vfs_lockf.c revision 1.17 1 1.17 jdolecek /* $NetBSD: vfs_lockf.c,v 1.17 2000/07/22 15:26:13 jdolecek Exp $ */
2 1.5 cgd
3 1.1 ws /*
4 1.4 mycroft * Copyright (c) 1982, 1986, 1989, 1993
5 1.4 mycroft * The Regents of the University of California. All rights reserved.
6 1.1 ws *
7 1.1 ws * This code is derived from software contributed to Berkeley by
8 1.1 ws * Scooter Morris at Genentech Inc.
9 1.1 ws *
10 1.1 ws * Redistribution and use in source and binary forms, with or without
11 1.1 ws * modification, are permitted provided that the following conditions
12 1.1 ws * are met:
13 1.1 ws * 1. Redistributions of source code must retain the above copyright
14 1.1 ws * notice, this list of conditions and the following disclaimer.
15 1.1 ws * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 ws * notice, this list of conditions and the following disclaimer in the
17 1.1 ws * documentation and/or other materials provided with the distribution.
18 1.1 ws * 3. All advertising materials mentioning features or use of this software
19 1.1 ws * must display the following acknowledgement:
20 1.1 ws * This product includes software developed by the University of
21 1.1 ws * California, Berkeley and its contributors.
22 1.1 ws * 4. Neither the name of the University nor the names of its contributors
23 1.1 ws * may be used to endorse or promote products derived from this software
24 1.1 ws * without specific prior written permission.
25 1.1 ws *
26 1.1 ws * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 1.1 ws * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 1.1 ws * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 1.1 ws * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 1.1 ws * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 1.1 ws * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 1.1 ws * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 1.1 ws * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 1.1 ws * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 1.1 ws * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 1.1 ws * SUCH DAMAGE.
37 1.1 ws *
38 1.12 fvdl * @(#)ufs_lockf.c 8.4 (Berkeley) 10/26/94
39 1.1 ws */
40 1.1 ws
41 1.1 ws #include <sys/param.h>
42 1.1 ws #include <sys/systm.h>
43 1.1 ws #include <sys/kernel.h>
44 1.1 ws #include <sys/file.h>
45 1.1 ws #include <sys/proc.h>
46 1.1 ws #include <sys/vnode.h>
47 1.1 ws #include <sys/malloc.h>
48 1.1 ws #include <sys/fcntl.h>
49 1.1 ws #include <sys/lockf.h>
50 1.1 ws
51 1.1 ws /*
52 1.6 mycroft * This variable controls the maximum number of processes that will
53 1.6 mycroft * be checked in doing deadlock detection.
54 1.6 mycroft */
55 1.6 mycroft int maxlockdepth = MAXDEPTH;
56 1.6 mycroft
57 1.6 mycroft #ifdef LOCKF_DEBUG
58 1.6 mycroft int lockf_debug = 0;
59 1.6 mycroft #endif
60 1.6 mycroft
61 1.6 mycroft #define NOLOCKF (struct lockf *)0
62 1.6 mycroft #define SELF 0x1
63 1.6 mycroft #define OTHERS 0x2
64 1.6 mycroft
65 1.6 mycroft /*
66 1.16 sommerfe * XXX TODO
67 1.16 sommerfe * Misc cleanups: "caddr_t id" should be visible in the API as a
68 1.16 sommerfe * "struct proc *".
69 1.16 sommerfe * (This requires rototilling all VFS's which support advisory locking).
70 1.16 sommerfe *
71 1.16 sommerfe * Use pools for lock allocation.
72 1.16 sommerfe */
73 1.16 sommerfe
74 1.16 sommerfe /*
75 1.16 sommerfe * XXXSMP TODO: Using either (a) a global lock, or (b) the vnode's
76 1.16 sommerfe * interlock should be sufficient; (b) requires a change to the API
77 1.16 sommerfe * because the vnode isn't visible here.
78 1.16 sommerfe *
79 1.16 sommerfe * If there's a lot of lock contention on a single vnode, locking
80 1.16 sommerfe * schemes which allow for more paralleism would be needed. Given how
81 1.16 sommerfe * infrequently byte-range locks are actually used in typical BSD
82 1.16 sommerfe * code, a more complex approach probably isn't worth it.
83 1.16 sommerfe */
84 1.16 sommerfe
85 1.16 sommerfe /*
86 1.4 mycroft * Do an advisory lock operation.
87 1.1 ws */
88 1.4 mycroft int
89 1.17 jdolecek lf_advlock(ap, head, size)
90 1.17 jdolecek struct vop_advlock_args *ap;
91 1.1 ws struct lockf **head;
92 1.3 cgd off_t size;
93 1.1 ws {
94 1.17 jdolecek struct flock *fl = ap->a_fl;
95 1.15 augustss struct lockf *lock;
96 1.1 ws off_t start, end;
97 1.1 ws int error;
98 1.1 ws
99 1.1 ws /*
100 1.1 ws * Convert the flock structure into a start and end.
101 1.1 ws */
102 1.1 ws switch (fl->l_whence) {
103 1.1 ws case SEEK_SET:
104 1.1 ws case SEEK_CUR:
105 1.1 ws /*
106 1.1 ws * Caller is responsible for adding any necessary offset
107 1.1 ws * when SEEK_CUR is used.
108 1.1 ws */
109 1.1 ws start = fl->l_start;
110 1.1 ws break;
111 1.1 ws
112 1.1 ws case SEEK_END:
113 1.1 ws start = size + fl->l_start;
114 1.1 ws break;
115 1.1 ws
116 1.1 ws default:
117 1.1 ws return (EINVAL);
118 1.1 ws }
119 1.1 ws if (start < 0)
120 1.1 ws return (EINVAL);
121 1.10 kleink
122 1.10 kleink /*
123 1.10 kleink * Avoid the common case of unlocking when inode has no locks.
124 1.10 kleink */
125 1.10 kleink if (*head == (struct lockf *)0) {
126 1.17 jdolecek if (ap->a_op != F_SETLK) {
127 1.10 kleink fl->l_type = F_UNLCK;
128 1.10 kleink return (0);
129 1.10 kleink }
130 1.10 kleink }
131 1.10 kleink
132 1.1 ws if (fl->l_len == 0)
133 1.1 ws end = -1;
134 1.1 ws else
135 1.1 ws end = start + fl->l_len - 1;
136 1.1 ws /*
137 1.4 mycroft * Create the lockf structure.
138 1.1 ws */
139 1.13 perry MALLOC(lock, struct lockf *, sizeof(*lock), M_LOCKF, M_WAITOK);
140 1.1 ws lock->lf_start = start;
141 1.1 ws lock->lf_end = end;
142 1.17 jdolecek lock->lf_id = ap->a_id;
143 1.1 ws lock->lf_head = head;
144 1.1 ws lock->lf_type = fl->l_type;
145 1.1 ws lock->lf_next = (struct lockf *)0;
146 1.12 fvdl TAILQ_INIT(&lock->lf_blkhd);
147 1.17 jdolecek lock->lf_flags = ap->a_flags;
148 1.1 ws /*
149 1.1 ws * Do the requested operation.
150 1.1 ws */
151 1.17 jdolecek switch (ap->a_op) {
152 1.4 mycroft
153 1.1 ws case F_SETLK:
154 1.1 ws return (lf_setlock(lock));
155 1.1 ws
156 1.1 ws case F_UNLCK:
157 1.1 ws error = lf_clearlock(lock);
158 1.1 ws FREE(lock, M_LOCKF);
159 1.1 ws return (error);
160 1.1 ws
161 1.1 ws case F_GETLK:
162 1.1 ws error = lf_getlock(lock, fl);
163 1.1 ws FREE(lock, M_LOCKF);
164 1.1 ws return (error);
165 1.4 mycroft
166 1.1 ws default:
167 1.4 mycroft FREE(lock, M_LOCKF);
168 1.1 ws return (EINVAL);
169 1.1 ws }
170 1.1 ws /* NOTREACHED */
171 1.1 ws }
172 1.1 ws
173 1.1 ws /*
174 1.1 ws * Set a byte-range lock.
175 1.1 ws */
176 1.4 mycroft int
177 1.1 ws lf_setlock(lock)
178 1.15 augustss struct lockf *lock;
179 1.1 ws {
180 1.15 augustss struct lockf *block;
181 1.1 ws struct lockf **head = lock->lf_head;
182 1.1 ws struct lockf **prev, *overlap, *ltmp;
183 1.1 ws static char lockstr[] = "lockf";
184 1.1 ws int ovcase, priority, needtolink, error;
185 1.1 ws
186 1.1 ws #ifdef LOCKF_DEBUG
187 1.1 ws if (lockf_debug & 1)
188 1.1 ws lf_print("lf_setlock", lock);
189 1.1 ws #endif /* LOCKF_DEBUG */
190 1.1 ws
191 1.1 ws /*
192 1.1 ws * Set the priority
193 1.1 ws */
194 1.1 ws priority = PLOCK;
195 1.1 ws if (lock->lf_type == F_WRLCK)
196 1.1 ws priority += 4;
197 1.1 ws priority |= PCATCH;
198 1.1 ws /*
199 1.1 ws * Scan lock list for this file looking for locks that would block us.
200 1.1 ws */
201 1.7 christos while ((block = lf_getblock(lock)) != NULL) {
202 1.1 ws /*
203 1.1 ws * Free the structure and return if nonblocking.
204 1.1 ws */
205 1.1 ws if ((lock->lf_flags & F_WAIT) == 0) {
206 1.1 ws FREE(lock, M_LOCKF);
207 1.1 ws return (EAGAIN);
208 1.1 ws }
209 1.1 ws /*
210 1.1 ws * We are blocked. Since flock style locks cover
211 1.1 ws * the whole file, there is no chance for deadlock.
212 1.1 ws * For byte-range locks we must check for deadlock.
213 1.1 ws *
214 1.1 ws * Deadlock detection is done by looking through the
215 1.1 ws * wait channels to see if there are any cycles that
216 1.1 ws * involve us. MAXDEPTH is set just to make sure we
217 1.16 sommerfe * do not go off into neverneverland.
218 1.1 ws */
219 1.1 ws if ((lock->lf_flags & F_POSIX) &&
220 1.1 ws (block->lf_flags & F_POSIX)) {
221 1.15 augustss struct proc *wproc;
222 1.15 augustss struct lockf *waitblock;
223 1.1 ws int i = 0;
224 1.1 ws
225 1.1 ws /* The block is waiting on something */
226 1.1 ws wproc = (struct proc *)block->lf_id;
227 1.1 ws while (wproc->p_wchan &&
228 1.1 ws (wproc->p_wmesg == lockstr) &&
229 1.1 ws (i++ < maxlockdepth)) {
230 1.1 ws waitblock = (struct lockf *)wproc->p_wchan;
231 1.1 ws /* Get the owner of the blocking lock */
232 1.1 ws waitblock = waitblock->lf_next;
233 1.1 ws if ((waitblock->lf_flags & F_POSIX) == 0)
234 1.1 ws break;
235 1.1 ws wproc = (struct proc *)waitblock->lf_id;
236 1.1 ws if (wproc == (struct proc *)lock->lf_id) {
237 1.1 ws free(lock, M_LOCKF);
238 1.1 ws return (EDEADLK);
239 1.1 ws }
240 1.1 ws }
241 1.16 sommerfe /*
242 1.16 sommerfe * If we're still following a dependancy chain
243 1.16 sommerfe * after maxlockdepth iterations, assume we're in
244 1.16 sommerfe * a cycle to be safe.
245 1.16 sommerfe */
246 1.16 sommerfe if (i >= maxlockdepth) {
247 1.16 sommerfe free(lock, M_LOCKF);
248 1.16 sommerfe return (EDEADLK);
249 1.16 sommerfe }
250 1.1 ws }
251 1.1 ws /*
252 1.1 ws * For flock type locks, we must first remove
253 1.1 ws * any shared locks that we hold before we sleep
254 1.1 ws * waiting for an exclusive lock.
255 1.1 ws */
256 1.1 ws if ((lock->lf_flags & F_FLOCK) &&
257 1.1 ws lock->lf_type == F_WRLCK) {
258 1.1 ws lock->lf_type = F_UNLCK;
259 1.1 ws (void) lf_clearlock(lock);
260 1.1 ws lock->lf_type = F_WRLCK;
261 1.1 ws }
262 1.1 ws /*
263 1.1 ws * Add our lock to the blocked list and sleep until we're free.
264 1.1 ws * Remember who blocked us (for deadlock detection).
265 1.1 ws */
266 1.1 ws lock->lf_next = block;
267 1.12 fvdl TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
268 1.1 ws #ifdef LOCKF_DEBUG
269 1.1 ws if (lockf_debug & 1) {
270 1.1 ws lf_print("lf_setlock: blocking on", block);
271 1.1 ws lf_printlist("lf_setlock", block);
272 1.1 ws }
273 1.1 ws #endif /* LOCKF_DEBUG */
274 1.7 christos error = tsleep((caddr_t)lock, priority, lockstr, 0);
275 1.16 sommerfe
276 1.16 sommerfe /*
277 1.16 sommerfe * We may have been awakened by a signal (in
278 1.16 sommerfe * which case we must remove ourselves from the
279 1.16 sommerfe * blocked list) and/or by another process
280 1.16 sommerfe * releasing a lock (in which case we have already
281 1.16 sommerfe * been removed from the blocked list and our
282 1.16 sommerfe * lf_next field set to NOLOCKF).
283 1.16 sommerfe */
284 1.16 sommerfe if (lock->lf_next != NOLOCKF) {
285 1.16 sommerfe TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
286 1.16 sommerfe lock->lf_next = NOLOCKF;
287 1.16 sommerfe }
288 1.7 christos if (error) {
289 1.4 mycroft free(lock, M_LOCKF);
290 1.4 mycroft return (error);
291 1.1 ws }
292 1.1 ws }
293 1.1 ws /*
294 1.1 ws * No blocks!! Add the lock. Note that we will
295 1.1 ws * downgrade or upgrade any overlapping locks this
296 1.1 ws * process already owns.
297 1.1 ws *
298 1.1 ws * Skip over locks owned by other processes.
299 1.1 ws * Handle any locks that overlap and are owned by ourselves.
300 1.1 ws */
301 1.1 ws prev = head;
302 1.1 ws block = *head;
303 1.1 ws needtolink = 1;
304 1.1 ws for (;;) {
305 1.7 christos ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
306 1.7 christos if (ovcase)
307 1.1 ws block = overlap->lf_next;
308 1.1 ws /*
309 1.1 ws * Six cases:
310 1.1 ws * 0) no overlap
311 1.1 ws * 1) overlap == lock
312 1.1 ws * 2) overlap contains lock
313 1.1 ws * 3) lock contains overlap
314 1.1 ws * 4) overlap starts before lock
315 1.1 ws * 5) overlap ends after lock
316 1.1 ws */
317 1.1 ws switch (ovcase) {
318 1.1 ws case 0: /* no overlap */
319 1.1 ws if (needtolink) {
320 1.1 ws *prev = lock;
321 1.1 ws lock->lf_next = overlap;
322 1.1 ws }
323 1.1 ws break;
324 1.1 ws
325 1.1 ws case 1: /* overlap == lock */
326 1.1 ws /*
327 1.1 ws * If downgrading lock, others may be
328 1.1 ws * able to acquire it.
329 1.1 ws */
330 1.1 ws if (lock->lf_type == F_RDLCK &&
331 1.1 ws overlap->lf_type == F_WRLCK)
332 1.1 ws lf_wakelock(overlap);
333 1.1 ws overlap->lf_type = lock->lf_type;
334 1.1 ws FREE(lock, M_LOCKF);
335 1.1 ws lock = overlap; /* for debug output below */
336 1.1 ws break;
337 1.1 ws
338 1.1 ws case 2: /* overlap contains lock */
339 1.1 ws /*
340 1.1 ws * Check for common starting point and different types.
341 1.1 ws */
342 1.1 ws if (overlap->lf_type == lock->lf_type) {
343 1.1 ws free(lock, M_LOCKF);
344 1.1 ws lock = overlap; /* for debug output below */
345 1.1 ws break;
346 1.1 ws }
347 1.1 ws if (overlap->lf_start == lock->lf_start) {
348 1.1 ws *prev = lock;
349 1.1 ws lock->lf_next = overlap;
350 1.1 ws overlap->lf_start = lock->lf_end + 1;
351 1.1 ws } else
352 1.1 ws lf_split(overlap, lock);
353 1.1 ws lf_wakelock(overlap);
354 1.1 ws break;
355 1.1 ws
356 1.1 ws case 3: /* lock contains overlap */
357 1.1 ws /*
358 1.1 ws * If downgrading lock, others may be able to
359 1.1 ws * acquire it, otherwise take the list.
360 1.1 ws */
361 1.1 ws if (lock->lf_type == F_RDLCK &&
362 1.1 ws overlap->lf_type == F_WRLCK) {
363 1.1 ws lf_wakelock(overlap);
364 1.1 ws } else {
365 1.12 fvdl while ((ltmp = overlap->lf_blkhd.tqh_first)) {
366 1.16 sommerfe KASSERT(ltmp->lf_next == overlap);
367 1.12 fvdl TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
368 1.12 fvdl lf_block);
369 1.16 sommerfe ltmp->lf_next = lock;
370 1.12 fvdl TAILQ_INSERT_TAIL(&lock->lf_blkhd,
371 1.12 fvdl ltmp, lf_block);
372 1.12 fvdl }
373 1.1 ws }
374 1.1 ws /*
375 1.1 ws * Add the new lock if necessary and delete the overlap.
376 1.1 ws */
377 1.1 ws if (needtolink) {
378 1.1 ws *prev = lock;
379 1.1 ws lock->lf_next = overlap->lf_next;
380 1.1 ws prev = &lock->lf_next;
381 1.1 ws needtolink = 0;
382 1.1 ws } else
383 1.1 ws *prev = overlap->lf_next;
384 1.1 ws free(overlap, M_LOCKF);
385 1.1 ws continue;
386 1.1 ws
387 1.1 ws case 4: /* overlap starts before lock */
388 1.1 ws /*
389 1.1 ws * Add lock after overlap on the list.
390 1.1 ws */
391 1.1 ws lock->lf_next = overlap->lf_next;
392 1.1 ws overlap->lf_next = lock;
393 1.1 ws overlap->lf_end = lock->lf_start - 1;
394 1.1 ws prev = &lock->lf_next;
395 1.1 ws lf_wakelock(overlap);
396 1.1 ws needtolink = 0;
397 1.1 ws continue;
398 1.1 ws
399 1.1 ws case 5: /* overlap ends after lock */
400 1.1 ws /*
401 1.1 ws * Add the new lock before overlap.
402 1.1 ws */
403 1.1 ws if (needtolink) {
404 1.1 ws *prev = lock;
405 1.1 ws lock->lf_next = overlap;
406 1.1 ws }
407 1.1 ws overlap->lf_start = lock->lf_end + 1;
408 1.1 ws lf_wakelock(overlap);
409 1.1 ws break;
410 1.1 ws }
411 1.1 ws break;
412 1.1 ws }
413 1.1 ws #ifdef LOCKF_DEBUG
414 1.1 ws if (lockf_debug & 1) {
415 1.1 ws lf_print("lf_setlock: got the lock", lock);
416 1.1 ws lf_printlist("lf_setlock", lock);
417 1.1 ws }
418 1.1 ws #endif /* LOCKF_DEBUG */
419 1.1 ws return (0);
420 1.1 ws }
421 1.1 ws
422 1.1 ws /*
423 1.1 ws * Remove a byte-range lock on an inode.
424 1.1 ws *
425 1.1 ws * Generally, find the lock (or an overlap to that lock)
426 1.1 ws * and remove it (or shrink it), then wakeup anyone we can.
427 1.1 ws */
428 1.4 mycroft int
429 1.1 ws lf_clearlock(unlock)
430 1.15 augustss struct lockf *unlock;
431 1.1 ws {
432 1.1 ws struct lockf **head = unlock->lf_head;
433 1.15 augustss struct lockf *lf = *head;
434 1.1 ws struct lockf *overlap, **prev;
435 1.1 ws int ovcase;
436 1.1 ws
437 1.1 ws if (lf == NOLOCKF)
438 1.1 ws return (0);
439 1.1 ws #ifdef LOCKF_DEBUG
440 1.1 ws if (unlock->lf_type != F_UNLCK)
441 1.1 ws panic("lf_clearlock: bad type");
442 1.1 ws if (lockf_debug & 1)
443 1.1 ws lf_print("lf_clearlock", unlock);
444 1.1 ws #endif /* LOCKF_DEBUG */
445 1.1 ws prev = head;
446 1.7 christos while ((ovcase = lf_findoverlap(lf, unlock, SELF,
447 1.7 christos &prev, &overlap)) != 0) {
448 1.1 ws /*
449 1.1 ws * Wakeup the list of locks to be retried.
450 1.1 ws */
451 1.1 ws lf_wakelock(overlap);
452 1.1 ws
453 1.1 ws switch (ovcase) {
454 1.1 ws
455 1.1 ws case 1: /* overlap == lock */
456 1.1 ws *prev = overlap->lf_next;
457 1.1 ws FREE(overlap, M_LOCKF);
458 1.1 ws break;
459 1.1 ws
460 1.1 ws case 2: /* overlap contains lock: split it */
461 1.1 ws if (overlap->lf_start == unlock->lf_start) {
462 1.1 ws overlap->lf_start = unlock->lf_end + 1;
463 1.1 ws break;
464 1.1 ws }
465 1.1 ws lf_split(overlap, unlock);
466 1.1 ws overlap->lf_next = unlock->lf_next;
467 1.1 ws break;
468 1.1 ws
469 1.1 ws case 3: /* lock contains overlap */
470 1.1 ws *prev = overlap->lf_next;
471 1.1 ws lf = overlap->lf_next;
472 1.1 ws free(overlap, M_LOCKF);
473 1.1 ws continue;
474 1.1 ws
475 1.1 ws case 4: /* overlap starts before lock */
476 1.1 ws overlap->lf_end = unlock->lf_start - 1;
477 1.1 ws prev = &overlap->lf_next;
478 1.1 ws lf = overlap->lf_next;
479 1.1 ws continue;
480 1.1 ws
481 1.1 ws case 5: /* overlap ends after lock */
482 1.1 ws overlap->lf_start = unlock->lf_end + 1;
483 1.1 ws break;
484 1.1 ws }
485 1.1 ws break;
486 1.1 ws }
487 1.1 ws #ifdef LOCKF_DEBUG
488 1.1 ws if (lockf_debug & 1)
489 1.1 ws lf_printlist("lf_clearlock", unlock);
490 1.1 ws #endif /* LOCKF_DEBUG */
491 1.1 ws return (0);
492 1.1 ws }
493 1.1 ws
494 1.1 ws /*
495 1.1 ws * Check whether there is a blocking lock,
496 1.1 ws * and if so return its process identifier.
497 1.1 ws */
498 1.4 mycroft int
499 1.1 ws lf_getlock(lock, fl)
500 1.15 augustss struct lockf *lock;
501 1.15 augustss struct flock *fl;
502 1.1 ws {
503 1.15 augustss struct lockf *block;
504 1.1 ws
505 1.1 ws #ifdef LOCKF_DEBUG
506 1.1 ws if (lockf_debug & 1)
507 1.1 ws lf_print("lf_getlock", lock);
508 1.1 ws #endif /* LOCKF_DEBUG */
509 1.1 ws
510 1.7 christos if ((block = lf_getblock(lock)) != NULL) {
511 1.1 ws fl->l_type = block->lf_type;
512 1.1 ws fl->l_whence = SEEK_SET;
513 1.1 ws fl->l_start = block->lf_start;
514 1.1 ws if (block->lf_end == -1)
515 1.1 ws fl->l_len = 0;
516 1.1 ws else
517 1.1 ws fl->l_len = block->lf_end - block->lf_start + 1;
518 1.1 ws if (block->lf_flags & F_POSIX)
519 1.1 ws fl->l_pid = ((struct proc *)(block->lf_id))->p_pid;
520 1.1 ws else
521 1.1 ws fl->l_pid = -1;
522 1.1 ws } else {
523 1.1 ws fl->l_type = F_UNLCK;
524 1.1 ws }
525 1.1 ws return (0);
526 1.1 ws }
527 1.1 ws
528 1.1 ws /*
529 1.1 ws * Walk the list of locks for an inode and
530 1.1 ws * return the first blocking lock.
531 1.1 ws */
532 1.1 ws struct lockf *
533 1.1 ws lf_getblock(lock)
534 1.15 augustss struct lockf *lock;
535 1.1 ws {
536 1.1 ws struct lockf **prev, *overlap, *lf = *(lock->lf_head);
537 1.1 ws int ovcase;
538 1.1 ws
539 1.1 ws prev = lock->lf_head;
540 1.7 christos while ((ovcase = lf_findoverlap(lf, lock, OTHERS,
541 1.7 christos &prev, &overlap)) != 0) {
542 1.1 ws /*
543 1.1 ws * We've found an overlap, see if it blocks us
544 1.1 ws */
545 1.1 ws if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
546 1.1 ws return (overlap);
547 1.1 ws /*
548 1.1 ws * Nope, point to the next one on the list and
549 1.1 ws * see if it blocks us
550 1.1 ws */
551 1.1 ws lf = overlap->lf_next;
552 1.1 ws }
553 1.1 ws return (NOLOCKF);
554 1.1 ws }
555 1.1 ws
556 1.1 ws /*
557 1.1 ws * Walk the list of locks for an inode to
558 1.1 ws * find an overlapping lock (if any).
559 1.1 ws *
560 1.1 ws * NOTE: this returns only the FIRST overlapping lock. There
561 1.1 ws * may be more than one.
562 1.1 ws */
563 1.4 mycroft int
564 1.1 ws lf_findoverlap(lf, lock, type, prev, overlap)
565 1.15 augustss struct lockf *lf;
566 1.1 ws struct lockf *lock;
567 1.1 ws int type;
568 1.1 ws struct lockf ***prev;
569 1.1 ws struct lockf **overlap;
570 1.1 ws {
571 1.1 ws off_t start, end;
572 1.1 ws
573 1.1 ws *overlap = lf;
574 1.1 ws if (lf == NOLOCKF)
575 1.1 ws return (0);
576 1.1 ws #ifdef LOCKF_DEBUG
577 1.1 ws if (lockf_debug & 2)
578 1.1 ws lf_print("lf_findoverlap: looking for overlap in", lock);
579 1.1 ws #endif /* LOCKF_DEBUG */
580 1.1 ws start = lock->lf_start;
581 1.1 ws end = lock->lf_end;
582 1.1 ws while (lf != NOLOCKF) {
583 1.1 ws if (((type & SELF) && lf->lf_id != lock->lf_id) ||
584 1.1 ws ((type & OTHERS) && lf->lf_id == lock->lf_id)) {
585 1.1 ws *prev = &lf->lf_next;
586 1.1 ws *overlap = lf = lf->lf_next;
587 1.1 ws continue;
588 1.1 ws }
589 1.1 ws #ifdef LOCKF_DEBUG
590 1.1 ws if (lockf_debug & 2)
591 1.1 ws lf_print("\tchecking", lf);
592 1.1 ws #endif /* LOCKF_DEBUG */
593 1.1 ws /*
594 1.1 ws * OK, check for overlap
595 1.1 ws *
596 1.1 ws * Six cases:
597 1.1 ws * 0) no overlap
598 1.1 ws * 1) overlap == lock
599 1.1 ws * 2) overlap contains lock
600 1.1 ws * 3) lock contains overlap
601 1.1 ws * 4) overlap starts before lock
602 1.1 ws * 5) overlap ends after lock
603 1.1 ws */
604 1.1 ws if ((lf->lf_end != -1 && start > lf->lf_end) ||
605 1.1 ws (end != -1 && lf->lf_start > end)) {
606 1.1 ws /* Case 0 */
607 1.1 ws #ifdef LOCKF_DEBUG
608 1.1 ws if (lockf_debug & 2)
609 1.9 christos printf("no overlap\n");
610 1.1 ws #endif /* LOCKF_DEBUG */
611 1.1 ws if ((type & SELF) && end != -1 && lf->lf_start > end)
612 1.1 ws return (0);
613 1.1 ws *prev = &lf->lf_next;
614 1.1 ws *overlap = lf = lf->lf_next;
615 1.1 ws continue;
616 1.1 ws }
617 1.1 ws if ((lf->lf_start == start) && (lf->lf_end == end)) {
618 1.1 ws /* Case 1 */
619 1.1 ws #ifdef LOCKF_DEBUG
620 1.1 ws if (lockf_debug & 2)
621 1.9 christos printf("overlap == lock\n");
622 1.1 ws #endif /* LOCKF_DEBUG */
623 1.1 ws return (1);
624 1.1 ws }
625 1.1 ws if ((lf->lf_start <= start) &&
626 1.1 ws (end != -1) &&
627 1.1 ws ((lf->lf_end >= end) || (lf->lf_end == -1))) {
628 1.1 ws /* Case 2 */
629 1.1 ws #ifdef LOCKF_DEBUG
630 1.1 ws if (lockf_debug & 2)
631 1.9 christos printf("overlap contains lock\n");
632 1.1 ws #endif /* LOCKF_DEBUG */
633 1.1 ws return (2);
634 1.1 ws }
635 1.1 ws if (start <= lf->lf_start &&
636 1.4 mycroft (end == -1 ||
637 1.1 ws (lf->lf_end != -1 && end >= lf->lf_end))) {
638 1.1 ws /* Case 3 */
639 1.1 ws #ifdef LOCKF_DEBUG
640 1.1 ws if (lockf_debug & 2)
641 1.9 christos printf("lock contains overlap\n");
642 1.1 ws #endif /* LOCKF_DEBUG */
643 1.1 ws return (3);
644 1.1 ws }
645 1.1 ws if ((lf->lf_start < start) &&
646 1.1 ws ((lf->lf_end >= start) || (lf->lf_end == -1))) {
647 1.1 ws /* Case 4 */
648 1.1 ws #ifdef LOCKF_DEBUG
649 1.1 ws if (lockf_debug & 2)
650 1.9 christos printf("overlap starts before lock\n");
651 1.1 ws #endif /* LOCKF_DEBUG */
652 1.1 ws return (4);
653 1.1 ws }
654 1.1 ws if ((lf->lf_start > start) &&
655 1.1 ws (end != -1) &&
656 1.1 ws ((lf->lf_end > end) || (lf->lf_end == -1))) {
657 1.1 ws /* Case 5 */
658 1.1 ws #ifdef LOCKF_DEBUG
659 1.1 ws if (lockf_debug & 2)
660 1.9 christos printf("overlap ends after lock\n");
661 1.1 ws #endif /* LOCKF_DEBUG */
662 1.1 ws return (5);
663 1.1 ws }
664 1.1 ws panic("lf_findoverlap: default");
665 1.1 ws }
666 1.1 ws return (0);
667 1.1 ws }
668 1.1 ws
669 1.1 ws /*
670 1.1 ws * Split a lock and a contained region into
671 1.1 ws * two or three locks as necessary.
672 1.1 ws */
673 1.2 cgd void
674 1.1 ws lf_split(lock1, lock2)
675 1.15 augustss struct lockf *lock1;
676 1.15 augustss struct lockf *lock2;
677 1.1 ws {
678 1.15 augustss struct lockf *splitlock;
679 1.1 ws
680 1.1 ws #ifdef LOCKF_DEBUG
681 1.1 ws if (lockf_debug & 2) {
682 1.1 ws lf_print("lf_split", lock1);
683 1.1 ws lf_print("splitting from", lock2);
684 1.1 ws }
685 1.1 ws #endif /* LOCKF_DEBUG */
686 1.1 ws /*
687 1.1 ws * Check to see if spliting into only two pieces.
688 1.1 ws */
689 1.1 ws if (lock1->lf_start == lock2->lf_start) {
690 1.1 ws lock1->lf_start = lock2->lf_end + 1;
691 1.1 ws lock2->lf_next = lock1;
692 1.1 ws return;
693 1.1 ws }
694 1.1 ws if (lock1->lf_end == lock2->lf_end) {
695 1.1 ws lock1->lf_end = lock2->lf_start - 1;
696 1.1 ws lock2->lf_next = lock1->lf_next;
697 1.1 ws lock1->lf_next = lock2;
698 1.1 ws return;
699 1.1 ws }
700 1.1 ws /*
701 1.1 ws * Make a new lock consisting of the last part of
702 1.1 ws * the encompassing lock
703 1.1 ws */
704 1.13 perry MALLOC(splitlock, struct lockf *, sizeof(*splitlock), M_LOCKF, M_WAITOK);
705 1.14 perry memcpy((caddr_t)splitlock, (caddr_t)lock1, sizeof(*splitlock));
706 1.1 ws splitlock->lf_start = lock2->lf_end + 1;
707 1.12 fvdl TAILQ_INIT(&splitlock->lf_blkhd);
708 1.1 ws lock1->lf_end = lock2->lf_start - 1;
709 1.1 ws /*
710 1.1 ws * OK, now link it in
711 1.1 ws */
712 1.1 ws splitlock->lf_next = lock1->lf_next;
713 1.1 ws lock2->lf_next = splitlock;
714 1.1 ws lock1->lf_next = lock2;
715 1.1 ws }
716 1.1 ws
717 1.1 ws /*
718 1.1 ws * Wakeup a blocklist
719 1.1 ws */
720 1.2 cgd void
721 1.1 ws lf_wakelock(listhead)
722 1.1 ws struct lockf *listhead;
723 1.1 ws {
724 1.15 augustss struct lockf *wakelock;
725 1.1 ws
726 1.12 fvdl while ((wakelock = listhead->lf_blkhd.tqh_first)) {
727 1.16 sommerfe KASSERT(wakelock->lf_next == listhead);
728 1.12 fvdl TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
729 1.1 ws wakelock->lf_next = NOLOCKF;
730 1.1 ws #ifdef LOCKF_DEBUG
731 1.1 ws if (lockf_debug & 2)
732 1.1 ws lf_print("lf_wakelock: awakening", wakelock);
733 1.12 fvdl #endif
734 1.1 ws wakeup((caddr_t)wakelock);
735 1.1 ws }
736 1.1 ws }
737 1.1 ws
738 1.1 ws #ifdef LOCKF_DEBUG
739 1.1 ws /*
740 1.1 ws * Print out a lock.
741 1.1 ws */
742 1.4 mycroft void
743 1.1 ws lf_print(tag, lock)
744 1.1 ws char *tag;
745 1.15 augustss struct lockf *lock;
746 1.1 ws {
747 1.1 ws
748 1.9 christos printf("%s: lock %p for ", tag, lock);
749 1.1 ws if (lock->lf_flags & F_POSIX)
750 1.9 christos printf("proc %d", ((struct proc *)(lock->lf_id))->p_pid);
751 1.1 ws else
752 1.11 jtk printf("id 0x%p", lock->lf_id);
753 1.11 jtk printf(" %s, start %qx, end %qx",
754 1.1 ws lock->lf_type == F_RDLCK ? "shared" :
755 1.1 ws lock->lf_type == F_WRLCK ? "exclusive" :
756 1.1 ws lock->lf_type == F_UNLCK ? "unlock" :
757 1.1 ws "unknown", lock->lf_start, lock->lf_end);
758 1.12 fvdl if (lock->lf_blkhd.tqh_first)
759 1.12 fvdl printf(" block %p\n", lock->lf_blkhd.tqh_first);
760 1.1 ws else
761 1.9 christos printf("\n");
762 1.1 ws }
763 1.1 ws
764 1.4 mycroft void
765 1.1 ws lf_printlist(tag, lock)
766 1.1 ws char *tag;
767 1.1 ws struct lockf *lock;
768 1.1 ws {
769 1.15 augustss struct lockf *lf, *blk;
770 1.1 ws
771 1.11 jtk printf("%s: Lock list:\n", tag);
772 1.12 fvdl for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
773 1.9 christos printf("\tlock %p for ", lf);
774 1.1 ws if (lf->lf_flags & F_POSIX)
775 1.9 christos printf("proc %d", ((struct proc *)(lf->lf_id))->p_pid);
776 1.1 ws else
777 1.11 jtk printf("id 0x%p", lf->lf_id);
778 1.11 jtk printf(", %s, start %qx, end %qx",
779 1.1 ws lf->lf_type == F_RDLCK ? "shared" :
780 1.1 ws lf->lf_type == F_WRLCK ? "exclusive" :
781 1.1 ws lf->lf_type == F_UNLCK ? "unlock" :
782 1.1 ws "unknown", lf->lf_start, lf->lf_end);
783 1.12 fvdl for (blk = lf->lf_blkhd.tqh_first; blk;
784 1.12 fvdl blk = blk->lf_block.tqe_next) {
785 1.12 fvdl if (blk->lf_flags & F_POSIX)
786 1.12 fvdl printf("proc %d",
787 1.12 fvdl ((struct proc *)(blk->lf_id))->p_pid);
788 1.12 fvdl else
789 1.12 fvdl printf("id 0x%p", blk->lf_id);
790 1.12 fvdl printf(", %s, start %qx, end %qx",
791 1.12 fvdl blk->lf_type == F_RDLCK ? "shared" :
792 1.12 fvdl blk->lf_type == F_WRLCK ? "exclusive" :
793 1.12 fvdl blk->lf_type == F_UNLCK ? "unlock" :
794 1.12 fvdl "unknown", blk->lf_start, blk->lf_end);
795 1.12 fvdl if (blk->lf_blkhd.tqh_first)
796 1.12 fvdl panic("lf_printlist: bad list");
797 1.12 fvdl }
798 1.12 fvdl printf("\n");
799 1.1 ws }
800 1.1 ws }
801 1.1 ws #endif /* LOCKF_DEBUG */
802