vfs_cache.c revision 1.157 1 /* $NetBSD: vfs_cache.c,v 1.157 2024/12/07 02:11:42 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2019, 2020, 2023 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)vfs_cache.c 8.3 (Berkeley) 8/22/94
61 */
62
63 /*
64 * Name caching:
65 *
66 * Names found by directory scans are retained in a cache for future
67 * reference. It is managed LRU, so frequently used names will hang
68 * around. The cache is indexed by hash value obtained from the name.
69 *
70 * The name cache is the brainchild of Robert Elz and was introduced in
71 * 4.3BSD. See "Using gprof to Tune the 4.2BSD Kernel", Marshall Kirk
72 * McKusick, May 21 1984.
73 *
74 * Data structures:
75 *
76 * Most Unix namecaches very sensibly use a global hash table to index
77 * names. The global hash table works well, but can cause concurrency
78 * headaches for the kernel hacker. In the NetBSD 10.0 implementation
79 * we are not sensible, and use a per-directory data structure to index
80 * names, but the cache otherwise functions the same.
81 *
82 * The index is a red-black tree. It should not be difficult to
83 * experiment with other types of index, however note that a tree
84 * can trivially be made to support lockless lookup.
85 *
86 * Each cached name is stored in a struct namecache, along with a
87 * pointer to the associated vnode (nc_vp). Names longer than a
88 * maximum length of NCHNAMLEN are allocated with kmem_alloc(); they
89 * occur infrequently, and names shorter than this are stored directly
90 * in struct namecache. If it is a "negative" entry, (i.e. for a name
91 * that is known NOT to exist) the vnode pointer will be NULL.
92 *
93 * In practice this implementation is not any slower than the hash
94 * table that preceeded it and in some cases it significantly
95 * outperforms the hash table. Some reasons why this might be:
96 *
97 * - natural partitioning provided by the file system structure, which
98 * the prior implementation discarded (global hash table).
99 * - worst case tree traversal of O(log n), the hash table could have
100 * many collisions.
101 * - minimized cache misses & total L2/L3 CPU cache footprint; struct
102 * namecache and vnode_impl_t are laid out to keep cache footprint
103 * minimal in the lookup path; no hash table buckets to cache.
104 * - minimized number of conditionals & string comparisons.
105 *
106 * For a directory with 3 cached names for 3 distinct vnodes, the
107 * various vnodes and namecache structs would be connected like this
108 * (the root is at the bottom of the diagram):
109 *
110 * ...
111 * ^
112 * |- vi_nc_tree
113 * |
114 * +----o----+ +---------+ +---------+
115 * | VDIR | | VCHR | | VREG |
116 * | vnode o-----+ | vnode o-----+ | vnode o------+
117 * +---------+ | +---------+ | +---------+ |
118 * ^ | ^ | ^ |
119 * |- nc_vp |- vi_nc_list |- nc_vp |- vi_nc_list |- nc_vp |
120 * | | | | | |
121 * +----o----+ | +----o----+ | +----o----+ |
122 * +---onamecache|<----+ +---onamecache|<----+ +---onamecache|<-----+
123 * | +---------+ | +---------+ | +---------+
124 * | ^ | ^ | ^
125 * | | | | | |
126 * | | +----------------------+ | |
127 * |-nc_dvp | +-------------------------------------------------+
128 * | |/- vi_nc_tree | |
129 * | | |- nc_dvp |- nc_dvp
130 * | +----o----+ | |
131 * +-->| VDIR |<----------+ |
132 * | vnode |<------------------------------------+
133 * +---------+
134 *
135 * START HERE
136 *
137 * Replacement:
138 *
139 * As the cache becomes full, old and unused entries are purged as new
140 * entries are added. The synchronization overhead in maintaining a
141 * strict ordering would be prohibitive, so the VM system's "clock" or
142 * "second chance" page replacement algorithm is aped here. New
143 * entries go to the tail of the active list. After they age out and
144 * reach the head of the list, they are moved to the tail of the
145 * inactive list. Any use of the deactivated cache entry reactivates
146 * it, saving it from impending doom; if not reactivated, the entry
147 * eventually reaches the head of the inactive list and is purged.
148 *
149 * Concurrency:
150 *
151 * From a performance perspective, cache_lookup(nameiop == LOOKUP) is
152 * what really matters; insertion of new entries with cache_enter() is
153 * comparatively infrequent, and overshadowed by the cost of expensive
154 * file system metadata operations (which may involve disk I/O). We
155 * therefore want to make everything simplest in the lookup path.
156 *
157 * struct namecache is mostly stable except for list and tree related
158 * entries, changes to which don't affect the cached name or vnode.
159 * For changes to name+vnode, entries are purged in preference to
160 * modifying them.
161 *
162 * Read access to namecache entries is made via tree, list, or LRU
163 * list. A lock corresponding to the direction of access should be
164 * held. See definition of "struct namecache" in src/sys/namei.src,
165 * and the definition of "struct vnode" for the particulars.
166 *
167 * Per-CPU statistics, and LRU list totals are read unlocked, since an
168 * approximate value is OK. We maintain 32-bit sized per-CPU counters
169 * and 64-bit global counters since 32-bit sized counters can be
170 * observed locklessly while the global counters are protected by a
171 * mutex.
172 *
173 * The lock order is:
174 *
175 * 1) vi->vi_nc_lock (tree or parent -> child direction,
176 * used during forward lookup)
177 *
178 * 2) vi->vi_nc_listlock (list or child -> parent direction,
179 * used during reverse lookup)
180 *
181 * 3) cache_lru_lock (LRU list direction, used during reclaim)
182 */
183
184 #define __NAMECACHE_PRIVATE
185
186 #include <sys/cdefs.h>
187 __KERNEL_RCSID(0, "$NetBSD: vfs_cache.c,v 1.157 2024/12/07 02:11:42 riastradh Exp $");
188
189 #ifdef _KERNEL_OPT
190 #include "opt_ddb.h"
191 #include "opt_dtrace.h"
192 #endif
193
194 #include <sys/param.h>
195 #include <sys/types.h>
196
197 #include <sys/atomic.h>
198 #include <sys/callout.h>
199 #include <sys/cpu.h>
200 #include <sys/errno.h>
201 #include <sys/evcnt.h>
202 #include <sys/hash.h>
203 #include <sys/kernel.h>
204 #include <sys/mount.h>
205 #include <sys/mutex.h>
206 #include <sys/namei.h>
207 #include <sys/param.h>
208 #include <sys/pool.h>
209 #include <sys/sdt.h>
210 #include <sys/sysctl.h>
211 #include <sys/systm.h>
212 #include <sys/time.h>
213 #include <sys/vnode_impl.h>
214
215 #include <miscfs/genfs/genfs.h>
216
217 /*
218 * Assert that data structure layout hasn't changed unintentionally.
219 */
220 #ifdef _LP64
221 CTASSERT(sizeof(struct namecache) == 128);
222 #else
223 CTASSERT(sizeof(struct namecache) == 64);
224 #endif
225 CTASSERT(NC_NLEN_MASK >= MAXPATHLEN);
226
227 static void cache_activate(struct namecache *);
228 static void cache_update_stats(void *);
229 static int cache_compare_nodes(void *, const void *, const void *);
230 static void cache_deactivate(void);
231 static void cache_reclaim(void);
232 static int cache_stat_sysctl(SYSCTLFN_ARGS);
233
234 /*
235 * Global pool cache.
236 */
237 static pool_cache_t cache_pool __read_mostly;
238
239 /*
240 * LRU replacement.
241 */
242 enum cache_lru_id {
243 LRU_ACTIVE,
244 LRU_INACTIVE,
245 LRU_COUNT
246 };
247
248 static struct {
249 TAILQ_HEAD(, namecache) list[LRU_COUNT];
250 u_int count[LRU_COUNT];
251 } cache_lru __cacheline_aligned;
252
253 static kmutex_t cache_lru_lock __cacheline_aligned;
254
255 /*
256 * Cache effectiveness statistics. nchstats holds system-wide total.
257 */
258 struct nchstats nchstats;
259 struct nchstats_percpu _NAMEI_CACHE_STATS(uint32_t);
260 struct nchcpu {
261 struct nchstats_percpu cur;
262 struct nchstats_percpu last;
263 };
264 static callout_t cache_stat_callout;
265 static kmutex_t cache_stat_lock __cacheline_aligned;
266
267 #define COUNT(f) do { \
268 lwp_t *l = curlwp; \
269 KPREEMPT_DISABLE(l); \
270 struct nchcpu *nchcpu = curcpu()->ci_data.cpu_nch; \
271 nchcpu->cur.f++; \
272 KPREEMPT_ENABLE(l); \
273 } while (/* CONSTCOND */ 0);
274
275 #define UPDATE(nchcpu, f) do { \
276 uint32_t cur = atomic_load_relaxed(&nchcpu->cur.f); \
277 nchstats.f += (uint32_t)(cur - nchcpu->last.f); \
278 nchcpu->last.f = cur; \
279 } while (/* CONSTCOND */ 0)
280
281 /*
282 * Tunables. cache_maxlen replaces the historical doingcache:
283 * set it zero to disable caching for debugging purposes.
284 */
285 int cache_lru_maxdeact __read_mostly = 2; /* max # to deactivate */
286 int cache_lru_maxscan __read_mostly = 64; /* max # to scan/reclaim */
287 int cache_maxlen __read_mostly = NC_NLEN_MASK; /* max name length to cache */
288 int cache_stat_interval __read_mostly = 300; /* in seconds */
289
290 /*
291 * sysctl stuff.
292 */
293 static struct sysctllog *cache_sysctllog;
294
295 /*
296 * This is a dummy name that cannot usually occur anywhere in the cache nor
297 * file system. It's used when caching the root vnode of mounted file
298 * systems. The name is attached to the directory that the file system is
299 * mounted on.
300 */
301 static const char cache_mp_name[] = "";
302 static const int cache_mp_nlen = sizeof(cache_mp_name) - 1;
303
304 /*
305 * Red-black tree stuff.
306 */
307 static const rb_tree_ops_t cache_rbtree_ops = {
308 .rbto_compare_nodes = cache_compare_nodes,
309 .rbto_compare_key = cache_compare_nodes,
310 .rbto_node_offset = offsetof(struct namecache, nc_tree),
311 .rbto_context = NULL
312 };
313
314 /*
315 * dtrace probes.
316 */
317 SDT_PROBE_DEFINE1(vfs, namecache, invalidate, done, "struct vnode *");
318 SDT_PROBE_DEFINE1(vfs, namecache, purge, parents, "struct vnode *");
319 SDT_PROBE_DEFINE1(vfs, namecache, purge, children, "struct vnode *");
320 SDT_PROBE_DEFINE2(vfs, namecache, purge, name, "char *", "size_t");
321 SDT_PROBE_DEFINE1(vfs, namecache, purge, vfs, "struct mount *");
322 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *",
323 "char *", "size_t");
324 SDT_PROBE_DEFINE3(vfs, namecache, lookup, miss, "struct vnode *",
325 "char *", "size_t");
326 SDT_PROBE_DEFINE3(vfs, namecache, lookup, toolong, "struct vnode *",
327 "char *", "size_t");
328 SDT_PROBE_DEFINE2(vfs, namecache, revlookup, success, "struct vnode *",
329 "struct vnode *");
330 SDT_PROBE_DEFINE2(vfs, namecache, revlookup, fail, "struct vnode *",
331 "int");
332 SDT_PROBE_DEFINE2(vfs, namecache, prune, done, "int", "int");
333 SDT_PROBE_DEFINE3(vfs, namecache, enter, toolong, "struct vnode *",
334 "char *", "size_t");
335 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *",
336 "char *", "size_t");
337
338 /*
339 * rbtree: compare two nodes.
340 */
341 static int
342 cache_compare_nodes(void *context, const void *n1, const void *n2)
343 {
344 const struct namecache *nc1 = n1;
345 const struct namecache *nc2 = n2;
346
347 if (nc1->nc_key < nc2->nc_key) {
348 return -1;
349 }
350 if (nc1->nc_key > nc2->nc_key) {
351 return 1;
352 }
353 KASSERT(NC_NLEN(nc1) == NC_NLEN(nc2));
354 return memcmp(nc1->nc_name, nc2->nc_name, NC_NLEN(nc1));
355 }
356
357 /*
358 * Compute a key value for the given name. The name length is encoded in
359 * the key value to try and improve uniqueness, and so that length doesn't
360 * need to be compared separately for string comparisons.
361 */
362 static uintptr_t
363 cache_key(const char *name, size_t nlen)
364 {
365 uintptr_t key;
366
367 KASSERT((nlen & ~NC_NLEN_MASK) == 0);
368
369 key = hash32_buf(name, nlen, HASH32_STR_INIT);
370 return (key << NC_NLEN_BITS) | (uintptr_t)nlen;
371 }
372
373 /*
374 * Remove an entry from the cache. vi_nc_lock must be held, and if dir2node
375 * is true, then we're locking in the conventional direction and the list
376 * lock will be acquired when removing the entry from the vnode list.
377 */
378 static void
379 cache_remove(struct namecache *ncp, const bool dir2node)
380 {
381 struct vnode *vp, *dvp = ncp->nc_dvp;
382 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
383 size_t namelen = NC_NLEN(ncp);
384
385 KASSERT(rw_write_held(&dvi->vi_nc_lock));
386 KASSERT(cache_key(ncp->nc_name, namelen) == ncp->nc_key);
387 KASSERT(rb_tree_find_node(&dvi->vi_nc_tree, ncp) == ncp);
388
389 SDT_PROBE(vfs, namecache, invalidate, done, ncp, 0, 0, 0, 0);
390
391 /*
392 * Remove from the vnode's list. This excludes cache_revlookup(),
393 * and then it's safe to remove from the LRU lists.
394 */
395 if ((vp = ncp->nc_vp) != NULL) {
396 vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
397 if (__predict_true(dir2node)) {
398 rw_enter(&vi->vi_nc_listlock, RW_WRITER);
399 TAILQ_REMOVE(&vi->vi_nc_list, ncp, nc_list);
400 rw_exit(&vi->vi_nc_listlock);
401 } else {
402 TAILQ_REMOVE(&vi->vi_nc_list, ncp, nc_list);
403 }
404 }
405
406 /* Remove from the directory's rbtree. */
407 rb_tree_remove_node(&dvi->vi_nc_tree, ncp);
408
409 /* Remove from the LRU lists. */
410 mutex_enter(&cache_lru_lock);
411 TAILQ_REMOVE(&cache_lru.list[ncp->nc_lrulist], ncp, nc_lru);
412 cache_lru.count[ncp->nc_lrulist]--;
413 mutex_exit(&cache_lru_lock);
414
415 /* Finally, free it. */
416 if (namelen > NCHNAMLEN) {
417 size_t sz = offsetof(struct namecache, nc_name[namelen]);
418 kmem_free(ncp, sz);
419 } else {
420 pool_cache_put(cache_pool, ncp);
421 }
422 }
423
424 /*
425 * Find a single cache entry and return it. vi_nc_lock must be held.
426 */
427 static struct namecache * __noinline
428 cache_lookup_entry(struct vnode *dvp, const char *name, size_t namelen,
429 uintptr_t key)
430 {
431 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
432 struct rb_node *node = dvi->vi_nc_tree.rbt_root;
433 struct namecache *ncp;
434 enum cache_lru_id lrulist;
435 int diff;
436
437 KASSERT(namelen <= MAXPATHLEN);
438 KASSERT(rw_lock_held(&dvi->vi_nc_lock));
439
440 /*
441 * Search the RB tree for the key. This is an inlined lookup
442 * tailored for exactly what's needed here that turns out to be
443 * quite a bit faster than using rb_tree_find_node().
444 *
445 * For a matching key memcmp() needs to be called once to confirm
446 * that the correct name has been found. Very rarely there will be
447 * a key value collision and the search will continue.
448 */
449 for (;;) {
450 if (__predict_false(RB_SENTINEL_P(node))) {
451 return NULL;
452 }
453 ncp = (struct namecache *)node;
454 KASSERT((void *)&ncp->nc_tree == (void *)ncp);
455 KASSERT(ncp->nc_dvp == dvp);
456 if (ncp->nc_key == key) {
457 KASSERT(NC_NLEN(ncp) == namelen);
458 diff = memcmp(ncp->nc_name, name, namelen);
459 if (__predict_true(diff == 0)) {
460 break;
461 }
462 node = node->rb_nodes[diff < 0];
463 } else {
464 node = node->rb_nodes[ncp->nc_key < key];
465 }
466 }
467
468 /*
469 * If the entry is on the wrong LRU list, requeue it. This is an
470 * unlocked check, but it will rarely be wrong and even then there
471 * will be no harm caused.
472 */
473 lrulist = atomic_load_relaxed(&ncp->nc_lrulist);
474 if (__predict_false(lrulist != LRU_ACTIVE)) {
475 cache_activate(ncp);
476 }
477 return ncp;
478 }
479
480 /*
481 * Look for a the name in the cache. We don't do this
482 * if the segment name is long, simply so the cache can avoid
483 * holding long names (which would either waste space, or
484 * add greatly to the complexity).
485 *
486 * Lookup is called with DVP pointing to the directory to search,
487 * and CNP providing the name of the entry being sought: cn_nameptr
488 * is the name, cn_namelen is its length, and cn_flags is the flags
489 * word from the namei operation.
490 *
491 * DVP must be locked.
492 *
493 * There are three possible non-error return states:
494 * 1. Nothing was found in the cache. Nothing is known about
495 * the requested name.
496 * 2. A negative entry was found in the cache, meaning that the
497 * requested name definitely does not exist.
498 * 3. A positive entry was found in the cache, meaning that the
499 * requested name does exist and that we are providing the
500 * vnode.
501 * In these cases the results are:
502 * 1. 0 returned; VN is set to NULL.
503 * 2. 1 returned; VN is set to NULL.
504 * 3. 1 returned; VN is set to the vnode found.
505 *
506 * The additional result argument ISWHT is set to zero, unless a
507 * negative entry is found that was entered as a whiteout, in which
508 * case ISWHT is set to one.
509 *
510 * The ISWHT_RET argument pointer may be null. In this case an
511 * assertion is made that the whiteout flag is not set. File systems
512 * that do not support whiteouts can/should do this.
513 *
514 * Filesystems that do support whiteouts should add ISWHITEOUT to
515 * cnp->cn_flags if ISWHT comes back nonzero.
516 *
517 * When a vnode is returned, it is locked, as per the vnode lookup
518 * locking protocol.
519 *
520 * There is no way for this function to fail, in the sense of
521 * generating an error that requires aborting the namei operation.
522 *
523 * (Prior to October 2012, this function returned an integer status,
524 * and a vnode, and mucked with the flags word in CNP for whiteouts.
525 * The integer status was -1 for "nothing found", ENOENT for "a
526 * negative entry found", 0 for "a positive entry found", and possibly
527 * other errors, and the value of VN might or might not have been set
528 * depending on what error occurred.)
529 */
530 bool
531 cache_lookup(struct vnode *dvp, const char *name, size_t namelen,
532 uint32_t nameiop, uint32_t cnflags,
533 int *iswht_ret, struct vnode **vn_ret)
534 {
535 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
536 struct namecache *ncp;
537 struct vnode *vp;
538 uintptr_t key;
539 int error;
540 bool hit;
541 krw_t op;
542
543 KASSERT(namelen != cache_mp_nlen || name == cache_mp_name);
544
545 /* Establish default result values */
546 if (iswht_ret != NULL) {
547 *iswht_ret = 0;
548 }
549 *vn_ret = NULL;
550
551 if (__predict_false(namelen > cache_maxlen)) {
552 SDT_PROBE(vfs, namecache, lookup, toolong, dvp,
553 name, namelen, 0, 0);
554 COUNT(ncs_long);
555 return false;
556 }
557
558 /* Compute the key up front - don't need the lock. */
559 key = cache_key(name, namelen);
560
561 /* Could the entry be purged below? */
562 if ((cnflags & ISLASTCN) != 0 &&
563 ((cnflags & MAKEENTRY) == 0 || nameiop == CREATE)) {
564 op = RW_WRITER;
565 } else {
566 op = RW_READER;
567 }
568
569 /* Now look for the name. */
570 rw_enter(&dvi->vi_nc_lock, op);
571 ncp = cache_lookup_entry(dvp, name, namelen, key);
572 if (__predict_false(ncp == NULL)) {
573 rw_exit(&dvi->vi_nc_lock);
574 COUNT(ncs_miss);
575 SDT_PROBE(vfs, namecache, lookup, miss, dvp,
576 name, namelen, 0, 0);
577 return false;
578 }
579 if (__predict_false((cnflags & MAKEENTRY) == 0)) {
580 /*
581 * Last component and we are renaming or deleting,
582 * the cache entry is invalid, or otherwise don't
583 * want cache entry to exist.
584 */
585 KASSERT((cnflags & ISLASTCN) != 0);
586 cache_remove(ncp, true);
587 rw_exit(&dvi->vi_nc_lock);
588 COUNT(ncs_badhits);
589 return false;
590 }
591 if ((vp = ncp->nc_vp) == NULL) {
592 if (iswht_ret != NULL) {
593 /*
594 * Restore the ISWHITEOUT flag saved earlier.
595 */
596 *iswht_ret = ncp->nc_whiteout;
597 } else {
598 KASSERT(!ncp->nc_whiteout);
599 }
600 if (nameiop == CREATE && (cnflags & ISLASTCN) != 0) {
601 /*
602 * Last component and we are preparing to create
603 * the named object, so flush the negative cache
604 * entry.
605 */
606 COUNT(ncs_badhits);
607 cache_remove(ncp, true);
608 hit = false;
609 } else {
610 COUNT(ncs_neghits);
611 SDT_PROBE(vfs, namecache, lookup, hit, dvp, name,
612 namelen, 0, 0);
613 /* found neg entry; vn is already null from above */
614 hit = true;
615 }
616 rw_exit(&dvi->vi_nc_lock);
617 return hit;
618 }
619 error = vcache_tryvget(vp);
620 rw_exit(&dvi->vi_nc_lock);
621 if (error) {
622 KASSERT(error == EBUSY);
623 /*
624 * This vnode is being cleaned out.
625 * XXX badhits?
626 */
627 COUNT(ncs_falsehits);
628 return false;
629 }
630
631 COUNT(ncs_goodhits);
632 SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0);
633 /* found it */
634 *vn_ret = vp;
635 return true;
636 }
637
638 /*
639 * Version of the above without the nameiop argument, for NFS.
640 */
641 bool
642 cache_lookup_raw(struct vnode *dvp, const char *name, size_t namelen,
643 uint32_t cnflags,
644 int *iswht_ret, struct vnode **vn_ret)
645 {
646
647 return cache_lookup(dvp, name, namelen, LOOKUP, cnflags | MAKEENTRY,
648 iswht_ret, vn_ret);
649 }
650
651 /*
652 * Used by namei() to walk down a path, component by component by looking up
653 * names in the cache. The node locks are chained along the way: a parent's
654 * lock is not dropped until the child's is acquired.
655 */
656 bool
657 cache_lookup_linked(struct vnode *dvp, const char *name, size_t namelen,
658 struct vnode **vn_ret, krwlock_t **plock,
659 kauth_cred_t cred)
660 {
661 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
662 struct namecache *ncp;
663 krwlock_t *oldlock, *newlock;
664 struct vnode *vp;
665 uintptr_t key;
666 int error;
667
668 KASSERT(namelen != cache_mp_nlen || name == cache_mp_name);
669
670 /* If disabled, or file system doesn't support this, bail out. */
671 if (__predict_false((dvp->v_mount->mnt_iflag & IMNT_NCLOOKUP) == 0)) {
672 return false;
673 }
674
675 if (__predict_false(namelen > cache_maxlen)) {
676 COUNT(ncs_long);
677 return false;
678 }
679
680 /* Compute the key up front - don't need the lock. */
681 key = cache_key(name, namelen);
682
683 /*
684 * Acquire the directory lock. Once we have that, we can drop the
685 * previous one (if any).
686 *
687 * The two lock holds mean that the directory can't go away while
688 * here: the directory must be purged with cache_purge() before
689 * being freed, and both parent & child's vi_nc_lock must be taken
690 * before that point is passed.
691 *
692 * However if there's no previous lock, like at the root of the
693 * chain, then "dvp" must be referenced to prevent dvp going away
694 * before we get its lock.
695 *
696 * Note that the two locks can be the same if looking up a dot, for
697 * example: /usr/bin/. If looking up the parent (..) we can't wait
698 * on the lock as child -> parent is the wrong direction.
699 */
700 if (*plock != &dvi->vi_nc_lock) {
701 oldlock = *plock;
702 newlock = &dvi->vi_nc_lock;
703 if (!rw_tryenter(&dvi->vi_nc_lock, RW_READER)) {
704 return false;
705 }
706 } else {
707 oldlock = NULL;
708 newlock = NULL;
709 if (*plock == NULL) {
710 KASSERT(vrefcnt(dvp) > 0);
711 }
712 }
713
714 /*
715 * First up check if the user is allowed to look up files in this
716 * directory.
717 */
718 if (cred != FSCRED) {
719 if (dvi->vi_nc_mode == VNOVAL) {
720 if (newlock != NULL) {
721 rw_exit(newlock);
722 }
723 return false;
724 }
725 KASSERT(dvi->vi_nc_uid != VNOVAL);
726 KASSERT(dvi->vi_nc_gid != VNOVAL);
727 error = kauth_authorize_vnode(cred,
728 KAUTH_ACCESS_ACTION(VEXEC,
729 dvp->v_type, dvi->vi_nc_mode & ALLPERMS), dvp, NULL,
730 genfs_can_access(dvp, cred, dvi->vi_nc_uid, dvi->vi_nc_gid,
731 dvi->vi_nc_mode & ALLPERMS, NULL, VEXEC));
732 if (error != 0) {
733 if (newlock != NULL) {
734 rw_exit(newlock);
735 }
736 COUNT(ncs_denied);
737 return false;
738 }
739 }
740
741 /*
742 * Now look for a matching cache entry.
743 */
744 ncp = cache_lookup_entry(dvp, name, namelen, key);
745 if (__predict_false(ncp == NULL)) {
746 if (newlock != NULL) {
747 rw_exit(newlock);
748 }
749 COUNT(ncs_miss);
750 SDT_PROBE(vfs, namecache, lookup, miss, dvp,
751 name, namelen, 0, 0);
752 return false;
753 }
754 if ((vp = ncp->nc_vp) == NULL) {
755 /* found negative entry; vn is already null from above */
756 KASSERT(namelen != cache_mp_nlen);
757 KASSERT(name != cache_mp_name);
758 COUNT(ncs_neghits);
759 } else {
760 COUNT(ncs_goodhits); /* XXX can be "badhits" */
761 }
762 SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0);
763
764 /*
765 * Return with the directory lock still held. It will either be
766 * returned to us with another call to cache_lookup_linked() when
767 * looking up the next component, or the caller will release it
768 * manually when finished.
769 */
770 if (oldlock) {
771 rw_exit(oldlock);
772 }
773 if (newlock) {
774 *plock = newlock;
775 }
776 *vn_ret = vp;
777 return true;
778 }
779
780 /*
781 * Scan cache looking for name of directory entry pointing at vp.
782 * Will not search for "." or "..".
783 *
784 * If the lookup succeeds the vnode is referenced and stored in dvpp.
785 *
786 * If bufp is non-NULL, also place the name in the buffer which starts
787 * at bufp, immediately before *bpp, and move bpp backwards to point
788 * at the start of it. (Yes, this is a little baroque, but it's done
789 * this way to cater to the whims of getcwd).
790 *
791 * Returns 0 on success, -1 on cache miss, positive errno on failure.
792 */
793 int
794 cache_revlookup(struct vnode *vp, struct vnode **dvpp, char **bpp, char *bufp,
795 bool checkaccess, accmode_t accmode)
796 {
797 vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
798 struct namecache *ncp;
799 enum cache_lru_id lrulist;
800 struct vnode *dvp;
801 int error, nlen;
802 char *bp;
803
804 KASSERT(vp != NULL);
805
806 if (cache_maxlen == 0)
807 goto out;
808
809 rw_enter(&vi->vi_nc_listlock, RW_READER);
810 if (checkaccess) {
811 /*
812 * Check if the user is allowed to see. NOTE: this is
813 * checking for access on the "wrong" directory. getcwd()
814 * wants to see that there is access on every component
815 * along the way, not that there is access to any individual
816 * component. Don't use this to check you can look in vp.
817 *
818 * I don't like it, I didn't come up with it, don't blame me!
819 */
820 if (vi->vi_nc_mode == VNOVAL) {
821 rw_exit(&vi->vi_nc_listlock);
822 return -1;
823 }
824 KASSERT(vi->vi_nc_uid != VNOVAL);
825 KASSERT(vi->vi_nc_gid != VNOVAL);
826 error = kauth_authorize_vnode(kauth_cred_get(),
827 KAUTH_ACCESS_ACTION(VEXEC, vp->v_type, vi->vi_nc_mode &
828 ALLPERMS), vp, NULL, genfs_can_access(vp, curlwp->l_cred,
829 vi->vi_nc_uid, vi->vi_nc_gid, vi->vi_nc_mode & ALLPERMS,
830 NULL, accmode));
831 if (error != 0) {
832 rw_exit(&vi->vi_nc_listlock);
833 COUNT(ncs_denied);
834 return EACCES;
835 }
836 }
837 TAILQ_FOREACH(ncp, &vi->vi_nc_list, nc_list) {
838 KASSERT(ncp->nc_vp == vp);
839 KASSERT(ncp->nc_dvp != NULL);
840 nlen = NC_NLEN(ncp);
841
842 /*
843 * Ignore mountpoint entries.
844 */
845 if (nlen == cache_mp_nlen) {
846 continue;
847 }
848
849 /*
850 * The queue is partially sorted. Once we hit dots, nothing
851 * else remains but dots and dotdots, so bail out.
852 */
853 if (ncp->nc_name[0] == '.') {
854 if (nlen == 1 ||
855 (nlen == 2 && ncp->nc_name[1] == '.')) {
856 break;
857 }
858 }
859
860 /*
861 * Record a hit on the entry. This is an unlocked read but
862 * even if wrong it doesn't matter too much.
863 */
864 lrulist = atomic_load_relaxed(&ncp->nc_lrulist);
865 if (lrulist != LRU_ACTIVE) {
866 cache_activate(ncp);
867 }
868
869 if (bufp) {
870 bp = *bpp;
871 bp -= nlen;
872 if (bp <= bufp) {
873 *dvpp = NULL;
874 rw_exit(&vi->vi_nc_listlock);
875 SDT_PROBE(vfs, namecache, revlookup,
876 fail, vp, ERANGE, 0, 0, 0);
877 return (ERANGE);
878 }
879 memcpy(bp, ncp->nc_name, nlen);
880 *bpp = bp;
881 }
882
883 dvp = ncp->nc_dvp;
884 error = vcache_tryvget(dvp);
885 rw_exit(&vi->vi_nc_listlock);
886 if (error) {
887 KASSERT(error == EBUSY);
888 if (bufp)
889 (*bpp) += nlen;
890 *dvpp = NULL;
891 SDT_PROBE(vfs, namecache, revlookup, fail, vp,
892 error, 0, 0, 0);
893 return -1;
894 }
895 *dvpp = dvp;
896 SDT_PROBE(vfs, namecache, revlookup, success, vp, dvp,
897 0, 0, 0);
898 COUNT(ncs_revhits);
899 return (0);
900 }
901 rw_exit(&vi->vi_nc_listlock);
902 COUNT(ncs_revmiss);
903 out:
904 *dvpp = NULL;
905 return (-1);
906 }
907
908 /*
909 * Add an entry to the cache.
910 */
911 void
912 cache_enter(struct vnode *dvp, struct vnode *vp,
913 const char *name, size_t namelen, uint32_t cnflags)
914 {
915 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
916 struct namecache *ncp, *oncp;
917 int total;
918
919 KASSERT(namelen != cache_mp_nlen || name == cache_mp_name);
920
921 /* First, check whether we can/should add a cache entry. */
922 if ((cnflags & MAKEENTRY) == 0 ||
923 __predict_false(namelen > cache_maxlen)) {
924 SDT_PROBE(vfs, namecache, enter, toolong, vp, name, namelen,
925 0, 0);
926 return;
927 }
928
929 SDT_PROBE(vfs, namecache, enter, done, vp, name, namelen, 0, 0);
930
931 /*
932 * Reclaim some entries if over budget. This is an unlocked check,
933 * but it doesn't matter. Just need to catch up with things
934 * eventually: it doesn't matter if we go over temporarily.
935 */
936 total = atomic_load_relaxed(&cache_lru.count[LRU_ACTIVE]);
937 total += atomic_load_relaxed(&cache_lru.count[LRU_INACTIVE]);
938 if (__predict_false(total > desiredvnodes)) {
939 cache_reclaim();
940 }
941
942 /* Now allocate a fresh entry. */
943 if (__predict_true(namelen <= NCHNAMLEN)) {
944 ncp = pool_cache_get(cache_pool, PR_WAITOK);
945 } else {
946 size_t sz = offsetof(struct namecache, nc_name[namelen]);
947 ncp = kmem_alloc(sz, KM_SLEEP);
948 }
949
950 /*
951 * Fill in cache info. For negative hits, save the ISWHITEOUT flag
952 * so we can restore it later when the cache entry is used again.
953 */
954 ncp->nc_vp = vp;
955 ncp->nc_dvp = dvp;
956 ncp->nc_key = cache_key(name, namelen);
957 ncp->nc_whiteout = ((cnflags & ISWHITEOUT) != 0);
958 memcpy(ncp->nc_name, name, namelen);
959
960 /*
961 * Insert to the directory. Concurrent lookups may race for a cache
962 * entry. If there's a entry there already, purge it.
963 */
964 rw_enter(&dvi->vi_nc_lock, RW_WRITER);
965 oncp = rb_tree_insert_node(&dvi->vi_nc_tree, ncp);
966 if (oncp != ncp) {
967 KASSERT(oncp->nc_key == ncp->nc_key);
968 KASSERT(NC_NLEN(oncp) == NC_NLEN(ncp));
969 KASSERT(memcmp(oncp->nc_name, name, namelen) == 0);
970 cache_remove(oncp, true);
971 oncp = rb_tree_insert_node(&dvi->vi_nc_tree, ncp);
972 KASSERT(oncp == ncp);
973 }
974
975 /*
976 * With the directory lock still held, insert to the tail of the
977 * ACTIVE LRU list (new) and take the opportunity to incrementally
978 * balance the lists.
979 */
980 mutex_enter(&cache_lru_lock);
981 ncp->nc_lrulist = LRU_ACTIVE;
982 cache_lru.count[LRU_ACTIVE]++;
983 TAILQ_INSERT_TAIL(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru);
984 cache_deactivate();
985 mutex_exit(&cache_lru_lock);
986
987 /*
988 * Finally, insert to the vnode and unlock. With everything set up
989 * it's safe to let cache_revlookup() see the entry. Partially sort
990 * the per-vnode list: dots go to back so cache_revlookup() doesn't
991 * have to consider them.
992 */
993 if (vp != NULL) {
994 vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
995 rw_enter(&vi->vi_nc_listlock, RW_WRITER);
996 if ((namelen == 1 && name[0] == '.') ||
997 (namelen == 2 && name[0] == '.' && name[1] == '.')) {
998 TAILQ_INSERT_TAIL(&vi->vi_nc_list, ncp, nc_list);
999 } else {
1000 TAILQ_INSERT_HEAD(&vi->vi_nc_list, ncp, nc_list);
1001 }
1002 rw_exit(&vi->vi_nc_listlock);
1003 }
1004 rw_exit(&dvi->vi_nc_lock);
1005 }
1006
1007 /*
1008 * Set identity info in cache for a vnode. We only care about directories
1009 * so ignore other updates. The cached info may be marked invalid if the
1010 * inode has an ACL.
1011 */
1012 void
1013 cache_enter_id(struct vnode *vp, mode_t mode, uid_t uid, gid_t gid, bool valid)
1014 {
1015 vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
1016
1017 if (vp->v_type == VDIR) {
1018 /* Grab both locks, for forward & reverse lookup. */
1019 rw_enter(&vi->vi_nc_lock, RW_WRITER);
1020 rw_enter(&vi->vi_nc_listlock, RW_WRITER);
1021 if (valid) {
1022 vi->vi_nc_mode = mode;
1023 vi->vi_nc_uid = uid;
1024 vi->vi_nc_gid = gid;
1025 } else {
1026 vi->vi_nc_mode = VNOVAL;
1027 vi->vi_nc_uid = VNOVAL;
1028 vi->vi_nc_gid = VNOVAL;
1029 }
1030 rw_exit(&vi->vi_nc_listlock);
1031 rw_exit(&vi->vi_nc_lock);
1032 }
1033 }
1034
1035 /*
1036 * Return true if we have identity for the given vnode, and use as an
1037 * opportunity to confirm that everything squares up.
1038 *
1039 * Because of shared code, some file systems could provide partial
1040 * information, missing some updates, so check the mount flag too.
1041 */
1042 bool
1043 cache_have_id(struct vnode *vp)
1044 {
1045
1046 if (vp->v_type == VDIR &&
1047 (vp->v_mount->mnt_iflag & IMNT_NCLOOKUP) != 0 &&
1048 atomic_load_relaxed(&VNODE_TO_VIMPL(vp)->vi_nc_mode) != VNOVAL) {
1049 return true;
1050 } else {
1051 return false;
1052 }
1053 }
1054
1055 /*
1056 * Enter a mount point. cvp is the covered vnode, and rvp is the root of
1057 * the mounted file system.
1058 */
1059 void
1060 cache_enter_mount(struct vnode *cvp, struct vnode *rvp)
1061 {
1062
1063 KASSERT(vrefcnt(cvp) > 0);
1064 KASSERT(vrefcnt(rvp) > 0);
1065 KASSERT(cvp->v_type == VDIR);
1066 KASSERT((rvp->v_vflag & VV_ROOT) != 0);
1067
1068 if (rvp->v_type == VDIR) {
1069 cache_enter(cvp, rvp, cache_mp_name, cache_mp_nlen, MAKEENTRY);
1070 }
1071 }
1072
1073 /*
1074 * Look up a cached mount point. Used in the strongly locked path.
1075 */
1076 bool
1077 cache_lookup_mount(struct vnode *dvp, struct vnode **vn_ret)
1078 {
1079 bool ret;
1080
1081 ret = cache_lookup(dvp, cache_mp_name, cache_mp_nlen, LOOKUP,
1082 MAKEENTRY, NULL, vn_ret);
1083 KASSERT((*vn_ret != NULL) == ret);
1084 return ret;
1085 }
1086
1087 /*
1088 * Try to cross a mount point. For use with cache_lookup_linked().
1089 */
1090 bool
1091 cache_cross_mount(struct vnode **dvp, krwlock_t **plock)
1092 {
1093
1094 return cache_lookup_linked(*dvp, cache_mp_name, cache_mp_nlen,
1095 dvp, plock, FSCRED);
1096 }
1097
1098 /*
1099 * Name cache initialization, from vfs_init() when the system is booting.
1100 */
1101 void
1102 nchinit(void)
1103 {
1104
1105 cache_pool = pool_cache_init(sizeof(struct namecache),
1106 coherency_unit, 0, 0, "namecache", NULL, IPL_NONE, NULL,
1107 NULL, NULL);
1108 KASSERT(cache_pool != NULL);
1109
1110 mutex_init(&cache_lru_lock, MUTEX_DEFAULT, IPL_NONE);
1111 TAILQ_INIT(&cache_lru.list[LRU_ACTIVE]);
1112 TAILQ_INIT(&cache_lru.list[LRU_INACTIVE]);
1113
1114 mutex_init(&cache_stat_lock, MUTEX_DEFAULT, IPL_NONE);
1115 callout_init(&cache_stat_callout, CALLOUT_MPSAFE);
1116 callout_setfunc(&cache_stat_callout, cache_update_stats, NULL);
1117 callout_schedule(&cache_stat_callout, cache_stat_interval * hz);
1118
1119 KASSERT(cache_sysctllog == NULL);
1120 sysctl_createv(&cache_sysctllog, 0, NULL, NULL,
1121 CTLFLAG_PERMANENT,
1122 CTLTYPE_STRUCT, "namecache_stats",
1123 SYSCTL_DESCR("namecache statistics"),
1124 cache_stat_sysctl, 0, NULL, 0,
1125 CTL_VFS, CTL_CREATE, CTL_EOL);
1126 }
1127
1128 /*
1129 * Called once for each CPU in the system as attached.
1130 */
1131 void
1132 cache_cpu_init(struct cpu_info *ci)
1133 {
1134 size_t sz;
1135
1136 sz = roundup2(sizeof(struct nchcpu), coherency_unit);
1137 ci->ci_data.cpu_nch = kmem_zalloc(sz, KM_SLEEP);
1138 KASSERT(((uintptr_t)ci->ci_data.cpu_nch & (coherency_unit - 1)) == 0);
1139 }
1140
1141 /*
1142 * A vnode is being allocated: set up cache structures.
1143 */
1144 void
1145 cache_vnode_init(struct vnode *vp)
1146 {
1147 vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
1148
1149 rw_init(&vi->vi_nc_lock);
1150 rw_init(&vi->vi_nc_listlock);
1151 rb_tree_init(&vi->vi_nc_tree, &cache_rbtree_ops);
1152 TAILQ_INIT(&vi->vi_nc_list);
1153 vi->vi_nc_mode = VNOVAL;
1154 vi->vi_nc_uid = VNOVAL;
1155 vi->vi_nc_gid = VNOVAL;
1156 }
1157
1158 /*
1159 * A vnode is being freed: finish cache structures.
1160 */
1161 void
1162 cache_vnode_fini(struct vnode *vp)
1163 {
1164 vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
1165
1166 KASSERT(RB_TREE_MIN(&vi->vi_nc_tree) == NULL);
1167 KASSERT(TAILQ_EMPTY(&vi->vi_nc_list));
1168 rw_destroy(&vi->vi_nc_lock);
1169 rw_destroy(&vi->vi_nc_listlock);
1170 }
1171
1172 /*
1173 * Helper for cache_purge1(): purge cache entries for the given vnode from
1174 * all directories that the vnode is cached in.
1175 */
1176 static void
1177 cache_purge_parents(struct vnode *vp)
1178 {
1179 vnode_impl_t *dvi, *vi = VNODE_TO_VIMPL(vp);
1180 struct vnode *dvp, *blocked;
1181 struct namecache *ncp;
1182
1183 SDT_PROBE(vfs, namecache, purge, parents, vp, 0, 0, 0, 0);
1184
1185 blocked = NULL;
1186
1187 rw_enter(&vi->vi_nc_listlock, RW_WRITER);
1188 while ((ncp = TAILQ_FIRST(&vi->vi_nc_list)) != NULL) {
1189 /*
1190 * Locking in the wrong direction. Try for a hold on the
1191 * directory node's lock, and if we get it then all good,
1192 * nuke the entry and move on to the next.
1193 */
1194 dvp = ncp->nc_dvp;
1195 dvi = VNODE_TO_VIMPL(dvp);
1196 if (rw_tryenter(&dvi->vi_nc_lock, RW_WRITER)) {
1197 cache_remove(ncp, false);
1198 rw_exit(&dvi->vi_nc_lock);
1199 blocked = NULL;
1200 continue;
1201 }
1202
1203 /*
1204 * We can't wait on the directory node's lock with our list
1205 * lock held or the system could deadlock.
1206 *
1207 * Take a hold on the directory vnode to prevent it from
1208 * being freed (taking the vnode & lock with it). Then
1209 * wait for the lock to become available with no other locks
1210 * held, and retry.
1211 *
1212 * If this happens twice in a row, give the other side a
1213 * breather; we can do nothing until it lets go.
1214 */
1215 vhold(dvp);
1216 rw_exit(&vi->vi_nc_listlock);
1217 rw_enter(&dvi->vi_nc_lock, RW_WRITER);
1218 /* Do nothing. */
1219 rw_exit(&dvi->vi_nc_lock);
1220 holdrele(dvp);
1221 if (blocked == dvp) {
1222 kpause("ncpurge", false, 1, NULL);
1223 }
1224 rw_enter(&vi->vi_nc_listlock, RW_WRITER);
1225 blocked = dvp;
1226 }
1227 rw_exit(&vi->vi_nc_listlock);
1228 }
1229
1230 /*
1231 * Helper for cache_purge1(): purge all cache entries hanging off the given
1232 * directory vnode.
1233 */
1234 static void
1235 cache_purge_children(struct vnode *dvp)
1236 {
1237 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
1238 struct namecache *ncp;
1239
1240 SDT_PROBE(vfs, namecache, purge, children, dvp, 0, 0, 0, 0);
1241
1242 rw_enter(&dvi->vi_nc_lock, RW_WRITER);
1243 while ((ncp = RB_TREE_MIN(&dvi->vi_nc_tree)) != NULL) {
1244 cache_remove(ncp, true);
1245 }
1246 rw_exit(&dvi->vi_nc_lock);
1247 }
1248
1249 /*
1250 * Helper for cache_purge1(): purge cache entry from the given vnode,
1251 * finding it by name.
1252 */
1253 static void
1254 cache_purge_name(struct vnode *dvp, const char *name, size_t namelen)
1255 {
1256 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
1257 struct namecache *ncp;
1258 uintptr_t key;
1259
1260 SDT_PROBE(vfs, namecache, purge, name, name, namelen, 0, 0, 0);
1261
1262 key = cache_key(name, namelen);
1263 rw_enter(&dvi->vi_nc_lock, RW_WRITER);
1264 ncp = cache_lookup_entry(dvp, name, namelen, key);
1265 if (ncp) {
1266 cache_remove(ncp, true);
1267 }
1268 rw_exit(&dvi->vi_nc_lock);
1269 }
1270
1271 /*
1272 * Cache flush, a particular vnode; called when a vnode is renamed to
1273 * hide entries that would now be invalid.
1274 */
1275 void
1276 cache_purge1(struct vnode *vp, const char *name, size_t namelen, int flags)
1277 {
1278
1279 if (flags & PURGE_PARENTS) {
1280 cache_purge_parents(vp);
1281 }
1282 if (flags & PURGE_CHILDREN) {
1283 cache_purge_children(vp);
1284 }
1285 if (name != NULL) {
1286 cache_purge_name(vp, name, namelen);
1287 }
1288 }
1289
1290 /*
1291 * vnode filter for cache_purgevfs().
1292 */
1293 static bool
1294 cache_vdir_filter(void *cookie, vnode_t *vp)
1295 {
1296
1297 return vp->v_type == VDIR;
1298 }
1299
1300 /*
1301 * Cache flush, a whole filesystem; called when filesys is umounted to
1302 * remove entries that would now be invalid.
1303 */
1304 void
1305 cache_purgevfs(struct mount *mp)
1306 {
1307 struct vnode_iterator *iter;
1308 vnode_t *dvp;
1309
1310 vfs_vnode_iterator_init(mp, &iter);
1311 for (;;) {
1312 dvp = vfs_vnode_iterator_next(iter, cache_vdir_filter, NULL);
1313 if (dvp == NULL) {
1314 break;
1315 }
1316 cache_purge_children(dvp);
1317 vrele(dvp);
1318 }
1319 vfs_vnode_iterator_destroy(iter);
1320 }
1321
1322 /*
1323 * Re-queue an entry onto the tail of the active LRU list, after it has
1324 * scored a hit.
1325 */
1326 static void
1327 cache_activate(struct namecache *ncp)
1328 {
1329
1330 mutex_enter(&cache_lru_lock);
1331 TAILQ_REMOVE(&cache_lru.list[ncp->nc_lrulist], ncp, nc_lru);
1332 TAILQ_INSERT_TAIL(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru);
1333 cache_lru.count[ncp->nc_lrulist]--;
1334 cache_lru.count[LRU_ACTIVE]++;
1335 ncp->nc_lrulist = LRU_ACTIVE;
1336 mutex_exit(&cache_lru_lock);
1337 }
1338
1339 /*
1340 * Try to balance the LRU lists. Pick some victim entries, and re-queue
1341 * them from the head of the active list to the tail of the inactive list.
1342 */
1343 static void
1344 cache_deactivate(void)
1345 {
1346 struct namecache *ncp;
1347 int total, i;
1348
1349 KASSERT(mutex_owned(&cache_lru_lock));
1350
1351 /* If we're nowhere near budget yet, don't bother. */
1352 total = cache_lru.count[LRU_ACTIVE] + cache_lru.count[LRU_INACTIVE];
1353 if (total < (desiredvnodes >> 1)) {
1354 return;
1355 }
1356
1357 /*
1358 * Aim for a 1:1 ratio of active to inactive. This is to allow each
1359 * potential victim a reasonable amount of time to cycle through the
1360 * inactive list in order to score a hit and be reactivated, while
1361 * trying not to cause reactivations too frequently.
1362 */
1363 if (cache_lru.count[LRU_ACTIVE] < cache_lru.count[LRU_INACTIVE]) {
1364 return;
1365 }
1366
1367 /* Move only a few at a time; will catch up eventually. */
1368 for (i = 0; i < cache_lru_maxdeact; i++) {
1369 ncp = TAILQ_FIRST(&cache_lru.list[LRU_ACTIVE]);
1370 if (ncp == NULL) {
1371 break;
1372 }
1373 KASSERT(ncp->nc_lrulist == LRU_ACTIVE);
1374 ncp->nc_lrulist = LRU_INACTIVE;
1375 TAILQ_REMOVE(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru);
1376 TAILQ_INSERT_TAIL(&cache_lru.list[LRU_INACTIVE], ncp, nc_lru);
1377 cache_lru.count[LRU_ACTIVE]--;
1378 cache_lru.count[LRU_INACTIVE]++;
1379 }
1380 }
1381
1382 /*
1383 * Free some entries from the cache, when we have gone over budget.
1384 *
1385 * We don't want to cause too much work for any individual caller, and it
1386 * doesn't matter if we temporarily go over budget. This is also "just a
1387 * cache" so it's not a big deal if we screw up and throw out something we
1388 * shouldn't. So we take a relaxed attitude to this process to reduce its
1389 * impact.
1390 */
1391 static void
1392 cache_reclaim(void)
1393 {
1394 struct namecache *ncp;
1395 vnode_impl_t *dvi;
1396 int toscan;
1397
1398 /*
1399 * Scan up to a preset maximum number of entries, but no more than
1400 * 0.8% of the total at once (to allow for very small systems).
1401 *
1402 * On bigger systems, do a larger chunk of work to reduce the number
1403 * of times that cache_lru_lock is held for any length of time.
1404 */
1405 mutex_enter(&cache_lru_lock);
1406 toscan = MIN(cache_lru_maxscan, desiredvnodes >> 7);
1407 toscan = MAX(toscan, 1);
1408 SDT_PROBE(vfs, namecache, prune, done, cache_lru.count[LRU_ACTIVE] +
1409 cache_lru.count[LRU_INACTIVE], toscan, 0, 0, 0);
1410 while (toscan-- != 0) {
1411 /* First try to balance the lists. */
1412 cache_deactivate();
1413
1414 /* Now look for a victim on head of inactive list (old). */
1415 ncp = TAILQ_FIRST(&cache_lru.list[LRU_INACTIVE]);
1416 if (ncp == NULL) {
1417 break;
1418 }
1419 dvi = VNODE_TO_VIMPL(ncp->nc_dvp);
1420 KASSERT(ncp->nc_lrulist == LRU_INACTIVE);
1421 KASSERT(dvi != NULL);
1422
1423 /*
1424 * Locking in the wrong direction. If we can't get the
1425 * lock, the directory is actively busy, and it could also
1426 * cause problems for the next guy in here, so send the
1427 * entry to the back of the list.
1428 */
1429 if (!rw_tryenter(&dvi->vi_nc_lock, RW_WRITER)) {
1430 TAILQ_REMOVE(&cache_lru.list[LRU_INACTIVE],
1431 ncp, nc_lru);
1432 TAILQ_INSERT_TAIL(&cache_lru.list[LRU_INACTIVE],
1433 ncp, nc_lru);
1434 continue;
1435 }
1436
1437 /*
1438 * Now have the victim entry locked. Drop the LRU list
1439 * lock, purge the entry, and start over. The hold on
1440 * vi_nc_lock will prevent the vnode from vanishing until
1441 * finished (cache_purge() will be called on dvp before it
1442 * disappears, and that will wait on vi_nc_lock).
1443 */
1444 mutex_exit(&cache_lru_lock);
1445 cache_remove(ncp, true);
1446 rw_exit(&dvi->vi_nc_lock);
1447 mutex_enter(&cache_lru_lock);
1448 }
1449 mutex_exit(&cache_lru_lock);
1450 }
1451
1452 /*
1453 * For file system code: count a lookup that required a full re-scan of
1454 * directory metadata.
1455 */
1456 void
1457 namecache_count_pass2(void)
1458 {
1459
1460 COUNT(ncs_pass2);
1461 }
1462
1463 /*
1464 * For file system code: count a lookup that scored a hit in the directory
1465 * metadata near the location of the last lookup.
1466 */
1467 void
1468 namecache_count_2passes(void)
1469 {
1470
1471 COUNT(ncs_2passes);
1472 }
1473
1474 /*
1475 * Sum the stats from all CPUs into nchstats. This needs to run at least
1476 * once within every window where a 32-bit counter could roll over. It's
1477 * called regularly by timer to ensure this.
1478 */
1479 static void
1480 cache_update_stats(void *cookie)
1481 {
1482 CPU_INFO_ITERATOR cii;
1483 struct cpu_info *ci;
1484
1485 mutex_enter(&cache_stat_lock);
1486 for (CPU_INFO_FOREACH(cii, ci)) {
1487 struct nchcpu *nchcpu = ci->ci_data.cpu_nch;
1488 UPDATE(nchcpu, ncs_goodhits);
1489 UPDATE(nchcpu, ncs_neghits);
1490 UPDATE(nchcpu, ncs_badhits);
1491 UPDATE(nchcpu, ncs_falsehits);
1492 UPDATE(nchcpu, ncs_miss);
1493 UPDATE(nchcpu, ncs_long);
1494 UPDATE(nchcpu, ncs_pass2);
1495 UPDATE(nchcpu, ncs_2passes);
1496 UPDATE(nchcpu, ncs_revhits);
1497 UPDATE(nchcpu, ncs_revmiss);
1498 UPDATE(nchcpu, ncs_denied);
1499 }
1500 if (cookie != NULL) {
1501 memcpy(cookie, &nchstats, sizeof(nchstats));
1502 }
1503 /* Reset the timer; arrive back here in N minutes at latest. */
1504 callout_schedule(&cache_stat_callout, cache_stat_interval * hz);
1505 mutex_exit(&cache_stat_lock);
1506 }
1507
1508 /*
1509 * Fetch the current values of the stats for sysctl.
1510 */
1511 static int
1512 cache_stat_sysctl(SYSCTLFN_ARGS)
1513 {
1514 struct nchstats stats;
1515
1516 if (oldp == NULL) {
1517 *oldlenp = sizeof(nchstats);
1518 return 0;
1519 }
1520
1521 if (*oldlenp <= 0) {
1522 *oldlenp = 0;
1523 return 0;
1524 }
1525
1526 /* Refresh the global stats. */
1527 sysctl_unlock();
1528 cache_update_stats(&stats);
1529 sysctl_relock();
1530
1531 *oldlenp = MIN(sizeof(stats), *oldlenp);
1532 return sysctl_copyout(l, &stats, oldp, *oldlenp);
1533 }
1534
1535 /*
1536 * For the debugger, given the address of a vnode, print all associated
1537 * names in the cache.
1538 */
1539 #ifdef DDB
1540 void
1541 namecache_print(struct vnode *vp, void (*pr)(const char *, ...))
1542 {
1543 struct vnode *dvp = NULL;
1544 struct namecache *ncp;
1545 enum cache_lru_id id;
1546
1547 for (id = 0; id < LRU_COUNT; id++) {
1548 TAILQ_FOREACH(ncp, &cache_lru.list[id], nc_lru) {
1549 if (ncp->nc_vp == vp) {
1550 (*pr)("name %.*s\n", NC_NLEN(ncp),
1551 ncp->nc_name);
1552 dvp = ncp->nc_dvp;
1553 }
1554 }
1555 }
1556 if (dvp == NULL) {
1557 (*pr)("name not found\n");
1558 return;
1559 }
1560 for (id = 0; id < LRU_COUNT; id++) {
1561 TAILQ_FOREACH(ncp, &cache_lru.list[id], nc_lru) {
1562 if (ncp->nc_vp == dvp) {
1563 (*pr)("parent %.*s\n", NC_NLEN(ncp),
1564 ncp->nc_name);
1565 }
1566 }
1567 }
1568 }
1569 #endif
1570