 vfs_vnode_iterator_init(mp, &iter);
1285 for (;;) {
1286 dvp = vfs_vnode_iterator_next(iter, cache_vdir_filter, NULL);
1287 if (dvp == NULL) {
1288 break;
1289 }
1290 cache_purge_children(dvp);
1291 vrele(dvp);
1292 }
1293 vfs_vnode_iterator_destroy(iter);
1294 }
1295
1296 /*
1297 * Re-queue an entry onto the tail of the active LRU list, after it has
1298 * scored a hit.
1299 */
1300 static void
1301 cache_activate(struct namecache *ncp)
1302 {
1303
1304 mutex_enter(&cache_lru_lock);
1305 TAILQ_REMOVE(&cache_lru.list[ncp->nc_lrulist], ncp, nc_lru);
1306 TAILQ_INSERT_TAIL(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru);
1307 cache_lru.count[ncp->nc_lrulist]--;
1308 cache_lru.count[LRU_ACTIVE]++;
1309 ncp->nc_lrulist = LRU_ACTIVE;
1310 mutex_exit(&cache_lru_lock);
1311 }
1312
1313 /*
1314 * Try to balance the LRU lists. Pick some victim entries, and re-queue
1315 * them from the head of the active list to the tail of the inactive list.
1316 */
1317 static void
1318 cache_deactivate(void)
1319 {
1320 struct namecache *ncp;
1321 int total, i;
1322
1323 KASSERT(mutex_owned(&cache_lru_lock));
1324
1325 /* If we're nowhere near budget yet, don't bother. */
1326 total = cache_lru.count[LRU_ACTIVE] + cache_lru.count[LRU_INACTIVE];
1327 if (total < (desiredvnodes >> 1)) {
1328 return;
1329 }
1330
1331 /*
1332 * Aim for a 1:1 ratio of active to inactive. This is to allow each
1333 * potential victim a reasonable amount of time to cycle through the
1334 * inactive list in order to score a hit and be reactivated, while
1335 * trying not to cause reactivations too frequently.
1336 */
1337 if (cache_lru.count[LRU_ACTIVE] < cache_lru.count[LRU_INACTIVE]) {
1338 return;
1339 }
1340
1341 /* Move only a few at a time; will catch up eventually. */
1342 for (i = 0; i < cache_lru_maxdeact; i++) {
1343 ncp = TAILQ_FIRST(&cache_lru.list[LRU_ACTIVE]);
1344 if (ncp == NULL) {
1345 break;
1346 }
1347 KASSERT(ncp->nc_lrulist == LRU_ACTIVE);
1348 ncp->nc_lrulist = LRU_INACTIVE;
1349 TAILQ_REMOVE(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru);
1350 TAILQ_INSERT_TAIL(&cache_lru.list[LRU_INACTIVE], ncp, nc_lru);
1351 cache_lru.count[LRU_ACTIVE]--;
1352 cache_lru.count[LRU_INACTIVE]++;
1353 }
1354 }
1355
1356 /*
1357 * Free some entries from the cache, when we have gone over budget.
1358 *
1359 * We don't want to cause too much work for any individual caller, and it
1360 * doesn't matter if we temporarily go over budget. This is also "just a
1361 * cache" so it's not a big deal if we screw up and throw out something we
1362 * shouldn't. So we take a relaxed attitude to this process to reduce its
1363 * impact.
1364 */
1365 static void
1366 cache_reclaim(void)
1367 {
1368 struct namecache *ncp;
1369 vnode_impl_t *dvi;
1370 int toscan;
1371
1372 /*
1373 * Scan up to a preset maxium number of entries, but no more than
1374 * 0.8% of the total at once (to allow for very small systems).
1375 *
1376 * On bigger systems, do a larger chunk of work to reduce the number
1377 * of times that cache_lru_lock is held for any length of time.
1378 */
1379 mutex_enter(&cache_lru_lock);
1380 toscan = MIN(cache_lru_maxscan, desiredvnodes >> 7);
1381 toscan = MAX(toscan, 1);
1382 SDT_PROBE(vfs, namecache, prune, done, cache_lru.count[LRU_ACTIVE] +
1383 cache_lru.count[LRU_INACTIVE], toscan, 0, 0, 0);
1384 while (toscan-- != 0) {
1385 /* First try to balance the lists. */
1386 cache_deactivate();
1387
1388 /* Now look for a victim on head of inactive list (old). */
1389 ncp = TAILQ_FIRST(&cache_lru.list[LRU_INACTIVE]);
1390 if (ncp == NULL) {
1391 break;
1392 }
1393 dvi = VNODE_TO_VIMPL(ncp->nc_dvp);
1394 KASSERT(ncp->nc_lrulist == LRU_INACTIVE);
1395 KASSERT(dvi != NULL);
1396
1397 /*
1398 * Locking in the wrong direction. If we can't get the
1399 * lock, the directory is actively busy, and it could also
1400 * cause problems for the next guy in here, so send the
1401 * entry to the back of the list.
1402 */
1403 if (!rw_tryenter(&dvi->vi_nc_lock, RW_WRITER)) {
1404 TAILQ_REMOVE(&cache_lru.list[LRU_INACTIVE],
1405 ncp, nc_lru);
1406 TAILQ_INSERT_TAIL(&cache_lru.list[LRU_INACTIVE],
1407 ncp, nc_lru);
1408 continue;
1409 }
1410
1411 /*
1412 * Now have the victim entry locked. Drop the LRU list
1413 * lock, purge the entry, and start over. The hold on
1414 * vi_nc_lock will prevent the vnode from vanishing until
1415 * finished (cache_purge() will be called on dvp before it
1416 * disappears, and that will wait on vi_nc_lock).
1417 */
1418 mutex_exit(&cache_lru_lock);
1419 cache_remove(ncp, true);
1420 rw_exit(&dvi->vi_nc_lock);
1421 mutex_enter(&cache_lru_lock);
1422 }
1423 mutex_exit(&cache_lru_lock);
1424 }
1425
1426 /*
1427 * For file system code: count a lookup that required a full re-scan of
1428 * directory metadata.
1429 */
1430 void
1431 namecache_count_pass2(void)
1432 {
1433
1434 COUNT(ncs_pass2);
1435 }
1436
1437 /*
1438 * For file system code: count a lookup that scored a hit in the directory
1439 * metadata near the location of the last lookup.
1440 */
1441 void
1442 namecache_count_2passes(void)
1443 {
1444
1445 COUNT(ncs_2passes);
1446 }
1447
1448 /*
1449 * Sum the stats from all CPUs into nchstats. This needs to run at least
1450 * once within every window where a 32-bit counter could roll over. It's
1451 * called regularly by timer to ensure this.
1452 */
1453 static void
1454 cache_update_stats(void *cookie)
1455 {
1456 CPU_INFO_ITERATOR cii;
1457 struct cpu_info *ci;
1458
1459 mutex_enter(&cache_stat_lock);
1460 for (CPU_INFO_FOREACH(cii, ci)) {
1461 struct nchcpu *nchcpu = ci->ci_data.cpu_nch;
1462 UPDATE(nchcpu, ncs_goodhits);
1463 UPDATE(nchcpu, ncs_neghits);
1464 UPDATE(nchcpu, ncs_badhits);
1465 UPDATE(nchcpu, ncs_falsehits);
1466 UPDATE(nchcpu, ncs_miss);
1467 UPDATE(nchcpu, ncs_long);
1468 UPDATE(nchcpu, ncs_pass2);
1469 UPDATE(nchcpu, ncs_2passes);
1470 UPDATE(nchcpu, ncs_revhits);
1471 UPDATE(nchcpu, ncs_revmiss);
1472 UPDATE(nchcpu, ncs_denied);
1473 }
1474 if (cookie != NULL) {
1475 memcpy(cookie, &nchstats, sizeof(nchstats));
1476 }
1477 /* Reset the timer; arrive back here in N minutes at latest. */
1478 callout_schedule(&cache_stat_callout, cache_stat_interval * hz);
1479 mutex_exit(&cache_stat_lock);
1480 }
1481
1482 /*
1483 * Fetch the current values of the stats for sysctl.
1484 */
1485 static int
1486 cache_stat_sysctl(SYSCTLFN_ARGS)
1487 {
1488 struct nchstats stats;
1489
1490 if (oldp == NULL) {
1491 *oldlenp = sizeof(nchstats);
1492 return 0;
1493 }
1494
1495 if (*oldlenp <= 0) {
1496 *oldlenp = 0;
1497 return 0;
1498 }
1499
1500 /* Refresh the global stats. */
1501 sysctl_unlock();
1502 cache_update_stats(&stats);
1503 sysctl_relock();
1504
1505 *oldlenp = MIN(sizeof(stats), *oldlenp);
1506 return sysctl_copyout(l, &stats, oldp, *oldlenp);
1507 }
1508
1509 /*
1510 * For the debugger, given the address of a vnode, print all associated
1511 * names in the cache.
1512 */
1513 #ifdef DDB
1514 void
1515 namecache_print(struct vnode *vp, void (*pr)(const char *, ...))
1516 {
1517 struct vnode *dvp = NULL;
1518 struct namecache *ncp;
1519 enum cache_lru_id id;
1520
1521 for (id = 0; id < LRU_COUNT; id++) {
1522 TAILQ_FOREACH(ncp, &cache_lru.list[id], nc_lru) {
1523 if (ncp->nc_vp == vp) {
1524 (*pr)("name %.*s\n", ncp->nc_nlen,
1525 ncp->nc_name);
1526 dvp = ncp->nc_dvp;
1527 }
1528 }
1529 }
1530 if (dvp == NULL) {
1531 (*pr)("name not found\n");
1532 return;
1533 }
1534 for (id = 0; id < LRU_COUNT; id++) {
1535 TAILQ_FOREACH(ncp, &cache_lru.list[id], nc_lru) {
1536 if (ncp->nc_vp == dvp) {
1537 (*pr)("parent %.*s\n", ncp->nc_nlen,
1538 ncp->nc_name);
1539 }
1540 }
1541 }
1542 }
1543 #endif
1544