Home | History | Annotate | Line # | Download | only in kern
vfs_lockf.c revision 1.17.8.1
      1  1.17.8.1   thorpej /*	$NetBSD: vfs_lockf.c,v 1.17.8.1 2001/11/12 21:19:01 thorpej Exp $	*/
      2       1.5       cgd 
      3       1.1        ws /*
      4       1.4   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
      5       1.4   mycroft  *	The Regents of the University of California.  All rights reserved.
      6       1.1        ws  *
      7       1.1        ws  * This code is derived from software contributed to Berkeley by
      8       1.1        ws  * Scooter Morris at Genentech Inc.
      9       1.1        ws  *
     10       1.1        ws  * Redistribution and use in source and binary forms, with or without
     11       1.1        ws  * modification, are permitted provided that the following conditions
     12       1.1        ws  * are met:
     13       1.1        ws  * 1. Redistributions of source code must retain the above copyright
     14       1.1        ws  *    notice, this list of conditions and the following disclaimer.
     15       1.1        ws  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.1        ws  *    notice, this list of conditions and the following disclaimer in the
     17       1.1        ws  *    documentation and/or other materials provided with the distribution.
     18       1.1        ws  * 3. All advertising materials mentioning features or use of this software
     19       1.1        ws  *    must display the following acknowledgement:
     20       1.1        ws  *	This product includes software developed by the University of
     21       1.1        ws  *	California, Berkeley and its contributors.
     22       1.1        ws  * 4. Neither the name of the University nor the names of its contributors
     23       1.1        ws  *    may be used to endorse or promote products derived from this software
     24       1.1        ws  *    without specific prior written permission.
     25       1.1        ws  *
     26       1.1        ws  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     27       1.1        ws  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     28       1.1        ws  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     29       1.1        ws  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     30       1.1        ws  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     31       1.1        ws  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     32       1.1        ws  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     33       1.1        ws  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     34       1.1        ws  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     35       1.1        ws  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     36       1.1        ws  * SUCH DAMAGE.
     37       1.1        ws  *
     38      1.12      fvdl  *	@(#)ufs_lockf.c	8.4 (Berkeley) 10/26/94
     39       1.1        ws  */
     40  1.17.8.1   thorpej 
     41  1.17.8.1   thorpej #include <sys/cdefs.h>
     42  1.17.8.1   thorpej __KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.17.8.1 2001/11/12 21:19:01 thorpej Exp $");
     43       1.1        ws 
     44       1.1        ws #include <sys/param.h>
     45       1.1        ws #include <sys/systm.h>
     46       1.1        ws #include <sys/kernel.h>
     47       1.1        ws #include <sys/file.h>
     48       1.1        ws #include <sys/proc.h>
     49       1.1        ws #include <sys/vnode.h>
     50       1.1        ws #include <sys/malloc.h>
     51       1.1        ws #include <sys/fcntl.h>
     52       1.1        ws #include <sys/lockf.h>
     53       1.1        ws 
     54       1.1        ws /*
     55       1.6   mycroft  * This variable controls the maximum number of processes that will
     56       1.6   mycroft  * be checked in doing deadlock detection.
     57       1.6   mycroft  */
     58       1.6   mycroft int maxlockdepth = MAXDEPTH;
     59       1.6   mycroft 
     60       1.6   mycroft #ifdef LOCKF_DEBUG
     61       1.6   mycroft int	lockf_debug = 0;
     62       1.6   mycroft #endif
     63       1.6   mycroft 
     64       1.6   mycroft #define NOLOCKF (struct lockf *)0
     65       1.6   mycroft #define SELF	0x1
     66       1.6   mycroft #define OTHERS	0x2
     67       1.6   mycroft 
     68       1.6   mycroft /*
     69      1.16  sommerfe  * XXX TODO
     70      1.16  sommerfe  * Misc cleanups: "caddr_t id" should be visible in the API as a
     71      1.16  sommerfe  * "struct proc *".
     72      1.16  sommerfe  * (This requires rototilling all VFS's which support advisory locking).
     73      1.16  sommerfe  *
     74      1.16  sommerfe  * Use pools for lock allocation.
     75      1.16  sommerfe  */
     76      1.16  sommerfe 
     77      1.16  sommerfe /*
     78      1.16  sommerfe  * XXXSMP TODO: Using either (a) a global lock, or (b) the vnode's
     79      1.16  sommerfe  * interlock should be sufficient; (b) requires a change to the API
     80      1.16  sommerfe  * because the vnode isn't visible here.
     81      1.16  sommerfe  *
     82      1.16  sommerfe  * If there's a lot of lock contention on a single vnode, locking
     83      1.16  sommerfe  * schemes which allow for more paralleism would be needed.  Given how
     84      1.16  sommerfe  * infrequently byte-range locks are actually used in typical BSD
     85      1.16  sommerfe  * code, a more complex approach probably isn't worth it.
     86      1.16  sommerfe  */
     87      1.16  sommerfe 
     88      1.16  sommerfe /*
     89       1.4   mycroft  * Do an advisory lock operation.
     90       1.1        ws  */
     91       1.4   mycroft int
     92      1.17  jdolecek lf_advlock(ap, head, size)
     93      1.17  jdolecek 	struct vop_advlock_args *ap;
     94       1.1        ws 	struct lockf **head;
     95       1.3       cgd 	off_t size;
     96       1.1        ws {
     97      1.17  jdolecek 	struct flock *fl = ap->a_fl;
     98      1.15  augustss 	struct lockf *lock;
     99       1.1        ws 	off_t start, end;
    100       1.1        ws 	int error;
    101       1.1        ws 
    102       1.1        ws 	/*
    103       1.1        ws 	 * Convert the flock structure into a start and end.
    104       1.1        ws 	 */
    105       1.1        ws 	switch (fl->l_whence) {
    106       1.1        ws 	case SEEK_SET:
    107       1.1        ws 	case SEEK_CUR:
    108       1.1        ws 		/*
    109       1.1        ws 		 * Caller is responsible for adding any necessary offset
    110       1.1        ws 		 * when SEEK_CUR is used.
    111       1.1        ws 		 */
    112       1.1        ws 		start = fl->l_start;
    113       1.1        ws 		break;
    114       1.1        ws 
    115       1.1        ws 	case SEEK_END:
    116       1.1        ws 		start = size + fl->l_start;
    117       1.1        ws 		break;
    118       1.1        ws 
    119       1.1        ws 	default:
    120       1.1        ws 		return (EINVAL);
    121       1.1        ws 	}
    122       1.1        ws 	if (start < 0)
    123       1.1        ws 		return (EINVAL);
    124      1.10    kleink 
    125      1.10    kleink 	/*
    126      1.10    kleink 	 * Avoid the common case of unlocking when inode has no locks.
    127      1.10    kleink 	 */
    128      1.10    kleink 	if (*head == (struct lockf *)0) {
    129      1.17  jdolecek 		if (ap->a_op != F_SETLK) {
    130      1.10    kleink 			fl->l_type = F_UNLCK;
    131      1.10    kleink 			return (0);
    132      1.10    kleink 		}
    133      1.10    kleink 	}
    134      1.10    kleink 
    135       1.1        ws 	if (fl->l_len == 0)
    136       1.1        ws 		end = -1;
    137       1.1        ws 	else
    138       1.1        ws 		end = start + fl->l_len - 1;
    139       1.1        ws 	/*
    140       1.4   mycroft 	 * Create the lockf structure.
    141       1.1        ws 	 */
    142      1.13     perry 	MALLOC(lock, struct lockf *, sizeof(*lock), M_LOCKF, M_WAITOK);
    143       1.1        ws 	lock->lf_start = start;
    144       1.1        ws 	lock->lf_end = end;
    145      1.17  jdolecek 	lock->lf_id = ap->a_id;
    146       1.1        ws 	lock->lf_head = head;
    147       1.1        ws 	lock->lf_type = fl->l_type;
    148       1.1        ws 	lock->lf_next = (struct lockf *)0;
    149      1.12      fvdl 	TAILQ_INIT(&lock->lf_blkhd);
    150      1.17  jdolecek 	lock->lf_flags = ap->a_flags;
    151       1.1        ws 	/*
    152       1.1        ws 	 * Do the requested operation.
    153       1.1        ws 	 */
    154      1.17  jdolecek 	switch (ap->a_op) {
    155       1.4   mycroft 
    156       1.1        ws 	case F_SETLK:
    157       1.1        ws 		return (lf_setlock(lock));
    158       1.1        ws 
    159       1.1        ws 	case F_UNLCK:
    160       1.1        ws 		error = lf_clearlock(lock);
    161       1.1        ws 		FREE(lock, M_LOCKF);
    162       1.1        ws 		return (error);
    163       1.1        ws 
    164       1.1        ws 	case F_GETLK:
    165       1.1        ws 		error = lf_getlock(lock, fl);
    166       1.1        ws 		FREE(lock, M_LOCKF);
    167       1.1        ws 		return (error);
    168       1.4   mycroft 
    169       1.1        ws 	default:
    170       1.4   mycroft 		FREE(lock, M_LOCKF);
    171       1.1        ws 		return (EINVAL);
    172       1.1        ws 	}
    173       1.1        ws 	/* NOTREACHED */
    174       1.1        ws }
    175       1.1        ws 
    176       1.1        ws /*
    177       1.1        ws  * Set a byte-range lock.
    178       1.1        ws  */
    179       1.4   mycroft int
    180       1.1        ws lf_setlock(lock)
    181      1.15  augustss 	struct lockf *lock;
    182       1.1        ws {
    183      1.15  augustss 	struct lockf *block;
    184       1.1        ws 	struct lockf **head = lock->lf_head;
    185       1.1        ws 	struct lockf **prev, *overlap, *ltmp;
    186       1.1        ws 	static char lockstr[] = "lockf";
    187       1.1        ws 	int ovcase, priority, needtolink, error;
    188       1.1        ws 
    189       1.1        ws #ifdef LOCKF_DEBUG
    190       1.1        ws 	if (lockf_debug & 1)
    191       1.1        ws 		lf_print("lf_setlock", lock);
    192       1.1        ws #endif /* LOCKF_DEBUG */
    193       1.1        ws 
    194       1.1        ws 	/*
    195       1.1        ws 	 * Set the priority
    196       1.1        ws 	 */
    197       1.1        ws 	priority = PLOCK;
    198       1.1        ws 	if (lock->lf_type == F_WRLCK)
    199       1.1        ws 		priority += 4;
    200       1.1        ws 	priority |= PCATCH;
    201       1.1        ws 	/*
    202       1.1        ws 	 * Scan lock list for this file looking for locks that would block us.
    203       1.1        ws 	 */
    204       1.7  christos 	while ((block = lf_getblock(lock)) != NULL) {
    205       1.1        ws 		/*
    206       1.1        ws 		 * Free the structure and return if nonblocking.
    207       1.1        ws 		 */
    208       1.1        ws 		if ((lock->lf_flags & F_WAIT) == 0) {
    209       1.1        ws 			FREE(lock, M_LOCKF);
    210       1.1        ws 			return (EAGAIN);
    211       1.1        ws 		}
    212       1.1        ws 		/*
    213       1.1        ws 		 * We are blocked. Since flock style locks cover
    214       1.1        ws 		 * the whole file, there is no chance for deadlock.
    215       1.1        ws 		 * For byte-range locks we must check for deadlock.
    216       1.1        ws 		 *
    217       1.1        ws 		 * Deadlock detection is done by looking through the
    218       1.1        ws 		 * wait channels to see if there are any cycles that
    219       1.1        ws 		 * involve us. MAXDEPTH is set just to make sure we
    220      1.16  sommerfe 		 * do not go off into neverneverland.
    221       1.1        ws 		 */
    222       1.1        ws 		if ((lock->lf_flags & F_POSIX) &&
    223       1.1        ws 		    (block->lf_flags & F_POSIX)) {
    224      1.15  augustss 			struct proc *wproc;
    225      1.15  augustss 			struct lockf *waitblock;
    226       1.1        ws 			int i = 0;
    227       1.1        ws 
    228       1.1        ws 			/* The block is waiting on something */
    229       1.1        ws 			wproc = (struct proc *)block->lf_id;
    230       1.1        ws 			while (wproc->p_wchan &&
    231       1.1        ws 			       (wproc->p_wmesg == lockstr) &&
    232       1.1        ws 			       (i++ < maxlockdepth)) {
    233       1.1        ws 				waitblock = (struct lockf *)wproc->p_wchan;
    234       1.1        ws 				/* Get the owner of the blocking lock */
    235       1.1        ws 				waitblock = waitblock->lf_next;
    236       1.1        ws 				if ((waitblock->lf_flags & F_POSIX) == 0)
    237       1.1        ws 					break;
    238       1.1        ws 				wproc = (struct proc *)waitblock->lf_id;
    239       1.1        ws 				if (wproc == (struct proc *)lock->lf_id) {
    240       1.1        ws 					free(lock, M_LOCKF);
    241       1.1        ws 					return (EDEADLK);
    242       1.1        ws 				}
    243       1.1        ws 			}
    244      1.16  sommerfe 			/*
    245      1.16  sommerfe 			 * If we're still following a dependancy chain
    246      1.16  sommerfe 			 * after maxlockdepth iterations, assume we're in
    247      1.16  sommerfe 			 * a cycle to be safe.
    248      1.16  sommerfe 			 */
    249      1.16  sommerfe 			if (i >= maxlockdepth) {
    250      1.16  sommerfe 				free(lock, M_LOCKF);
    251      1.16  sommerfe 				return (EDEADLK);
    252      1.16  sommerfe 			}
    253       1.1        ws 		}
    254       1.1        ws 		/*
    255       1.1        ws 		 * For flock type locks, we must first remove
    256       1.1        ws 		 * any shared locks that we hold before we sleep
    257       1.1        ws 		 * waiting for an exclusive lock.
    258       1.1        ws 		 */
    259       1.1        ws 		if ((lock->lf_flags & F_FLOCK) &&
    260       1.1        ws 		    lock->lf_type == F_WRLCK) {
    261       1.1        ws 			lock->lf_type = F_UNLCK;
    262       1.1        ws 			(void) lf_clearlock(lock);
    263       1.1        ws 			lock->lf_type = F_WRLCK;
    264       1.1        ws 		}
    265       1.1        ws 		/*
    266       1.1        ws 		 * Add our lock to the blocked list and sleep until we're free.
    267       1.1        ws 		 * Remember who blocked us (for deadlock detection).
    268       1.1        ws 		 */
    269       1.1        ws 		lock->lf_next = block;
    270      1.12      fvdl 		TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
    271       1.1        ws #ifdef LOCKF_DEBUG
    272       1.1        ws 		if (lockf_debug & 1) {
    273       1.1        ws 			lf_print("lf_setlock: blocking on", block);
    274       1.1        ws 			lf_printlist("lf_setlock", block);
    275       1.1        ws 		}
    276       1.1        ws #endif /* LOCKF_DEBUG */
    277       1.7  christos 		error = tsleep((caddr_t)lock, priority, lockstr, 0);
    278      1.16  sommerfe 
    279      1.16  sommerfe 		/*
    280      1.16  sommerfe 		 * We may have been awakened by a signal (in
    281      1.16  sommerfe 		 * which case we must remove ourselves from the
    282      1.16  sommerfe 		 * blocked list) and/or by another process
    283      1.16  sommerfe 		 * releasing a lock (in which case we have already
    284      1.16  sommerfe 		 * been removed from the blocked list and our
    285      1.16  sommerfe 		 * lf_next field set to NOLOCKF).
    286      1.16  sommerfe 		 */
    287      1.16  sommerfe 		if (lock->lf_next != NOLOCKF) {
    288      1.16  sommerfe 			TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
    289      1.16  sommerfe 			lock->lf_next = NOLOCKF;
    290      1.16  sommerfe 		}
    291       1.7  christos 		if (error) {
    292       1.4   mycroft 			free(lock, M_LOCKF);
    293       1.4   mycroft 			return (error);
    294       1.1        ws 		}
    295       1.1        ws 	}
    296       1.1        ws 	/*
    297       1.1        ws 	 * No blocks!!  Add the lock.  Note that we will
    298       1.1        ws 	 * downgrade or upgrade any overlapping locks this
    299       1.1        ws 	 * process already owns.
    300       1.1        ws 	 *
    301       1.1        ws 	 * Skip over locks owned by other processes.
    302       1.1        ws 	 * Handle any locks that overlap and are owned by ourselves.
    303       1.1        ws 	 */
    304       1.1        ws 	prev = head;
    305       1.1        ws 	block = *head;
    306       1.1        ws 	needtolink = 1;
    307       1.1        ws 	for (;;) {
    308       1.7  christos 		ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
    309       1.7  christos 		if (ovcase)
    310       1.1        ws 			block = overlap->lf_next;
    311       1.1        ws 		/*
    312       1.1        ws 		 * Six cases:
    313       1.1        ws 		 *	0) no overlap
    314       1.1        ws 		 *	1) overlap == lock
    315       1.1        ws 		 *	2) overlap contains lock
    316       1.1        ws 		 *	3) lock contains overlap
    317       1.1        ws 		 *	4) overlap starts before lock
    318       1.1        ws 		 *	5) overlap ends after lock
    319       1.1        ws 		 */
    320       1.1        ws 		switch (ovcase) {
    321       1.1        ws 		case 0: /* no overlap */
    322       1.1        ws 			if (needtolink) {
    323       1.1        ws 				*prev = lock;
    324       1.1        ws 				lock->lf_next = overlap;
    325       1.1        ws 			}
    326       1.1        ws 			break;
    327       1.1        ws 
    328       1.1        ws 		case 1: /* overlap == lock */
    329       1.1        ws 			/*
    330       1.1        ws 			 * If downgrading lock, others may be
    331       1.1        ws 			 * able to acquire it.
    332       1.1        ws 			 */
    333       1.1        ws 			if (lock->lf_type == F_RDLCK &&
    334       1.1        ws 			    overlap->lf_type == F_WRLCK)
    335       1.1        ws 				lf_wakelock(overlap);
    336       1.1        ws 			overlap->lf_type = lock->lf_type;
    337       1.1        ws 			FREE(lock, M_LOCKF);
    338       1.1        ws 			lock = overlap; /* for debug output below */
    339       1.1        ws 			break;
    340       1.1        ws 
    341       1.1        ws 		case 2: /* overlap contains lock */
    342       1.1        ws 			/*
    343       1.1        ws 			 * Check for common starting point and different types.
    344       1.1        ws 			 */
    345       1.1        ws 			if (overlap->lf_type == lock->lf_type) {
    346       1.1        ws 				free(lock, M_LOCKF);
    347       1.1        ws 				lock = overlap; /* for debug output below */
    348       1.1        ws 				break;
    349       1.1        ws 			}
    350       1.1        ws 			if (overlap->lf_start == lock->lf_start) {
    351       1.1        ws 				*prev = lock;
    352       1.1        ws 				lock->lf_next = overlap;
    353       1.1        ws 				overlap->lf_start = lock->lf_end + 1;
    354       1.1        ws 			} else
    355       1.1        ws 				lf_split(overlap, lock);
    356       1.1        ws 			lf_wakelock(overlap);
    357       1.1        ws 			break;
    358       1.1        ws 
    359       1.1        ws 		case 3: /* lock contains overlap */
    360       1.1        ws 			/*
    361       1.1        ws 			 * If downgrading lock, others may be able to
    362       1.1        ws 			 * acquire it, otherwise take the list.
    363       1.1        ws 			 */
    364       1.1        ws 			if (lock->lf_type == F_RDLCK &&
    365       1.1        ws 			    overlap->lf_type == F_WRLCK) {
    366       1.1        ws 				lf_wakelock(overlap);
    367       1.1        ws 			} else {
    368      1.12      fvdl 				while ((ltmp = overlap->lf_blkhd.tqh_first)) {
    369      1.16  sommerfe 					KASSERT(ltmp->lf_next == overlap);
    370      1.12      fvdl 					TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
    371      1.12      fvdl 					    lf_block);
    372      1.16  sommerfe 					ltmp->lf_next = lock;
    373      1.12      fvdl 					TAILQ_INSERT_TAIL(&lock->lf_blkhd,
    374      1.12      fvdl 					    ltmp, lf_block);
    375      1.12      fvdl 				}
    376       1.1        ws 			}
    377       1.1        ws 			/*
    378       1.1        ws 			 * Add the new lock if necessary and delete the overlap.
    379       1.1        ws 			 */
    380       1.1        ws 			if (needtolink) {
    381       1.1        ws 				*prev = lock;
    382       1.1        ws 				lock->lf_next = overlap->lf_next;
    383       1.1        ws 				prev = &lock->lf_next;
    384       1.1        ws 				needtolink = 0;
    385       1.1        ws 			} else
    386       1.1        ws 				*prev = overlap->lf_next;
    387       1.1        ws 			free(overlap, M_LOCKF);
    388       1.1        ws 			continue;
    389       1.1        ws 
    390       1.1        ws 		case 4: /* overlap starts before lock */
    391       1.1        ws 			/*
    392       1.1        ws 			 * Add lock after overlap on the list.
    393       1.1        ws 			 */
    394       1.1        ws 			lock->lf_next = overlap->lf_next;
    395       1.1        ws 			overlap->lf_next = lock;
    396       1.1        ws 			overlap->lf_end = lock->lf_start - 1;
    397       1.1        ws 			prev = &lock->lf_next;
    398       1.1        ws 			lf_wakelock(overlap);
    399       1.1        ws 			needtolink = 0;
    400       1.1        ws 			continue;
    401       1.1        ws 
    402       1.1        ws 		case 5: /* overlap ends after lock */
    403       1.1        ws 			/*
    404       1.1        ws 			 * Add the new lock before overlap.
    405       1.1        ws 			 */
    406       1.1        ws 			if (needtolink) {
    407       1.1        ws 				*prev = lock;
    408       1.1        ws 				lock->lf_next = overlap;
    409       1.1        ws 			}
    410       1.1        ws 			overlap->lf_start = lock->lf_end + 1;
    411       1.1        ws 			lf_wakelock(overlap);
    412       1.1        ws 			break;
    413       1.1        ws 		}
    414       1.1        ws 		break;
    415       1.1        ws 	}
    416       1.1        ws #ifdef LOCKF_DEBUG
    417       1.1        ws 	if (lockf_debug & 1) {
    418       1.1        ws 		lf_print("lf_setlock: got the lock", lock);
    419       1.1        ws 		lf_printlist("lf_setlock", lock);
    420       1.1        ws 	}
    421       1.1        ws #endif /* LOCKF_DEBUG */
    422       1.1        ws 	return (0);
    423       1.1        ws }
    424       1.1        ws 
    425       1.1        ws /*
    426       1.1        ws  * Remove a byte-range lock on an inode.
    427       1.1        ws  *
    428       1.1        ws  * Generally, find the lock (or an overlap to that lock)
    429       1.1        ws  * and remove it (or shrink it), then wakeup anyone we can.
    430       1.1        ws  */
    431       1.4   mycroft int
    432       1.1        ws lf_clearlock(unlock)
    433      1.15  augustss 	struct lockf *unlock;
    434       1.1        ws {
    435       1.1        ws 	struct lockf **head = unlock->lf_head;
    436      1.15  augustss 	struct lockf *lf = *head;
    437       1.1        ws 	struct lockf *overlap, **prev;
    438       1.1        ws 	int ovcase;
    439       1.1        ws 
    440       1.1        ws 	if (lf == NOLOCKF)
    441       1.1        ws 		return (0);
    442       1.1        ws #ifdef LOCKF_DEBUG
    443       1.1        ws 	if (unlock->lf_type != F_UNLCK)
    444       1.1        ws 		panic("lf_clearlock: bad type");
    445       1.1        ws 	if (lockf_debug & 1)
    446       1.1        ws 		lf_print("lf_clearlock", unlock);
    447       1.1        ws #endif /* LOCKF_DEBUG */
    448       1.1        ws 	prev = head;
    449       1.7  christos 	while ((ovcase = lf_findoverlap(lf, unlock, SELF,
    450       1.7  christos 					&prev, &overlap)) != 0) {
    451       1.1        ws 		/*
    452       1.1        ws 		 * Wakeup the list of locks to be retried.
    453       1.1        ws 		 */
    454       1.1        ws 		lf_wakelock(overlap);
    455       1.1        ws 
    456       1.1        ws 		switch (ovcase) {
    457       1.1        ws 
    458       1.1        ws 		case 1: /* overlap == lock */
    459       1.1        ws 			*prev = overlap->lf_next;
    460       1.1        ws 			FREE(overlap, M_LOCKF);
    461       1.1        ws 			break;
    462       1.1        ws 
    463       1.1        ws 		case 2: /* overlap contains lock: split it */
    464       1.1        ws 			if (overlap->lf_start == unlock->lf_start) {
    465       1.1        ws 				overlap->lf_start = unlock->lf_end + 1;
    466       1.1        ws 				break;
    467       1.1        ws 			}
    468       1.1        ws 			lf_split(overlap, unlock);
    469       1.1        ws 			overlap->lf_next = unlock->lf_next;
    470       1.1        ws 			break;
    471       1.1        ws 
    472       1.1        ws 		case 3: /* lock contains overlap */
    473       1.1        ws 			*prev = overlap->lf_next;
    474       1.1        ws 			lf = overlap->lf_next;
    475       1.1        ws 			free(overlap, M_LOCKF);
    476       1.1        ws 			continue;
    477       1.1        ws 
    478       1.1        ws 		case 4: /* overlap starts before lock */
    479       1.1        ws 			overlap->lf_end = unlock->lf_start - 1;
    480       1.1        ws 			prev = &overlap->lf_next;
    481       1.1        ws 			lf = overlap->lf_next;
    482       1.1        ws 			continue;
    483       1.1        ws 
    484       1.1        ws 		case 5: /* overlap ends after lock */
    485       1.1        ws 			overlap->lf_start = unlock->lf_end + 1;
    486       1.1        ws 			break;
    487       1.1        ws 		}
    488       1.1        ws 		break;
    489       1.1        ws 	}
    490       1.1        ws #ifdef LOCKF_DEBUG
    491       1.1        ws 	if (lockf_debug & 1)
    492       1.1        ws 		lf_printlist("lf_clearlock", unlock);
    493       1.1        ws #endif /* LOCKF_DEBUG */
    494       1.1        ws 	return (0);
    495       1.1        ws }
    496       1.1        ws 
    497       1.1        ws /*
    498       1.1        ws  * Check whether there is a blocking lock,
    499       1.1        ws  * and if so return its process identifier.
    500       1.1        ws  */
    501       1.4   mycroft int
    502       1.1        ws lf_getlock(lock, fl)
    503      1.15  augustss 	struct lockf *lock;
    504      1.15  augustss 	struct flock *fl;
    505       1.1        ws {
    506      1.15  augustss 	struct lockf *block;
    507       1.1        ws 
    508       1.1        ws #ifdef LOCKF_DEBUG
    509       1.1        ws 	if (lockf_debug & 1)
    510       1.1        ws 		lf_print("lf_getlock", lock);
    511       1.1        ws #endif /* LOCKF_DEBUG */
    512       1.1        ws 
    513       1.7  christos 	if ((block = lf_getblock(lock)) != NULL) {
    514       1.1        ws 		fl->l_type = block->lf_type;
    515       1.1        ws 		fl->l_whence = SEEK_SET;
    516       1.1        ws 		fl->l_start = block->lf_start;
    517       1.1        ws 		if (block->lf_end == -1)
    518       1.1        ws 			fl->l_len = 0;
    519       1.1        ws 		else
    520       1.1        ws 			fl->l_len = block->lf_end - block->lf_start + 1;
    521       1.1        ws 		if (block->lf_flags & F_POSIX)
    522       1.1        ws 			fl->l_pid = ((struct proc *)(block->lf_id))->p_pid;
    523       1.1        ws 		else
    524       1.1        ws 			fl->l_pid = -1;
    525       1.1        ws 	} else {
    526       1.1        ws 		fl->l_type = F_UNLCK;
    527       1.1        ws 	}
    528       1.1        ws 	return (0);
    529       1.1        ws }
    530       1.1        ws 
    531       1.1        ws /*
    532       1.1        ws  * Walk the list of locks for an inode and
    533       1.1        ws  * return the first blocking lock.
    534       1.1        ws  */
    535       1.1        ws struct lockf *
    536       1.1        ws lf_getblock(lock)
    537      1.15  augustss 	struct lockf *lock;
    538       1.1        ws {
    539       1.1        ws 	struct lockf **prev, *overlap, *lf = *(lock->lf_head);
    540       1.1        ws 	int ovcase;
    541       1.1        ws 
    542       1.1        ws 	prev = lock->lf_head;
    543       1.7  christos 	while ((ovcase = lf_findoverlap(lf, lock, OTHERS,
    544       1.7  christos 					&prev, &overlap)) != 0) {
    545       1.1        ws 		/*
    546       1.1        ws 		 * We've found an overlap, see if it blocks us
    547       1.1        ws 		 */
    548       1.1        ws 		if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
    549       1.1        ws 			return (overlap);
    550       1.1        ws 		/*
    551       1.1        ws 		 * Nope, point to the next one on the list and
    552       1.1        ws 		 * see if it blocks us
    553       1.1        ws 		 */
    554       1.1        ws 		lf = overlap->lf_next;
    555       1.1        ws 	}
    556       1.1        ws 	return (NOLOCKF);
    557       1.1        ws }
    558       1.1        ws 
    559       1.1        ws /*
    560       1.1        ws  * Walk the list of locks for an inode to
    561       1.1        ws  * find an overlapping lock (if any).
    562       1.1        ws  *
    563       1.1        ws  * NOTE: this returns only the FIRST overlapping lock.  There
    564       1.1        ws  *	 may be more than one.
    565       1.1        ws  */
    566       1.4   mycroft int
    567       1.1        ws lf_findoverlap(lf, lock, type, prev, overlap)
    568      1.15  augustss 	struct lockf *lf;
    569       1.1        ws 	struct lockf *lock;
    570       1.1        ws 	int type;
    571       1.1        ws 	struct lockf ***prev;
    572       1.1        ws 	struct lockf **overlap;
    573       1.1        ws {
    574       1.1        ws 	off_t start, end;
    575       1.1        ws 
    576       1.1        ws 	*overlap = lf;
    577       1.1        ws 	if (lf == NOLOCKF)
    578       1.1        ws 		return (0);
    579       1.1        ws #ifdef LOCKF_DEBUG
    580       1.1        ws 	if (lockf_debug & 2)
    581       1.1        ws 		lf_print("lf_findoverlap: looking for overlap in", lock);
    582       1.1        ws #endif /* LOCKF_DEBUG */
    583       1.1        ws 	start = lock->lf_start;
    584       1.1        ws 	end = lock->lf_end;
    585       1.1        ws 	while (lf != NOLOCKF) {
    586       1.1        ws 		if (((type & SELF) && lf->lf_id != lock->lf_id) ||
    587       1.1        ws 		    ((type & OTHERS) && lf->lf_id == lock->lf_id)) {
    588       1.1        ws 			*prev = &lf->lf_next;
    589       1.1        ws 			*overlap = lf = lf->lf_next;
    590       1.1        ws 			continue;
    591       1.1        ws 		}
    592       1.1        ws #ifdef LOCKF_DEBUG
    593       1.1        ws 		if (lockf_debug & 2)
    594       1.1        ws 			lf_print("\tchecking", lf);
    595       1.1        ws #endif /* LOCKF_DEBUG */
    596       1.1        ws 		/*
    597       1.1        ws 		 * OK, check for overlap
    598       1.1        ws 		 *
    599       1.1        ws 		 * Six cases:
    600       1.1        ws 		 *	0) no overlap
    601       1.1        ws 		 *	1) overlap == lock
    602       1.1        ws 		 *	2) overlap contains lock
    603       1.1        ws 		 *	3) lock contains overlap
    604       1.1        ws 		 *	4) overlap starts before lock
    605       1.1        ws 		 *	5) overlap ends after lock
    606       1.1        ws 		 */
    607       1.1        ws 		if ((lf->lf_end != -1 && start > lf->lf_end) ||
    608       1.1        ws 		    (end != -1 && lf->lf_start > end)) {
    609       1.1        ws 			/* Case 0 */
    610       1.1        ws #ifdef LOCKF_DEBUG
    611       1.1        ws 			if (lockf_debug & 2)
    612       1.9  christos 				printf("no overlap\n");
    613       1.1        ws #endif /* LOCKF_DEBUG */
    614       1.1        ws 			if ((type & SELF) && end != -1 && lf->lf_start > end)
    615       1.1        ws 				return (0);
    616       1.1        ws 			*prev = &lf->lf_next;
    617       1.1        ws 			*overlap = lf = lf->lf_next;
    618       1.1        ws 			continue;
    619       1.1        ws 		}
    620       1.1        ws 		if ((lf->lf_start == start) && (lf->lf_end == end)) {
    621       1.1        ws 			/* Case 1 */
    622       1.1        ws #ifdef LOCKF_DEBUG
    623       1.1        ws 			if (lockf_debug & 2)
    624       1.9  christos 				printf("overlap == lock\n");
    625       1.1        ws #endif /* LOCKF_DEBUG */
    626       1.1        ws 			return (1);
    627       1.1        ws 		}
    628       1.1        ws 		if ((lf->lf_start <= start) &&
    629       1.1        ws 		    (end != -1) &&
    630       1.1        ws 		    ((lf->lf_end >= end) || (lf->lf_end == -1))) {
    631       1.1        ws 			/* Case 2 */
    632       1.1        ws #ifdef LOCKF_DEBUG
    633       1.1        ws 			if (lockf_debug & 2)
    634       1.9  christos 				printf("overlap contains lock\n");
    635       1.1        ws #endif /* LOCKF_DEBUG */
    636       1.1        ws 			return (2);
    637       1.1        ws 		}
    638       1.1        ws 		if (start <= lf->lf_start &&
    639       1.4   mycroft 		           (end == -1 ||
    640       1.1        ws 			   (lf->lf_end != -1 && end >= lf->lf_end))) {
    641       1.1        ws 			/* Case 3 */
    642       1.1        ws #ifdef LOCKF_DEBUG
    643       1.1        ws 			if (lockf_debug & 2)
    644       1.9  christos 				printf("lock contains overlap\n");
    645       1.1        ws #endif /* LOCKF_DEBUG */
    646       1.1        ws 			return (3);
    647       1.1        ws 		}
    648       1.1        ws 		if ((lf->lf_start < start) &&
    649       1.1        ws 			((lf->lf_end >= start) || (lf->lf_end == -1))) {
    650       1.1        ws 			/* Case 4 */
    651       1.1        ws #ifdef LOCKF_DEBUG
    652       1.1        ws 			if (lockf_debug & 2)
    653       1.9  christos 				printf("overlap starts before lock\n");
    654       1.1        ws #endif /* LOCKF_DEBUG */
    655       1.1        ws 			return (4);
    656       1.1        ws 		}
    657       1.1        ws 		if ((lf->lf_start > start) &&
    658       1.1        ws 			(end != -1) &&
    659       1.1        ws 			((lf->lf_end > end) || (lf->lf_end == -1))) {
    660       1.1        ws 			/* Case 5 */
    661       1.1        ws #ifdef LOCKF_DEBUG
    662       1.1        ws 			if (lockf_debug & 2)
    663       1.9  christos 				printf("overlap ends after lock\n");
    664       1.1        ws #endif /* LOCKF_DEBUG */
    665       1.1        ws 			return (5);
    666       1.1        ws 		}
    667       1.1        ws 		panic("lf_findoverlap: default");
    668       1.1        ws 	}
    669       1.1        ws 	return (0);
    670       1.1        ws }
    671       1.1        ws 
    672       1.1        ws /*
    673       1.1        ws  * Split a lock and a contained region into
    674       1.1        ws  * two or three locks as necessary.
    675       1.1        ws  */
    676       1.2       cgd void
    677       1.1        ws lf_split(lock1, lock2)
    678      1.15  augustss 	struct lockf *lock1;
    679      1.15  augustss 	struct lockf *lock2;
    680       1.1        ws {
    681      1.15  augustss 	struct lockf *splitlock;
    682       1.1        ws 
    683       1.1        ws #ifdef LOCKF_DEBUG
    684       1.1        ws 	if (lockf_debug & 2) {
    685       1.1        ws 		lf_print("lf_split", lock1);
    686       1.1        ws 		lf_print("splitting from", lock2);
    687       1.1        ws 	}
    688       1.1        ws #endif /* LOCKF_DEBUG */
    689       1.1        ws 	/*
    690       1.1        ws 	 * Check to see if spliting into only two pieces.
    691       1.1        ws 	 */
    692       1.1        ws 	if (lock1->lf_start == lock2->lf_start) {
    693       1.1        ws 		lock1->lf_start = lock2->lf_end + 1;
    694       1.1        ws 		lock2->lf_next = lock1;
    695       1.1        ws 		return;
    696       1.1        ws 	}
    697       1.1        ws 	if (lock1->lf_end == lock2->lf_end) {
    698       1.1        ws 		lock1->lf_end = lock2->lf_start - 1;
    699       1.1        ws 		lock2->lf_next = lock1->lf_next;
    700       1.1        ws 		lock1->lf_next = lock2;
    701       1.1        ws 		return;
    702       1.1        ws 	}
    703       1.1        ws 	/*
    704       1.1        ws 	 * Make a new lock consisting of the last part of
    705       1.1        ws 	 * the encompassing lock
    706       1.1        ws 	 */
    707      1.13     perry 	MALLOC(splitlock, struct lockf *, sizeof(*splitlock), M_LOCKF, M_WAITOK);
    708      1.14     perry 	memcpy((caddr_t)splitlock, (caddr_t)lock1, sizeof(*splitlock));
    709       1.1        ws 	splitlock->lf_start = lock2->lf_end + 1;
    710      1.12      fvdl 	TAILQ_INIT(&splitlock->lf_blkhd);
    711       1.1        ws 	lock1->lf_end = lock2->lf_start - 1;
    712       1.1        ws 	/*
    713       1.1        ws 	 * OK, now link it in
    714       1.1        ws 	 */
    715       1.1        ws 	splitlock->lf_next = lock1->lf_next;
    716       1.1        ws 	lock2->lf_next = splitlock;
    717       1.1        ws 	lock1->lf_next = lock2;
    718       1.1        ws }
    719       1.1        ws 
    720       1.1        ws /*
    721       1.1        ws  * Wakeup a blocklist
    722       1.1        ws  */
    723       1.2       cgd void
    724       1.1        ws lf_wakelock(listhead)
    725       1.1        ws 	struct lockf *listhead;
    726       1.1        ws {
    727      1.15  augustss 	struct lockf *wakelock;
    728       1.1        ws 
    729      1.12      fvdl 	while ((wakelock = listhead->lf_blkhd.tqh_first)) {
    730      1.16  sommerfe 		KASSERT(wakelock->lf_next == listhead);
    731      1.12      fvdl 		TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
    732       1.1        ws 		wakelock->lf_next = NOLOCKF;
    733       1.1        ws #ifdef LOCKF_DEBUG
    734       1.1        ws 		if (lockf_debug & 2)
    735       1.1        ws 			lf_print("lf_wakelock: awakening", wakelock);
    736      1.12      fvdl #endif
    737       1.1        ws 		wakeup((caddr_t)wakelock);
    738       1.1        ws 	}
    739       1.1        ws }
    740       1.1        ws 
    741       1.1        ws #ifdef LOCKF_DEBUG
    742       1.1        ws /*
    743       1.1        ws  * Print out a lock.
    744       1.1        ws  */
    745       1.4   mycroft void
    746       1.1        ws lf_print(tag, lock)
    747       1.1        ws 	char *tag;
    748      1.15  augustss 	struct lockf *lock;
    749       1.1        ws {
    750       1.1        ws 
    751       1.9  christos 	printf("%s: lock %p for ", tag, lock);
    752       1.1        ws 	if (lock->lf_flags & F_POSIX)
    753       1.9  christos 		printf("proc %d", ((struct proc *)(lock->lf_id))->p_pid);
    754       1.1        ws 	else
    755      1.11       jtk 		printf("id 0x%p", lock->lf_id);
    756      1.11       jtk 	printf(" %s, start %qx, end %qx",
    757       1.1        ws 		lock->lf_type == F_RDLCK ? "shared" :
    758       1.1        ws 		lock->lf_type == F_WRLCK ? "exclusive" :
    759       1.1        ws 		lock->lf_type == F_UNLCK ? "unlock" :
    760       1.1        ws 		"unknown", lock->lf_start, lock->lf_end);
    761      1.12      fvdl 	if (lock->lf_blkhd.tqh_first)
    762      1.12      fvdl 		printf(" block %p\n", lock->lf_blkhd.tqh_first);
    763       1.1        ws 	else
    764       1.9  christos 		printf("\n");
    765       1.1        ws }
    766       1.1        ws 
    767       1.4   mycroft void
    768       1.1        ws lf_printlist(tag, lock)
    769       1.1        ws 	char *tag;
    770       1.1        ws 	struct lockf *lock;
    771       1.1        ws {
    772      1.15  augustss 	struct lockf *lf, *blk;
    773       1.1        ws 
    774      1.11       jtk 	printf("%s: Lock list:\n", tag);
    775      1.12      fvdl 	for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
    776       1.9  christos 		printf("\tlock %p for ", lf);
    777       1.1        ws 		if (lf->lf_flags & F_POSIX)
    778       1.9  christos 			printf("proc %d", ((struct proc *)(lf->lf_id))->p_pid);
    779       1.1        ws 		else
    780      1.11       jtk 			printf("id 0x%p", lf->lf_id);
    781      1.11       jtk 		printf(", %s, start %qx, end %qx",
    782       1.1        ws 			lf->lf_type == F_RDLCK ? "shared" :
    783       1.1        ws 			lf->lf_type == F_WRLCK ? "exclusive" :
    784       1.1        ws 			lf->lf_type == F_UNLCK ? "unlock" :
    785       1.1        ws 			"unknown", lf->lf_start, lf->lf_end);
    786      1.12      fvdl 		for (blk = lf->lf_blkhd.tqh_first; blk;
    787      1.12      fvdl 		     blk = blk->lf_block.tqe_next) {
    788      1.12      fvdl 			if (blk->lf_flags & F_POSIX)
    789      1.12      fvdl 				printf("proc %d",
    790      1.12      fvdl 				    ((struct proc *)(blk->lf_id))->p_pid);
    791      1.12      fvdl 			else
    792      1.12      fvdl 				printf("id 0x%p", blk->lf_id);
    793      1.12      fvdl 			printf(", %s, start %qx, end %qx",
    794      1.12      fvdl 				blk->lf_type == F_RDLCK ? "shared" :
    795      1.12      fvdl 				blk->lf_type == F_WRLCK ? "exclusive" :
    796      1.12      fvdl 				blk->lf_type == F_UNLCK ? "unlock" :
    797      1.12      fvdl 				"unknown", blk->lf_start, blk->lf_end);
    798      1.12      fvdl 			if (blk->lf_blkhd.tqh_first)
    799      1.12      fvdl 				 panic("lf_printlist: bad list");
    800      1.12      fvdl 		}
    801      1.12      fvdl 		printf("\n");
    802       1.1        ws 	}
    803       1.1        ws }
    804       1.1        ws #endif /* LOCKF_DEBUG */
    805