vfs_lockf.c revision 1.18 1 1.18 lukem /* $NetBSD: vfs_lockf.c,v 1.18 2001/11/12 15:25:38 lukem Exp $ */
2 1.5 cgd
3 1.1 ws /*
4 1.4 mycroft * Copyright (c) 1982, 1986, 1989, 1993
5 1.4 mycroft * The Regents of the University of California. All rights reserved.
6 1.1 ws *
7 1.1 ws * This code is derived from software contributed to Berkeley by
8 1.1 ws * Scooter Morris at Genentech Inc.
9 1.1 ws *
10 1.1 ws * Redistribution and use in source and binary forms, with or without
11 1.1 ws * modification, are permitted provided that the following conditions
12 1.1 ws * are met:
13 1.1 ws * 1. Redistributions of source code must retain the above copyright
14 1.1 ws * notice, this list of conditions and the following disclaimer.
15 1.1 ws * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 ws * notice, this list of conditions and the following disclaimer in the
17 1.1 ws * documentation and/or other materials provided with the distribution.
18 1.1 ws * 3. All advertising materials mentioning features or use of this software
19 1.1 ws * must display the following acknowledgement:
20 1.1 ws * This product includes software developed by the University of
21 1.1 ws * California, Berkeley and its contributors.
22 1.1 ws * 4. Neither the name of the University nor the names of its contributors
23 1.1 ws * may be used to endorse or promote products derived from this software
24 1.1 ws * without specific prior written permission.
25 1.1 ws *
26 1.1 ws * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 1.1 ws * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 1.1 ws * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 1.1 ws * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 1.1 ws * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 1.1 ws * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 1.1 ws * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 1.1 ws * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 1.1 ws * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 1.1 ws * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 1.1 ws * SUCH DAMAGE.
37 1.1 ws *
38 1.12 fvdl * @(#)ufs_lockf.c 8.4 (Berkeley) 10/26/94
39 1.1 ws */
40 1.18 lukem
41 1.18 lukem #include <sys/cdefs.h>
42 1.18 lukem __KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.18 2001/11/12 15:25:38 lukem Exp $");
43 1.1 ws
44 1.1 ws #include <sys/param.h>
45 1.1 ws #include <sys/systm.h>
46 1.1 ws #include <sys/kernel.h>
47 1.1 ws #include <sys/file.h>
48 1.1 ws #include <sys/proc.h>
49 1.1 ws #include <sys/vnode.h>
50 1.1 ws #include <sys/malloc.h>
51 1.1 ws #include <sys/fcntl.h>
52 1.1 ws #include <sys/lockf.h>
53 1.1 ws
54 1.1 ws /*
55 1.6 mycroft * This variable controls the maximum number of processes that will
56 1.6 mycroft * be checked in doing deadlock detection.
57 1.6 mycroft */
58 1.6 mycroft int maxlockdepth = MAXDEPTH;
59 1.6 mycroft
60 1.6 mycroft #ifdef LOCKF_DEBUG
61 1.6 mycroft int lockf_debug = 0;
62 1.6 mycroft #endif
63 1.6 mycroft
64 1.6 mycroft #define NOLOCKF (struct lockf *)0
65 1.6 mycroft #define SELF 0x1
66 1.6 mycroft #define OTHERS 0x2
67 1.6 mycroft
68 1.6 mycroft /*
69 1.16 sommerfe * XXX TODO
70 1.16 sommerfe * Misc cleanups: "caddr_t id" should be visible in the API as a
71 1.16 sommerfe * "struct proc *".
72 1.16 sommerfe * (This requires rototilling all VFS's which support advisory locking).
73 1.16 sommerfe *
74 1.16 sommerfe * Use pools for lock allocation.
75 1.16 sommerfe */
76 1.16 sommerfe
77 1.16 sommerfe /*
78 1.16 sommerfe * XXXSMP TODO: Using either (a) a global lock, or (b) the vnode's
79 1.16 sommerfe * interlock should be sufficient; (b) requires a change to the API
80 1.16 sommerfe * because the vnode isn't visible here.
81 1.16 sommerfe *
82 1.16 sommerfe * If there's a lot of lock contention on a single vnode, locking
83 1.16 sommerfe * schemes which allow for more paralleism would be needed. Given how
84 1.16 sommerfe * infrequently byte-range locks are actually used in typical BSD
85 1.16 sommerfe * code, a more complex approach probably isn't worth it.
86 1.16 sommerfe */
87 1.16 sommerfe
88 1.16 sommerfe /*
89 1.4 mycroft * Do an advisory lock operation.
90 1.1 ws */
91 1.4 mycroft int
92 1.17 jdolecek lf_advlock(ap, head, size)
93 1.17 jdolecek struct vop_advlock_args *ap;
94 1.1 ws struct lockf **head;
95 1.3 cgd off_t size;
96 1.1 ws {
97 1.17 jdolecek struct flock *fl = ap->a_fl;
98 1.15 augustss struct lockf *lock;
99 1.1 ws off_t start, end;
100 1.1 ws int error;
101 1.1 ws
102 1.1 ws /*
103 1.1 ws * Convert the flock structure into a start and end.
104 1.1 ws */
105 1.1 ws switch (fl->l_whence) {
106 1.1 ws case SEEK_SET:
107 1.1 ws case SEEK_CUR:
108 1.1 ws /*
109 1.1 ws * Caller is responsible for adding any necessary offset
110 1.1 ws * when SEEK_CUR is used.
111 1.1 ws */
112 1.1 ws start = fl->l_start;
113 1.1 ws break;
114 1.1 ws
115 1.1 ws case SEEK_END:
116 1.1 ws start = size + fl->l_start;
117 1.1 ws break;
118 1.1 ws
119 1.1 ws default:
120 1.1 ws return (EINVAL);
121 1.1 ws }
122 1.1 ws if (start < 0)
123 1.1 ws return (EINVAL);
124 1.10 kleink
125 1.10 kleink /*
126 1.10 kleink * Avoid the common case of unlocking when inode has no locks.
127 1.10 kleink */
128 1.10 kleink if (*head == (struct lockf *)0) {
129 1.17 jdolecek if (ap->a_op != F_SETLK) {
130 1.10 kleink fl->l_type = F_UNLCK;
131 1.10 kleink return (0);
132 1.10 kleink }
133 1.10 kleink }
134 1.10 kleink
135 1.1 ws if (fl->l_len == 0)
136 1.1 ws end = -1;
137 1.1 ws else
138 1.1 ws end = start + fl->l_len - 1;
139 1.1 ws /*
140 1.4 mycroft * Create the lockf structure.
141 1.1 ws */
142 1.13 perry MALLOC(lock, struct lockf *, sizeof(*lock), M_LOCKF, M_WAITOK);
143 1.1 ws lock->lf_start = start;
144 1.1 ws lock->lf_end = end;
145 1.17 jdolecek lock->lf_id = ap->a_id;
146 1.1 ws lock->lf_head = head;
147 1.1 ws lock->lf_type = fl->l_type;
148 1.1 ws lock->lf_next = (struct lockf *)0;
149 1.12 fvdl TAILQ_INIT(&lock->lf_blkhd);
150 1.17 jdolecek lock->lf_flags = ap->a_flags;
151 1.1 ws /*
152 1.1 ws * Do the requested operation.
153 1.1 ws */
154 1.17 jdolecek switch (ap->a_op) {
155 1.4 mycroft
156 1.1 ws case F_SETLK:
157 1.1 ws return (lf_setlock(lock));
158 1.1 ws
159 1.1 ws case F_UNLCK:
160 1.1 ws error = lf_clearlock(lock);
161 1.1 ws FREE(lock, M_LOCKF);
162 1.1 ws return (error);
163 1.1 ws
164 1.1 ws case F_GETLK:
165 1.1 ws error = lf_getlock(lock, fl);
166 1.1 ws FREE(lock, M_LOCKF);
167 1.1 ws return (error);
168 1.4 mycroft
169 1.1 ws default:
170 1.4 mycroft FREE(lock, M_LOCKF);
171 1.1 ws return (EINVAL);
172 1.1 ws }
173 1.1 ws /* NOTREACHED */
174 1.1 ws }
175 1.1 ws
176 1.1 ws /*
177 1.1 ws * Set a byte-range lock.
178 1.1 ws */
179 1.4 mycroft int
180 1.1 ws lf_setlock(lock)
181 1.15 augustss struct lockf *lock;
182 1.1 ws {
183 1.15 augustss struct lockf *block;
184 1.1 ws struct lockf **head = lock->lf_head;
185 1.1 ws struct lockf **prev, *overlap, *ltmp;
186 1.1 ws static char lockstr[] = "lockf";
187 1.1 ws int ovcase, priority, needtolink, error;
188 1.1 ws
189 1.1 ws #ifdef LOCKF_DEBUG
190 1.1 ws if (lockf_debug & 1)
191 1.1 ws lf_print("lf_setlock", lock);
192 1.1 ws #endif /* LOCKF_DEBUG */
193 1.1 ws
194 1.1 ws /*
195 1.1 ws * Set the priority
196 1.1 ws */
197 1.1 ws priority = PLOCK;
198 1.1 ws if (lock->lf_type == F_WRLCK)
199 1.1 ws priority += 4;
200 1.1 ws priority |= PCATCH;
201 1.1 ws /*
202 1.1 ws * Scan lock list for this file looking for locks that would block us.
203 1.1 ws */
204 1.7 christos while ((block = lf_getblock(lock)) != NULL) {
205 1.1 ws /*
206 1.1 ws * Free the structure and return if nonblocking.
207 1.1 ws */
208 1.1 ws if ((lock->lf_flags & F_WAIT) == 0) {
209 1.1 ws FREE(lock, M_LOCKF);
210 1.1 ws return (EAGAIN);
211 1.1 ws }
212 1.1 ws /*
213 1.1 ws * We are blocked. Since flock style locks cover
214 1.1 ws * the whole file, there is no chance for deadlock.
215 1.1 ws * For byte-range locks we must check for deadlock.
216 1.1 ws *
217 1.1 ws * Deadlock detection is done by looking through the
218 1.1 ws * wait channels to see if there are any cycles that
219 1.1 ws * involve us. MAXDEPTH is set just to make sure we
220 1.16 sommerfe * do not go off into neverneverland.
221 1.1 ws */
222 1.1 ws if ((lock->lf_flags & F_POSIX) &&
223 1.1 ws (block->lf_flags & F_POSIX)) {
224 1.15 augustss struct proc *wproc;
225 1.15 augustss struct lockf *waitblock;
226 1.1 ws int i = 0;
227 1.1 ws
228 1.1 ws /* The block is waiting on something */
229 1.1 ws wproc = (struct proc *)block->lf_id;
230 1.1 ws while (wproc->p_wchan &&
231 1.1 ws (wproc->p_wmesg == lockstr) &&
232 1.1 ws (i++ < maxlockdepth)) {
233 1.1 ws waitblock = (struct lockf *)wproc->p_wchan;
234 1.1 ws /* Get the owner of the blocking lock */
235 1.1 ws waitblock = waitblock->lf_next;
236 1.1 ws if ((waitblock->lf_flags & F_POSIX) == 0)
237 1.1 ws break;
238 1.1 ws wproc = (struct proc *)waitblock->lf_id;
239 1.1 ws if (wproc == (struct proc *)lock->lf_id) {
240 1.1 ws free(lock, M_LOCKF);
241 1.1 ws return (EDEADLK);
242 1.1 ws }
243 1.1 ws }
244 1.16 sommerfe /*
245 1.16 sommerfe * If we're still following a dependancy chain
246 1.16 sommerfe * after maxlockdepth iterations, assume we're in
247 1.16 sommerfe * a cycle to be safe.
248 1.16 sommerfe */
249 1.16 sommerfe if (i >= maxlockdepth) {
250 1.16 sommerfe free(lock, M_LOCKF);
251 1.16 sommerfe return (EDEADLK);
252 1.16 sommerfe }
253 1.1 ws }
254 1.1 ws /*
255 1.1 ws * For flock type locks, we must first remove
256 1.1 ws * any shared locks that we hold before we sleep
257 1.1 ws * waiting for an exclusive lock.
258 1.1 ws */
259 1.1 ws if ((lock->lf_flags & F_FLOCK) &&
260 1.1 ws lock->lf_type == F_WRLCK) {
261 1.1 ws lock->lf_type = F_UNLCK;
262 1.1 ws (void) lf_clearlock(lock);
263 1.1 ws lock->lf_type = F_WRLCK;
264 1.1 ws }
265 1.1 ws /*
266 1.1 ws * Add our lock to the blocked list and sleep until we're free.
267 1.1 ws * Remember who blocked us (for deadlock detection).
268 1.1 ws */
269 1.1 ws lock->lf_next = block;
270 1.12 fvdl TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
271 1.1 ws #ifdef LOCKF_DEBUG
272 1.1 ws if (lockf_debug & 1) {
273 1.1 ws lf_print("lf_setlock: blocking on", block);
274 1.1 ws lf_printlist("lf_setlock", block);
275 1.1 ws }
276 1.1 ws #endif /* LOCKF_DEBUG */
277 1.7 christos error = tsleep((caddr_t)lock, priority, lockstr, 0);
278 1.16 sommerfe
279 1.16 sommerfe /*
280 1.16 sommerfe * We may have been awakened by a signal (in
281 1.16 sommerfe * which case we must remove ourselves from the
282 1.16 sommerfe * blocked list) and/or by another process
283 1.16 sommerfe * releasing a lock (in which case we have already
284 1.16 sommerfe * been removed from the blocked list and our
285 1.16 sommerfe * lf_next field set to NOLOCKF).
286 1.16 sommerfe */
287 1.16 sommerfe if (lock->lf_next != NOLOCKF) {
288 1.16 sommerfe TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
289 1.16 sommerfe lock->lf_next = NOLOCKF;
290 1.16 sommerfe }
291 1.7 christos if (error) {
292 1.4 mycroft free(lock, M_LOCKF);
293 1.4 mycroft return (error);
294 1.1 ws }
295 1.1 ws }
296 1.1 ws /*
297 1.1 ws * No blocks!! Add the lock. Note that we will
298 1.1 ws * downgrade or upgrade any overlapping locks this
299 1.1 ws * process already owns.
300 1.1 ws *
301 1.1 ws * Skip over locks owned by other processes.
302 1.1 ws * Handle any locks that overlap and are owned by ourselves.
303 1.1 ws */
304 1.1 ws prev = head;
305 1.1 ws block = *head;
306 1.1 ws needtolink = 1;
307 1.1 ws for (;;) {
308 1.7 christos ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
309 1.7 christos if (ovcase)
310 1.1 ws block = overlap->lf_next;
311 1.1 ws /*
312 1.1 ws * Six cases:
313 1.1 ws * 0) no overlap
314 1.1 ws * 1) overlap == lock
315 1.1 ws * 2) overlap contains lock
316 1.1 ws * 3) lock contains overlap
317 1.1 ws * 4) overlap starts before lock
318 1.1 ws * 5) overlap ends after lock
319 1.1 ws */
320 1.1 ws switch (ovcase) {
321 1.1 ws case 0: /* no overlap */
322 1.1 ws if (needtolink) {
323 1.1 ws *prev = lock;
324 1.1 ws lock->lf_next = overlap;
325 1.1 ws }
326 1.1 ws break;
327 1.1 ws
328 1.1 ws case 1: /* overlap == lock */
329 1.1 ws /*
330 1.1 ws * If downgrading lock, others may be
331 1.1 ws * able to acquire it.
332 1.1 ws */
333 1.1 ws if (lock->lf_type == F_RDLCK &&
334 1.1 ws overlap->lf_type == F_WRLCK)
335 1.1 ws lf_wakelock(overlap);
336 1.1 ws overlap->lf_type = lock->lf_type;
337 1.1 ws FREE(lock, M_LOCKF);
338 1.1 ws lock = overlap; /* for debug output below */
339 1.1 ws break;
340 1.1 ws
341 1.1 ws case 2: /* overlap contains lock */
342 1.1 ws /*
343 1.1 ws * Check for common starting point and different types.
344 1.1 ws */
345 1.1 ws if (overlap->lf_type == lock->lf_type) {
346 1.1 ws free(lock, M_LOCKF);
347 1.1 ws lock = overlap; /* for debug output below */
348 1.1 ws break;
349 1.1 ws }
350 1.1 ws if (overlap->lf_start == lock->lf_start) {
351 1.1 ws *prev = lock;
352 1.1 ws lock->lf_next = overlap;
353 1.1 ws overlap->lf_start = lock->lf_end + 1;
354 1.1 ws } else
355 1.1 ws lf_split(overlap, lock);
356 1.1 ws lf_wakelock(overlap);
357 1.1 ws break;
358 1.1 ws
359 1.1 ws case 3: /* lock contains overlap */
360 1.1 ws /*
361 1.1 ws * If downgrading lock, others may be able to
362 1.1 ws * acquire it, otherwise take the list.
363 1.1 ws */
364 1.1 ws if (lock->lf_type == F_RDLCK &&
365 1.1 ws overlap->lf_type == F_WRLCK) {
366 1.1 ws lf_wakelock(overlap);
367 1.1 ws } else {
368 1.12 fvdl while ((ltmp = overlap->lf_blkhd.tqh_first)) {
369 1.16 sommerfe KASSERT(ltmp->lf_next == overlap);
370 1.12 fvdl TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
371 1.12 fvdl lf_block);
372 1.16 sommerfe ltmp->lf_next = lock;
373 1.12 fvdl TAILQ_INSERT_TAIL(&lock->lf_blkhd,
374 1.12 fvdl ltmp, lf_block);
375 1.12 fvdl }
376 1.1 ws }
377 1.1 ws /*
378 1.1 ws * Add the new lock if necessary and delete the overlap.
379 1.1 ws */
380 1.1 ws if (needtolink) {
381 1.1 ws *prev = lock;
382 1.1 ws lock->lf_next = overlap->lf_next;
383 1.1 ws prev = &lock->lf_next;
384 1.1 ws needtolink = 0;
385 1.1 ws } else
386 1.1 ws *prev = overlap->lf_next;
387 1.1 ws free(overlap, M_LOCKF);
388 1.1 ws continue;
389 1.1 ws
390 1.1 ws case 4: /* overlap starts before lock */
391 1.1 ws /*
392 1.1 ws * Add lock after overlap on the list.
393 1.1 ws */
394 1.1 ws lock->lf_next = overlap->lf_next;
395 1.1 ws overlap->lf_next = lock;
396 1.1 ws overlap->lf_end = lock->lf_start - 1;
397 1.1 ws prev = &lock->lf_next;
398 1.1 ws lf_wakelock(overlap);
399 1.1 ws needtolink = 0;
400 1.1 ws continue;
401 1.1 ws
402 1.1 ws case 5: /* overlap ends after lock */
403 1.1 ws /*
404 1.1 ws * Add the new lock before overlap.
405 1.1 ws */
406 1.1 ws if (needtolink) {
407 1.1 ws *prev = lock;
408 1.1 ws lock->lf_next = overlap;
409 1.1 ws }
410 1.1 ws overlap->lf_start = lock->lf_end + 1;
411 1.1 ws lf_wakelock(overlap);
412 1.1 ws break;
413 1.1 ws }
414 1.1 ws break;
415 1.1 ws }
416 1.1 ws #ifdef LOCKF_DEBUG
417 1.1 ws if (lockf_debug & 1) {
418 1.1 ws lf_print("lf_setlock: got the lock", lock);
419 1.1 ws lf_printlist("lf_setlock", lock);
420 1.1 ws }
421 1.1 ws #endif /* LOCKF_DEBUG */
422 1.1 ws return (0);
423 1.1 ws }
424 1.1 ws
425 1.1 ws /*
426 1.1 ws * Remove a byte-range lock on an inode.
427 1.1 ws *
428 1.1 ws * Generally, find the lock (or an overlap to that lock)
429 1.1 ws * and remove it (or shrink it), then wakeup anyone we can.
430 1.1 ws */
431 1.4 mycroft int
432 1.1 ws lf_clearlock(unlock)
433 1.15 augustss struct lockf *unlock;
434 1.1 ws {
435 1.1 ws struct lockf **head = unlock->lf_head;
436 1.15 augustss struct lockf *lf = *head;
437 1.1 ws struct lockf *overlap, **prev;
438 1.1 ws int ovcase;
439 1.1 ws
440 1.1 ws if (lf == NOLOCKF)
441 1.1 ws return (0);
442 1.1 ws #ifdef LOCKF_DEBUG
443 1.1 ws if (unlock->lf_type != F_UNLCK)
444 1.1 ws panic("lf_clearlock: bad type");
445 1.1 ws if (lockf_debug & 1)
446 1.1 ws lf_print("lf_clearlock", unlock);
447 1.1 ws #endif /* LOCKF_DEBUG */
448 1.1 ws prev = head;
449 1.7 christos while ((ovcase = lf_findoverlap(lf, unlock, SELF,
450 1.7 christos &prev, &overlap)) != 0) {
451 1.1 ws /*
452 1.1 ws * Wakeup the list of locks to be retried.
453 1.1 ws */
454 1.1 ws lf_wakelock(overlap);
455 1.1 ws
456 1.1 ws switch (ovcase) {
457 1.1 ws
458 1.1 ws case 1: /* overlap == lock */
459 1.1 ws *prev = overlap->lf_next;
460 1.1 ws FREE(overlap, M_LOCKF);
461 1.1 ws break;
462 1.1 ws
463 1.1 ws case 2: /* overlap contains lock: split it */
464 1.1 ws if (overlap->lf_start == unlock->lf_start) {
465 1.1 ws overlap->lf_start = unlock->lf_end + 1;
466 1.1 ws break;
467 1.1 ws }
468 1.1 ws lf_split(overlap, unlock);
469 1.1 ws overlap->lf_next = unlock->lf_next;
470 1.1 ws break;
471 1.1 ws
472 1.1 ws case 3: /* lock contains overlap */
473 1.1 ws *prev = overlap->lf_next;
474 1.1 ws lf = overlap->lf_next;
475 1.1 ws free(overlap, M_LOCKF);
476 1.1 ws continue;
477 1.1 ws
478 1.1 ws case 4: /* overlap starts before lock */
479 1.1 ws overlap->lf_end = unlock->lf_start - 1;
480 1.1 ws prev = &overlap->lf_next;
481 1.1 ws lf = overlap->lf_next;
482 1.1 ws continue;
483 1.1 ws
484 1.1 ws case 5: /* overlap ends after lock */
485 1.1 ws overlap->lf_start = unlock->lf_end + 1;
486 1.1 ws break;
487 1.1 ws }
488 1.1 ws break;
489 1.1 ws }
490 1.1 ws #ifdef LOCKF_DEBUG
491 1.1 ws if (lockf_debug & 1)
492 1.1 ws lf_printlist("lf_clearlock", unlock);
493 1.1 ws #endif /* LOCKF_DEBUG */
494 1.1 ws return (0);
495 1.1 ws }
496 1.1 ws
497 1.1 ws /*
498 1.1 ws * Check whether there is a blocking lock,
499 1.1 ws * and if so return its process identifier.
500 1.1 ws */
501 1.4 mycroft int
502 1.1 ws lf_getlock(lock, fl)
503 1.15 augustss struct lockf *lock;
504 1.15 augustss struct flock *fl;
505 1.1 ws {
506 1.15 augustss struct lockf *block;
507 1.1 ws
508 1.1 ws #ifdef LOCKF_DEBUG
509 1.1 ws if (lockf_debug & 1)
510 1.1 ws lf_print("lf_getlock", lock);
511 1.1 ws #endif /* LOCKF_DEBUG */
512 1.1 ws
513 1.7 christos if ((block = lf_getblock(lock)) != NULL) {
514 1.1 ws fl->l_type = block->lf_type;
515 1.1 ws fl->l_whence = SEEK_SET;
516 1.1 ws fl->l_start = block->lf_start;
517 1.1 ws if (block->lf_end == -1)
518 1.1 ws fl->l_len = 0;
519 1.1 ws else
520 1.1 ws fl->l_len = block->lf_end - block->lf_start + 1;
521 1.1 ws if (block->lf_flags & F_POSIX)
522 1.1 ws fl->l_pid = ((struct proc *)(block->lf_id))->p_pid;
523 1.1 ws else
524 1.1 ws fl->l_pid = -1;
525 1.1 ws } else {
526 1.1 ws fl->l_type = F_UNLCK;
527 1.1 ws }
528 1.1 ws return (0);
529 1.1 ws }
530 1.1 ws
531 1.1 ws /*
532 1.1 ws * Walk the list of locks for an inode and
533 1.1 ws * return the first blocking lock.
534 1.1 ws */
535 1.1 ws struct lockf *
536 1.1 ws lf_getblock(lock)
537 1.15 augustss struct lockf *lock;
538 1.1 ws {
539 1.1 ws struct lockf **prev, *overlap, *lf = *(lock->lf_head);
540 1.1 ws int ovcase;
541 1.1 ws
542 1.1 ws prev = lock->lf_head;
543 1.7 christos while ((ovcase = lf_findoverlap(lf, lock, OTHERS,
544 1.7 christos &prev, &overlap)) != 0) {
545 1.1 ws /*
546 1.1 ws * We've found an overlap, see if it blocks us
547 1.1 ws */
548 1.1 ws if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
549 1.1 ws return (overlap);
550 1.1 ws /*
551 1.1 ws * Nope, point to the next one on the list and
552 1.1 ws * see if it blocks us
553 1.1 ws */
554 1.1 ws lf = overlap->lf_next;
555 1.1 ws }
556 1.1 ws return (NOLOCKF);
557 1.1 ws }
558 1.1 ws
559 1.1 ws /*
560 1.1 ws * Walk the list of locks for an inode to
561 1.1 ws * find an overlapping lock (if any).
562 1.1 ws *
563 1.1 ws * NOTE: this returns only the FIRST overlapping lock. There
564 1.1 ws * may be more than one.
565 1.1 ws */
566 1.4 mycroft int
567 1.1 ws lf_findoverlap(lf, lock, type, prev, overlap)
568 1.15 augustss struct lockf *lf;
569 1.1 ws struct lockf *lock;
570 1.1 ws int type;
571 1.1 ws struct lockf ***prev;
572 1.1 ws struct lockf **overlap;
573 1.1 ws {
574 1.1 ws off_t start, end;
575 1.1 ws
576 1.1 ws *overlap = lf;
577 1.1 ws if (lf == NOLOCKF)
578 1.1 ws return (0);
579 1.1 ws #ifdef LOCKF_DEBUG
580 1.1 ws if (lockf_debug & 2)
581 1.1 ws lf_print("lf_findoverlap: looking for overlap in", lock);
582 1.1 ws #endif /* LOCKF_DEBUG */
583 1.1 ws start = lock->lf_start;
584 1.1 ws end = lock->lf_end;
585 1.1 ws while (lf != NOLOCKF) {
586 1.1 ws if (((type & SELF) && lf->lf_id != lock->lf_id) ||
587 1.1 ws ((type & OTHERS) && lf->lf_id == lock->lf_id)) {
588 1.1 ws *prev = &lf->lf_next;
589 1.1 ws *overlap = lf = lf->lf_next;
590 1.1 ws continue;
591 1.1 ws }
592 1.1 ws #ifdef LOCKF_DEBUG
593 1.1 ws if (lockf_debug & 2)
594 1.1 ws lf_print("\tchecking", lf);
595 1.1 ws #endif /* LOCKF_DEBUG */
596 1.1 ws /*
597 1.1 ws * OK, check for overlap
598 1.1 ws *
599 1.1 ws * Six cases:
600 1.1 ws * 0) no overlap
601 1.1 ws * 1) overlap == lock
602 1.1 ws * 2) overlap contains lock
603 1.1 ws * 3) lock contains overlap
604 1.1 ws * 4) overlap starts before lock
605 1.1 ws * 5) overlap ends after lock
606 1.1 ws */
607 1.1 ws if ((lf->lf_end != -1 && start > lf->lf_end) ||
608 1.1 ws (end != -1 && lf->lf_start > end)) {
609 1.1 ws /* Case 0 */
610 1.1 ws #ifdef LOCKF_DEBUG
611 1.1 ws if (lockf_debug & 2)
612 1.9 christos printf("no overlap\n");
613 1.1 ws #endif /* LOCKF_DEBUG */
614 1.1 ws if ((type & SELF) && end != -1 && lf->lf_start > end)
615 1.1 ws return (0);
616 1.1 ws *prev = &lf->lf_next;
617 1.1 ws *overlap = lf = lf->lf_next;
618 1.1 ws continue;
619 1.1 ws }
620 1.1 ws if ((lf->lf_start == start) && (lf->lf_end == end)) {
621 1.1 ws /* Case 1 */
622 1.1 ws #ifdef LOCKF_DEBUG
623 1.1 ws if (lockf_debug & 2)
624 1.9 christos printf("overlap == lock\n");
625 1.1 ws #endif /* LOCKF_DEBUG */
626 1.1 ws return (1);
627 1.1 ws }
628 1.1 ws if ((lf->lf_start <= start) &&
629 1.1 ws (end != -1) &&
630 1.1 ws ((lf->lf_end >= end) || (lf->lf_end == -1))) {
631 1.1 ws /* Case 2 */
632 1.1 ws #ifdef LOCKF_DEBUG
633 1.1 ws if (lockf_debug & 2)
634 1.9 christos printf("overlap contains lock\n");
635 1.1 ws #endif /* LOCKF_DEBUG */
636 1.1 ws return (2);
637 1.1 ws }
638 1.1 ws if (start <= lf->lf_start &&
639 1.4 mycroft (end == -1 ||
640 1.1 ws (lf->lf_end != -1 && end >= lf->lf_end))) {
641 1.1 ws /* Case 3 */
642 1.1 ws #ifdef LOCKF_DEBUG
643 1.1 ws if (lockf_debug & 2)
644 1.9 christos printf("lock contains overlap\n");
645 1.1 ws #endif /* LOCKF_DEBUG */
646 1.1 ws return (3);
647 1.1 ws }
648 1.1 ws if ((lf->lf_start < start) &&
649 1.1 ws ((lf->lf_end >= start) || (lf->lf_end == -1))) {
650 1.1 ws /* Case 4 */
651 1.1 ws #ifdef LOCKF_DEBUG
652 1.1 ws if (lockf_debug & 2)
653 1.9 christos printf("overlap starts before lock\n");
654 1.1 ws #endif /* LOCKF_DEBUG */
655 1.1 ws return (4);
656 1.1 ws }
657 1.1 ws if ((lf->lf_start > start) &&
658 1.1 ws (end != -1) &&
659 1.1 ws ((lf->lf_end > end) || (lf->lf_end == -1))) {
660 1.1 ws /* Case 5 */
661 1.1 ws #ifdef LOCKF_DEBUG
662 1.1 ws if (lockf_debug & 2)
663 1.9 christos printf("overlap ends after lock\n");
664 1.1 ws #endif /* LOCKF_DEBUG */
665 1.1 ws return (5);
666 1.1 ws }
667 1.1 ws panic("lf_findoverlap: default");
668 1.1 ws }
669 1.1 ws return (0);
670 1.1 ws }
671 1.1 ws
672 1.1 ws /*
673 1.1 ws * Split a lock and a contained region into
674 1.1 ws * two or three locks as necessary.
675 1.1 ws */
676 1.2 cgd void
677 1.1 ws lf_split(lock1, lock2)
678 1.15 augustss struct lockf *lock1;
679 1.15 augustss struct lockf *lock2;
680 1.1 ws {
681 1.15 augustss struct lockf *splitlock;
682 1.1 ws
683 1.1 ws #ifdef LOCKF_DEBUG
684 1.1 ws if (lockf_debug & 2) {
685 1.1 ws lf_print("lf_split", lock1);
686 1.1 ws lf_print("splitting from", lock2);
687 1.1 ws }
688 1.1 ws #endif /* LOCKF_DEBUG */
689 1.1 ws /*
690 1.1 ws * Check to see if spliting into only two pieces.
691 1.1 ws */
692 1.1 ws if (lock1->lf_start == lock2->lf_start) {
693 1.1 ws lock1->lf_start = lock2->lf_end + 1;
694 1.1 ws lock2->lf_next = lock1;
695 1.1 ws return;
696 1.1 ws }
697 1.1 ws if (lock1->lf_end == lock2->lf_end) {
698 1.1 ws lock1->lf_end = lock2->lf_start - 1;
699 1.1 ws lock2->lf_next = lock1->lf_next;
700 1.1 ws lock1->lf_next = lock2;
701 1.1 ws return;
702 1.1 ws }
703 1.1 ws /*
704 1.1 ws * Make a new lock consisting of the last part of
705 1.1 ws * the encompassing lock
706 1.1 ws */
707 1.13 perry MALLOC(splitlock, struct lockf *, sizeof(*splitlock), M_LOCKF, M_WAITOK);
708 1.14 perry memcpy((caddr_t)splitlock, (caddr_t)lock1, sizeof(*splitlock));
709 1.1 ws splitlock->lf_start = lock2->lf_end + 1;
710 1.12 fvdl TAILQ_INIT(&splitlock->lf_blkhd);
711 1.1 ws lock1->lf_end = lock2->lf_start - 1;
712 1.1 ws /*
713 1.1 ws * OK, now link it in
714 1.1 ws */
715 1.1 ws splitlock->lf_next = lock1->lf_next;
716 1.1 ws lock2->lf_next = splitlock;
717 1.1 ws lock1->lf_next = lock2;
718 1.1 ws }
719 1.1 ws
720 1.1 ws /*
721 1.1 ws * Wakeup a blocklist
722 1.1 ws */
723 1.2 cgd void
724 1.1 ws lf_wakelock(listhead)
725 1.1 ws struct lockf *listhead;
726 1.1 ws {
727 1.15 augustss struct lockf *wakelock;
728 1.1 ws
729 1.12 fvdl while ((wakelock = listhead->lf_blkhd.tqh_first)) {
730 1.16 sommerfe KASSERT(wakelock->lf_next == listhead);
731 1.12 fvdl TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
732 1.1 ws wakelock->lf_next = NOLOCKF;
733 1.1 ws #ifdef LOCKF_DEBUG
734 1.1 ws if (lockf_debug & 2)
735 1.1 ws lf_print("lf_wakelock: awakening", wakelock);
736 1.12 fvdl #endif
737 1.1 ws wakeup((caddr_t)wakelock);
738 1.1 ws }
739 1.1 ws }
740 1.1 ws
741 1.1 ws #ifdef LOCKF_DEBUG
742 1.1 ws /*
743 1.1 ws * Print out a lock.
744 1.1 ws */
745 1.4 mycroft void
746 1.1 ws lf_print(tag, lock)
747 1.1 ws char *tag;
748 1.15 augustss struct lockf *lock;
749 1.1 ws {
750 1.1 ws
751 1.9 christos printf("%s: lock %p for ", tag, lock);
752 1.1 ws if (lock->lf_flags & F_POSIX)
753 1.9 christos printf("proc %d", ((struct proc *)(lock->lf_id))->p_pid);
754 1.1 ws else
755 1.11 jtk printf("id 0x%p", lock->lf_id);
756 1.11 jtk printf(" %s, start %qx, end %qx",
757 1.1 ws lock->lf_type == F_RDLCK ? "shared" :
758 1.1 ws lock->lf_type == F_WRLCK ? "exclusive" :
759 1.1 ws lock->lf_type == F_UNLCK ? "unlock" :
760 1.1 ws "unknown", lock->lf_start, lock->lf_end);
761 1.12 fvdl if (lock->lf_blkhd.tqh_first)
762 1.12 fvdl printf(" block %p\n", lock->lf_blkhd.tqh_first);
763 1.1 ws else
764 1.9 christos printf("\n");
765 1.1 ws }
766 1.1 ws
767 1.4 mycroft void
768 1.1 ws lf_printlist(tag, lock)
769 1.1 ws char *tag;
770 1.1 ws struct lockf *lock;
771 1.1 ws {
772 1.15 augustss struct lockf *lf, *blk;
773 1.1 ws
774 1.11 jtk printf("%s: Lock list:\n", tag);
775 1.12 fvdl for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
776 1.9 christos printf("\tlock %p for ", lf);
777 1.1 ws if (lf->lf_flags & F_POSIX)
778 1.9 christos printf("proc %d", ((struct proc *)(lf->lf_id))->p_pid);
779 1.1 ws else
780 1.11 jtk printf("id 0x%p", lf->lf_id);
781 1.11 jtk printf(", %s, start %qx, end %qx",
782 1.1 ws lf->lf_type == F_RDLCK ? "shared" :
783 1.1 ws lf->lf_type == F_WRLCK ? "exclusive" :
784 1.1 ws lf->lf_type == F_UNLCK ? "unlock" :
785 1.1 ws "unknown", lf->lf_start, lf->lf_end);
786 1.12 fvdl for (blk = lf->lf_blkhd.tqh_first; blk;
787 1.12 fvdl blk = blk->lf_block.tqe_next) {
788 1.12 fvdl if (blk->lf_flags & F_POSIX)
789 1.12 fvdl printf("proc %d",
790 1.12 fvdl ((struct proc *)(blk->lf_id))->p_pid);
791 1.12 fvdl else
792 1.12 fvdl printf("id 0x%p", blk->lf_id);
793 1.12 fvdl printf(", %s, start %qx, end %qx",
794 1.12 fvdl blk->lf_type == F_RDLCK ? "shared" :
795 1.12 fvdl blk->lf_type == F_WRLCK ? "exclusive" :
796 1.12 fvdl blk->lf_type == F_UNLCK ? "unlock" :
797 1.12 fvdl "unknown", blk->lf_start, blk->lf_end);
798 1.12 fvdl if (blk->lf_blkhd.tqh_first)
799 1.12 fvdl panic("lf_printlist: bad list");
800 1.12 fvdl }
801 1.12 fvdl printf("\n");
802 1.1 ws }
803 1.1 ws }
804 1.1 ws #endif /* LOCKF_DEBUG */
805