vfs_lockf.c revision 1.27 1 1.27 yamt /* $NetBSD: vfs_lockf.c,v 1.27 2003/05/01 14:36:43 yamt Exp $ */
2 1.5 cgd
3 1.1 ws /*
4 1.4 mycroft * Copyright (c) 1982, 1986, 1989, 1993
5 1.4 mycroft * The Regents of the University of California. All rights reserved.
6 1.1 ws *
7 1.1 ws * This code is derived from software contributed to Berkeley by
8 1.1 ws * Scooter Morris at Genentech Inc.
9 1.1 ws *
10 1.1 ws * Redistribution and use in source and binary forms, with or without
11 1.1 ws * modification, are permitted provided that the following conditions
12 1.1 ws * are met:
13 1.1 ws * 1. Redistributions of source code must retain the above copyright
14 1.1 ws * notice, this list of conditions and the following disclaimer.
15 1.1 ws * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 ws * notice, this list of conditions and the following disclaimer in the
17 1.1 ws * documentation and/or other materials provided with the distribution.
18 1.1 ws * 3. All advertising materials mentioning features or use of this software
19 1.1 ws * must display the following acknowledgement:
20 1.1 ws * This product includes software developed by the University of
21 1.1 ws * California, Berkeley and its contributors.
22 1.1 ws * 4. Neither the name of the University nor the names of its contributors
23 1.1 ws * may be used to endorse or promote products derived from this software
24 1.1 ws * without specific prior written permission.
25 1.1 ws *
26 1.1 ws * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 1.1 ws * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 1.1 ws * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 1.1 ws * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 1.1 ws * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 1.1 ws * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 1.1 ws * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 1.1 ws * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 1.1 ws * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 1.1 ws * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 1.1 ws * SUCH DAMAGE.
37 1.1 ws *
38 1.12 fvdl * @(#)ufs_lockf.c 8.4 (Berkeley) 10/26/94
39 1.1 ws */
40 1.18 lukem
41 1.18 lukem #include <sys/cdefs.h>
42 1.27 yamt __KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.27 2003/05/01 14:36:43 yamt Exp $");
43 1.1 ws
44 1.1 ws #include <sys/param.h>
45 1.1 ws #include <sys/systm.h>
46 1.1 ws #include <sys/kernel.h>
47 1.1 ws #include <sys/file.h>
48 1.1 ws #include <sys/proc.h>
49 1.1 ws #include <sys/vnode.h>
50 1.1 ws #include <sys/malloc.h>
51 1.1 ws #include <sys/fcntl.h>
52 1.1 ws #include <sys/lockf.h>
53 1.22 thorpej
54 1.22 thorpej MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures");
55 1.1 ws
56 1.1 ws /*
57 1.6 mycroft * This variable controls the maximum number of processes that will
58 1.6 mycroft * be checked in doing deadlock detection.
59 1.6 mycroft */
60 1.6 mycroft int maxlockdepth = MAXDEPTH;
61 1.6 mycroft
62 1.6 mycroft #ifdef LOCKF_DEBUG
63 1.6 mycroft int lockf_debug = 0;
64 1.6 mycroft #endif
65 1.6 mycroft
66 1.6 mycroft #define NOLOCKF (struct lockf *)0
67 1.6 mycroft #define SELF 0x1
68 1.6 mycroft #define OTHERS 0x2
69 1.6 mycroft
70 1.27 yamt static int lf_clearlock(struct lockf *, struct lockf **);
71 1.25 yamt static int lf_findoverlap(struct lockf *,
72 1.25 yamt struct lockf *, int, struct lockf ***, struct lockf **);
73 1.25 yamt static struct lockf *lf_getblock(struct lockf *);
74 1.25 yamt static int lf_getlock(struct lockf *, struct flock *);
75 1.27 yamt static int lf_setlock(struct lockf *, struct lockf **, struct simplelock *);
76 1.27 yamt static void lf_split(struct lockf *, struct lockf *, struct lockf **);
77 1.25 yamt static void lf_wakelock(struct lockf *);
78 1.24 yamt
79 1.24 yamt #ifdef LOCKF_DEBUG
80 1.25 yamt static void lf_print(char *, struct lockf *);
81 1.25 yamt static void lf_printlist(char *, struct lockf *);
82 1.24 yamt #endif
83 1.24 yamt
84 1.6 mycroft /*
85 1.16 sommerfe * XXX TODO
86 1.16 sommerfe * Misc cleanups: "caddr_t id" should be visible in the API as a
87 1.16 sommerfe * "struct proc *".
88 1.16 sommerfe * (This requires rototilling all VFS's which support advisory locking).
89 1.16 sommerfe *
90 1.16 sommerfe * Use pools for lock allocation.
91 1.16 sommerfe */
92 1.16 sommerfe
93 1.16 sommerfe /*
94 1.16 sommerfe * If there's a lot of lock contention on a single vnode, locking
95 1.16 sommerfe * schemes which allow for more paralleism would be needed. Given how
96 1.16 sommerfe * infrequently byte-range locks are actually used in typical BSD
97 1.16 sommerfe * code, a more complex approach probably isn't worth it.
98 1.16 sommerfe */
99 1.16 sommerfe
100 1.16 sommerfe /*
101 1.4 mycroft * Do an advisory lock operation.
102 1.1 ws */
103 1.4 mycroft int
104 1.25 yamt lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
105 1.1 ws {
106 1.17 jdolecek struct flock *fl = ap->a_fl;
107 1.27 yamt struct lockf *lock = NULL;
108 1.27 yamt struct lockf *sparelock;
109 1.27 yamt struct vnode *vp = ap->a_vp;
110 1.1 ws off_t start, end;
111 1.1 ws int error;
112 1.1 ws
113 1.1 ws /*
114 1.1 ws * Convert the flock structure into a start and end.
115 1.1 ws */
116 1.1 ws switch (fl->l_whence) {
117 1.1 ws case SEEK_SET:
118 1.1 ws case SEEK_CUR:
119 1.1 ws /*
120 1.1 ws * Caller is responsible for adding any necessary offset
121 1.1 ws * when SEEK_CUR is used.
122 1.1 ws */
123 1.1 ws start = fl->l_start;
124 1.1 ws break;
125 1.1 ws
126 1.1 ws case SEEK_END:
127 1.1 ws start = size + fl->l_start;
128 1.1 ws break;
129 1.1 ws
130 1.1 ws default:
131 1.1 ws return (EINVAL);
132 1.1 ws }
133 1.1 ws if (start < 0)
134 1.1 ws return (EINVAL);
135 1.10 kleink
136 1.10 kleink /*
137 1.27 yamt * allocate locks before acquire simple lock.
138 1.27 yamt * we need two locks in the worst case.
139 1.27 yamt */
140 1.27 yamt switch (ap->a_op) {
141 1.27 yamt case F_SETLK:
142 1.27 yamt case F_UNLCK:
143 1.27 yamt /*
144 1.27 yamt * XXX for F_UNLCK case, we can re-use lock.
145 1.27 yamt */
146 1.27 yamt if ((fl->l_type & F_FLOCK) == 0) {
147 1.27 yamt /*
148 1.27 yamt * byte-range lock might need one more lock.
149 1.27 yamt */
150 1.27 yamt MALLOC(sparelock, struct lockf *, sizeof(*lock),
151 1.27 yamt M_LOCKF, M_WAITOK);
152 1.27 yamt if (sparelock == NULL) {
153 1.27 yamt error = ENOMEM;
154 1.27 yamt goto quit;
155 1.27 yamt }
156 1.27 yamt break;
157 1.27 yamt }
158 1.27 yamt /* FALLTHROUGH */
159 1.27 yamt
160 1.27 yamt case F_GETLK:
161 1.27 yamt sparelock = NULL;
162 1.27 yamt break;
163 1.27 yamt
164 1.27 yamt default:
165 1.27 yamt return (EINVAL);
166 1.27 yamt }
167 1.27 yamt
168 1.27 yamt MALLOC(lock, struct lockf *, sizeof(*lock), M_LOCKF, M_WAITOK);
169 1.27 yamt if (lock == NULL) {
170 1.27 yamt error = ENOMEM;
171 1.27 yamt goto quit;
172 1.27 yamt }
173 1.27 yamt
174 1.27 yamt simple_lock(&vp->v_interlock);
175 1.27 yamt
176 1.27 yamt /*
177 1.10 kleink * Avoid the common case of unlocking when inode has no locks.
178 1.10 kleink */
179 1.10 kleink if (*head == (struct lockf *)0) {
180 1.17 jdolecek if (ap->a_op != F_SETLK) {
181 1.10 kleink fl->l_type = F_UNLCK;
182 1.27 yamt error = 0;
183 1.27 yamt goto quit_unlock;
184 1.10 kleink }
185 1.10 kleink }
186 1.10 kleink
187 1.1 ws if (fl->l_len == 0)
188 1.1 ws end = -1;
189 1.1 ws else
190 1.1 ws end = start + fl->l_len - 1;
191 1.1 ws /*
192 1.4 mycroft * Create the lockf structure.
193 1.1 ws */
194 1.1 ws lock->lf_start = start;
195 1.1 ws lock->lf_end = end;
196 1.21 thorpej /* XXX NJWLWP
197 1.21 thorpej * I don't want to make the entire VFS universe use LWPs, because
198 1.21 thorpej * they don't need them, for the most part. This is an exception,
199 1.21 thorpej * and a kluge.
200 1.21 thorpej */
201 1.21 thorpej
202 1.1 ws lock->lf_head = head;
203 1.1 ws lock->lf_type = fl->l_type;
204 1.1 ws lock->lf_next = (struct lockf *)0;
205 1.12 fvdl TAILQ_INIT(&lock->lf_blkhd);
206 1.17 jdolecek lock->lf_flags = ap->a_flags;
207 1.21 thorpej if (lock->lf_flags & F_POSIX) {
208 1.21 thorpej KASSERT(curproc == (struct proc *)ap->a_id);
209 1.21 thorpej }
210 1.23 mycroft lock->lf_id = (struct proc *)ap->a_id;
211 1.23 mycroft lock->lf_lwp = curlwp;
212 1.21 thorpej
213 1.1 ws /*
214 1.1 ws * Do the requested operation.
215 1.1 ws */
216 1.17 jdolecek switch (ap->a_op) {
217 1.4 mycroft
218 1.1 ws case F_SETLK:
219 1.27 yamt error = lf_setlock(lock, &sparelock, &vp->v_interlock);
220 1.27 yamt lock = NULL; /* lf_setlock freed it */
221 1.27 yamt break;
222 1.1 ws
223 1.1 ws case F_UNLCK:
224 1.27 yamt error = lf_clearlock(lock, &sparelock);
225 1.27 yamt break;
226 1.1 ws
227 1.1 ws case F_GETLK:
228 1.1 ws error = lf_getlock(lock, fl);
229 1.27 yamt break;
230 1.4 mycroft
231 1.1 ws default:
232 1.27 yamt /* NOTREACHED */
233 1.27 yamt }
234 1.27 yamt
235 1.27 yamt quit_unlock:
236 1.27 yamt simple_unlock(&vp->v_interlock);
237 1.27 yamt quit:
238 1.27 yamt if (lock)
239 1.4 mycroft FREE(lock, M_LOCKF);
240 1.27 yamt if (sparelock)
241 1.27 yamt FREE(sparelock, M_LOCKF);
242 1.27 yamt
243 1.27 yamt return (error);
244 1.1 ws }
245 1.1 ws
246 1.1 ws /*
247 1.1 ws * Set a byte-range lock.
248 1.1 ws */
249 1.24 yamt static int
250 1.27 yamt lf_setlock(struct lockf *lock, struct lockf **sparelock,
251 1.27 yamt struct simplelock *interlock)
252 1.1 ws {
253 1.15 augustss struct lockf *block;
254 1.1 ws struct lockf **head = lock->lf_head;
255 1.1 ws struct lockf **prev, *overlap, *ltmp;
256 1.1 ws static char lockstr[] = "lockf";
257 1.1 ws int ovcase, priority, needtolink, error;
258 1.1 ws
259 1.1 ws #ifdef LOCKF_DEBUG
260 1.1 ws if (lockf_debug & 1)
261 1.1 ws lf_print("lf_setlock", lock);
262 1.1 ws #endif /* LOCKF_DEBUG */
263 1.1 ws
264 1.1 ws /*
265 1.1 ws * Set the priority
266 1.1 ws */
267 1.1 ws priority = PLOCK;
268 1.1 ws if (lock->lf_type == F_WRLCK)
269 1.1 ws priority += 4;
270 1.1 ws priority |= PCATCH;
271 1.1 ws /*
272 1.1 ws * Scan lock list for this file looking for locks that would block us.
273 1.1 ws */
274 1.7 christos while ((block = lf_getblock(lock)) != NULL) {
275 1.1 ws /*
276 1.1 ws * Free the structure and return if nonblocking.
277 1.1 ws */
278 1.1 ws if ((lock->lf_flags & F_WAIT) == 0) {
279 1.1 ws FREE(lock, M_LOCKF);
280 1.1 ws return (EAGAIN);
281 1.1 ws }
282 1.1 ws /*
283 1.1 ws * We are blocked. Since flock style locks cover
284 1.1 ws * the whole file, there is no chance for deadlock.
285 1.1 ws * For byte-range locks we must check for deadlock.
286 1.1 ws *
287 1.1 ws * Deadlock detection is done by looking through the
288 1.1 ws * wait channels to see if there are any cycles that
289 1.1 ws * involve us. MAXDEPTH is set just to make sure we
290 1.16 sommerfe * do not go off into neverneverland.
291 1.1 ws */
292 1.1 ws if ((lock->lf_flags & F_POSIX) &&
293 1.1 ws (block->lf_flags & F_POSIX)) {
294 1.21 thorpej struct lwp *wlwp;
295 1.15 augustss struct lockf *waitblock;
296 1.1 ws int i = 0;
297 1.1 ws
298 1.23 mycroft /*
299 1.23 mycroft * The block is waiting on something. if_lwp will be
300 1.23 mycroft * 0 once the lock is granted, so we terminate the
301 1.23 mycroft * loop if we find this.
302 1.23 mycroft */
303 1.23 mycroft wlwp = block->lf_lwp;
304 1.23 mycroft while (wlwp && (i++ < maxlockdepth)) {
305 1.21 thorpej waitblock = (struct lockf *)wlwp->l_wchan;
306 1.1 ws /* Get the owner of the blocking lock */
307 1.1 ws waitblock = waitblock->lf_next;
308 1.1 ws if ((waitblock->lf_flags & F_POSIX) == 0)
309 1.1 ws break;
310 1.23 mycroft wlwp = waitblock->lf_lwp;
311 1.23 mycroft if (wlwp == lock->lf_lwp) {
312 1.1 ws free(lock, M_LOCKF);
313 1.1 ws return (EDEADLK);
314 1.1 ws }
315 1.1 ws }
316 1.16 sommerfe /*
317 1.16 sommerfe * If we're still following a dependancy chain
318 1.16 sommerfe * after maxlockdepth iterations, assume we're in
319 1.16 sommerfe * a cycle to be safe.
320 1.16 sommerfe */
321 1.16 sommerfe if (i >= maxlockdepth) {
322 1.16 sommerfe free(lock, M_LOCKF);
323 1.16 sommerfe return (EDEADLK);
324 1.16 sommerfe }
325 1.1 ws }
326 1.1 ws /*
327 1.1 ws * For flock type locks, we must first remove
328 1.1 ws * any shared locks that we hold before we sleep
329 1.1 ws * waiting for an exclusive lock.
330 1.1 ws */
331 1.1 ws if ((lock->lf_flags & F_FLOCK) &&
332 1.1 ws lock->lf_type == F_WRLCK) {
333 1.1 ws lock->lf_type = F_UNLCK;
334 1.27 yamt (void) lf_clearlock(lock, NULL);
335 1.1 ws lock->lf_type = F_WRLCK;
336 1.1 ws }
337 1.1 ws /*
338 1.1 ws * Add our lock to the blocked list and sleep until we're free.
339 1.1 ws * Remember who blocked us (for deadlock detection).
340 1.1 ws */
341 1.1 ws lock->lf_next = block;
342 1.12 fvdl TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
343 1.1 ws #ifdef LOCKF_DEBUG
344 1.1 ws if (lockf_debug & 1) {
345 1.1 ws lf_print("lf_setlock: blocking on", block);
346 1.1 ws lf_printlist("lf_setlock", block);
347 1.1 ws }
348 1.1 ws #endif /* LOCKF_DEBUG */
349 1.27 yamt error = ltsleep(lock, priority, lockstr, 0, interlock);
350 1.16 sommerfe
351 1.16 sommerfe /*
352 1.16 sommerfe * We may have been awakened by a signal (in
353 1.16 sommerfe * which case we must remove ourselves from the
354 1.16 sommerfe * blocked list) and/or by another process
355 1.16 sommerfe * releasing a lock (in which case we have already
356 1.16 sommerfe * been removed from the blocked list and our
357 1.16 sommerfe * lf_next field set to NOLOCKF).
358 1.16 sommerfe */
359 1.16 sommerfe if (lock->lf_next != NOLOCKF) {
360 1.16 sommerfe TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
361 1.16 sommerfe lock->lf_next = NOLOCKF;
362 1.16 sommerfe }
363 1.7 christos if (error) {
364 1.4 mycroft free(lock, M_LOCKF);
365 1.4 mycroft return (error);
366 1.1 ws }
367 1.1 ws }
368 1.1 ws /*
369 1.1 ws * No blocks!! Add the lock. Note that we will
370 1.1 ws * downgrade or upgrade any overlapping locks this
371 1.1 ws * process already owns.
372 1.1 ws *
373 1.1 ws * Skip over locks owned by other processes.
374 1.1 ws * Handle any locks that overlap and are owned by ourselves.
375 1.1 ws */
376 1.23 mycroft lock->lf_lwp = 0;
377 1.1 ws prev = head;
378 1.1 ws block = *head;
379 1.1 ws needtolink = 1;
380 1.1 ws for (;;) {
381 1.7 christos ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
382 1.7 christos if (ovcase)
383 1.1 ws block = overlap->lf_next;
384 1.1 ws /*
385 1.1 ws * Six cases:
386 1.1 ws * 0) no overlap
387 1.1 ws * 1) overlap == lock
388 1.1 ws * 2) overlap contains lock
389 1.1 ws * 3) lock contains overlap
390 1.1 ws * 4) overlap starts before lock
391 1.1 ws * 5) overlap ends after lock
392 1.1 ws */
393 1.1 ws switch (ovcase) {
394 1.1 ws case 0: /* no overlap */
395 1.1 ws if (needtolink) {
396 1.1 ws *prev = lock;
397 1.1 ws lock->lf_next = overlap;
398 1.1 ws }
399 1.1 ws break;
400 1.1 ws
401 1.1 ws case 1: /* overlap == lock */
402 1.1 ws /*
403 1.1 ws * If downgrading lock, others may be
404 1.1 ws * able to acquire it.
405 1.1 ws */
406 1.1 ws if (lock->lf_type == F_RDLCK &&
407 1.1 ws overlap->lf_type == F_WRLCK)
408 1.1 ws lf_wakelock(overlap);
409 1.1 ws overlap->lf_type = lock->lf_type;
410 1.1 ws FREE(lock, M_LOCKF);
411 1.1 ws lock = overlap; /* for debug output below */
412 1.1 ws break;
413 1.1 ws
414 1.1 ws case 2: /* overlap contains lock */
415 1.1 ws /*
416 1.1 ws * Check for common starting point and different types.
417 1.1 ws */
418 1.1 ws if (overlap->lf_type == lock->lf_type) {
419 1.1 ws free(lock, M_LOCKF);
420 1.1 ws lock = overlap; /* for debug output below */
421 1.1 ws break;
422 1.1 ws }
423 1.1 ws if (overlap->lf_start == lock->lf_start) {
424 1.1 ws *prev = lock;
425 1.1 ws lock->lf_next = overlap;
426 1.1 ws overlap->lf_start = lock->lf_end + 1;
427 1.1 ws } else
428 1.27 yamt lf_split(overlap, lock, sparelock);
429 1.1 ws lf_wakelock(overlap);
430 1.1 ws break;
431 1.1 ws
432 1.1 ws case 3: /* lock contains overlap */
433 1.1 ws /*
434 1.1 ws * If downgrading lock, others may be able to
435 1.1 ws * acquire it, otherwise take the list.
436 1.1 ws */
437 1.1 ws if (lock->lf_type == F_RDLCK &&
438 1.1 ws overlap->lf_type == F_WRLCK) {
439 1.1 ws lf_wakelock(overlap);
440 1.1 ws } else {
441 1.19 matt while ((ltmp = TAILQ_FIRST(&overlap->lf_blkhd))) {
442 1.16 sommerfe KASSERT(ltmp->lf_next == overlap);
443 1.12 fvdl TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
444 1.12 fvdl lf_block);
445 1.16 sommerfe ltmp->lf_next = lock;
446 1.12 fvdl TAILQ_INSERT_TAIL(&lock->lf_blkhd,
447 1.12 fvdl ltmp, lf_block);
448 1.12 fvdl }
449 1.1 ws }
450 1.1 ws /*
451 1.1 ws * Add the new lock if necessary and delete the overlap.
452 1.1 ws */
453 1.1 ws if (needtolink) {
454 1.1 ws *prev = lock;
455 1.1 ws lock->lf_next = overlap->lf_next;
456 1.1 ws prev = &lock->lf_next;
457 1.1 ws needtolink = 0;
458 1.1 ws } else
459 1.1 ws *prev = overlap->lf_next;
460 1.1 ws free(overlap, M_LOCKF);
461 1.1 ws continue;
462 1.1 ws
463 1.1 ws case 4: /* overlap starts before lock */
464 1.1 ws /*
465 1.1 ws * Add lock after overlap on the list.
466 1.1 ws */
467 1.1 ws lock->lf_next = overlap->lf_next;
468 1.1 ws overlap->lf_next = lock;
469 1.1 ws overlap->lf_end = lock->lf_start - 1;
470 1.1 ws prev = &lock->lf_next;
471 1.1 ws lf_wakelock(overlap);
472 1.1 ws needtolink = 0;
473 1.1 ws continue;
474 1.1 ws
475 1.1 ws case 5: /* overlap ends after lock */
476 1.1 ws /*
477 1.1 ws * Add the new lock before overlap.
478 1.1 ws */
479 1.1 ws if (needtolink) {
480 1.1 ws *prev = lock;
481 1.1 ws lock->lf_next = overlap;
482 1.1 ws }
483 1.1 ws overlap->lf_start = lock->lf_end + 1;
484 1.1 ws lf_wakelock(overlap);
485 1.1 ws break;
486 1.1 ws }
487 1.1 ws break;
488 1.1 ws }
489 1.1 ws #ifdef LOCKF_DEBUG
490 1.1 ws if (lockf_debug & 1) {
491 1.1 ws lf_print("lf_setlock: got the lock", lock);
492 1.1 ws lf_printlist("lf_setlock", lock);
493 1.1 ws }
494 1.1 ws #endif /* LOCKF_DEBUG */
495 1.1 ws return (0);
496 1.1 ws }
497 1.1 ws
498 1.1 ws /*
499 1.1 ws * Remove a byte-range lock on an inode.
500 1.1 ws *
501 1.1 ws * Generally, find the lock (or an overlap to that lock)
502 1.1 ws * and remove it (or shrink it), then wakeup anyone we can.
503 1.1 ws */
504 1.24 yamt static int
505 1.27 yamt lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
506 1.1 ws {
507 1.1 ws struct lockf **head = unlock->lf_head;
508 1.15 augustss struct lockf *lf = *head;
509 1.1 ws struct lockf *overlap, **prev;
510 1.1 ws int ovcase;
511 1.1 ws
512 1.1 ws if (lf == NOLOCKF)
513 1.1 ws return (0);
514 1.1 ws #ifdef LOCKF_DEBUG
515 1.1 ws if (unlock->lf_type != F_UNLCK)
516 1.1 ws panic("lf_clearlock: bad type");
517 1.1 ws if (lockf_debug & 1)
518 1.1 ws lf_print("lf_clearlock", unlock);
519 1.1 ws #endif /* LOCKF_DEBUG */
520 1.1 ws prev = head;
521 1.7 christos while ((ovcase = lf_findoverlap(lf, unlock, SELF,
522 1.7 christos &prev, &overlap)) != 0) {
523 1.1 ws /*
524 1.1 ws * Wakeup the list of locks to be retried.
525 1.1 ws */
526 1.1 ws lf_wakelock(overlap);
527 1.1 ws
528 1.1 ws switch (ovcase) {
529 1.1 ws
530 1.1 ws case 1: /* overlap == lock */
531 1.1 ws *prev = overlap->lf_next;
532 1.1 ws FREE(overlap, M_LOCKF);
533 1.1 ws break;
534 1.1 ws
535 1.1 ws case 2: /* overlap contains lock: split it */
536 1.1 ws if (overlap->lf_start == unlock->lf_start) {
537 1.1 ws overlap->lf_start = unlock->lf_end + 1;
538 1.1 ws break;
539 1.1 ws }
540 1.27 yamt lf_split(overlap, unlock, sparelock);
541 1.1 ws overlap->lf_next = unlock->lf_next;
542 1.1 ws break;
543 1.1 ws
544 1.1 ws case 3: /* lock contains overlap */
545 1.1 ws *prev = overlap->lf_next;
546 1.1 ws lf = overlap->lf_next;
547 1.1 ws free(overlap, M_LOCKF);
548 1.1 ws continue;
549 1.1 ws
550 1.1 ws case 4: /* overlap starts before lock */
551 1.1 ws overlap->lf_end = unlock->lf_start - 1;
552 1.1 ws prev = &overlap->lf_next;
553 1.1 ws lf = overlap->lf_next;
554 1.1 ws continue;
555 1.1 ws
556 1.1 ws case 5: /* overlap ends after lock */
557 1.1 ws overlap->lf_start = unlock->lf_end + 1;
558 1.1 ws break;
559 1.1 ws }
560 1.1 ws break;
561 1.1 ws }
562 1.1 ws #ifdef LOCKF_DEBUG
563 1.1 ws if (lockf_debug & 1)
564 1.1 ws lf_printlist("lf_clearlock", unlock);
565 1.1 ws #endif /* LOCKF_DEBUG */
566 1.1 ws return (0);
567 1.1 ws }
568 1.1 ws
569 1.1 ws /*
570 1.1 ws * Check whether there is a blocking lock,
571 1.1 ws * and if so return its process identifier.
572 1.1 ws */
573 1.24 yamt static int
574 1.25 yamt lf_getlock(struct lockf *lock, struct flock *fl)
575 1.1 ws {
576 1.15 augustss struct lockf *block;
577 1.1 ws
578 1.1 ws #ifdef LOCKF_DEBUG
579 1.1 ws if (lockf_debug & 1)
580 1.1 ws lf_print("lf_getlock", lock);
581 1.1 ws #endif /* LOCKF_DEBUG */
582 1.1 ws
583 1.7 christos if ((block = lf_getblock(lock)) != NULL) {
584 1.1 ws fl->l_type = block->lf_type;
585 1.1 ws fl->l_whence = SEEK_SET;
586 1.1 ws fl->l_start = block->lf_start;
587 1.1 ws if (block->lf_end == -1)
588 1.1 ws fl->l_len = 0;
589 1.1 ws else
590 1.1 ws fl->l_len = block->lf_end - block->lf_start + 1;
591 1.1 ws if (block->lf_flags & F_POSIX)
592 1.23 mycroft fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
593 1.1 ws else
594 1.1 ws fl->l_pid = -1;
595 1.1 ws } else {
596 1.1 ws fl->l_type = F_UNLCK;
597 1.1 ws }
598 1.1 ws return (0);
599 1.1 ws }
600 1.1 ws
601 1.1 ws /*
602 1.1 ws * Walk the list of locks for an inode and
603 1.1 ws * return the first blocking lock.
604 1.1 ws */
605 1.24 yamt static struct lockf *
606 1.25 yamt lf_getblock(struct lockf *lock)
607 1.1 ws {
608 1.1 ws struct lockf **prev, *overlap, *lf = *(lock->lf_head);
609 1.1 ws
610 1.1 ws prev = lock->lf_head;
611 1.20 simonb while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
612 1.1 ws /*
613 1.1 ws * We've found an overlap, see if it blocks us
614 1.1 ws */
615 1.1 ws if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
616 1.1 ws return (overlap);
617 1.1 ws /*
618 1.1 ws * Nope, point to the next one on the list and
619 1.1 ws * see if it blocks us
620 1.1 ws */
621 1.1 ws lf = overlap->lf_next;
622 1.1 ws }
623 1.1 ws return (NOLOCKF);
624 1.1 ws }
625 1.1 ws
626 1.1 ws /*
627 1.1 ws * Walk the list of locks for an inode to
628 1.1 ws * find an overlapping lock (if any).
629 1.1 ws *
630 1.1 ws * NOTE: this returns only the FIRST overlapping lock. There
631 1.1 ws * may be more than one.
632 1.1 ws */
633 1.24 yamt static int
634 1.25 yamt lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
635 1.25 yamt struct lockf ***prev, struct lockf **overlap)
636 1.1 ws {
637 1.1 ws off_t start, end;
638 1.1 ws
639 1.1 ws *overlap = lf;
640 1.1 ws if (lf == NOLOCKF)
641 1.1 ws return (0);
642 1.1 ws #ifdef LOCKF_DEBUG
643 1.1 ws if (lockf_debug & 2)
644 1.1 ws lf_print("lf_findoverlap: looking for overlap in", lock);
645 1.1 ws #endif /* LOCKF_DEBUG */
646 1.1 ws start = lock->lf_start;
647 1.1 ws end = lock->lf_end;
648 1.1 ws while (lf != NOLOCKF) {
649 1.23 mycroft if (((type == SELF) && lf->lf_id != lock->lf_id) ||
650 1.23 mycroft ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
651 1.1 ws *prev = &lf->lf_next;
652 1.1 ws *overlap = lf = lf->lf_next;
653 1.1 ws continue;
654 1.1 ws }
655 1.1 ws #ifdef LOCKF_DEBUG
656 1.1 ws if (lockf_debug & 2)
657 1.1 ws lf_print("\tchecking", lf);
658 1.1 ws #endif /* LOCKF_DEBUG */
659 1.1 ws /*
660 1.1 ws * OK, check for overlap
661 1.1 ws *
662 1.1 ws * Six cases:
663 1.1 ws * 0) no overlap
664 1.1 ws * 1) overlap == lock
665 1.1 ws * 2) overlap contains lock
666 1.1 ws * 3) lock contains overlap
667 1.1 ws * 4) overlap starts before lock
668 1.1 ws * 5) overlap ends after lock
669 1.1 ws */
670 1.1 ws if ((lf->lf_end != -1 && start > lf->lf_end) ||
671 1.1 ws (end != -1 && lf->lf_start > end)) {
672 1.1 ws /* Case 0 */
673 1.1 ws #ifdef LOCKF_DEBUG
674 1.1 ws if (lockf_debug & 2)
675 1.9 christos printf("no overlap\n");
676 1.1 ws #endif /* LOCKF_DEBUG */
677 1.1 ws if ((type & SELF) && end != -1 && lf->lf_start > end)
678 1.1 ws return (0);
679 1.1 ws *prev = &lf->lf_next;
680 1.1 ws *overlap = lf = lf->lf_next;
681 1.1 ws continue;
682 1.1 ws }
683 1.1 ws if ((lf->lf_start == start) && (lf->lf_end == end)) {
684 1.1 ws /* Case 1 */
685 1.1 ws #ifdef LOCKF_DEBUG
686 1.1 ws if (lockf_debug & 2)
687 1.9 christos printf("overlap == lock\n");
688 1.1 ws #endif /* LOCKF_DEBUG */
689 1.1 ws return (1);
690 1.1 ws }
691 1.1 ws if ((lf->lf_start <= start) &&
692 1.1 ws (end != -1) &&
693 1.1 ws ((lf->lf_end >= end) || (lf->lf_end == -1))) {
694 1.1 ws /* Case 2 */
695 1.1 ws #ifdef LOCKF_DEBUG
696 1.1 ws if (lockf_debug & 2)
697 1.9 christos printf("overlap contains lock\n");
698 1.1 ws #endif /* LOCKF_DEBUG */
699 1.1 ws return (2);
700 1.1 ws }
701 1.1 ws if (start <= lf->lf_start &&
702 1.4 mycroft (end == -1 ||
703 1.1 ws (lf->lf_end != -1 && end >= lf->lf_end))) {
704 1.1 ws /* Case 3 */
705 1.1 ws #ifdef LOCKF_DEBUG
706 1.1 ws if (lockf_debug & 2)
707 1.9 christos printf("lock contains overlap\n");
708 1.1 ws #endif /* LOCKF_DEBUG */
709 1.1 ws return (3);
710 1.1 ws }
711 1.1 ws if ((lf->lf_start < start) &&
712 1.1 ws ((lf->lf_end >= start) || (lf->lf_end == -1))) {
713 1.1 ws /* Case 4 */
714 1.1 ws #ifdef LOCKF_DEBUG
715 1.1 ws if (lockf_debug & 2)
716 1.9 christos printf("overlap starts before lock\n");
717 1.1 ws #endif /* LOCKF_DEBUG */
718 1.1 ws return (4);
719 1.1 ws }
720 1.1 ws if ((lf->lf_start > start) &&
721 1.1 ws (end != -1) &&
722 1.1 ws ((lf->lf_end > end) || (lf->lf_end == -1))) {
723 1.1 ws /* Case 5 */
724 1.1 ws #ifdef LOCKF_DEBUG
725 1.1 ws if (lockf_debug & 2)
726 1.9 christos printf("overlap ends after lock\n");
727 1.1 ws #endif /* LOCKF_DEBUG */
728 1.1 ws return (5);
729 1.1 ws }
730 1.1 ws panic("lf_findoverlap: default");
731 1.1 ws }
732 1.1 ws return (0);
733 1.1 ws }
734 1.1 ws
735 1.1 ws /*
736 1.1 ws * Split a lock and a contained region into
737 1.1 ws * two or three locks as necessary.
738 1.1 ws */
739 1.24 yamt static void
740 1.27 yamt lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
741 1.1 ws {
742 1.15 augustss struct lockf *splitlock;
743 1.1 ws
744 1.1 ws #ifdef LOCKF_DEBUG
745 1.1 ws if (lockf_debug & 2) {
746 1.1 ws lf_print("lf_split", lock1);
747 1.1 ws lf_print("splitting from", lock2);
748 1.1 ws }
749 1.1 ws #endif /* LOCKF_DEBUG */
750 1.1 ws /*
751 1.1 ws * Check to see if spliting into only two pieces.
752 1.1 ws */
753 1.1 ws if (lock1->lf_start == lock2->lf_start) {
754 1.1 ws lock1->lf_start = lock2->lf_end + 1;
755 1.1 ws lock2->lf_next = lock1;
756 1.1 ws return;
757 1.1 ws }
758 1.1 ws if (lock1->lf_end == lock2->lf_end) {
759 1.1 ws lock1->lf_end = lock2->lf_start - 1;
760 1.1 ws lock2->lf_next = lock1->lf_next;
761 1.1 ws lock1->lf_next = lock2;
762 1.1 ws return;
763 1.1 ws }
764 1.1 ws /*
765 1.1 ws * Make a new lock consisting of the last part of
766 1.1 ws * the encompassing lock
767 1.1 ws */
768 1.27 yamt splitlock = *sparelock;
769 1.27 yamt *sparelock = NULL;
770 1.14 perry memcpy((caddr_t)splitlock, (caddr_t)lock1, sizeof(*splitlock));
771 1.1 ws splitlock->lf_start = lock2->lf_end + 1;
772 1.12 fvdl TAILQ_INIT(&splitlock->lf_blkhd);
773 1.1 ws lock1->lf_end = lock2->lf_start - 1;
774 1.1 ws /*
775 1.1 ws * OK, now link it in
776 1.1 ws */
777 1.1 ws splitlock->lf_next = lock1->lf_next;
778 1.1 ws lock2->lf_next = splitlock;
779 1.1 ws lock1->lf_next = lock2;
780 1.1 ws }
781 1.1 ws
782 1.1 ws /*
783 1.1 ws * Wakeup a blocklist
784 1.1 ws */
785 1.24 yamt static void
786 1.25 yamt lf_wakelock(struct lockf *listhead)
787 1.1 ws {
788 1.15 augustss struct lockf *wakelock;
789 1.1 ws
790 1.19 matt while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
791 1.16 sommerfe KASSERT(wakelock->lf_next == listhead);
792 1.12 fvdl TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
793 1.1 ws wakelock->lf_next = NOLOCKF;
794 1.1 ws #ifdef LOCKF_DEBUG
795 1.1 ws if (lockf_debug & 2)
796 1.1 ws lf_print("lf_wakelock: awakening", wakelock);
797 1.12 fvdl #endif
798 1.1 ws wakeup((caddr_t)wakelock);
799 1.1 ws }
800 1.1 ws }
801 1.1 ws
802 1.1 ws #ifdef LOCKF_DEBUG
803 1.1 ws /*
804 1.1 ws * Print out a lock.
805 1.1 ws */
806 1.24 yamt static void
807 1.25 yamt lf_print(char *tag, struct lockf *lock)
808 1.1 ws {
809 1.1 ws
810 1.9 christos printf("%s: lock %p for ", tag, lock);
811 1.1 ws if (lock->lf_flags & F_POSIX)
812 1.23 mycroft printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
813 1.1 ws else
814 1.23 mycroft printf("file 0x%p", (struct file *)lock->lf_id);
815 1.11 jtk printf(" %s, start %qx, end %qx",
816 1.1 ws lock->lf_type == F_RDLCK ? "shared" :
817 1.1 ws lock->lf_type == F_WRLCK ? "exclusive" :
818 1.1 ws lock->lf_type == F_UNLCK ? "unlock" :
819 1.1 ws "unknown", lock->lf_start, lock->lf_end);
820 1.19 matt if (TAILQ_FIRST(&lock->lf_blkhd))
821 1.19 matt printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
822 1.1 ws else
823 1.9 christos printf("\n");
824 1.1 ws }
825 1.1 ws
826 1.24 yamt static void
827 1.25 yamt lf_printlist(char *tag, struct lockf *lock)
828 1.1 ws {
829 1.15 augustss struct lockf *lf, *blk;
830 1.1 ws
831 1.11 jtk printf("%s: Lock list:\n", tag);
832 1.12 fvdl for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
833 1.9 christos printf("\tlock %p for ", lf);
834 1.1 ws if (lf->lf_flags & F_POSIX)
835 1.23 mycroft printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
836 1.1 ws else
837 1.23 mycroft printf("file 0x%p", (struct file *)lf->lf_id);
838 1.11 jtk printf(", %s, start %qx, end %qx",
839 1.1 ws lf->lf_type == F_RDLCK ? "shared" :
840 1.1 ws lf->lf_type == F_WRLCK ? "exclusive" :
841 1.1 ws lf->lf_type == F_UNLCK ? "unlock" :
842 1.1 ws "unknown", lf->lf_start, lf->lf_end);
843 1.19 matt TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
844 1.12 fvdl if (blk->lf_flags & F_POSIX)
845 1.12 fvdl printf("proc %d",
846 1.23 mycroft ((struct proc *)blk->lf_id)->p_pid);
847 1.12 fvdl else
848 1.23 mycroft printf("file 0x%p", (struct file *)blk->lf_id);
849 1.12 fvdl printf(", %s, start %qx, end %qx",
850 1.12 fvdl blk->lf_type == F_RDLCK ? "shared" :
851 1.12 fvdl blk->lf_type == F_WRLCK ? "exclusive" :
852 1.12 fvdl blk->lf_type == F_UNLCK ? "unlock" :
853 1.12 fvdl "unknown", blk->lf_start, blk->lf_end);
854 1.19 matt if (TAILQ_FIRST(&blk->lf_blkhd))
855 1.12 fvdl panic("lf_printlist: bad list");
856 1.12 fvdl }
857 1.12 fvdl printf("\n");
858 1.1 ws }
859 1.1 ws }
860 1.1 ws #endif /* LOCKF_DEBUG */
861