Home | History | Annotate | Line # | Download | only in kern
vfs_lockf.c revision 1.14.6.1
      1  1.14.6.1        he /*	$NetBSD: vfs_lockf.c,v 1.14.6.1 2000/06/27 15:22:32 he Exp $	*/
      2       1.5       cgd 
      3       1.1        ws /*
      4       1.4   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
      5       1.4   mycroft  *	The Regents of the University of California.  All rights reserved.
      6       1.1        ws  *
      7       1.1        ws  * This code is derived from software contributed to Berkeley by
      8       1.1        ws  * Scooter Morris at Genentech Inc.
      9       1.1        ws  *
     10       1.1        ws  * Redistribution and use in source and binary forms, with or without
     11       1.1        ws  * modification, are permitted provided that the following conditions
     12       1.1        ws  * are met:
     13       1.1        ws  * 1. Redistributions of source code must retain the above copyright
     14       1.1        ws  *    notice, this list of conditions and the following disclaimer.
     15       1.1        ws  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.1        ws  *    notice, this list of conditions and the following disclaimer in the
     17       1.1        ws  *    documentation and/or other materials provided with the distribution.
     18       1.1        ws  * 3. All advertising materials mentioning features or use of this software
     19       1.1        ws  *    must display the following acknowledgement:
     20       1.1        ws  *	This product includes software developed by the University of
     21       1.1        ws  *	California, Berkeley and its contributors.
     22       1.1        ws  * 4. Neither the name of the University nor the names of its contributors
     23       1.1        ws  *    may be used to endorse or promote products derived from this software
     24       1.1        ws  *    without specific prior written permission.
     25       1.1        ws  *
     26       1.1        ws  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     27       1.1        ws  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     28       1.1        ws  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     29       1.1        ws  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     30       1.1        ws  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     31       1.1        ws  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     32       1.1        ws  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     33       1.1        ws  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     34       1.1        ws  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     35       1.1        ws  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     36       1.1        ws  * SUCH DAMAGE.
     37       1.1        ws  *
     38      1.12      fvdl  *	@(#)ufs_lockf.c	8.4 (Berkeley) 10/26/94
     39       1.1        ws  */
     40       1.1        ws 
     41       1.1        ws #include <sys/param.h>
     42       1.1        ws #include <sys/systm.h>
     43       1.1        ws #include <sys/kernel.h>
     44       1.1        ws #include <sys/file.h>
     45       1.1        ws #include <sys/proc.h>
     46       1.1        ws #include <sys/vnode.h>
     47       1.1        ws #include <sys/malloc.h>
     48       1.1        ws #include <sys/fcntl.h>
     49       1.1        ws #include <sys/lockf.h>
     50       1.1        ws 
     51       1.1        ws /*
     52       1.6   mycroft  * This variable controls the maximum number of processes that will
     53       1.6   mycroft  * be checked in doing deadlock detection.
     54       1.6   mycroft  */
     55       1.6   mycroft int maxlockdepth = MAXDEPTH;
     56       1.6   mycroft 
     57       1.6   mycroft #ifdef LOCKF_DEBUG
     58       1.6   mycroft int	lockf_debug = 0;
     59       1.6   mycroft #endif
     60       1.6   mycroft 
     61       1.6   mycroft #define NOLOCKF (struct lockf *)0
     62       1.6   mycroft #define SELF	0x1
     63       1.6   mycroft #define OTHERS	0x2
     64       1.6   mycroft 
     65       1.6   mycroft /*
     66  1.14.6.1        he  * XXX TODO
     67  1.14.6.1        he  * Misc cleanups: "caddr_t id" should be visible in the API as a
     68  1.14.6.1        he  * "struct proc *".
     69  1.14.6.1        he  * (This requires rototilling all VFS's which support advisory locking).
     70  1.14.6.1        he  *
     71  1.14.6.1        he  * Use pools for lock allocation.
     72  1.14.6.1        he  */
     73  1.14.6.1        he 
     74  1.14.6.1        he /*
     75  1.14.6.1        he  * XXXSMP TODO: Using either (a) a global lock, or (b) the vnode's
     76  1.14.6.1        he  * interlock should be sufficient; (b) requires a change to the API
     77  1.14.6.1        he  * because the vnode isn't visible here.
     78  1.14.6.1        he  *
     79  1.14.6.1        he  * If there's a lot of lock contention on a single vnode, locking
     80  1.14.6.1        he  * schemes which allow for more paralleism would be needed.  Given how
     81  1.14.6.1        he  * infrequently byte-range locks are actually used in typical BSD
     82  1.14.6.1        he  * code, a more complex approach probably isn't worth it.
     83  1.14.6.1        he  */
     84  1.14.6.1        he 
     85  1.14.6.1        he /*
     86       1.4   mycroft  * Do an advisory lock operation.
     87       1.1        ws  */
     88       1.4   mycroft int
     89       1.1        ws lf_advlock(head, size, id, op, fl, flags)
     90       1.1        ws 	struct lockf **head;
     91       1.3       cgd 	off_t size;
     92       1.1        ws 	caddr_t id;
     93       1.1        ws 	int op;
     94  1.14.6.1        he 	struct flock *fl;
     95       1.1        ws 	int flags;
     96       1.1        ws {
     97  1.14.6.1        he 	struct lockf *lock;
     98       1.1        ws 	off_t start, end;
     99       1.1        ws 	int error;
    100       1.1        ws 
    101       1.1        ws 	/*
    102       1.1        ws 	 * Convert the flock structure into a start and end.
    103       1.1        ws 	 */
    104       1.1        ws 	switch (fl->l_whence) {
    105       1.1        ws 	case SEEK_SET:
    106       1.1        ws 	case SEEK_CUR:
    107       1.1        ws 		/*
    108       1.1        ws 		 * Caller is responsible for adding any necessary offset
    109       1.1        ws 		 * when SEEK_CUR is used.
    110       1.1        ws 		 */
    111       1.1        ws 		start = fl->l_start;
    112       1.1        ws 		break;
    113       1.1        ws 
    114       1.1        ws 	case SEEK_END:
    115       1.1        ws 		start = size + fl->l_start;
    116       1.1        ws 		break;
    117       1.1        ws 
    118       1.1        ws 	default:
    119       1.1        ws 		return (EINVAL);
    120       1.1        ws 	}
    121       1.1        ws 	if (start < 0)
    122       1.1        ws 		return (EINVAL);
    123      1.10    kleink 
    124      1.10    kleink 	/*
    125      1.10    kleink 	 * Avoid the common case of unlocking when inode has no locks.
    126      1.10    kleink 	 */
    127      1.10    kleink 	if (*head == (struct lockf *)0) {
    128      1.10    kleink 		if (op != F_SETLK) {
    129      1.10    kleink 			fl->l_type = F_UNLCK;
    130      1.10    kleink 			return (0);
    131      1.10    kleink 		}
    132      1.10    kleink 	}
    133      1.10    kleink 
    134       1.1        ws 	if (fl->l_len == 0)
    135       1.1        ws 		end = -1;
    136       1.1        ws 	else
    137       1.1        ws 		end = start + fl->l_len - 1;
    138       1.1        ws 	/*
    139       1.4   mycroft 	 * Create the lockf structure.
    140       1.1        ws 	 */
    141      1.13     perry 	MALLOC(lock, struct lockf *, sizeof(*lock), M_LOCKF, M_WAITOK);
    142       1.1        ws 	lock->lf_start = start;
    143       1.1        ws 	lock->lf_end = end;
    144       1.1        ws 	lock->lf_id = id;
    145       1.1        ws 	lock->lf_head = head;
    146       1.1        ws 	lock->lf_type = fl->l_type;
    147       1.1        ws 	lock->lf_next = (struct lockf *)0;
    148      1.12      fvdl 	TAILQ_INIT(&lock->lf_blkhd);
    149       1.1        ws 	lock->lf_flags = flags;
    150       1.1        ws 	/*
    151       1.1        ws 	 * Do the requested operation.
    152       1.1        ws 	 */
    153       1.4   mycroft 	switch (op) {
    154       1.4   mycroft 
    155       1.1        ws 	case F_SETLK:
    156       1.1        ws 		return (lf_setlock(lock));
    157       1.1        ws 
    158       1.1        ws 	case F_UNLCK:
    159       1.1        ws 		error = lf_clearlock(lock);
    160       1.1        ws 		FREE(lock, M_LOCKF);
    161       1.1        ws 		return (error);
    162       1.1        ws 
    163       1.1        ws 	case F_GETLK:
    164       1.1        ws 		error = lf_getlock(lock, fl);
    165       1.1        ws 		FREE(lock, M_LOCKF);
    166       1.1        ws 		return (error);
    167       1.4   mycroft 
    168       1.1        ws 	default:
    169       1.4   mycroft 		FREE(lock, M_LOCKF);
    170       1.1        ws 		return (EINVAL);
    171       1.1        ws 	}
    172       1.1        ws 	/* NOTREACHED */
    173       1.1        ws }
    174       1.1        ws 
    175       1.1        ws /*
    176       1.1        ws  * Set a byte-range lock.
    177       1.1        ws  */
    178       1.4   mycroft int
    179       1.1        ws lf_setlock(lock)
    180  1.14.6.1        he 	struct lockf *lock;
    181       1.1        ws {
    182  1.14.6.1        he 	struct lockf *block;
    183       1.1        ws 	struct lockf **head = lock->lf_head;
    184       1.1        ws 	struct lockf **prev, *overlap, *ltmp;
    185       1.1        ws 	static char lockstr[] = "lockf";
    186       1.1        ws 	int ovcase, priority, needtolink, error;
    187       1.1        ws 
    188       1.1        ws #ifdef LOCKF_DEBUG
    189       1.1        ws 	if (lockf_debug & 1)
    190       1.1        ws 		lf_print("lf_setlock", lock);
    191       1.1        ws #endif /* LOCKF_DEBUG */
    192       1.1        ws 
    193       1.1        ws 	/*
    194       1.1        ws 	 * Set the priority
    195       1.1        ws 	 */
    196       1.1        ws 	priority = PLOCK;
    197       1.1        ws 	if (lock->lf_type == F_WRLCK)
    198       1.1        ws 		priority += 4;
    199       1.1        ws 	priority |= PCATCH;
    200       1.1        ws 	/*
    201       1.1        ws 	 * Scan lock list for this file looking for locks that would block us.
    202       1.1        ws 	 */
    203       1.7  christos 	while ((block = lf_getblock(lock)) != NULL) {
    204       1.1        ws 		/*
    205       1.1        ws 		 * Free the structure and return if nonblocking.
    206       1.1        ws 		 */
    207       1.1        ws 		if ((lock->lf_flags & F_WAIT) == 0) {
    208       1.1        ws 			FREE(lock, M_LOCKF);
    209       1.1        ws 			return (EAGAIN);
    210       1.1        ws 		}
    211       1.1        ws 		/*
    212       1.1        ws 		 * We are blocked. Since flock style locks cover
    213       1.1        ws 		 * the whole file, there is no chance for deadlock.
    214       1.1        ws 		 * For byte-range locks we must check for deadlock.
    215       1.1        ws 		 *
    216       1.1        ws 		 * Deadlock detection is done by looking through the
    217       1.1        ws 		 * wait channels to see if there are any cycles that
    218       1.1        ws 		 * involve us. MAXDEPTH is set just to make sure we
    219  1.14.6.1        he 		 * do not go off into neverneverland.
    220       1.1        ws 		 */
    221       1.1        ws 		if ((lock->lf_flags & F_POSIX) &&
    222       1.1        ws 		    (block->lf_flags & F_POSIX)) {
    223  1.14.6.1        he 			struct proc *wproc;
    224  1.14.6.1        he 			struct lockf *waitblock;
    225       1.1        ws 			int i = 0;
    226       1.1        ws 
    227       1.1        ws 			/* The block is waiting on something */
    228       1.1        ws 			wproc = (struct proc *)block->lf_id;
    229       1.1        ws 			while (wproc->p_wchan &&
    230       1.1        ws 			       (wproc->p_wmesg == lockstr) &&
    231       1.1        ws 			       (i++ < maxlockdepth)) {
    232       1.1        ws 				waitblock = (struct lockf *)wproc->p_wchan;
    233       1.1        ws 				/* Get the owner of the blocking lock */
    234       1.1        ws 				waitblock = waitblock->lf_next;
    235       1.1        ws 				if ((waitblock->lf_flags & F_POSIX) == 0)
    236       1.1        ws 					break;
    237       1.1        ws 				wproc = (struct proc *)waitblock->lf_id;
    238       1.1        ws 				if (wproc == (struct proc *)lock->lf_id) {
    239       1.1        ws 					free(lock, M_LOCKF);
    240       1.1        ws 					return (EDEADLK);
    241       1.1        ws 				}
    242       1.1        ws 			}
    243  1.14.6.1        he 			/*
    244  1.14.6.1        he 			 * If we're still following a dependancy chain
    245  1.14.6.1        he 			 * after maxlockdepth iterations, assume we're in
    246  1.14.6.1        he 			 * a cycle to be safe.
    247  1.14.6.1        he 			 */
    248  1.14.6.1        he 			if (i >= maxlockdepth) {
    249  1.14.6.1        he 				free(lock, M_LOCKF);
    250  1.14.6.1        he 				return (EDEADLK);
    251  1.14.6.1        he 			}
    252       1.1        ws 		}
    253       1.1        ws 		/*
    254       1.1        ws 		 * For flock type locks, we must first remove
    255       1.1        ws 		 * any shared locks that we hold before we sleep
    256       1.1        ws 		 * waiting for an exclusive lock.
    257       1.1        ws 		 */
    258       1.1        ws 		if ((lock->lf_flags & F_FLOCK) &&
    259       1.1        ws 		    lock->lf_type == F_WRLCK) {
    260       1.1        ws 			lock->lf_type = F_UNLCK;
    261       1.1        ws 			(void) lf_clearlock(lock);
    262       1.1        ws 			lock->lf_type = F_WRLCK;
    263       1.1        ws 		}
    264       1.1        ws 		/*
    265       1.1        ws 		 * Add our lock to the blocked list and sleep until we're free.
    266       1.1        ws 		 * Remember who blocked us (for deadlock detection).
    267       1.1        ws 		 */
    268       1.1        ws 		lock->lf_next = block;
    269      1.12      fvdl 		TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
    270       1.1        ws #ifdef LOCKF_DEBUG
    271       1.1        ws 		if (lockf_debug & 1) {
    272       1.1        ws 			lf_print("lf_setlock: blocking on", block);
    273       1.1        ws 			lf_printlist("lf_setlock", block);
    274       1.1        ws 		}
    275       1.1        ws #endif /* LOCKF_DEBUG */
    276       1.7  christos 		error = tsleep((caddr_t)lock, priority, lockstr, 0);
    277  1.14.6.1        he 
    278  1.14.6.1        he 		/*
    279  1.14.6.1        he 		 * We may have been awakened by a signal (in
    280  1.14.6.1        he 		 * which case we must remove ourselves from the
    281  1.14.6.1        he 		 * blocked list) and/or by another process
    282  1.14.6.1        he 		 * releasing a lock (in which case we have already
    283  1.14.6.1        he 		 * been removed from the blocked list and our
    284  1.14.6.1        he 		 * lf_next field set to NOLOCKF).
    285  1.14.6.1        he 		 */
    286  1.14.6.1        he 		if (lock->lf_next != NOLOCKF) {
    287  1.14.6.1        he 			TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
    288  1.14.6.1        he 			lock->lf_next = NOLOCKF;
    289  1.14.6.1        he 		}
    290       1.7  christos 		if (error) {
    291       1.4   mycroft 			free(lock, M_LOCKF);
    292       1.4   mycroft 			return (error);
    293       1.1        ws 		}
    294       1.1        ws 	}
    295       1.1        ws 	/*
    296       1.1        ws 	 * No blocks!!  Add the lock.  Note that we will
    297       1.1        ws 	 * downgrade or upgrade any overlapping locks this
    298       1.1        ws 	 * process already owns.
    299       1.1        ws 	 *
    300       1.1        ws 	 * Skip over locks owned by other processes.
    301       1.1        ws 	 * Handle any locks that overlap and are owned by ourselves.
    302       1.1        ws 	 */
    303       1.1        ws 	prev = head;
    304       1.1        ws 	block = *head;
    305       1.1        ws 	needtolink = 1;
    306       1.1        ws 	for (;;) {
    307       1.7  christos 		ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
    308       1.7  christos 		if (ovcase)
    309       1.1        ws 			block = overlap->lf_next;
    310       1.1        ws 		/*
    311       1.1        ws 		 * Six cases:
    312       1.1        ws 		 *	0) no overlap
    313       1.1        ws 		 *	1) overlap == lock
    314       1.1        ws 		 *	2) overlap contains lock
    315       1.1        ws 		 *	3) lock contains overlap
    316       1.1        ws 		 *	4) overlap starts before lock
    317       1.1        ws 		 *	5) overlap ends after lock
    318       1.1        ws 		 */
    319       1.1        ws 		switch (ovcase) {
    320       1.1        ws 		case 0: /* no overlap */
    321       1.1        ws 			if (needtolink) {
    322       1.1        ws 				*prev = lock;
    323       1.1        ws 				lock->lf_next = overlap;
    324       1.1        ws 			}
    325       1.1        ws 			break;
    326       1.1        ws 
    327       1.1        ws 		case 1: /* overlap == lock */
    328       1.1        ws 			/*
    329       1.1        ws 			 * If downgrading lock, others may be
    330       1.1        ws 			 * able to acquire it.
    331       1.1        ws 			 */
    332       1.1        ws 			if (lock->lf_type == F_RDLCK &&
    333       1.1        ws 			    overlap->lf_type == F_WRLCK)
    334       1.1        ws 				lf_wakelock(overlap);
    335       1.1        ws 			overlap->lf_type = lock->lf_type;
    336       1.1        ws 			FREE(lock, M_LOCKF);
    337       1.1        ws 			lock = overlap; /* for debug output below */
    338       1.1        ws 			break;
    339       1.1        ws 
    340       1.1        ws 		case 2: /* overlap contains lock */
    341       1.1        ws 			/*
    342       1.1        ws 			 * Check for common starting point and different types.
    343       1.1        ws 			 */
    344       1.1        ws 			if (overlap->lf_type == lock->lf_type) {
    345       1.1        ws 				free(lock, M_LOCKF);
    346       1.1        ws 				lock = overlap; /* for debug output below */
    347       1.1        ws 				break;
    348       1.1        ws 			}
    349       1.1        ws 			if (overlap->lf_start == lock->lf_start) {
    350       1.1        ws 				*prev = lock;
    351       1.1        ws 				lock->lf_next = overlap;
    352       1.1        ws 				overlap->lf_start = lock->lf_end + 1;
    353       1.1        ws 			} else
    354       1.1        ws 				lf_split(overlap, lock);
    355       1.1        ws 			lf_wakelock(overlap);
    356       1.1        ws 			break;
    357       1.1        ws 
    358       1.1        ws 		case 3: /* lock contains overlap */
    359       1.1        ws 			/*
    360       1.1        ws 			 * If downgrading lock, others may be able to
    361       1.1        ws 			 * acquire it, otherwise take the list.
    362       1.1        ws 			 */
    363       1.1        ws 			if (lock->lf_type == F_RDLCK &&
    364       1.1        ws 			    overlap->lf_type == F_WRLCK) {
    365       1.1        ws 				lf_wakelock(overlap);
    366       1.1        ws 			} else {
    367      1.12      fvdl 				while ((ltmp = overlap->lf_blkhd.tqh_first)) {
    368  1.14.6.1        he 					KASSERT(ltmp->lf_next == overlap);
    369      1.12      fvdl 					TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
    370      1.12      fvdl 					    lf_block);
    371  1.14.6.1        he 					ltmp->lf_next = lock;
    372      1.12      fvdl 					TAILQ_INSERT_TAIL(&lock->lf_blkhd,
    373      1.12      fvdl 					    ltmp, lf_block);
    374      1.12      fvdl 				}
    375       1.1        ws 			}
    376       1.1        ws 			/*
    377       1.1        ws 			 * Add the new lock if necessary and delete the overlap.
    378       1.1        ws 			 */
    379       1.1        ws 			if (needtolink) {
    380       1.1        ws 				*prev = lock;
    381       1.1        ws 				lock->lf_next = overlap->lf_next;
    382       1.1        ws 				prev = &lock->lf_next;
    383       1.1        ws 				needtolink = 0;
    384       1.1        ws 			} else
    385       1.1        ws 				*prev = overlap->lf_next;
    386       1.1        ws 			free(overlap, M_LOCKF);
    387       1.1        ws 			continue;
    388       1.1        ws 
    389       1.1        ws 		case 4: /* overlap starts before lock */
    390       1.1        ws 			/*
    391       1.1        ws 			 * Add lock after overlap on the list.
    392       1.1        ws 			 */
    393       1.1        ws 			lock->lf_next = overlap->lf_next;
    394       1.1        ws 			overlap->lf_next = lock;
    395       1.1        ws 			overlap->lf_end = lock->lf_start - 1;
    396       1.1        ws 			prev = &lock->lf_next;
    397       1.1        ws 			lf_wakelock(overlap);
    398       1.1        ws 			needtolink = 0;
    399       1.1        ws 			continue;
    400       1.1        ws 
    401       1.1        ws 		case 5: /* overlap ends after lock */
    402       1.1        ws 			/*
    403       1.1        ws 			 * Add the new lock before overlap.
    404       1.1        ws 			 */
    405       1.1        ws 			if (needtolink) {
    406       1.1        ws 				*prev = lock;
    407       1.1        ws 				lock->lf_next = overlap;
    408       1.1        ws 			}
    409       1.1        ws 			overlap->lf_start = lock->lf_end + 1;
    410       1.1        ws 			lf_wakelock(overlap);
    411       1.1        ws 			break;
    412       1.1        ws 		}
    413       1.1        ws 		break;
    414       1.1        ws 	}
    415       1.1        ws #ifdef LOCKF_DEBUG
    416       1.1        ws 	if (lockf_debug & 1) {
    417       1.1        ws 		lf_print("lf_setlock: got the lock", lock);
    418       1.1        ws 		lf_printlist("lf_setlock", lock);
    419       1.1        ws 	}
    420       1.1        ws #endif /* LOCKF_DEBUG */
    421       1.1        ws 	return (0);
    422       1.1        ws }
    423       1.1        ws 
    424       1.1        ws /*
    425       1.1        ws  * Remove a byte-range lock on an inode.
    426       1.1        ws  *
    427       1.1        ws  * Generally, find the lock (or an overlap to that lock)
    428       1.1        ws  * and remove it (or shrink it), then wakeup anyone we can.
    429       1.1        ws  */
    430       1.4   mycroft int
    431       1.1        ws lf_clearlock(unlock)
    432  1.14.6.1        he 	struct lockf *unlock;
    433       1.1        ws {
    434       1.1        ws 	struct lockf **head = unlock->lf_head;
    435  1.14.6.1        he 	struct lockf *lf = *head;
    436       1.1        ws 	struct lockf *overlap, **prev;
    437       1.1        ws 	int ovcase;
    438       1.1        ws 
    439       1.1        ws 	if (lf == NOLOCKF)
    440       1.1        ws 		return (0);
    441       1.1        ws #ifdef LOCKF_DEBUG
    442       1.1        ws 	if (unlock->lf_type != F_UNLCK)
    443       1.1        ws 		panic("lf_clearlock: bad type");
    444       1.1        ws 	if (lockf_debug & 1)
    445       1.1        ws 		lf_print("lf_clearlock", unlock);
    446       1.1        ws #endif /* LOCKF_DEBUG */
    447       1.1        ws 	prev = head;
    448       1.7  christos 	while ((ovcase = lf_findoverlap(lf, unlock, SELF,
    449       1.7  christos 					&prev, &overlap)) != 0) {
    450       1.1        ws 		/*
    451       1.1        ws 		 * Wakeup the list of locks to be retried.
    452       1.1        ws 		 */
    453       1.1        ws 		lf_wakelock(overlap);
    454       1.1        ws 
    455       1.1        ws 		switch (ovcase) {
    456       1.1        ws 
    457       1.1        ws 		case 1: /* overlap == lock */
    458       1.1        ws 			*prev = overlap->lf_next;
    459       1.1        ws 			FREE(overlap, M_LOCKF);
    460       1.1        ws 			break;
    461       1.1        ws 
    462       1.1        ws 		case 2: /* overlap contains lock: split it */
    463       1.1        ws 			if (overlap->lf_start == unlock->lf_start) {
    464       1.1        ws 				overlap->lf_start = unlock->lf_end + 1;
    465       1.1        ws 				break;
    466       1.1        ws 			}
    467       1.1        ws 			lf_split(overlap, unlock);
    468       1.1        ws 			overlap->lf_next = unlock->lf_next;
    469       1.1        ws 			break;
    470       1.1        ws 
    471       1.1        ws 		case 3: /* lock contains overlap */
    472       1.1        ws 			*prev = overlap->lf_next;
    473       1.1        ws 			lf = overlap->lf_next;
    474       1.1        ws 			free(overlap, M_LOCKF);
    475       1.1        ws 			continue;
    476       1.1        ws 
    477       1.1        ws 		case 4: /* overlap starts before lock */
    478       1.1        ws 			overlap->lf_end = unlock->lf_start - 1;
    479       1.1        ws 			prev = &overlap->lf_next;
    480       1.1        ws 			lf = overlap->lf_next;
    481       1.1        ws 			continue;
    482       1.1        ws 
    483       1.1        ws 		case 5: /* overlap ends after lock */
    484       1.1        ws 			overlap->lf_start = unlock->lf_end + 1;
    485       1.1        ws 			break;
    486       1.1        ws 		}
    487       1.1        ws 		break;
    488       1.1        ws 	}
    489       1.1        ws #ifdef LOCKF_DEBUG
    490       1.1        ws 	if (lockf_debug & 1)
    491       1.1        ws 		lf_printlist("lf_clearlock", unlock);
    492       1.1        ws #endif /* LOCKF_DEBUG */
    493       1.1        ws 	return (0);
    494       1.1        ws }
    495       1.1        ws 
    496       1.1        ws /*
    497       1.1        ws  * Check whether there is a blocking lock,
    498       1.1        ws  * and if so return its process identifier.
    499       1.1        ws  */
    500       1.4   mycroft int
    501       1.1        ws lf_getlock(lock, fl)
    502  1.14.6.1        he 	struct lockf *lock;
    503  1.14.6.1        he 	struct flock *fl;
    504       1.1        ws {
    505  1.14.6.1        he 	struct lockf *block;
    506       1.1        ws 
    507       1.1        ws #ifdef LOCKF_DEBUG
    508       1.1        ws 	if (lockf_debug & 1)
    509       1.1        ws 		lf_print("lf_getlock", lock);
    510       1.1        ws #endif /* LOCKF_DEBUG */
    511       1.1        ws 
    512       1.7  christos 	if ((block = lf_getblock(lock)) != NULL) {
    513       1.1        ws 		fl->l_type = block->lf_type;
    514       1.1        ws 		fl->l_whence = SEEK_SET;
    515       1.1        ws 		fl->l_start = block->lf_start;
    516       1.1        ws 		if (block->lf_end == -1)
    517       1.1        ws 			fl->l_len = 0;
    518       1.1        ws 		else
    519       1.1        ws 			fl->l_len = block->lf_end - block->lf_start + 1;
    520       1.1        ws 		if (block->lf_flags & F_POSIX)
    521       1.1        ws 			fl->l_pid = ((struct proc *)(block->lf_id))->p_pid;
    522       1.1        ws 		else
    523       1.1        ws 			fl->l_pid = -1;
    524       1.1        ws 	} else {
    525       1.1        ws 		fl->l_type = F_UNLCK;
    526       1.1        ws 	}
    527       1.1        ws 	return (0);
    528       1.1        ws }
    529       1.1        ws 
    530       1.1        ws /*
    531       1.1        ws  * Walk the list of locks for an inode and
    532       1.1        ws  * return the first blocking lock.
    533       1.1        ws  */
    534       1.1        ws struct lockf *
    535       1.1        ws lf_getblock(lock)
    536  1.14.6.1        he 	struct lockf *lock;
    537       1.1        ws {
    538       1.1        ws 	struct lockf **prev, *overlap, *lf = *(lock->lf_head);
    539       1.1        ws 	int ovcase;
    540       1.1        ws 
    541       1.1        ws 	prev = lock->lf_head;
    542       1.7  christos 	while ((ovcase = lf_findoverlap(lf, lock, OTHERS,
    543       1.7  christos 					&prev, &overlap)) != 0) {
    544       1.1        ws 		/*
    545       1.1        ws 		 * We've found an overlap, see if it blocks us
    546       1.1        ws 		 */
    547       1.1        ws 		if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
    548       1.1        ws 			return (overlap);
    549       1.1        ws 		/*
    550       1.1        ws 		 * Nope, point to the next one on the list and
    551       1.1        ws 		 * see if it blocks us
    552       1.1        ws 		 */
    553       1.1        ws 		lf = overlap->lf_next;
    554       1.1        ws 	}
    555       1.1        ws 	return (NOLOCKF);
    556       1.1        ws }
    557       1.1        ws 
    558       1.1        ws /*
    559       1.1        ws  * Walk the list of locks for an inode to
    560       1.1        ws  * find an overlapping lock (if any).
    561       1.1        ws  *
    562       1.1        ws  * NOTE: this returns only the FIRST overlapping lock.  There
    563       1.1        ws  *	 may be more than one.
    564       1.1        ws  */
    565       1.4   mycroft int
    566       1.1        ws lf_findoverlap(lf, lock, type, prev, overlap)
    567  1.14.6.1        he 	struct lockf *lf;
    568       1.1        ws 	struct lockf *lock;
    569       1.1        ws 	int type;
    570       1.1        ws 	struct lockf ***prev;
    571       1.1        ws 	struct lockf **overlap;
    572       1.1        ws {
    573       1.1        ws 	off_t start, end;
    574       1.1        ws 
    575       1.1        ws 	*overlap = lf;
    576       1.1        ws 	if (lf == NOLOCKF)
    577       1.1        ws 		return (0);
    578       1.1        ws #ifdef LOCKF_DEBUG
    579       1.1        ws 	if (lockf_debug & 2)
    580       1.1        ws 		lf_print("lf_findoverlap: looking for overlap in", lock);
    581       1.1        ws #endif /* LOCKF_DEBUG */
    582       1.1        ws 	start = lock->lf_start;
    583       1.1        ws 	end = lock->lf_end;
    584       1.1        ws 	while (lf != NOLOCKF) {
    585       1.1        ws 		if (((type & SELF) && lf->lf_id != lock->lf_id) ||
    586       1.1        ws 		    ((type & OTHERS) && lf->lf_id == lock->lf_id)) {
    587       1.1        ws 			*prev = &lf->lf_next;
    588       1.1        ws 			*overlap = lf = lf->lf_next;
    589       1.1        ws 			continue;
    590       1.1        ws 		}
    591       1.1        ws #ifdef LOCKF_DEBUG
    592       1.1        ws 		if (lockf_debug & 2)
    593       1.1        ws 			lf_print("\tchecking", lf);
    594       1.1        ws #endif /* LOCKF_DEBUG */
    595       1.1        ws 		/*
    596       1.1        ws 		 * OK, check for overlap
    597       1.1        ws 		 *
    598       1.1        ws 		 * Six cases:
    599       1.1        ws 		 *	0) no overlap
    600       1.1        ws 		 *	1) overlap == lock
    601       1.1        ws 		 *	2) overlap contains lock
    602       1.1        ws 		 *	3) lock contains overlap
    603       1.1        ws 		 *	4) overlap starts before lock
    604       1.1        ws 		 *	5) overlap ends after lock
    605       1.1        ws 		 */
    606       1.1        ws 		if ((lf->lf_end != -1 && start > lf->lf_end) ||
    607       1.1        ws 		    (end != -1 && lf->lf_start > end)) {
    608       1.1        ws 			/* Case 0 */
    609       1.1        ws #ifdef LOCKF_DEBUG
    610       1.1        ws 			if (lockf_debug & 2)
    611       1.9  christos 				printf("no overlap\n");
    612       1.1        ws #endif /* LOCKF_DEBUG */
    613       1.1        ws 			if ((type & SELF) && end != -1 && lf->lf_start > end)
    614       1.1        ws 				return (0);
    615       1.1        ws 			*prev = &lf->lf_next;
    616       1.1        ws 			*overlap = lf = lf->lf_next;
    617       1.1        ws 			continue;
    618       1.1        ws 		}
    619       1.1        ws 		if ((lf->lf_start == start) && (lf->lf_end == end)) {
    620       1.1        ws 			/* Case 1 */
    621       1.1        ws #ifdef LOCKF_DEBUG
    622       1.1        ws 			if (lockf_debug & 2)
    623       1.9  christos 				printf("overlap == lock\n");
    624       1.1        ws #endif /* LOCKF_DEBUG */
    625       1.1        ws 			return (1);
    626       1.1        ws 		}
    627       1.1        ws 		if ((lf->lf_start <= start) &&
    628       1.1        ws 		    (end != -1) &&
    629       1.1        ws 		    ((lf->lf_end >= end) || (lf->lf_end == -1))) {
    630       1.1        ws 			/* Case 2 */
    631       1.1        ws #ifdef LOCKF_DEBUG
    632       1.1        ws 			if (lockf_debug & 2)
    633       1.9  christos 				printf("overlap contains lock\n");
    634       1.1        ws #endif /* LOCKF_DEBUG */
    635       1.1        ws 			return (2);
    636       1.1        ws 		}
    637       1.1        ws 		if (start <= lf->lf_start &&
    638       1.4   mycroft 		           (end == -1 ||
    639       1.1        ws 			   (lf->lf_end != -1 && end >= lf->lf_end))) {
    640       1.1        ws 			/* Case 3 */
    641       1.1        ws #ifdef LOCKF_DEBUG
    642       1.1        ws 			if (lockf_debug & 2)
    643       1.9  christos 				printf("lock contains overlap\n");
    644       1.1        ws #endif /* LOCKF_DEBUG */
    645       1.1        ws 			return (3);
    646       1.1        ws 		}
    647       1.1        ws 		if ((lf->lf_start < start) &&
    648       1.1        ws 			((lf->lf_end >= start) || (lf->lf_end == -1))) {
    649       1.1        ws 			/* Case 4 */
    650       1.1        ws #ifdef LOCKF_DEBUG
    651       1.1        ws 			if (lockf_debug & 2)
    652       1.9  christos 				printf("overlap starts before lock\n");
    653       1.1        ws #endif /* LOCKF_DEBUG */
    654       1.1        ws 			return (4);
    655       1.1        ws 		}
    656       1.1        ws 		if ((lf->lf_start > start) &&
    657       1.1        ws 			(end != -1) &&
    658       1.1        ws 			((lf->lf_end > end) || (lf->lf_end == -1))) {
    659       1.1        ws 			/* Case 5 */
    660       1.1        ws #ifdef LOCKF_DEBUG
    661       1.1        ws 			if (lockf_debug & 2)
    662       1.9  christos 				printf("overlap ends after lock\n");
    663       1.1        ws #endif /* LOCKF_DEBUG */
    664       1.1        ws 			return (5);
    665       1.1        ws 		}
    666       1.1        ws 		panic("lf_findoverlap: default");
    667       1.1        ws 	}
    668       1.1        ws 	return (0);
    669       1.1        ws }
    670       1.1        ws 
    671       1.1        ws /*
    672       1.1        ws  * Split a lock and a contained region into
    673       1.1        ws  * two or three locks as necessary.
    674       1.1        ws  */
    675       1.2       cgd void
    676       1.1        ws lf_split(lock1, lock2)
    677  1.14.6.1        he 	struct lockf *lock1;
    678  1.14.6.1        he 	struct lockf *lock2;
    679       1.1        ws {
    680  1.14.6.1        he 	struct lockf *splitlock;
    681       1.1        ws 
    682       1.1        ws #ifdef LOCKF_DEBUG
    683       1.1        ws 	if (lockf_debug & 2) {
    684       1.1        ws 		lf_print("lf_split", lock1);
    685       1.1        ws 		lf_print("splitting from", lock2);
    686       1.1        ws 	}
    687       1.1        ws #endif /* LOCKF_DEBUG */
    688       1.1        ws 	/*
    689       1.1        ws 	 * Check to see if spliting into only two pieces.
    690       1.1        ws 	 */
    691       1.1        ws 	if (lock1->lf_start == lock2->lf_start) {
    692       1.1        ws 		lock1->lf_start = lock2->lf_end + 1;
    693       1.1        ws 		lock2->lf_next = lock1;
    694       1.1        ws 		return;
    695       1.1        ws 	}
    696       1.1        ws 	if (lock1->lf_end == lock2->lf_end) {
    697       1.1        ws 		lock1->lf_end = lock2->lf_start - 1;
    698       1.1        ws 		lock2->lf_next = lock1->lf_next;
    699       1.1        ws 		lock1->lf_next = lock2;
    700       1.1        ws 		return;
    701       1.1        ws 	}
    702       1.1        ws 	/*
    703       1.1        ws 	 * Make a new lock consisting of the last part of
    704       1.1        ws 	 * the encompassing lock
    705       1.1        ws 	 */
    706      1.13     perry 	MALLOC(splitlock, struct lockf *, sizeof(*splitlock), M_LOCKF, M_WAITOK);
    707      1.14     perry 	memcpy((caddr_t)splitlock, (caddr_t)lock1, sizeof(*splitlock));
    708       1.1        ws 	splitlock->lf_start = lock2->lf_end + 1;
    709      1.12      fvdl 	TAILQ_INIT(&splitlock->lf_blkhd);
    710       1.1        ws 	lock1->lf_end = lock2->lf_start - 1;
    711       1.1        ws 	/*
    712       1.1        ws 	 * OK, now link it in
    713       1.1        ws 	 */
    714       1.1        ws 	splitlock->lf_next = lock1->lf_next;
    715       1.1        ws 	lock2->lf_next = splitlock;
    716       1.1        ws 	lock1->lf_next = lock2;
    717       1.1        ws }
    718       1.1        ws 
    719       1.1        ws /*
    720       1.1        ws  * Wakeup a blocklist
    721       1.1        ws  */
    722       1.2       cgd void
    723       1.1        ws lf_wakelock(listhead)
    724       1.1        ws 	struct lockf *listhead;
    725       1.1        ws {
    726  1.14.6.1        he 	struct lockf *wakelock;
    727       1.1        ws 
    728      1.12      fvdl 	while ((wakelock = listhead->lf_blkhd.tqh_first)) {
    729  1.14.6.1        he 		KASSERT(wakelock->lf_next == listhead);
    730      1.12      fvdl 		TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
    731       1.1        ws 		wakelock->lf_next = NOLOCKF;
    732       1.1        ws #ifdef LOCKF_DEBUG
    733       1.1        ws 		if (lockf_debug & 2)
    734       1.1        ws 			lf_print("lf_wakelock: awakening", wakelock);
    735      1.12      fvdl #endif
    736       1.1        ws 		wakeup((caddr_t)wakelock);
    737       1.1        ws 	}
    738       1.1        ws }
    739       1.1        ws 
    740       1.1        ws #ifdef LOCKF_DEBUG
    741       1.1        ws /*
    742       1.1        ws  * Print out a lock.
    743       1.1        ws  */
    744       1.4   mycroft void
    745       1.1        ws lf_print(tag, lock)
    746       1.1        ws 	char *tag;
    747  1.14.6.1        he 	struct lockf *lock;
    748       1.1        ws {
    749       1.1        ws 
    750       1.9  christos 	printf("%s: lock %p for ", tag, lock);
    751       1.1        ws 	if (lock->lf_flags & F_POSIX)
    752       1.9  christos 		printf("proc %d", ((struct proc *)(lock->lf_id))->p_pid);
    753       1.1        ws 	else
    754      1.11       jtk 		printf("id 0x%p", lock->lf_id);
    755      1.11       jtk 	printf(" %s, start %qx, end %qx",
    756       1.1        ws 		lock->lf_type == F_RDLCK ? "shared" :
    757       1.1        ws 		lock->lf_type == F_WRLCK ? "exclusive" :
    758       1.1        ws 		lock->lf_type == F_UNLCK ? "unlock" :
    759       1.1        ws 		"unknown", lock->lf_start, lock->lf_end);
    760      1.12      fvdl 	if (lock->lf_blkhd.tqh_first)
    761      1.12      fvdl 		printf(" block %p\n", lock->lf_blkhd.tqh_first);
    762       1.1        ws 	else
    763       1.9  christos 		printf("\n");
    764       1.1        ws }
    765       1.1        ws 
    766       1.4   mycroft void
    767       1.1        ws lf_printlist(tag, lock)
    768       1.1        ws 	char *tag;
    769       1.1        ws 	struct lockf *lock;
    770       1.1        ws {
    771  1.14.6.1        he 	struct lockf *lf, *blk;
    772       1.1        ws 
    773      1.11       jtk 	printf("%s: Lock list:\n", tag);
    774      1.12      fvdl 	for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
    775       1.9  christos 		printf("\tlock %p for ", lf);
    776       1.1        ws 		if (lf->lf_flags & F_POSIX)
    777       1.9  christos 			printf("proc %d", ((struct proc *)(lf->lf_id))->p_pid);
    778       1.1        ws 		else
    779      1.11       jtk 			printf("id 0x%p", lf->lf_id);
    780      1.11       jtk 		printf(", %s, start %qx, end %qx",
    781       1.1        ws 			lf->lf_type == F_RDLCK ? "shared" :
    782       1.1        ws 			lf->lf_type == F_WRLCK ? "exclusive" :
    783       1.1        ws 			lf->lf_type == F_UNLCK ? "unlock" :
    784       1.1        ws 			"unknown", lf->lf_start, lf->lf_end);
    785      1.12      fvdl 		for (blk = lf->lf_blkhd.tqh_first; blk;
    786      1.12      fvdl 		     blk = blk->lf_block.tqe_next) {
    787      1.12      fvdl 			if (blk->lf_flags & F_POSIX)
    788      1.12      fvdl 				printf("proc %d",
    789      1.12      fvdl 				    ((struct proc *)(blk->lf_id))->p_pid);
    790      1.12      fvdl 			else
    791      1.12      fvdl 				printf("id 0x%p", blk->lf_id);
    792      1.12      fvdl 			printf(", %s, start %qx, end %qx",
    793      1.12      fvdl 				blk->lf_type == F_RDLCK ? "shared" :
    794      1.12      fvdl 				blk->lf_type == F_WRLCK ? "exclusive" :
    795      1.12      fvdl 				blk->lf_type == F_UNLCK ? "unlock" :
    796      1.12      fvdl 				"unknown", blk->lf_start, blk->lf_end);
    797      1.12      fvdl 			if (blk->lf_blkhd.tqh_first)
    798      1.12      fvdl 				 panic("lf_printlist: bad list");
    799      1.12      fvdl 		}
    800      1.12      fvdl 		printf("\n");
    801       1.1        ws 	}
    802       1.1        ws }
    803       1.1        ws #endif /* LOCKF_DEBUG */
    804