vfs_cache.c revision 1.158 1 /* $NetBSD: vfs_cache.c,v 1.158 2024/12/07 02:23:09 riastradh Exp $ */
2
3 /*-
4 * Copyright (c) 2008, 2019, 2020, 2023 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1989, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)vfs_cache.c 8.3 (Berkeley) 8/22/94
61 */
62
63 /*
64 * Name caching:
65 *
66 * Names found by directory scans are retained in a cache for future
67 * reference. It is managed LRU, so frequently used names will hang
68 * around. The cache is indexed by hash value obtained from the name.
69 *
70 * The name cache is the brainchild of Robert Elz and was introduced in
71 * 4.3BSD. See "Using gprof to Tune the 4.2BSD Kernel", Marshall Kirk
72 * McKusick, May 21 1984.
73 *
74 * Data structures:
75 *
76 * Most Unix namecaches very sensibly use a global hash table to index
77 * names. The global hash table works well, but can cause concurrency
78 * headaches for the kernel hacker. In the NetBSD 10.0 implementation
79 * we are not sensible, and use a per-directory data structure to index
80 * names, but the cache otherwise functions the same.
81 *
82 * The index is a red-black tree. It should not be difficult to
83 * experiment with other types of index, however note that a tree
84 * can trivially be made to support lockless lookup.
85 *
86 * Each cached name is stored in a struct namecache, along with a
87 * pointer to the associated vnode (nc_vp). Names longer than a
88 * maximum length of NCHNAMLEN are allocated with kmem_alloc(); they
89 * occur infrequently, and names shorter than this are stored directly
90 * in struct namecache. If it is a "negative" entry, (i.e. for a name
91 * that is known NOT to exist) the vnode pointer will be NULL.
92 *
93 * In practice this implementation is not any slower than the hash
94 * table that preceeded it and in some cases it significantly
95 * outperforms the hash table. Some reasons why this might be:
96 *
97 * - natural partitioning provided by the file system structure, which
98 * the prior implementation discarded (global hash table).
99 * - worst case tree traversal of O(log n), the hash table could have
100 * many collisions.
101 * - minimized cache misses & total L2/L3 CPU cache footprint; struct
102 * namecache and vnode_impl_t are laid out to keep cache footprint
103 * minimal in the lookup path; no hash table buckets to cache.
104 * - minimized number of conditionals & string comparisons.
105 *
106 * For a directory with 3 cached names for 3 distinct vnodes, the
107 * various vnodes and namecache structs would be connected like this
108 * (the root is at the bottom of the diagram):
109 *
110 * ...
111 * ^
112 * |- vi_nc_tree
113 * |
114 * +----o----+ +---------+ +---------+
115 * | VDIR | | VCHR | | VREG |
116 * | vnode o-----+ | vnode o-----+ | vnode o------+
117 * +---------+ | +---------+ | +---------+ |
118 * ^ | ^ | ^ |
119 * |- nc_vp |- vi_nc_list |- nc_vp |- vi_nc_list |- nc_vp |
120 * | | | | | |
121 * +----o----+ | +----o----+ | +----o----+ |
122 * +---onamecache|<----+ +---onamecache|<----+ +---onamecache|<-----+
123 * | +---------+ | +---------+ | +---------+
124 * | ^ | ^ | ^
125 * | | | | | |
126 * | | +----------------------+ | |
127 * |-nc_dvp | +-------------------------------------------------+
128 * | |/- vi_nc_tree | |
129 * | | |- nc_dvp |- nc_dvp
130 * | +----o----+ | |
131 * +-->| VDIR |<----------+ |
132 * | vnode |<------------------------------------+
133 * +---------+
134 *
135 * START HERE
136 *
137 * Replacement:
138 *
139 * As the cache becomes full, old and unused entries are purged as new
140 * entries are added. The synchronization overhead in maintaining a
141 * strict ordering would be prohibitive, so the VM system's "clock" or
142 * "second chance" page replacement algorithm is aped here. New
143 * entries go to the tail of the active list. After they age out and
144 * reach the head of the list, they are moved to the tail of the
145 * inactive list. Any use of the deactivated cache entry reactivates
146 * it, saving it from impending doom; if not reactivated, the entry
147 * eventually reaches the head of the inactive list and is purged.
148 *
149 * Concurrency:
150 *
151 * From a performance perspective, cache_lookup(nameiop == LOOKUP) is
152 * what really matters; insertion of new entries with cache_enter() is
153 * comparatively infrequent, and overshadowed by the cost of expensive
154 * file system metadata operations (which may involve disk I/O). We
155 * therefore want to make everything simplest in the lookup path.
156 *
157 * struct namecache is mostly stable except for list and tree related
158 * entries, changes to which don't affect the cached name or vnode.
159 * For changes to name+vnode, entries are purged in preference to
160 * modifying them.
161 *
162 * Read access to namecache entries is made via tree, list, or LRU
163 * list. A lock corresponding to the direction of access should be
164 * held. See definition of "struct namecache" in src/sys/namei.src,
165 * and the definition of "struct vnode" for the particulars.
166 *
167 * Per-CPU statistics, and LRU list totals are read unlocked, since an
168 * approximate value is OK. We maintain 32-bit sized per-CPU counters
169 * and 64-bit global counters since 32-bit sized counters can be
170 * observed locklessly while the global counters are protected by a
171 * mutex.
172 *
173 * The lock order is:
174 *
175 * 1) vi->vi_nc_lock (tree or parent -> child direction,
176 * used during forward lookup)
177 *
178 * 2) vi->vi_nc_listlock (list or child -> parent direction,
179 * used during reverse lookup)
180 *
181 * 3) cache_lru_lock (LRU list direction, used during reclaim)
182 */
183
184 #define __NAMECACHE_PRIVATE
185
186 #include <sys/cdefs.h>
187 __KERNEL_RCSID(0, "$NetBSD: vfs_cache.c,v 1.158 2024/12/07 02:23:09 riastradh Exp $");
188
189 #ifdef _KERNEL_OPT
190 #include "opt_ddb.h"
191 #include "opt_dtrace.h"
192 #endif
193
194 #include <sys/param.h>
195 #include <sys/types.h>
196
197 #include <sys/atomic.h>
198 #include <sys/callout.h>
199 #include <sys/cpu.h>
200 #include <sys/errno.h>
201 #include <sys/evcnt.h>
202 #include <sys/hash.h>
203 #include <sys/kernel.h>
204 #include <sys/mount.h>
205 #include <sys/mutex.h>
206 #include <sys/namei.h>
207 #include <sys/param.h>
208 #include <sys/pool.h>
209 #include <sys/sdt.h>
210 #include <sys/sysctl.h>
211 #include <sys/systm.h>
212 #include <sys/time.h>
213 #include <sys/vnode_impl.h>
214
215 #include <miscfs/genfs/genfs.h>
216
217 /*
218 * Assert that data structure layout hasn't changed unintentionally.
219 */
220 #ifdef _LP64
221 CTASSERT(sizeof(struct namecache) == 128);
222 #else
223 CTASSERT(sizeof(struct namecache) == 64);
224 #endif
225 CTASSERT(NC_NLEN_MASK >= MAXPATHLEN);
226
227 static void cache_activate(struct namecache *);
228 static void cache_update_stats(void *);
229 static int cache_compare_nodes(void *, const void *, const void *);
230 static void cache_deactivate(void);
231 static void cache_reclaim(void);
232 static int cache_stat_sysctl(SYSCTLFN_ARGS);
233
234 /*
235 * Global pool cache.
236 */
237 static pool_cache_t cache_pool __read_mostly;
238
239 /*
240 * LRU replacement.
241 */
242 enum cache_lru_id {
243 LRU_ACTIVE,
244 LRU_INACTIVE,
245 LRU_COUNT
246 };
247
248 static struct {
249 TAILQ_HEAD(, namecache) list[LRU_COUNT];
250 u_int count[LRU_COUNT];
251 } cache_lru __cacheline_aligned;
252
253 static kmutex_t cache_lru_lock __cacheline_aligned;
254
255 /*
256 * Cache effectiveness statistics. nchstats holds system-wide total.
257 */
258 struct nchstats nchstats;
259 struct nchstats_percpu _NAMEI_CACHE_STATS(uint32_t);
260 struct nchcpu {
261 struct nchstats_percpu cur;
262 struct nchstats_percpu last;
263 };
264 static callout_t cache_stat_callout;
265 static kmutex_t cache_stat_lock __cacheline_aligned;
266
267 #define COUNT(f) do { \
268 lwp_t *l = curlwp; \
269 KPREEMPT_DISABLE(l); \
270 struct nchcpu *nchcpu = curcpu()->ci_data.cpu_nch; \
271 nchcpu->cur.f++; \
272 KPREEMPT_ENABLE(l); \
273 } while (/* CONSTCOND */ 0);
274
275 #define UPDATE(nchcpu, f) do { \
276 uint32_t cur = atomic_load_relaxed(&nchcpu->cur.f); \
277 nchstats.f += (uint32_t)(cur - nchcpu->last.f); \
278 nchcpu->last.f = cur; \
279 } while (/* CONSTCOND */ 0)
280
281 /*
282 * Tunables. cache_maxlen replaces the historical doingcache:
283 * set it zero to disable caching for debugging purposes.
284 */
285 int cache_lru_maxdeact __read_mostly = 2; /* max # to deactivate */
286 int cache_lru_maxscan __read_mostly = 64; /* max # to scan/reclaim */
287 int cache_maxlen __read_mostly = NC_NLEN_MASK; /* max name length to cache */
288 int cache_stat_interval __read_mostly = 300; /* in seconds */
289
290 /*
291 * sysctl stuff.
292 */
293 static struct sysctllog *cache_sysctllog;
294
295 /*
296 * This is a dummy name that cannot usually occur anywhere in the cache nor
297 * file system. It's used when caching the root vnode of mounted file
298 * systems. The name is attached to the directory that the file system is
299 * mounted on.
300 */
301 static const char cache_mp_name[] = "";
302 static const int cache_mp_nlen = sizeof(cache_mp_name) - 1;
303
304 /*
305 * Red-black tree stuff.
306 */
307 static const rb_tree_ops_t cache_rbtree_ops = {
308 .rbto_compare_nodes = cache_compare_nodes,
309 .rbto_compare_key = cache_compare_nodes,
310 .rbto_node_offset = offsetof(struct namecache, nc_tree),
311 .rbto_context = NULL
312 };
313
314 /*
315 * dtrace probes.
316 */
317 SDT_PROBE_DEFINE1(vfs, namecache, invalidate, done, "struct vnode *");
318 SDT_PROBE_DEFINE1(vfs, namecache, purge, parents, "struct vnode *");
319 SDT_PROBE_DEFINE1(vfs, namecache, purge, children, "struct vnode *");
320 SDT_PROBE_DEFINE2(vfs, namecache, purge, name, "char *", "size_t");
321 SDT_PROBE_DEFINE1(vfs, namecache, purge, vfs, "struct mount *");
322 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *",
323 "char *", "size_t");
324 SDT_PROBE_DEFINE3(vfs, namecache, lookup, miss, "struct vnode *",
325 "char *", "size_t");
326 SDT_PROBE_DEFINE3(vfs, namecache, lookup, toolong, "struct vnode *",
327 "char *", "size_t");
328 SDT_PROBE_DEFINE2(vfs, namecache, revlookup, success, "struct vnode *",
329 "struct vnode *");
330 SDT_PROBE_DEFINE2(vfs, namecache, revlookup, fail, "struct vnode *",
331 "int");
332 SDT_PROBE_DEFINE2(vfs, namecache, prune, done, "int", "int");
333 SDT_PROBE_DEFINE3(vfs, namecache, enter, toolong, "struct vnode *",
334 "char *", "size_t");
335 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *",
336 "char *", "size_t");
337
338 /*
339 * rbtree: compare two nodes.
340 */
341 static int
342 cache_compare_nodes(void *context, const void *n1, const void *n2)
343 {
344 const struct namecache *nc1 = n1;
345 const struct namecache *nc2 = n2;
346
347 if (nc1->nc_key < nc2->nc_key) {
348 return -1;
349 }
350 if (nc1->nc_key > nc2->nc_key) {
351 return 1;
352 }
353 KASSERT(NC_NLEN(nc1) == NC_NLEN(nc2));
354 return memcmp(nc1->nc_name, nc2->nc_name, NC_NLEN(nc1));
355 }
356
357 /*
358 * Compute a key value for the given name. The name length is encoded in
359 * the key value to try and improve uniqueness, and so that length doesn't
360 * need to be compared separately for string comparisons.
361 */
362 static uintptr_t
363 cache_key(const char *name, size_t nlen)
364 {
365 uintptr_t key;
366
367 KASSERT((nlen & ~NC_NLEN_MASK) == 0);
368
369 key = hash32_buf(name, nlen, HASH32_STR_INIT);
370 return (key << NC_NLEN_BITS) | (uintptr_t)nlen;
371 }
372
373 /*
374 * Remove an entry from the cache. vi_nc_lock must be held, and if dir2node
375 * is true, then we're locking in the conventional direction and the list
376 * lock will be acquired when removing the entry from the vnode list.
377 */
378 static void
379 cache_remove(struct namecache *ncp, const bool dir2node)
380 {
381 struct vnode *vp, *dvp = ncp->nc_dvp;
382 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
383 size_t namelen = NC_NLEN(ncp);
384
385 KASSERT(rw_write_held(&dvi->vi_nc_lock));
386 KASSERT(cache_key(ncp->nc_name, namelen) == ncp->nc_key);
387 KASSERT(rb_tree_find_node(&dvi->vi_nc_tree, ncp) == ncp);
388
389 SDT_PROBE(vfs, namecache, invalidate, done, ncp, 0, 0, 0, 0);
390
391 /*
392 * Remove from the vnode's list. This excludes cache_revlookup(),
393 * and then it's safe to remove from the LRU lists.
394 */
395 if ((vp = ncp->nc_vp) != NULL) {
396 vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
397 if (__predict_true(dir2node)) {
398 rw_enter(&vi->vi_nc_listlock, RW_WRITER);
399 TAILQ_REMOVE(&vi->vi_nc_list, ncp, nc_list);
400 rw_exit(&vi->vi_nc_listlock);
401 } else {
402 TAILQ_REMOVE(&vi->vi_nc_list, ncp, nc_list);
403 }
404 }
405
406 /* Remove from the directory's rbtree. */
407 rb_tree_remove_node(&dvi->vi_nc_tree, ncp);
408
409 /* Remove from the LRU lists. */
410 mutex_enter(&cache_lru_lock);
411 TAILQ_REMOVE(&cache_lru.list[ncp->nc_lrulist], ncp, nc_lru);
412 cache_lru.count[ncp->nc_lrulist]--;
413 mutex_exit(&cache_lru_lock);
414
415 /* Finally, free it. */
416 if (namelen > NCHNAMLEN) {
417 size_t sz = offsetof(struct namecache, nc_name[namelen]);
418 kmem_free(ncp, sz);
419 } else {
420 pool_cache_put(cache_pool, ncp);
421 }
422 }
423
424 /*
425 * Find a single cache entry and return it. vi_nc_lock must be held.
426 */
427 static struct namecache * __noinline
428 cache_lookup_entry(struct vnode *dvp, const char *name, size_t namelen,
429 uintptr_t key)
430 {
431 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
432 struct rb_node *node = dvi->vi_nc_tree.rbt_root;
433 struct namecache *ncp;
434 enum cache_lru_id lrulist;
435 int diff;
436
437 KASSERT(namelen <= MAXPATHLEN);
438 KASSERT(rw_lock_held(&dvi->vi_nc_lock));
439
440 /*
441 * Search the RB tree for the key. This is an inlined lookup
442 * tailored for exactly what's needed here that turns out to be
443 * quite a bit faster than using rb_tree_find_node().
444 *
445 * For a matching key memcmp() needs to be called once to confirm
446 * that the correct name has been found. Very rarely there will be
447 * a key value collision and the search will continue.
448 */
449 for (;;) {
450 if (__predict_false(RB_SENTINEL_P(node))) {
451 return NULL;
452 }
453 ncp = (struct namecache *)node;
454 KASSERT((void *)&ncp->nc_tree == (void *)ncp);
455 KASSERT(ncp->nc_dvp == dvp);
456 if (ncp->nc_key == key) {
457 KASSERT(NC_NLEN(ncp) == namelen);
458 diff = memcmp(ncp->nc_name, name, namelen);
459 if (__predict_true(diff == 0)) {
460 break;
461 }
462 node = node->rb_nodes[diff < 0];
463 } else {
464 node = node->rb_nodes[ncp->nc_key < key];
465 }
466 }
467
468 /*
469 * If the entry is on the wrong LRU list, requeue it. This is an
470 * unlocked check, but it will rarely be wrong and even then there
471 * will be no harm caused.
472 */
473 lrulist = atomic_load_relaxed(&ncp->nc_lrulist);
474 if (__predict_false(lrulist != LRU_ACTIVE)) {
475 cache_activate(ncp);
476 }
477 return ncp;
478 }
479
480 /*
481 * Look for a the name in the cache. We don't do this
482 * if the segment name is long, simply so the cache can avoid
483 * holding long names (which would either waste space, or
484 * add greatly to the complexity).
485 *
486 * Lookup is called with DVP pointing to the directory to search,
487 * and CNP providing the name of the entry being sought: cn_nameptr
488 * is the name, cn_namelen is its length, and cn_flags is the flags
489 * word from the namei operation.
490 *
491 * DVP must be locked.
492 *
493 * There are three possible non-error return states:
494 * 1. Nothing was found in the cache. Nothing is known about
495 * the requested name.
496 * 2. A negative entry was found in the cache, meaning that the
497 * requested name definitely does not exist.
498 * 3. A positive entry was found in the cache, meaning that the
499 * requested name does exist and that we are providing the
500 * vnode.
501 * In these cases the results are:
502 * 1. 0 returned; VN is set to NULL.
503 * 2. 1 returned; VN is set to NULL.
504 * 3. 1 returned; VN is set to the vnode found.
505 *
506 * The additional result argument ISWHT is set to zero, unless a
507 * negative entry is found that was entered as a whiteout, in which
508 * case ISWHT is set to one.
509 *
510 * The ISWHT_RET argument pointer may be null. In this case an
511 * assertion is made that the whiteout flag is not set. File systems
512 * that do not support whiteouts can/should do this.
513 *
514 * Filesystems that do support whiteouts should add ISWHITEOUT to
515 * cnp->cn_flags if ISWHT comes back nonzero.
516 *
517 * When a vnode is returned, it is locked, as per the vnode lookup
518 * locking protocol.
519 *
520 * There is no way for this function to fail, in the sense of
521 * generating an error that requires aborting the namei operation.
522 *
523 * (Prior to October 2012, this function returned an integer status,
524 * and a vnode, and mucked with the flags word in CNP for whiteouts.
525 * The integer status was -1 for "nothing found", ENOENT for "a
526 * negative entry found", 0 for "a positive entry found", and possibly
527 * other errors, and the value of VN might or might not have been set
528 * depending on what error occurred.)
529 */
530 bool
531 cache_lookup(struct vnode *dvp, const char *name, size_t namelen,
532 uint32_t nameiop, uint32_t cnflags,
533 int *iswht_ret, struct vnode **vn_ret)
534 {
535 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
536 struct namecache *ncp;
537 struct vnode *vp;
538 uintptr_t key;
539 int error;
540 bool hit;
541 krw_t op;
542
543 KASSERT(namelen != cache_mp_nlen || name == cache_mp_name);
544
545 /* Establish default result values */
546 if (iswht_ret != NULL) {
547 *iswht_ret = 0;
548 }
549 *vn_ret = NULL;
550
551 if (__predict_false(namelen > cache_maxlen)) {
552 SDT_PROBE(vfs, namecache, lookup, toolong, dvp,
553 name, namelen, 0, 0);
554 COUNT(ncs_long);
555 return false;
556 }
557
558 /* Compute the key up front - don't need the lock. */
559 key = cache_key(name, namelen);
560
561 /* Could the entry be purged below? */
562 if ((cnflags & ISLASTCN) != 0 &&
563 ((cnflags & MAKEENTRY) == 0 || nameiop == CREATE)) {
564 op = RW_WRITER;
565 } else {
566 op = RW_READER;
567 }
568
569 /* Now look for the name. */
570 rw_enter(&dvi->vi_nc_lock, op);
571 ncp = cache_lookup_entry(dvp, name, namelen, key);
572 if (__predict_false(ncp == NULL)) {
573 rw_exit(&dvi->vi_nc_lock);
574 COUNT(ncs_miss);
575 SDT_PROBE(vfs, namecache, lookup, miss, dvp,
576 name, namelen, 0, 0);
577 return false;
578 }
579 if (__predict_false((cnflags & MAKEENTRY) == 0)) {
580 /*
581 * Last component and we are renaming or deleting,
582 * the cache entry is invalid, or otherwise don't
583 * want cache entry to exist.
584 */
585 KASSERT((cnflags & ISLASTCN) != 0);
586 cache_remove(ncp, true);
587 rw_exit(&dvi->vi_nc_lock);
588 COUNT(ncs_badhits);
589 return false;
590 }
591 if ((vp = ncp->nc_vp) == NULL) {
592 if (iswht_ret != NULL) {
593 /*
594 * Restore the ISWHITEOUT flag saved earlier.
595 */
596 *iswht_ret = ncp->nc_whiteout;
597 } else {
598 KASSERT(!ncp->nc_whiteout);
599 }
600 if (nameiop == CREATE && (cnflags & ISLASTCN) != 0) {
601 /*
602 * Last component and we are preparing to create
603 * the named object, so flush the negative cache
604 * entry.
605 */
606 COUNT(ncs_badhits);
607 cache_remove(ncp, true);
608 hit = false;
609 } else {
610 COUNT(ncs_neghits);
611 SDT_PROBE(vfs, namecache, lookup, hit, dvp, name,
612 namelen, 0, 0);
613 /* found neg entry; vn is already null from above */
614 hit = true;
615 }
616 rw_exit(&dvi->vi_nc_lock);
617 return hit;
618 }
619 error = vcache_tryvget(vp);
620 rw_exit(&dvi->vi_nc_lock);
621 if (error) {
622 KASSERT(error == EBUSY);
623 /*
624 * This vnode is being cleaned out.
625 * XXX badhits?
626 */
627 COUNT(ncs_falsehits);
628 return false;
629 }
630
631 COUNT(ncs_goodhits);
632 SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0);
633 /* found it */
634 *vn_ret = vp;
635 return true;
636 }
637
638 /*
639 * Version of the above without the nameiop argument, for NFS.
640 */
641 bool
642 cache_lookup_raw(struct vnode *dvp, const char *name, size_t namelen,
643 uint32_t cnflags,
644 int *iswht_ret, struct vnode **vn_ret)
645 {
646
647 return cache_lookup(dvp, name, namelen, LOOKUP, cnflags | MAKEENTRY,
648 iswht_ret, vn_ret);
649 }
650
651 /*
652 * Used by namei() to walk down a path, component by component by looking up
653 * names in the cache. The node locks are chained along the way: a parent's
654 * lock is not dropped until the child's is acquired.
655 */
656 bool
657 cache_lookup_linked(struct vnode *dvp, const char *name, size_t namelen,
658 struct vnode **vn_ret, krwlock_t **plock,
659 kauth_cred_t cred)
660 {
661 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
662 struct namecache *ncp;
663 krwlock_t *oldlock, *newlock;
664 struct vnode *vp;
665 uintptr_t key;
666 int error;
667
668 KASSERT(namelen != cache_mp_nlen || name == cache_mp_name);
669
670 /* If disabled, or file system doesn't support this, bail out. */
671 if (__predict_false((dvp->v_mount->mnt_iflag & IMNT_NCLOOKUP) == 0)) {
672 return false;
673 }
674
675 if (__predict_false(namelen > cache_maxlen)) {
676 COUNT(ncs_long);
677 return false;
678 }
679
680 /* Compute the key up front - don't need the lock. */
681 key = cache_key(name, namelen);
682
683 /*
684 * Acquire the directory lock. Once we have that, we can drop the
685 * previous one (if any).
686 *
687 * The two lock holds mean that the directory can't go away while
688 * here: the directory must be purged with cache_purge() before
689 * being freed, and both parent & child's vi_nc_lock must be taken
690 * before that point is passed.
691 *
692 * However if there's no previous lock, like at the root of the
693 * chain, then "dvp" must be referenced to prevent dvp going away
694 * before we get its lock.
695 *
696 * Note that the two locks can be the same if looking up a dot, for
697 * example: /usr/bin/. If looking up the parent (..) we can't wait
698 * on the lock as child -> parent is the wrong direction.
699 */
700 if (*plock != &dvi->vi_nc_lock) {
701 oldlock = *plock;
702 newlock = &dvi->vi_nc_lock;
703 if (!rw_tryenter(&dvi->vi_nc_lock, RW_READER)) {
704 return false;
705 }
706 } else {
707 oldlock = NULL;
708 newlock = NULL;
709 if (*plock == NULL) {
710 KASSERT(vrefcnt(dvp) > 0);
711 }
712 }
713
714 /*
715 * First up check if the user is allowed to look up files in this
716 * directory.
717 */
718 if (cred != FSCRED) {
719 if (dvi->vi_nc_mode == VNOVAL) {
720 if (newlock != NULL) {
721 rw_exit(newlock);
722 }
723 return false;
724 }
725 KASSERT(dvi->vi_nc_uid != VNOVAL);
726 KASSERT(dvi->vi_nc_gid != VNOVAL);
727 error = kauth_authorize_vnode(cred,
728 KAUTH_ACCESS_ACTION(VEXEC,
729 dvp->v_type, dvi->vi_nc_mode & ALLPERMS),
730 dvp, NULL,
731 genfs_can_access(dvp, cred, dvi->vi_nc_uid, dvi->vi_nc_gid,
732 dvi->vi_nc_mode & ALLPERMS, NULL, VEXEC));
733 if (error != 0) {
734 if (newlock != NULL) {
735 rw_exit(newlock);
736 }
737 COUNT(ncs_denied);
738 return false;
739 }
740 }
741
742 /*
743 * Now look for a matching cache entry.
744 */
745 ncp = cache_lookup_entry(dvp, name, namelen, key);
746 if (__predict_false(ncp == NULL)) {
747 if (newlock != NULL) {
748 rw_exit(newlock);
749 }
750 COUNT(ncs_miss);
751 SDT_PROBE(vfs, namecache, lookup, miss, dvp,
752 name, namelen, 0, 0);
753 return false;
754 }
755 if ((vp = ncp->nc_vp) == NULL) {
756 /* found negative entry; vn is already null from above */
757 KASSERT(namelen != cache_mp_nlen);
758 KASSERT(name != cache_mp_name);
759 COUNT(ncs_neghits);
760 } else {
761 COUNT(ncs_goodhits); /* XXX can be "badhits" */
762 }
763 SDT_PROBE(vfs, namecache, lookup, hit, dvp, name, namelen, 0, 0);
764
765 /*
766 * Return with the directory lock still held. It will either be
767 * returned to us with another call to cache_lookup_linked() when
768 * looking up the next component, or the caller will release it
769 * manually when finished.
770 */
771 if (oldlock) {
772 rw_exit(oldlock);
773 }
774 if (newlock) {
775 *plock = newlock;
776 }
777 *vn_ret = vp;
778 return true;
779 }
780
781 /*
782 * Scan cache looking for name of directory entry pointing at vp.
783 * Will not search for "." or "..".
784 *
785 * If the lookup succeeds the vnode is referenced and stored in dvpp.
786 *
787 * If bufp is non-NULL, also place the name in the buffer which starts
788 * at bufp, immediately before *bpp, and move bpp backwards to point
789 * at the start of it. (Yes, this is a little baroque, but it's done
790 * this way to cater to the whims of getcwd).
791 *
792 * Returns 0 on success, -1 on cache miss, positive errno on failure.
793 */
794 int
795 cache_revlookup(struct vnode *vp, struct vnode **dvpp, char **bpp, char *bufp,
796 bool checkaccess, accmode_t accmode)
797 {
798 vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
799 struct namecache *ncp;
800 enum cache_lru_id lrulist;
801 struct vnode *dvp;
802 int error, nlen;
803 char *bp;
804
805 KASSERT(vp != NULL);
806
807 if (cache_maxlen == 0)
808 goto out;
809
810 rw_enter(&vi->vi_nc_listlock, RW_READER);
811 if (checkaccess) {
812 /*
813 * Check if the user is allowed to see. NOTE: this is
814 * checking for access on the "wrong" directory. getcwd()
815 * wants to see that there is access on every component
816 * along the way, not that there is access to any individual
817 * component. Don't use this to check you can look in vp.
818 *
819 * I don't like it, I didn't come up with it, don't blame me!
820 */
821 if (vi->vi_nc_mode == VNOVAL) {
822 rw_exit(&vi->vi_nc_listlock);
823 return -1;
824 }
825 KASSERT(vi->vi_nc_uid != VNOVAL);
826 KASSERT(vi->vi_nc_gid != VNOVAL);
827 error = kauth_authorize_vnode(kauth_cred_get(),
828 KAUTH_ACCESS_ACTION(VEXEC, vp->v_type, vi->vi_nc_mode &
829 ALLPERMS),
830 vp, NULL, genfs_can_access(vp, curlwp->l_cred,
831 vi->vi_nc_uid, vi->vi_nc_gid,
832 vi->vi_nc_mode & ALLPERMS,
833 NULL, accmode));
834 if (error != 0) {
835 rw_exit(&vi->vi_nc_listlock);
836 COUNT(ncs_denied);
837 return EACCES;
838 }
839 }
840 TAILQ_FOREACH(ncp, &vi->vi_nc_list, nc_list) {
841 KASSERT(ncp->nc_vp == vp);
842 KASSERT(ncp->nc_dvp != NULL);
843 nlen = NC_NLEN(ncp);
844
845 /*
846 * Ignore mountpoint entries.
847 */
848 if (nlen == cache_mp_nlen) {
849 continue;
850 }
851
852 /*
853 * The queue is partially sorted. Once we hit dots, nothing
854 * else remains but dots and dotdots, so bail out.
855 */
856 if (ncp->nc_name[0] == '.') {
857 if (nlen == 1 ||
858 (nlen == 2 && ncp->nc_name[1] == '.')) {
859 break;
860 }
861 }
862
863 /*
864 * Record a hit on the entry. This is an unlocked read but
865 * even if wrong it doesn't matter too much.
866 */
867 lrulist = atomic_load_relaxed(&ncp->nc_lrulist);
868 if (lrulist != LRU_ACTIVE) {
869 cache_activate(ncp);
870 }
871
872 if (bufp) {
873 bp = *bpp;
874 bp -= nlen;
875 if (bp <= bufp) {
876 *dvpp = NULL;
877 rw_exit(&vi->vi_nc_listlock);
878 SDT_PROBE(vfs, namecache, revlookup,
879 fail, vp, ERANGE, 0, 0, 0);
880 return (ERANGE);
881 }
882 memcpy(bp, ncp->nc_name, nlen);
883 *bpp = bp;
884 }
885
886 dvp = ncp->nc_dvp;
887 error = vcache_tryvget(dvp);
888 rw_exit(&vi->vi_nc_listlock);
889 if (error) {
890 KASSERT(error == EBUSY);
891 if (bufp)
892 (*bpp) += nlen;
893 *dvpp = NULL;
894 SDT_PROBE(vfs, namecache, revlookup, fail, vp,
895 error, 0, 0, 0);
896 return -1;
897 }
898 *dvpp = dvp;
899 SDT_PROBE(vfs, namecache, revlookup, success, vp, dvp,
900 0, 0, 0);
901 COUNT(ncs_revhits);
902 return (0);
903 }
904 rw_exit(&vi->vi_nc_listlock);
905 COUNT(ncs_revmiss);
906 out:
907 *dvpp = NULL;
908 return (-1);
909 }
910
911 /*
912 * Add an entry to the cache.
913 */
914 void
915 cache_enter(struct vnode *dvp, struct vnode *vp,
916 const char *name, size_t namelen, uint32_t cnflags)
917 {
918 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
919 struct namecache *ncp, *oncp;
920 int total;
921
922 KASSERT(namelen != cache_mp_nlen || name == cache_mp_name);
923
924 /* First, check whether we can/should add a cache entry. */
925 if ((cnflags & MAKEENTRY) == 0 ||
926 __predict_false(namelen > cache_maxlen)) {
927 SDT_PROBE(vfs, namecache, enter, toolong, vp, name, namelen,
928 0, 0);
929 return;
930 }
931
932 SDT_PROBE(vfs, namecache, enter, done, vp, name, namelen, 0, 0);
933
934 /*
935 * Reclaim some entries if over budget. This is an unlocked check,
936 * but it doesn't matter. Just need to catch up with things
937 * eventually: it doesn't matter if we go over temporarily.
938 */
939 total = atomic_load_relaxed(&cache_lru.count[LRU_ACTIVE]);
940 total += atomic_load_relaxed(&cache_lru.count[LRU_INACTIVE]);
941 if (__predict_false(total > desiredvnodes)) {
942 cache_reclaim();
943 }
944
945 /* Now allocate a fresh entry. */
946 if (__predict_true(namelen <= NCHNAMLEN)) {
947 ncp = pool_cache_get(cache_pool, PR_WAITOK);
948 } else {
949 size_t sz = offsetof(struct namecache, nc_name[namelen]);
950 ncp = kmem_alloc(sz, KM_SLEEP);
951 }
952
953 /*
954 * Fill in cache info. For negative hits, save the ISWHITEOUT flag
955 * so we can restore it later when the cache entry is used again.
956 */
957 ncp->nc_vp = vp;
958 ncp->nc_dvp = dvp;
959 ncp->nc_key = cache_key(name, namelen);
960 ncp->nc_whiteout = ((cnflags & ISWHITEOUT) != 0);
961 memcpy(ncp->nc_name, name, namelen);
962
963 /*
964 * Insert to the directory. Concurrent lookups may race for a cache
965 * entry. If there's a entry there already, purge it.
966 */
967 rw_enter(&dvi->vi_nc_lock, RW_WRITER);
968 oncp = rb_tree_insert_node(&dvi->vi_nc_tree, ncp);
969 if (oncp != ncp) {
970 KASSERT(oncp->nc_key == ncp->nc_key);
971 KASSERT(NC_NLEN(oncp) == NC_NLEN(ncp));
972 KASSERT(memcmp(oncp->nc_name, name, namelen) == 0);
973 cache_remove(oncp, true);
974 oncp = rb_tree_insert_node(&dvi->vi_nc_tree, ncp);
975 KASSERT(oncp == ncp);
976 }
977
978 /*
979 * With the directory lock still held, insert to the tail of the
980 * ACTIVE LRU list (new) and take the opportunity to incrementally
981 * balance the lists.
982 */
983 mutex_enter(&cache_lru_lock);
984 ncp->nc_lrulist = LRU_ACTIVE;
985 cache_lru.count[LRU_ACTIVE]++;
986 TAILQ_INSERT_TAIL(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru);
987 cache_deactivate();
988 mutex_exit(&cache_lru_lock);
989
990 /*
991 * Finally, insert to the vnode and unlock. With everything set up
992 * it's safe to let cache_revlookup() see the entry. Partially sort
993 * the per-vnode list: dots go to back so cache_revlookup() doesn't
994 * have to consider them.
995 */
996 if (vp != NULL) {
997 vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
998 rw_enter(&vi->vi_nc_listlock, RW_WRITER);
999 if ((namelen == 1 && name[0] == '.') ||
1000 (namelen == 2 && name[0] == '.' && name[1] == '.')) {
1001 TAILQ_INSERT_TAIL(&vi->vi_nc_list, ncp, nc_list);
1002 } else {
1003 TAILQ_INSERT_HEAD(&vi->vi_nc_list, ncp, nc_list);
1004 }
1005 rw_exit(&vi->vi_nc_listlock);
1006 }
1007 rw_exit(&dvi->vi_nc_lock);
1008 }
1009
1010 /*
1011 * Set identity info in cache for a vnode. We only care about directories
1012 * so ignore other updates. The cached info may be marked invalid if the
1013 * inode has an ACL.
1014 */
1015 void
1016 cache_enter_id(struct vnode *vp, mode_t mode, uid_t uid, gid_t gid, bool valid)
1017 {
1018 vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
1019
1020 if (vp->v_type == VDIR) {
1021 /* Grab both locks, for forward & reverse lookup. */
1022 rw_enter(&vi->vi_nc_lock, RW_WRITER);
1023 rw_enter(&vi->vi_nc_listlock, RW_WRITER);
1024 if (valid) {
1025 vi->vi_nc_mode = mode;
1026 vi->vi_nc_uid = uid;
1027 vi->vi_nc_gid = gid;
1028 } else {
1029 vi->vi_nc_mode = VNOVAL;
1030 vi->vi_nc_uid = VNOVAL;
1031 vi->vi_nc_gid = VNOVAL;
1032 }
1033 rw_exit(&vi->vi_nc_listlock);
1034 rw_exit(&vi->vi_nc_lock);
1035 }
1036 }
1037
1038 /*
1039 * Return true if we have identity for the given vnode, and use as an
1040 * opportunity to confirm that everything squares up.
1041 *
1042 * Because of shared code, some file systems could provide partial
1043 * information, missing some updates, so check the mount flag too.
1044 */
1045 bool
1046 cache_have_id(struct vnode *vp)
1047 {
1048
1049 if (vp->v_type == VDIR &&
1050 (vp->v_mount->mnt_iflag & IMNT_NCLOOKUP) != 0 &&
1051 atomic_load_relaxed(&VNODE_TO_VIMPL(vp)->vi_nc_mode) != VNOVAL) {
1052 return true;
1053 } else {
1054 return false;
1055 }
1056 }
1057
1058 /*
1059 * Enter a mount point. cvp is the covered vnode, and rvp is the root of
1060 * the mounted file system.
1061 */
1062 void
1063 cache_enter_mount(struct vnode *cvp, struct vnode *rvp)
1064 {
1065
1066 KASSERT(vrefcnt(cvp) > 0);
1067 KASSERT(vrefcnt(rvp) > 0);
1068 KASSERT(cvp->v_type == VDIR);
1069 KASSERT((rvp->v_vflag & VV_ROOT) != 0);
1070
1071 if (rvp->v_type == VDIR) {
1072 cache_enter(cvp, rvp, cache_mp_name, cache_mp_nlen, MAKEENTRY);
1073 }
1074 }
1075
1076 /*
1077 * Look up a cached mount point. Used in the strongly locked path.
1078 */
1079 bool
1080 cache_lookup_mount(struct vnode *dvp, struct vnode **vn_ret)
1081 {
1082 bool ret;
1083
1084 ret = cache_lookup(dvp, cache_mp_name, cache_mp_nlen, LOOKUP,
1085 MAKEENTRY, NULL, vn_ret);
1086 KASSERT((*vn_ret != NULL) == ret);
1087 return ret;
1088 }
1089
1090 /*
1091 * Try to cross a mount point. For use with cache_lookup_linked().
1092 */
1093 bool
1094 cache_cross_mount(struct vnode **dvp, krwlock_t **plock)
1095 {
1096
1097 return cache_lookup_linked(*dvp, cache_mp_name, cache_mp_nlen,
1098 dvp, plock, FSCRED);
1099 }
1100
1101 /*
1102 * Name cache initialization, from vfs_init() when the system is booting.
1103 */
1104 void
1105 nchinit(void)
1106 {
1107
1108 cache_pool = pool_cache_init(sizeof(struct namecache),
1109 coherency_unit, 0, 0, "namecache", NULL, IPL_NONE, NULL,
1110 NULL, NULL);
1111 KASSERT(cache_pool != NULL);
1112
1113 mutex_init(&cache_lru_lock, MUTEX_DEFAULT, IPL_NONE);
1114 TAILQ_INIT(&cache_lru.list[LRU_ACTIVE]);
1115 TAILQ_INIT(&cache_lru.list[LRU_INACTIVE]);
1116
1117 mutex_init(&cache_stat_lock, MUTEX_DEFAULT, IPL_NONE);
1118 callout_init(&cache_stat_callout, CALLOUT_MPSAFE);
1119 callout_setfunc(&cache_stat_callout, cache_update_stats, NULL);
1120 callout_schedule(&cache_stat_callout, cache_stat_interval * hz);
1121
1122 KASSERT(cache_sysctllog == NULL);
1123 sysctl_createv(&cache_sysctllog, 0, NULL, NULL,
1124 CTLFLAG_PERMANENT,
1125 CTLTYPE_STRUCT, "namecache_stats",
1126 SYSCTL_DESCR("namecache statistics"),
1127 cache_stat_sysctl, 0, NULL, 0,
1128 CTL_VFS, CTL_CREATE, CTL_EOL);
1129 }
1130
1131 /*
1132 * Called once for each CPU in the system as attached.
1133 */
1134 void
1135 cache_cpu_init(struct cpu_info *ci)
1136 {
1137 size_t sz;
1138
1139 sz = roundup2(sizeof(struct nchcpu), coherency_unit);
1140 ci->ci_data.cpu_nch = kmem_zalloc(sz, KM_SLEEP);
1141 KASSERT(((uintptr_t)ci->ci_data.cpu_nch & (coherency_unit - 1)) == 0);
1142 }
1143
1144 /*
1145 * A vnode is being allocated: set up cache structures.
1146 */
1147 void
1148 cache_vnode_init(struct vnode *vp)
1149 {
1150 vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
1151
1152 rw_init(&vi->vi_nc_lock);
1153 rw_init(&vi->vi_nc_listlock);
1154 rb_tree_init(&vi->vi_nc_tree, &cache_rbtree_ops);
1155 TAILQ_INIT(&vi->vi_nc_list);
1156 vi->vi_nc_mode = VNOVAL;
1157 vi->vi_nc_uid = VNOVAL;
1158 vi->vi_nc_gid = VNOVAL;
1159 }
1160
1161 /*
1162 * A vnode is being freed: finish cache structures.
1163 */
1164 void
1165 cache_vnode_fini(struct vnode *vp)
1166 {
1167 vnode_impl_t *vi = VNODE_TO_VIMPL(vp);
1168
1169 KASSERT(RB_TREE_MIN(&vi->vi_nc_tree) == NULL);
1170 KASSERT(TAILQ_EMPTY(&vi->vi_nc_list));
1171 rw_destroy(&vi->vi_nc_lock);
1172 rw_destroy(&vi->vi_nc_listlock);
1173 }
1174
1175 /*
1176 * Helper for cache_purge1(): purge cache entries for the given vnode from
1177 * all directories that the vnode is cached in.
1178 */
1179 static void
1180 cache_purge_parents(struct vnode *vp)
1181 {
1182 vnode_impl_t *dvi, *vi = VNODE_TO_VIMPL(vp);
1183 struct vnode *dvp, *blocked;
1184 struct namecache *ncp;
1185
1186 SDT_PROBE(vfs, namecache, purge, parents, vp, 0, 0, 0, 0);
1187
1188 blocked = NULL;
1189
1190 rw_enter(&vi->vi_nc_listlock, RW_WRITER);
1191 while ((ncp = TAILQ_FIRST(&vi->vi_nc_list)) != NULL) {
1192 /*
1193 * Locking in the wrong direction. Try for a hold on the
1194 * directory node's lock, and if we get it then all good,
1195 * nuke the entry and move on to the next.
1196 */
1197 dvp = ncp->nc_dvp;
1198 dvi = VNODE_TO_VIMPL(dvp);
1199 if (rw_tryenter(&dvi->vi_nc_lock, RW_WRITER)) {
1200 cache_remove(ncp, false);
1201 rw_exit(&dvi->vi_nc_lock);
1202 blocked = NULL;
1203 continue;
1204 }
1205
1206 /*
1207 * We can't wait on the directory node's lock with our list
1208 * lock held or the system could deadlock.
1209 *
1210 * Take a hold on the directory vnode to prevent it from
1211 * being freed (taking the vnode & lock with it). Then
1212 * wait for the lock to become available with no other locks
1213 * held, and retry.
1214 *
1215 * If this happens twice in a row, give the other side a
1216 * breather; we can do nothing until it lets go.
1217 */
1218 vhold(dvp);
1219 rw_exit(&vi->vi_nc_listlock);
1220 rw_enter(&dvi->vi_nc_lock, RW_WRITER);
1221 /* Do nothing. */
1222 rw_exit(&dvi->vi_nc_lock);
1223 holdrele(dvp);
1224 if (blocked == dvp) {
1225 kpause("ncpurge", false, 1, NULL);
1226 }
1227 rw_enter(&vi->vi_nc_listlock, RW_WRITER);
1228 blocked = dvp;
1229 }
1230 rw_exit(&vi->vi_nc_listlock);
1231 }
1232
1233 /*
1234 * Helper for cache_purge1(): purge all cache entries hanging off the given
1235 * directory vnode.
1236 */
1237 static void
1238 cache_purge_children(struct vnode *dvp)
1239 {
1240 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
1241 struct namecache *ncp;
1242
1243 SDT_PROBE(vfs, namecache, purge, children, dvp, 0, 0, 0, 0);
1244
1245 rw_enter(&dvi->vi_nc_lock, RW_WRITER);
1246 while ((ncp = RB_TREE_MIN(&dvi->vi_nc_tree)) != NULL) {
1247 cache_remove(ncp, true);
1248 }
1249 rw_exit(&dvi->vi_nc_lock);
1250 }
1251
1252 /*
1253 * Helper for cache_purge1(): purge cache entry from the given vnode,
1254 * finding it by name.
1255 */
1256 static void
1257 cache_purge_name(struct vnode *dvp, const char *name, size_t namelen)
1258 {
1259 vnode_impl_t *dvi = VNODE_TO_VIMPL(dvp);
1260 struct namecache *ncp;
1261 uintptr_t key;
1262
1263 SDT_PROBE(vfs, namecache, purge, name, name, namelen, 0, 0, 0);
1264
1265 key = cache_key(name, namelen);
1266 rw_enter(&dvi->vi_nc_lock, RW_WRITER);
1267 ncp = cache_lookup_entry(dvp, name, namelen, key);
1268 if (ncp) {
1269 cache_remove(ncp, true);
1270 }
1271 rw_exit(&dvi->vi_nc_lock);
1272 }
1273
1274 /*
1275 * Cache flush, a particular vnode; called when a vnode is renamed to
1276 * hide entries that would now be invalid.
1277 */
1278 void
1279 cache_purge1(struct vnode *vp, const char *name, size_t namelen, int flags)
1280 {
1281
1282 if (flags & PURGE_PARENTS) {
1283 cache_purge_parents(vp);
1284 }
1285 if (flags & PURGE_CHILDREN) {
1286 cache_purge_children(vp);
1287 }
1288 if (name != NULL) {
1289 cache_purge_name(vp, name, namelen);
1290 }
1291 }
1292
1293 /*
1294 * vnode filter for cache_purgevfs().
1295 */
1296 static bool
1297 cache_vdir_filter(void *cookie, vnode_t *vp)
1298 {
1299
1300 return vp->v_type == VDIR;
1301 }
1302
1303 /*
1304 * Cache flush, a whole filesystem; called when filesys is umounted to
1305 * remove entries that would now be invalid.
1306 */
1307 void
1308 cache_purgevfs(struct mount *mp)
1309 {
1310 struct vnode_iterator *iter;
1311 vnode_t *dvp;
1312
1313 vfs_vnode_iterator_init(mp, &iter);
1314 for (;;) {
1315 dvp = vfs_vnode_iterator_next(iter, cache_vdir_filter, NULL);
1316 if (dvp == NULL) {
1317 break;
1318 }
1319 cache_purge_children(dvp);
1320 vrele(dvp);
1321 }
1322 vfs_vnode_iterator_destroy(iter);
1323 }
1324
1325 /*
1326 * Re-queue an entry onto the tail of the active LRU list, after it has
1327 * scored a hit.
1328 */
1329 static void
1330 cache_activate(struct namecache *ncp)
1331 {
1332
1333 mutex_enter(&cache_lru_lock);
1334 TAILQ_REMOVE(&cache_lru.list[ncp->nc_lrulist], ncp, nc_lru);
1335 TAILQ_INSERT_TAIL(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru);
1336 cache_lru.count[ncp->nc_lrulist]--;
1337 cache_lru.count[LRU_ACTIVE]++;
1338 ncp->nc_lrulist = LRU_ACTIVE;
1339 mutex_exit(&cache_lru_lock);
1340 }
1341
1342 /*
1343 * Try to balance the LRU lists. Pick some victim entries, and re-queue
1344 * them from the head of the active list to the tail of the inactive list.
1345 */
1346 static void
1347 cache_deactivate(void)
1348 {
1349 struct namecache *ncp;
1350 int total, i;
1351
1352 KASSERT(mutex_owned(&cache_lru_lock));
1353
1354 /* If we're nowhere near budget yet, don't bother. */
1355 total = cache_lru.count[LRU_ACTIVE] + cache_lru.count[LRU_INACTIVE];
1356 if (total < (desiredvnodes >> 1)) {
1357 return;
1358 }
1359
1360 /*
1361 * Aim for a 1:1 ratio of active to inactive. This is to allow each
1362 * potential victim a reasonable amount of time to cycle through the
1363 * inactive list in order to score a hit and be reactivated, while
1364 * trying not to cause reactivations too frequently.
1365 */
1366 if (cache_lru.count[LRU_ACTIVE] < cache_lru.count[LRU_INACTIVE]) {
1367 return;
1368 }
1369
1370 /* Move only a few at a time; will catch up eventually. */
1371 for (i = 0; i < cache_lru_maxdeact; i++) {
1372 ncp = TAILQ_FIRST(&cache_lru.list[LRU_ACTIVE]);
1373 if (ncp == NULL) {
1374 break;
1375 }
1376 KASSERT(ncp->nc_lrulist == LRU_ACTIVE);
1377 ncp->nc_lrulist = LRU_INACTIVE;
1378 TAILQ_REMOVE(&cache_lru.list[LRU_ACTIVE], ncp, nc_lru);
1379 TAILQ_INSERT_TAIL(&cache_lru.list[LRU_INACTIVE], ncp, nc_lru);
1380 cache_lru.count[LRU_ACTIVE]--;
1381 cache_lru.count[LRU_INACTIVE]++;
1382 }
1383 }
1384
1385 /*
1386 * Free some entries from the cache, when we have gone over budget.
1387 *
1388 * We don't want to cause too much work for any individual caller, and it
1389 * doesn't matter if we temporarily go over budget. This is also "just a
1390 * cache" so it's not a big deal if we screw up and throw out something we
1391 * shouldn't. So we take a relaxed attitude to this process to reduce its
1392 * impact.
1393 */
1394 static void
1395 cache_reclaim(void)
1396 {
1397 struct namecache *ncp;
1398 vnode_impl_t *dvi;
1399 int toscan;
1400
1401 /*
1402 * Scan up to a preset maximum number of entries, but no more than
1403 * 0.8% of the total at once (to allow for very small systems).
1404 *
1405 * On bigger systems, do a larger chunk of work to reduce the number
1406 * of times that cache_lru_lock is held for any length of time.
1407 */
1408 mutex_enter(&cache_lru_lock);
1409 toscan = MIN(cache_lru_maxscan, desiredvnodes >> 7);
1410 toscan = MAX(toscan, 1);
1411 SDT_PROBE(vfs, namecache, prune, done, cache_lru.count[LRU_ACTIVE] +
1412 cache_lru.count[LRU_INACTIVE], toscan, 0, 0, 0);
1413 while (toscan-- != 0) {
1414 /* First try to balance the lists. */
1415 cache_deactivate();
1416
1417 /* Now look for a victim on head of inactive list (old). */
1418 ncp = TAILQ_FIRST(&cache_lru.list[LRU_INACTIVE]);
1419 if (ncp == NULL) {
1420 break;
1421 }
1422 dvi = VNODE_TO_VIMPL(ncp->nc_dvp);
1423 KASSERT(ncp->nc_lrulist == LRU_INACTIVE);
1424 KASSERT(dvi != NULL);
1425
1426 /*
1427 * Locking in the wrong direction. If we can't get the
1428 * lock, the directory is actively busy, and it could also
1429 * cause problems for the next guy in here, so send the
1430 * entry to the back of the list.
1431 */
1432 if (!rw_tryenter(&dvi->vi_nc_lock, RW_WRITER)) {
1433 TAILQ_REMOVE(&cache_lru.list[LRU_INACTIVE],
1434 ncp, nc_lru);
1435 TAILQ_INSERT_TAIL(&cache_lru.list[LRU_INACTIVE],
1436 ncp, nc_lru);
1437 continue;
1438 }
1439
1440 /*
1441 * Now have the victim entry locked. Drop the LRU list
1442 * lock, purge the entry, and start over. The hold on
1443 * vi_nc_lock will prevent the vnode from vanishing until
1444 * finished (cache_purge() will be called on dvp before it
1445 * disappears, and that will wait on vi_nc_lock).
1446 */
1447 mutex_exit(&cache_lru_lock);
1448 cache_remove(ncp, true);
1449 rw_exit(&dvi->vi_nc_lock);
1450 mutex_enter(&cache_lru_lock);
1451 }
1452 mutex_exit(&cache_lru_lock);
1453 }
1454
1455 /*
1456 * For file system code: count a lookup that required a full re-scan of
1457 * directory metadata.
1458 */
1459 void
1460 namecache_count_pass2(void)
1461 {
1462
1463 COUNT(ncs_pass2);
1464 }
1465
1466 /*
1467 * For file system code: count a lookup that scored a hit in the directory
1468 * metadata near the location of the last lookup.
1469 */
1470 void
1471 namecache_count_2passes(void)
1472 {
1473
1474 COUNT(ncs_2passes);
1475 }
1476
1477 /*
1478 * Sum the stats from all CPUs into nchstats. This needs to run at least
1479 * once within every window where a 32-bit counter could roll over. It's
1480 * called regularly by timer to ensure this.
1481 */
1482 static void
1483 cache_update_stats(void *cookie)
1484 {
1485 CPU_INFO_ITERATOR cii;
1486 struct cpu_info *ci;
1487
1488 mutex_enter(&cache_stat_lock);
1489 for (CPU_INFO_FOREACH(cii, ci)) {
1490 struct nchcpu *nchcpu = ci->ci_data.cpu_nch;
1491 UPDATE(nchcpu, ncs_goodhits);
1492 UPDATE(nchcpu, ncs_neghits);
1493 UPDATE(nchcpu, ncs_badhits);
1494 UPDATE(nchcpu, ncs_falsehits);
1495 UPDATE(nchcpu, ncs_miss);
1496 UPDATE(nchcpu, ncs_long);
1497 UPDATE(nchcpu, ncs_pass2);
1498 UPDATE(nchcpu, ncs_2passes);
1499 UPDATE(nchcpu, ncs_revhits);
1500 UPDATE(nchcpu, ncs_revmiss);
1501 UPDATE(nchcpu, ncs_denied);
1502 }
1503 if (cookie != NULL) {
1504 memcpy(cookie, &nchstats, sizeof(nchstats));
1505 }
1506 /* Reset the timer; arrive back here in N minutes at latest. */
1507 callout_schedule(&cache_stat_callout, cache_stat_interval * hz);
1508 mutex_exit(&cache_stat_lock);
1509 }
1510
1511 /*
1512 * Fetch the current values of the stats for sysctl.
1513 */
1514 static int
1515 cache_stat_sysctl(SYSCTLFN_ARGS)
1516 {
1517 struct nchstats stats;
1518
1519 if (oldp == NULL) {
1520 *oldlenp = sizeof(nchstats);
1521 return 0;
1522 }
1523
1524 if (*oldlenp <= 0) {
1525 *oldlenp = 0;
1526 return 0;
1527 }
1528
1529 /* Refresh the global stats. */
1530 sysctl_unlock();
1531 cache_update_stats(&stats);
1532 sysctl_relock();
1533
1534 *oldlenp = MIN(sizeof(stats), *oldlenp);
1535 return sysctl_copyout(l, &stats, oldp, *oldlenp);
1536 }
1537
1538 /*
1539 * For the debugger, given the address of a vnode, print all associated
1540 * names in the cache.
1541 */
1542 #ifdef DDB
1543 void
1544 namecache_print(struct vnode *vp, void (*pr)(const char *, ...))
1545 {
1546 struct vnode *dvp = NULL;
1547 struct namecache *ncp;
1548 enum cache_lru_id id;
1549
1550 for (id = 0; id < LRU_COUNT; id++) {
1551 TAILQ_FOREACH(ncp, &cache_lru.list[id], nc_lru) {
1552 if (ncp->nc_vp == vp) {
1553 (*pr)("name %.*s\n", NC_NLEN(ncp),
1554 ncp->nc_name);
1555 dvp = ncp->nc_dvp;
1556 }
1557 }
1558 }
1559 if (dvp == NULL) {
1560 (*pr)("name not found\n");
1561 return;
1562 }
1563 for (id = 0; id < LRU_COUNT; id++) {
1564 TAILQ_FOREACH(ncp, &cache_lru.list[id], nc_lru) {
1565 if (ncp->nc_vp == dvp) {
1566 (*pr)("parent %.*s\n", NC_NLEN(ncp),
1567 ncp->nc_name);
1568 }
1569 }
1570 }
1571 }
1572 #endif
1573