Home | History | Annotate | Line # | Download | only in kern
vfs_lockf.c revision 1.33
      1  1.33       agc /*	$NetBSD: vfs_lockf.c,v 1.33 2003/08/07 16:32:02 agc Exp $	*/
      2   1.5       cgd 
      3   1.1        ws /*
      4   1.4   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
      5   1.4   mycroft  *	The Regents of the University of California.  All rights reserved.
      6   1.1        ws  *
      7   1.1        ws  * This code is derived from software contributed to Berkeley by
      8   1.1        ws  * Scooter Morris at Genentech Inc.
      9   1.1        ws  *
     10   1.1        ws  * Redistribution and use in source and binary forms, with or without
     11   1.1        ws  * modification, are permitted provided that the following conditions
     12   1.1        ws  * are met:
     13   1.1        ws  * 1. Redistributions of source code must retain the above copyright
     14   1.1        ws  *    notice, this list of conditions and the following disclaimer.
     15   1.1        ws  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1        ws  *    notice, this list of conditions and the following disclaimer in the
     17   1.1        ws  *    documentation and/or other materials provided with the distribution.
     18  1.33       agc  * 3. Neither the name of the University nor the names of its contributors
     19   1.1        ws  *    may be used to endorse or promote products derived from this software
     20   1.1        ws  *    without specific prior written permission.
     21   1.1        ws  *
     22   1.1        ws  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23   1.1        ws  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24   1.1        ws  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25   1.1        ws  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26   1.1        ws  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27   1.1        ws  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28   1.1        ws  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29   1.1        ws  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30   1.1        ws  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31   1.1        ws  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32   1.1        ws  * SUCH DAMAGE.
     33   1.1        ws  *
     34  1.12      fvdl  *	@(#)ufs_lockf.c	8.4 (Berkeley) 10/26/94
     35   1.1        ws  */
     36  1.18     lukem 
     37  1.18     lukem #include <sys/cdefs.h>
     38  1.33       agc __KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.33 2003/08/07 16:32:02 agc Exp $");
     39   1.1        ws 
     40   1.1        ws #include <sys/param.h>
     41   1.1        ws #include <sys/systm.h>
     42   1.1        ws #include <sys/kernel.h>
     43   1.1        ws #include <sys/file.h>
     44   1.1        ws #include <sys/proc.h>
     45   1.1        ws #include <sys/vnode.h>
     46   1.1        ws #include <sys/malloc.h>
     47   1.1        ws #include <sys/fcntl.h>
     48   1.1        ws #include <sys/lockf.h>
     49  1.22   thorpej 
     50  1.22   thorpej MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures");
     51   1.1        ws 
     52   1.1        ws /*
     53   1.6   mycroft  * This variable controls the maximum number of processes that will
     54   1.6   mycroft  * be checked in doing deadlock detection.
     55   1.6   mycroft  */
     56   1.6   mycroft int maxlockdepth = MAXDEPTH;
     57   1.6   mycroft 
     58   1.6   mycroft #ifdef LOCKF_DEBUG
     59   1.6   mycroft int	lockf_debug = 0;
     60   1.6   mycroft #endif
     61   1.6   mycroft 
     62   1.6   mycroft #define NOLOCKF (struct lockf *)0
     63   1.6   mycroft #define SELF	0x1
     64   1.6   mycroft #define OTHERS	0x2
     65   1.6   mycroft 
     66  1.27      yamt static int lf_clearlock(struct lockf *, struct lockf **);
     67  1.25      yamt static int lf_findoverlap(struct lockf *,
     68  1.25      yamt 	    struct lockf *, int, struct lockf ***, struct lockf **);
     69  1.25      yamt static struct lockf *lf_getblock(struct lockf *);
     70  1.25      yamt static int lf_getlock(struct lockf *, struct flock *);
     71  1.27      yamt static int lf_setlock(struct lockf *, struct lockf **, struct simplelock *);
     72  1.27      yamt static void lf_split(struct lockf *, struct lockf *, struct lockf **);
     73  1.25      yamt static void lf_wakelock(struct lockf *);
     74  1.24      yamt 
     75  1.24      yamt #ifdef LOCKF_DEBUG
     76  1.25      yamt static void lf_print(char *, struct lockf *);
     77  1.25      yamt static void lf_printlist(char *, struct lockf *);
     78  1.24      yamt #endif
     79  1.24      yamt 
     80   1.6   mycroft /*
     81  1.16  sommerfe  * XXX TODO
     82  1.16  sommerfe  * Misc cleanups: "caddr_t id" should be visible in the API as a
     83  1.16  sommerfe  * "struct proc *".
     84  1.16  sommerfe  * (This requires rototilling all VFS's which support advisory locking).
     85  1.16  sommerfe  *
     86  1.16  sommerfe  * Use pools for lock allocation.
     87  1.16  sommerfe  */
     88  1.16  sommerfe 
     89  1.16  sommerfe /*
     90  1.16  sommerfe  * If there's a lot of lock contention on a single vnode, locking
     91  1.16  sommerfe  * schemes which allow for more paralleism would be needed.  Given how
     92  1.16  sommerfe  * infrequently byte-range locks are actually used in typical BSD
     93  1.16  sommerfe  * code, a more complex approach probably isn't worth it.
     94  1.16  sommerfe  */
     95  1.16  sommerfe 
     96  1.16  sommerfe /*
     97   1.4   mycroft  * Do an advisory lock operation.
     98   1.1        ws  */
     99   1.4   mycroft int
    100  1.25      yamt lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
    101   1.1        ws {
    102  1.17  jdolecek 	struct flock *fl = ap->a_fl;
    103  1.27      yamt 	struct lockf *lock = NULL;
    104  1.27      yamt 	struct lockf *sparelock;
    105  1.30      yamt 	struct simplelock *interlock = &ap->a_vp->v_interlock;
    106   1.1        ws 	off_t start, end;
    107   1.1        ws 	int error;
    108   1.1        ws 
    109   1.1        ws 	/*
    110   1.1        ws 	 * Convert the flock structure into a start and end.
    111   1.1        ws 	 */
    112   1.1        ws 	switch (fl->l_whence) {
    113   1.1        ws 	case SEEK_SET:
    114   1.1        ws 	case SEEK_CUR:
    115   1.1        ws 		/*
    116   1.1        ws 		 * Caller is responsible for adding any necessary offset
    117   1.1        ws 		 * when SEEK_CUR is used.
    118   1.1        ws 		 */
    119   1.1        ws 		start = fl->l_start;
    120   1.1        ws 		break;
    121   1.1        ws 
    122   1.1        ws 	case SEEK_END:
    123   1.1        ws 		start = size + fl->l_start;
    124   1.1        ws 		break;
    125   1.1        ws 
    126   1.1        ws 	default:
    127  1.29      yamt 		return EINVAL;
    128   1.1        ws 	}
    129   1.1        ws 	if (start < 0)
    130  1.29      yamt 		return EINVAL;
    131  1.10    kleink 
    132  1.10    kleink 	/*
    133  1.27      yamt 	 * allocate locks before acquire simple lock.
    134  1.27      yamt 	 * we need two locks in the worst case.
    135  1.27      yamt 	 */
    136  1.27      yamt 	switch (ap->a_op) {
    137  1.27      yamt 	case F_SETLK:
    138  1.27      yamt 	case F_UNLCK:
    139  1.27      yamt 		/*
    140  1.27      yamt 		 * XXX for F_UNLCK case, we can re-use lock.
    141  1.27      yamt 		 */
    142  1.27      yamt 		if ((fl->l_type & F_FLOCK) == 0) {
    143  1.27      yamt 			/*
    144  1.27      yamt 			 * byte-range lock might need one more lock.
    145  1.27      yamt 			 */
    146  1.27      yamt 			MALLOC(sparelock, struct lockf *, sizeof(*lock),
    147  1.27      yamt 			    M_LOCKF, M_WAITOK);
    148  1.27      yamt 			if (sparelock == NULL) {
    149  1.27      yamt 				error = ENOMEM;
    150  1.27      yamt 				goto quit;
    151  1.27      yamt 			}
    152  1.27      yamt 			break;
    153  1.27      yamt 		}
    154  1.27      yamt 		/* FALLTHROUGH */
    155  1.27      yamt 
    156  1.27      yamt 	case F_GETLK:
    157  1.27      yamt 		sparelock = NULL;
    158  1.27      yamt 		break;
    159  1.27      yamt 
    160  1.27      yamt 	default:
    161  1.29      yamt 		return EINVAL;
    162  1.27      yamt 	}
    163  1.27      yamt 
    164  1.27      yamt 	MALLOC(lock, struct lockf *, sizeof(*lock), M_LOCKF, M_WAITOK);
    165  1.27      yamt 	if (lock == NULL) {
    166  1.27      yamt 		error = ENOMEM;
    167  1.27      yamt 		goto quit;
    168  1.27      yamt 	}
    169  1.27      yamt 
    170  1.30      yamt 	simple_lock(interlock);
    171  1.27      yamt 
    172  1.27      yamt 	/*
    173  1.10    kleink 	 * Avoid the common case of unlocking when inode has no locks.
    174  1.10    kleink 	 */
    175  1.10    kleink 	if (*head == (struct lockf *)0) {
    176  1.17  jdolecek 		if (ap->a_op != F_SETLK) {
    177  1.10    kleink 			fl->l_type = F_UNLCK;
    178  1.27      yamt 			error = 0;
    179  1.27      yamt 			goto quit_unlock;
    180  1.10    kleink 		}
    181  1.10    kleink 	}
    182  1.10    kleink 
    183   1.1        ws 	if (fl->l_len == 0)
    184   1.1        ws 		end = -1;
    185   1.1        ws 	else
    186   1.1        ws 		end = start + fl->l_len - 1;
    187   1.1        ws 	/*
    188   1.4   mycroft 	 * Create the lockf structure.
    189   1.1        ws 	 */
    190   1.1        ws 	lock->lf_start = start;
    191   1.1        ws 	lock->lf_end = end;
    192  1.21   thorpej 	/* XXX NJWLWP
    193  1.21   thorpej 	 * I don't want to make the entire VFS universe use LWPs, because
    194  1.21   thorpej 	 * they don't need them, for the most part. This is an exception,
    195  1.21   thorpej 	 * and a kluge.
    196  1.21   thorpej 	 */
    197  1.21   thorpej 
    198   1.1        ws 	lock->lf_head = head;
    199   1.1        ws 	lock->lf_type = fl->l_type;
    200   1.1        ws 	lock->lf_next = (struct lockf *)0;
    201  1.12      fvdl 	TAILQ_INIT(&lock->lf_blkhd);
    202  1.17  jdolecek 	lock->lf_flags = ap->a_flags;
    203  1.21   thorpej 	if (lock->lf_flags & F_POSIX) {
    204  1.21   thorpej 		KASSERT(curproc == (struct proc *)ap->a_id);
    205  1.21   thorpej 	}
    206  1.23   mycroft 	lock->lf_id = (struct proc *)ap->a_id;
    207  1.23   mycroft 	lock->lf_lwp = curlwp;
    208  1.21   thorpej 
    209   1.1        ws 	/*
    210   1.1        ws 	 * Do the requested operation.
    211   1.1        ws 	 */
    212  1.17  jdolecek 	switch (ap->a_op) {
    213   1.4   mycroft 
    214   1.1        ws 	case F_SETLK:
    215  1.30      yamt 		error = lf_setlock(lock, &sparelock, interlock);
    216  1.27      yamt 		lock = NULL; /* lf_setlock freed it */
    217  1.27      yamt 		break;
    218   1.1        ws 
    219   1.1        ws 	case F_UNLCK:
    220  1.27      yamt 		error = lf_clearlock(lock, &sparelock);
    221  1.27      yamt 		break;
    222   1.1        ws 
    223   1.1        ws 	case F_GETLK:
    224   1.1        ws 		error = lf_getlock(lock, fl);
    225  1.27      yamt 		break;
    226   1.4   mycroft 
    227   1.1        ws 	default:
    228  1.31      fvdl 		break;
    229  1.27      yamt 		/* NOTREACHED */
    230  1.27      yamt 	}
    231  1.27      yamt 
    232  1.27      yamt quit_unlock:
    233  1.30      yamt 	simple_unlock(interlock);
    234  1.27      yamt quit:
    235  1.27      yamt 	if (lock)
    236   1.4   mycroft 		FREE(lock, M_LOCKF);
    237  1.27      yamt 	if (sparelock)
    238  1.27      yamt 		FREE(sparelock, M_LOCKF);
    239  1.27      yamt 
    240  1.29      yamt 	return error;
    241   1.1        ws }
    242   1.1        ws 
    243   1.1        ws /*
    244   1.1        ws  * Set a byte-range lock.
    245   1.1        ws  */
    246  1.24      yamt static int
    247  1.27      yamt lf_setlock(struct lockf *lock, struct lockf **sparelock,
    248  1.27      yamt     struct simplelock *interlock)
    249   1.1        ws {
    250  1.15  augustss 	struct lockf *block;
    251   1.1        ws 	struct lockf **head = lock->lf_head;
    252   1.1        ws 	struct lockf **prev, *overlap, *ltmp;
    253   1.1        ws 	static char lockstr[] = "lockf";
    254   1.1        ws 	int ovcase, priority, needtolink, error;
    255   1.1        ws 
    256   1.1        ws #ifdef LOCKF_DEBUG
    257   1.1        ws 	if (lockf_debug & 1)
    258   1.1        ws 		lf_print("lf_setlock", lock);
    259   1.1        ws #endif /* LOCKF_DEBUG */
    260   1.1        ws 
    261   1.1        ws 	/*
    262   1.1        ws 	 * Set the priority
    263   1.1        ws 	 */
    264   1.1        ws 	priority = PLOCK;
    265   1.1        ws 	if (lock->lf_type == F_WRLCK)
    266   1.1        ws 		priority += 4;
    267   1.1        ws 	priority |= PCATCH;
    268   1.1        ws 	/*
    269   1.1        ws 	 * Scan lock list for this file looking for locks that would block us.
    270   1.1        ws 	 */
    271   1.7  christos 	while ((block = lf_getblock(lock)) != NULL) {
    272   1.1        ws 		/*
    273   1.1        ws 		 * Free the structure and return if nonblocking.
    274   1.1        ws 		 */
    275   1.1        ws 		if ((lock->lf_flags & F_WAIT) == 0) {
    276   1.1        ws 			FREE(lock, M_LOCKF);
    277  1.29      yamt 			return EAGAIN;
    278   1.1        ws 		}
    279   1.1        ws 		/*
    280   1.1        ws 		 * We are blocked. Since flock style locks cover
    281   1.1        ws 		 * the whole file, there is no chance for deadlock.
    282   1.1        ws 		 * For byte-range locks we must check for deadlock.
    283   1.1        ws 		 *
    284   1.1        ws 		 * Deadlock detection is done by looking through the
    285   1.1        ws 		 * wait channels to see if there are any cycles that
    286   1.1        ws 		 * involve us. MAXDEPTH is set just to make sure we
    287  1.16  sommerfe 		 * do not go off into neverneverland.
    288   1.1        ws 		 */
    289   1.1        ws 		if ((lock->lf_flags & F_POSIX) &&
    290   1.1        ws 		    (block->lf_flags & F_POSIX)) {
    291  1.21   thorpej 			struct lwp *wlwp;
    292  1.15  augustss 			struct lockf *waitblock;
    293   1.1        ws 			int i = 0;
    294   1.1        ws 
    295  1.23   mycroft 			/*
    296  1.23   mycroft 			 * The block is waiting on something.  if_lwp will be
    297  1.23   mycroft 			 * 0 once the lock is granted, so we terminate the
    298  1.23   mycroft 			 * loop if we find this.
    299  1.23   mycroft 			 */
    300  1.23   mycroft 			wlwp = block->lf_lwp;
    301  1.23   mycroft 			while (wlwp && (i++ < maxlockdepth)) {
    302  1.21   thorpej 				waitblock = (struct lockf *)wlwp->l_wchan;
    303   1.1        ws 				/* Get the owner of the blocking lock */
    304   1.1        ws 				waitblock = waitblock->lf_next;
    305   1.1        ws 				if ((waitblock->lf_flags & F_POSIX) == 0)
    306   1.1        ws 					break;
    307  1.23   mycroft 				wlwp = waitblock->lf_lwp;
    308  1.23   mycroft 				if (wlwp == lock->lf_lwp) {
    309  1.32      yamt 					free(lock, M_LOCKF);
    310  1.29      yamt 					return EDEADLK;
    311   1.1        ws 				}
    312   1.1        ws 			}
    313  1.16  sommerfe 			/*
    314  1.16  sommerfe 			 * If we're still following a dependancy chain
    315  1.16  sommerfe 			 * after maxlockdepth iterations, assume we're in
    316  1.16  sommerfe 			 * a cycle to be safe.
    317  1.16  sommerfe 			 */
    318  1.16  sommerfe 			if (i >= maxlockdepth) {
    319  1.32      yamt 				free(lock, M_LOCKF);
    320  1.29      yamt 				return EDEADLK;
    321  1.16  sommerfe 			}
    322   1.1        ws 		}
    323   1.1        ws 		/*
    324   1.1        ws 		 * For flock type locks, we must first remove
    325   1.1        ws 		 * any shared locks that we hold before we sleep
    326   1.1        ws 		 * waiting for an exclusive lock.
    327   1.1        ws 		 */
    328   1.1        ws 		if ((lock->lf_flags & F_FLOCK) &&
    329   1.1        ws 		    lock->lf_type == F_WRLCK) {
    330   1.1        ws 			lock->lf_type = F_UNLCK;
    331  1.27      yamt 			(void) lf_clearlock(lock, NULL);
    332   1.1        ws 			lock->lf_type = F_WRLCK;
    333   1.1        ws 		}
    334   1.1        ws 		/*
    335   1.1        ws 		 * Add our lock to the blocked list and sleep until we're free.
    336   1.1        ws 		 * Remember who blocked us (for deadlock detection).
    337   1.1        ws 		 */
    338   1.1        ws 		lock->lf_next = block;
    339  1.12      fvdl 		TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
    340   1.1        ws #ifdef LOCKF_DEBUG
    341   1.1        ws 		if (lockf_debug & 1) {
    342   1.1        ws 			lf_print("lf_setlock: blocking on", block);
    343   1.1        ws 			lf_printlist("lf_setlock", block);
    344   1.1        ws 		}
    345   1.1        ws #endif /* LOCKF_DEBUG */
    346  1.27      yamt 		error = ltsleep(lock, priority, lockstr, 0, interlock);
    347  1.16  sommerfe 
    348  1.16  sommerfe 		/*
    349  1.16  sommerfe 		 * We may have been awakened by a signal (in
    350  1.16  sommerfe 		 * which case we must remove ourselves from the
    351  1.16  sommerfe 		 * blocked list) and/or by another process
    352  1.16  sommerfe 		 * releasing a lock (in which case we have already
    353  1.16  sommerfe 		 * been removed from the blocked list and our
    354  1.16  sommerfe 		 * lf_next field set to NOLOCKF).
    355  1.16  sommerfe 		 */
    356  1.16  sommerfe 		if (lock->lf_next != NOLOCKF) {
    357  1.16  sommerfe 			TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
    358  1.16  sommerfe 			lock->lf_next = NOLOCKF;
    359  1.16  sommerfe 		}
    360   1.7  christos 		if (error) {
    361  1.32      yamt 			free(lock, M_LOCKF);
    362  1.29      yamt 			return error;
    363   1.1        ws 		}
    364   1.1        ws 	}
    365   1.1        ws 	/*
    366   1.1        ws 	 * No blocks!!  Add the lock.  Note that we will
    367   1.1        ws 	 * downgrade or upgrade any overlapping locks this
    368   1.1        ws 	 * process already owns.
    369   1.1        ws 	 *
    370   1.1        ws 	 * Skip over locks owned by other processes.
    371   1.1        ws 	 * Handle any locks that overlap and are owned by ourselves.
    372   1.1        ws 	 */
    373  1.23   mycroft 	lock->lf_lwp = 0;
    374   1.1        ws 	prev = head;
    375   1.1        ws 	block = *head;
    376   1.1        ws 	needtolink = 1;
    377   1.1        ws 	for (;;) {
    378   1.7  christos 		ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
    379   1.7  christos 		if (ovcase)
    380   1.1        ws 			block = overlap->lf_next;
    381   1.1        ws 		/*
    382   1.1        ws 		 * Six cases:
    383   1.1        ws 		 *	0) no overlap
    384   1.1        ws 		 *	1) overlap == lock
    385   1.1        ws 		 *	2) overlap contains lock
    386   1.1        ws 		 *	3) lock contains overlap
    387   1.1        ws 		 *	4) overlap starts before lock
    388   1.1        ws 		 *	5) overlap ends after lock
    389   1.1        ws 		 */
    390   1.1        ws 		switch (ovcase) {
    391   1.1        ws 		case 0: /* no overlap */
    392   1.1        ws 			if (needtolink) {
    393   1.1        ws 				*prev = lock;
    394   1.1        ws 				lock->lf_next = overlap;
    395   1.1        ws 			}
    396   1.1        ws 			break;
    397   1.1        ws 
    398   1.1        ws 		case 1: /* overlap == lock */
    399   1.1        ws 			/*
    400   1.1        ws 			 * If downgrading lock, others may be
    401   1.1        ws 			 * able to acquire it.
    402   1.1        ws 			 */
    403   1.1        ws 			if (lock->lf_type == F_RDLCK &&
    404   1.1        ws 			    overlap->lf_type == F_WRLCK)
    405   1.1        ws 				lf_wakelock(overlap);
    406   1.1        ws 			overlap->lf_type = lock->lf_type;
    407   1.1        ws 			FREE(lock, M_LOCKF);
    408   1.1        ws 			lock = overlap; /* for debug output below */
    409   1.1        ws 			break;
    410   1.1        ws 
    411   1.1        ws 		case 2: /* overlap contains lock */
    412   1.1        ws 			/*
    413   1.1        ws 			 * Check for common starting point and different types.
    414   1.1        ws 			 */
    415   1.1        ws 			if (overlap->lf_type == lock->lf_type) {
    416  1.32      yamt 				free(lock, M_LOCKF);
    417   1.1        ws 				lock = overlap; /* for debug output below */
    418   1.1        ws 				break;
    419   1.1        ws 			}
    420   1.1        ws 			if (overlap->lf_start == lock->lf_start) {
    421   1.1        ws 				*prev = lock;
    422   1.1        ws 				lock->lf_next = overlap;
    423   1.1        ws 				overlap->lf_start = lock->lf_end + 1;
    424   1.1        ws 			} else
    425  1.27      yamt 				lf_split(overlap, lock, sparelock);
    426   1.1        ws 			lf_wakelock(overlap);
    427   1.1        ws 			break;
    428   1.1        ws 
    429   1.1        ws 		case 3: /* lock contains overlap */
    430   1.1        ws 			/*
    431   1.1        ws 			 * If downgrading lock, others may be able to
    432   1.1        ws 			 * acquire it, otherwise take the list.
    433   1.1        ws 			 */
    434   1.1        ws 			if (lock->lf_type == F_RDLCK &&
    435   1.1        ws 			    overlap->lf_type == F_WRLCK) {
    436   1.1        ws 				lf_wakelock(overlap);
    437   1.1        ws 			} else {
    438  1.19      matt 				while ((ltmp = TAILQ_FIRST(&overlap->lf_blkhd))) {
    439  1.16  sommerfe 					KASSERT(ltmp->lf_next == overlap);
    440  1.12      fvdl 					TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
    441  1.12      fvdl 					    lf_block);
    442  1.16  sommerfe 					ltmp->lf_next = lock;
    443  1.12      fvdl 					TAILQ_INSERT_TAIL(&lock->lf_blkhd,
    444  1.12      fvdl 					    ltmp, lf_block);
    445  1.12      fvdl 				}
    446   1.1        ws 			}
    447   1.1        ws 			/*
    448   1.1        ws 			 * Add the new lock if necessary and delete the overlap.
    449   1.1        ws 			 */
    450   1.1        ws 			if (needtolink) {
    451   1.1        ws 				*prev = lock;
    452   1.1        ws 				lock->lf_next = overlap->lf_next;
    453   1.1        ws 				prev = &lock->lf_next;
    454   1.1        ws 				needtolink = 0;
    455   1.1        ws 			} else
    456   1.1        ws 				*prev = overlap->lf_next;
    457  1.32      yamt 			free(overlap, M_LOCKF);
    458   1.1        ws 			continue;
    459   1.1        ws 
    460   1.1        ws 		case 4: /* overlap starts before lock */
    461   1.1        ws 			/*
    462   1.1        ws 			 * Add lock after overlap on the list.
    463   1.1        ws 			 */
    464   1.1        ws 			lock->lf_next = overlap->lf_next;
    465   1.1        ws 			overlap->lf_next = lock;
    466   1.1        ws 			overlap->lf_end = lock->lf_start - 1;
    467   1.1        ws 			prev = &lock->lf_next;
    468   1.1        ws 			lf_wakelock(overlap);
    469   1.1        ws 			needtolink = 0;
    470   1.1        ws 			continue;
    471   1.1        ws 
    472   1.1        ws 		case 5: /* overlap ends after lock */
    473   1.1        ws 			/*
    474   1.1        ws 			 * Add the new lock before overlap.
    475   1.1        ws 			 */
    476   1.1        ws 			if (needtolink) {
    477   1.1        ws 				*prev = lock;
    478   1.1        ws 				lock->lf_next = overlap;
    479   1.1        ws 			}
    480   1.1        ws 			overlap->lf_start = lock->lf_end + 1;
    481   1.1        ws 			lf_wakelock(overlap);
    482   1.1        ws 			break;
    483   1.1        ws 		}
    484   1.1        ws 		break;
    485   1.1        ws 	}
    486   1.1        ws #ifdef LOCKF_DEBUG
    487   1.1        ws 	if (lockf_debug & 1) {
    488   1.1        ws 		lf_print("lf_setlock: got the lock", lock);
    489   1.1        ws 		lf_printlist("lf_setlock", lock);
    490   1.1        ws 	}
    491   1.1        ws #endif /* LOCKF_DEBUG */
    492  1.29      yamt 	return 0;
    493   1.1        ws }
    494   1.1        ws 
    495   1.1        ws /*
    496   1.1        ws  * Remove a byte-range lock on an inode.
    497   1.1        ws  *
    498   1.1        ws  * Generally, find the lock (or an overlap to that lock)
    499   1.1        ws  * and remove it (or shrink it), then wakeup anyone we can.
    500   1.1        ws  */
    501  1.24      yamt static int
    502  1.27      yamt lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
    503   1.1        ws {
    504   1.1        ws 	struct lockf **head = unlock->lf_head;
    505  1.15  augustss 	struct lockf *lf = *head;
    506   1.1        ws 	struct lockf *overlap, **prev;
    507   1.1        ws 	int ovcase;
    508   1.1        ws 
    509   1.1        ws 	if (lf == NOLOCKF)
    510  1.29      yamt 		return 0;
    511   1.1        ws #ifdef LOCKF_DEBUG
    512   1.1        ws 	if (unlock->lf_type != F_UNLCK)
    513   1.1        ws 		panic("lf_clearlock: bad type");
    514   1.1        ws 	if (lockf_debug & 1)
    515   1.1        ws 		lf_print("lf_clearlock", unlock);
    516   1.1        ws #endif /* LOCKF_DEBUG */
    517   1.1        ws 	prev = head;
    518   1.7  christos 	while ((ovcase = lf_findoverlap(lf, unlock, SELF,
    519   1.7  christos 					&prev, &overlap)) != 0) {
    520   1.1        ws 		/*
    521   1.1        ws 		 * Wakeup the list of locks to be retried.
    522   1.1        ws 		 */
    523   1.1        ws 		lf_wakelock(overlap);
    524   1.1        ws 
    525   1.1        ws 		switch (ovcase) {
    526   1.1        ws 
    527   1.1        ws 		case 1: /* overlap == lock */
    528   1.1        ws 			*prev = overlap->lf_next;
    529   1.1        ws 			FREE(overlap, M_LOCKF);
    530   1.1        ws 			break;
    531   1.1        ws 
    532   1.1        ws 		case 2: /* overlap contains lock: split it */
    533   1.1        ws 			if (overlap->lf_start == unlock->lf_start) {
    534   1.1        ws 				overlap->lf_start = unlock->lf_end + 1;
    535   1.1        ws 				break;
    536   1.1        ws 			}
    537  1.27      yamt 			lf_split(overlap, unlock, sparelock);
    538   1.1        ws 			overlap->lf_next = unlock->lf_next;
    539   1.1        ws 			break;
    540   1.1        ws 
    541   1.1        ws 		case 3: /* lock contains overlap */
    542   1.1        ws 			*prev = overlap->lf_next;
    543   1.1        ws 			lf = overlap->lf_next;
    544  1.32      yamt 			free(overlap, M_LOCKF);
    545   1.1        ws 			continue;
    546   1.1        ws 
    547   1.1        ws 		case 4: /* overlap starts before lock */
    548   1.1        ws 			overlap->lf_end = unlock->lf_start - 1;
    549   1.1        ws 			prev = &overlap->lf_next;
    550   1.1        ws 			lf = overlap->lf_next;
    551   1.1        ws 			continue;
    552   1.1        ws 
    553   1.1        ws 		case 5: /* overlap ends after lock */
    554   1.1        ws 			overlap->lf_start = unlock->lf_end + 1;
    555   1.1        ws 			break;
    556   1.1        ws 		}
    557   1.1        ws 		break;
    558   1.1        ws 	}
    559   1.1        ws #ifdef LOCKF_DEBUG
    560   1.1        ws 	if (lockf_debug & 1)
    561   1.1        ws 		lf_printlist("lf_clearlock", unlock);
    562   1.1        ws #endif /* LOCKF_DEBUG */
    563  1.29      yamt 	return 0;
    564   1.1        ws }
    565   1.1        ws 
    566   1.1        ws /*
    567   1.1        ws  * Check whether there is a blocking lock,
    568   1.1        ws  * and if so return its process identifier.
    569   1.1        ws  */
    570  1.24      yamt static int
    571  1.25      yamt lf_getlock(struct lockf *lock, struct flock *fl)
    572   1.1        ws {
    573  1.15  augustss 	struct lockf *block;
    574   1.1        ws 
    575   1.1        ws #ifdef LOCKF_DEBUG
    576   1.1        ws 	if (lockf_debug & 1)
    577   1.1        ws 		lf_print("lf_getlock", lock);
    578   1.1        ws #endif /* LOCKF_DEBUG */
    579   1.1        ws 
    580   1.7  christos 	if ((block = lf_getblock(lock)) != NULL) {
    581   1.1        ws 		fl->l_type = block->lf_type;
    582   1.1        ws 		fl->l_whence = SEEK_SET;
    583   1.1        ws 		fl->l_start = block->lf_start;
    584   1.1        ws 		if (block->lf_end == -1)
    585   1.1        ws 			fl->l_len = 0;
    586   1.1        ws 		else
    587   1.1        ws 			fl->l_len = block->lf_end - block->lf_start + 1;
    588   1.1        ws 		if (block->lf_flags & F_POSIX)
    589  1.23   mycroft 			fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
    590   1.1        ws 		else
    591   1.1        ws 			fl->l_pid = -1;
    592   1.1        ws 	} else {
    593   1.1        ws 		fl->l_type = F_UNLCK;
    594   1.1        ws 	}
    595  1.29      yamt 	return 0;
    596   1.1        ws }
    597   1.1        ws 
    598   1.1        ws /*
    599   1.1        ws  * Walk the list of locks for an inode and
    600   1.1        ws  * return the first blocking lock.
    601   1.1        ws  */
    602  1.24      yamt static struct lockf *
    603  1.25      yamt lf_getblock(struct lockf *lock)
    604   1.1        ws {
    605   1.1        ws 	struct lockf **prev, *overlap, *lf = *(lock->lf_head);
    606   1.1        ws 
    607   1.1        ws 	prev = lock->lf_head;
    608  1.20    simonb 	while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
    609   1.1        ws 		/*
    610   1.1        ws 		 * We've found an overlap, see if it blocks us
    611   1.1        ws 		 */
    612   1.1        ws 		if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
    613  1.29      yamt 			return overlap;
    614   1.1        ws 		/*
    615   1.1        ws 		 * Nope, point to the next one on the list and
    616   1.1        ws 		 * see if it blocks us
    617   1.1        ws 		 */
    618   1.1        ws 		lf = overlap->lf_next;
    619   1.1        ws 	}
    620  1.29      yamt 	return NOLOCKF;
    621   1.1        ws }
    622   1.1        ws 
    623   1.1        ws /*
    624   1.1        ws  * Walk the list of locks for an inode to
    625   1.1        ws  * find an overlapping lock (if any).
    626   1.1        ws  *
    627   1.1        ws  * NOTE: this returns only the FIRST overlapping lock.  There
    628   1.1        ws  *	 may be more than one.
    629   1.1        ws  */
    630  1.24      yamt static int
    631  1.25      yamt lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
    632  1.25      yamt     struct lockf ***prev, struct lockf **overlap)
    633   1.1        ws {
    634   1.1        ws 	off_t start, end;
    635   1.1        ws 
    636   1.1        ws 	*overlap = lf;
    637   1.1        ws 	if (lf == NOLOCKF)
    638  1.29      yamt 		return 0;
    639   1.1        ws #ifdef LOCKF_DEBUG
    640   1.1        ws 	if (lockf_debug & 2)
    641   1.1        ws 		lf_print("lf_findoverlap: looking for overlap in", lock);
    642   1.1        ws #endif /* LOCKF_DEBUG */
    643   1.1        ws 	start = lock->lf_start;
    644   1.1        ws 	end = lock->lf_end;
    645   1.1        ws 	while (lf != NOLOCKF) {
    646  1.23   mycroft 		if (((type == SELF) && lf->lf_id != lock->lf_id) ||
    647  1.23   mycroft 		    ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
    648   1.1        ws 			*prev = &lf->lf_next;
    649   1.1        ws 			*overlap = lf = lf->lf_next;
    650   1.1        ws 			continue;
    651   1.1        ws 		}
    652   1.1        ws #ifdef LOCKF_DEBUG
    653   1.1        ws 		if (lockf_debug & 2)
    654   1.1        ws 			lf_print("\tchecking", lf);
    655   1.1        ws #endif /* LOCKF_DEBUG */
    656   1.1        ws 		/*
    657   1.1        ws 		 * OK, check for overlap
    658   1.1        ws 		 *
    659   1.1        ws 		 * Six cases:
    660   1.1        ws 		 *	0) no overlap
    661   1.1        ws 		 *	1) overlap == lock
    662   1.1        ws 		 *	2) overlap contains lock
    663   1.1        ws 		 *	3) lock contains overlap
    664   1.1        ws 		 *	4) overlap starts before lock
    665   1.1        ws 		 *	5) overlap ends after lock
    666   1.1        ws 		 */
    667   1.1        ws 		if ((lf->lf_end != -1 && start > lf->lf_end) ||
    668   1.1        ws 		    (end != -1 && lf->lf_start > end)) {
    669   1.1        ws 			/* Case 0 */
    670   1.1        ws #ifdef LOCKF_DEBUG
    671   1.1        ws 			if (lockf_debug & 2)
    672   1.9  christos 				printf("no overlap\n");
    673   1.1        ws #endif /* LOCKF_DEBUG */
    674   1.1        ws 			if ((type & SELF) && end != -1 && lf->lf_start > end)
    675  1.29      yamt 				return 0;
    676   1.1        ws 			*prev = &lf->lf_next;
    677   1.1        ws 			*overlap = lf = lf->lf_next;
    678   1.1        ws 			continue;
    679   1.1        ws 		}
    680   1.1        ws 		if ((lf->lf_start == start) && (lf->lf_end == end)) {
    681   1.1        ws 			/* Case 1 */
    682   1.1        ws #ifdef LOCKF_DEBUG
    683   1.1        ws 			if (lockf_debug & 2)
    684   1.9  christos 				printf("overlap == lock\n");
    685   1.1        ws #endif /* LOCKF_DEBUG */
    686  1.29      yamt 			return 1;
    687   1.1        ws 		}
    688   1.1        ws 		if ((lf->lf_start <= start) &&
    689   1.1        ws 		    (end != -1) &&
    690   1.1        ws 		    ((lf->lf_end >= end) || (lf->lf_end == -1))) {
    691   1.1        ws 			/* Case 2 */
    692   1.1        ws #ifdef LOCKF_DEBUG
    693   1.1        ws 			if (lockf_debug & 2)
    694   1.9  christos 				printf("overlap contains lock\n");
    695   1.1        ws #endif /* LOCKF_DEBUG */
    696  1.29      yamt 			return 2;
    697   1.1        ws 		}
    698   1.1        ws 		if (start <= lf->lf_start &&
    699   1.4   mycroft 		           (end == -1 ||
    700   1.1        ws 			   (lf->lf_end != -1 && end >= lf->lf_end))) {
    701   1.1        ws 			/* Case 3 */
    702   1.1        ws #ifdef LOCKF_DEBUG
    703   1.1        ws 			if (lockf_debug & 2)
    704   1.9  christos 				printf("lock contains overlap\n");
    705   1.1        ws #endif /* LOCKF_DEBUG */
    706  1.29      yamt 			return 3;
    707   1.1        ws 		}
    708   1.1        ws 		if ((lf->lf_start < start) &&
    709   1.1        ws 			((lf->lf_end >= start) || (lf->lf_end == -1))) {
    710   1.1        ws 			/* Case 4 */
    711   1.1        ws #ifdef LOCKF_DEBUG
    712   1.1        ws 			if (lockf_debug & 2)
    713   1.9  christos 				printf("overlap starts before lock\n");
    714   1.1        ws #endif /* LOCKF_DEBUG */
    715  1.29      yamt 			return 4;
    716   1.1        ws 		}
    717   1.1        ws 		if ((lf->lf_start > start) &&
    718   1.1        ws 			(end != -1) &&
    719   1.1        ws 			((lf->lf_end > end) || (lf->lf_end == -1))) {
    720   1.1        ws 			/* Case 5 */
    721   1.1        ws #ifdef LOCKF_DEBUG
    722   1.1        ws 			if (lockf_debug & 2)
    723   1.9  christos 				printf("overlap ends after lock\n");
    724   1.1        ws #endif /* LOCKF_DEBUG */
    725  1.29      yamt 			return 5;
    726   1.1        ws 		}
    727   1.1        ws 		panic("lf_findoverlap: default");
    728   1.1        ws 	}
    729  1.29      yamt 	return 0;
    730   1.1        ws }
    731   1.1        ws 
    732   1.1        ws /*
    733   1.1        ws  * Split a lock and a contained region into
    734   1.1        ws  * two or three locks as necessary.
    735   1.1        ws  */
    736  1.24      yamt static void
    737  1.27      yamt lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
    738   1.1        ws {
    739  1.15  augustss 	struct lockf *splitlock;
    740   1.1        ws 
    741   1.1        ws #ifdef LOCKF_DEBUG
    742   1.1        ws 	if (lockf_debug & 2) {
    743   1.1        ws 		lf_print("lf_split", lock1);
    744   1.1        ws 		lf_print("splitting from", lock2);
    745   1.1        ws 	}
    746   1.1        ws #endif /* LOCKF_DEBUG */
    747   1.1        ws 	/*
    748   1.1        ws 	 * Check to see if spliting into only two pieces.
    749   1.1        ws 	 */
    750   1.1        ws 	if (lock1->lf_start == lock2->lf_start) {
    751   1.1        ws 		lock1->lf_start = lock2->lf_end + 1;
    752   1.1        ws 		lock2->lf_next = lock1;
    753   1.1        ws 		return;
    754   1.1        ws 	}
    755   1.1        ws 	if (lock1->lf_end == lock2->lf_end) {
    756   1.1        ws 		lock1->lf_end = lock2->lf_start - 1;
    757   1.1        ws 		lock2->lf_next = lock1->lf_next;
    758   1.1        ws 		lock1->lf_next = lock2;
    759   1.1        ws 		return;
    760   1.1        ws 	}
    761   1.1        ws 	/*
    762   1.1        ws 	 * Make a new lock consisting of the last part of
    763   1.1        ws 	 * the encompassing lock
    764   1.1        ws 	 */
    765  1.27      yamt 	splitlock = *sparelock;
    766  1.27      yamt 	*sparelock = NULL;
    767  1.29      yamt 	memcpy(splitlock, lock1, sizeof(*splitlock));
    768   1.1        ws 	splitlock->lf_start = lock2->lf_end + 1;
    769  1.12      fvdl 	TAILQ_INIT(&splitlock->lf_blkhd);
    770   1.1        ws 	lock1->lf_end = lock2->lf_start - 1;
    771   1.1        ws 	/*
    772   1.1        ws 	 * OK, now link it in
    773   1.1        ws 	 */
    774   1.1        ws 	splitlock->lf_next = lock1->lf_next;
    775   1.1        ws 	lock2->lf_next = splitlock;
    776   1.1        ws 	lock1->lf_next = lock2;
    777   1.1        ws }
    778   1.1        ws 
    779   1.1        ws /*
    780   1.1        ws  * Wakeup a blocklist
    781   1.1        ws  */
    782  1.24      yamt static void
    783  1.25      yamt lf_wakelock(struct lockf *listhead)
    784   1.1        ws {
    785  1.15  augustss 	struct lockf *wakelock;
    786   1.1        ws 
    787  1.19      matt 	while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
    788  1.16  sommerfe 		KASSERT(wakelock->lf_next == listhead);
    789  1.12      fvdl 		TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
    790   1.1        ws 		wakelock->lf_next = NOLOCKF;
    791   1.1        ws #ifdef LOCKF_DEBUG
    792   1.1        ws 		if (lockf_debug & 2)
    793   1.1        ws 			lf_print("lf_wakelock: awakening", wakelock);
    794  1.12      fvdl #endif
    795  1.29      yamt 		wakeup(wakelock);
    796   1.1        ws 	}
    797   1.1        ws }
    798   1.1        ws 
    799   1.1        ws #ifdef LOCKF_DEBUG
    800   1.1        ws /*
    801   1.1        ws  * Print out a lock.
    802   1.1        ws  */
    803  1.24      yamt static void
    804  1.25      yamt lf_print(char *tag, struct lockf *lock)
    805   1.1        ws {
    806   1.1        ws 
    807   1.9  christos 	printf("%s: lock %p for ", tag, lock);
    808   1.1        ws 	if (lock->lf_flags & F_POSIX)
    809  1.23   mycroft 		printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
    810   1.1        ws 	else
    811  1.23   mycroft 		printf("file 0x%p", (struct file *)lock->lf_id);
    812  1.11       jtk 	printf(" %s, start %qx, end %qx",
    813   1.1        ws 		lock->lf_type == F_RDLCK ? "shared" :
    814   1.1        ws 		lock->lf_type == F_WRLCK ? "exclusive" :
    815   1.1        ws 		lock->lf_type == F_UNLCK ? "unlock" :
    816   1.1        ws 		"unknown", lock->lf_start, lock->lf_end);
    817  1.19      matt 	if (TAILQ_FIRST(&lock->lf_blkhd))
    818  1.19      matt 		printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
    819   1.1        ws 	else
    820   1.9  christos 		printf("\n");
    821   1.1        ws }
    822   1.1        ws 
    823  1.24      yamt static void
    824  1.25      yamt lf_printlist(char *tag, struct lockf *lock)
    825   1.1        ws {
    826  1.15  augustss 	struct lockf *lf, *blk;
    827   1.1        ws 
    828  1.11       jtk 	printf("%s: Lock list:\n", tag);
    829  1.12      fvdl 	for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
    830   1.9  christos 		printf("\tlock %p for ", lf);
    831   1.1        ws 		if (lf->lf_flags & F_POSIX)
    832  1.23   mycroft 			printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
    833   1.1        ws 		else
    834  1.23   mycroft 			printf("file 0x%p", (struct file *)lf->lf_id);
    835  1.11       jtk 		printf(", %s, start %qx, end %qx",
    836   1.1        ws 			lf->lf_type == F_RDLCK ? "shared" :
    837   1.1        ws 			lf->lf_type == F_WRLCK ? "exclusive" :
    838   1.1        ws 			lf->lf_type == F_UNLCK ? "unlock" :
    839   1.1        ws 			"unknown", lf->lf_start, lf->lf_end);
    840  1.19      matt 		TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
    841  1.12      fvdl 			if (blk->lf_flags & F_POSIX)
    842  1.12      fvdl 				printf("proc %d",
    843  1.23   mycroft 				    ((struct proc *)blk->lf_id)->p_pid);
    844  1.12      fvdl 			else
    845  1.23   mycroft 				printf("file 0x%p", (struct file *)blk->lf_id);
    846  1.12      fvdl 			printf(", %s, start %qx, end %qx",
    847  1.12      fvdl 				blk->lf_type == F_RDLCK ? "shared" :
    848  1.12      fvdl 				blk->lf_type == F_WRLCK ? "exclusive" :
    849  1.12      fvdl 				blk->lf_type == F_UNLCK ? "unlock" :
    850  1.12      fvdl 				"unknown", blk->lf_start, blk->lf_end);
    851  1.19      matt 			if (TAILQ_FIRST(&blk->lf_blkhd))
    852  1.12      fvdl 				 panic("lf_printlist: bad list");
    853  1.12      fvdl 		}
    854  1.12      fvdl 		printf("\n");
    855   1.1        ws 	}
    856   1.1        ws }
    857   1.1        ws #endif /* LOCKF_DEBUG */
    858