Home | History | Annotate | Line # | Download | only in kern
vfs_lockf.c revision 1.36.4.1
      1  1.36.4.1      kent /*	$NetBSD: vfs_lockf.c,v 1.36.4.1 2005/04/29 11:29:24 kent Exp $	*/
      2       1.5       cgd 
      3       1.1        ws /*
      4       1.4   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
      5       1.4   mycroft  *	The Regents of the University of California.  All rights reserved.
      6       1.1        ws  *
      7       1.1        ws  * This code is derived from software contributed to Berkeley by
      8       1.1        ws  * Scooter Morris at Genentech Inc.
      9       1.1        ws  *
     10       1.1        ws  * Redistribution and use in source and binary forms, with or without
     11       1.1        ws  * modification, are permitted provided that the following conditions
     12       1.1        ws  * are met:
     13       1.1        ws  * 1. Redistributions of source code must retain the above copyright
     14       1.1        ws  *    notice, this list of conditions and the following disclaimer.
     15       1.1        ws  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.1        ws  *    notice, this list of conditions and the following disclaimer in the
     17       1.1        ws  *    documentation and/or other materials provided with the distribution.
     18      1.33       agc  * 3. Neither the name of the University nor the names of its contributors
     19       1.1        ws  *    may be used to endorse or promote products derived from this software
     20       1.1        ws  *    without specific prior written permission.
     21       1.1        ws  *
     22       1.1        ws  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23       1.1        ws  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24       1.1        ws  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25       1.1        ws  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26       1.1        ws  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27       1.1        ws  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28       1.1        ws  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29       1.1        ws  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30       1.1        ws  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31       1.1        ws  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32       1.1        ws  * SUCH DAMAGE.
     33       1.1        ws  *
     34      1.12      fvdl  *	@(#)ufs_lockf.c	8.4 (Berkeley) 10/26/94
     35       1.1        ws  */
     36      1.18     lukem 
     37      1.18     lukem #include <sys/cdefs.h>
     38  1.36.4.1      kent __KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.36.4.1 2005/04/29 11:29:24 kent Exp $");
     39       1.1        ws 
     40       1.1        ws #include <sys/param.h>
     41       1.1        ws #include <sys/systm.h>
     42       1.1        ws #include <sys/kernel.h>
     43       1.1        ws #include <sys/file.h>
     44       1.1        ws #include <sys/proc.h>
     45       1.1        ws #include <sys/vnode.h>
     46      1.35    simonb #include <sys/pool.h>
     47       1.1        ws #include <sys/fcntl.h>
     48       1.1        ws #include <sys/lockf.h>
     49      1.22   thorpej 
     50      1.35    simonb POOL_INIT(lockfpool, sizeof(struct lockf), 0, 0, 0, "lockfpl",
     51      1.35    simonb     &pool_allocator_nointr);
     52       1.1        ws 
     53       1.1        ws /*
     54       1.6   mycroft  * This variable controls the maximum number of processes that will
     55       1.6   mycroft  * be checked in doing deadlock detection.
     56       1.6   mycroft  */
     57       1.6   mycroft int maxlockdepth = MAXDEPTH;
     58       1.6   mycroft 
     59       1.6   mycroft #ifdef LOCKF_DEBUG
     60       1.6   mycroft int	lockf_debug = 0;
     61       1.6   mycroft #endif
     62       1.6   mycroft 
     63       1.6   mycroft #define NOLOCKF (struct lockf *)0
     64       1.6   mycroft #define SELF	0x1
     65       1.6   mycroft #define OTHERS	0x2
     66       1.6   mycroft 
     67      1.27      yamt static int lf_clearlock(struct lockf *, struct lockf **);
     68      1.25      yamt static int lf_findoverlap(struct lockf *,
     69      1.25      yamt 	    struct lockf *, int, struct lockf ***, struct lockf **);
     70      1.25      yamt static struct lockf *lf_getblock(struct lockf *);
     71      1.25      yamt static int lf_getlock(struct lockf *, struct flock *);
     72      1.27      yamt static int lf_setlock(struct lockf *, struct lockf **, struct simplelock *);
     73      1.27      yamt static void lf_split(struct lockf *, struct lockf *, struct lockf **);
     74      1.25      yamt static void lf_wakelock(struct lockf *);
     75  1.36.4.1      kent static struct lockf *lf_alloc(uid_t, int);
     76  1.36.4.1      kent static void lf_free(struct lockf *);
     77  1.36.4.1      kent 
     78      1.24      yamt 
     79      1.24      yamt #ifdef LOCKF_DEBUG
     80      1.25      yamt static void lf_print(char *, struct lockf *);
     81      1.25      yamt static void lf_printlist(char *, struct lockf *);
     82      1.24      yamt #endif
     83      1.24      yamt 
     84       1.6   mycroft /*
     85      1.16  sommerfe  * XXX TODO
     86      1.16  sommerfe  * Misc cleanups: "caddr_t id" should be visible in the API as a
     87      1.16  sommerfe  * "struct proc *".
     88      1.16  sommerfe  * (This requires rototilling all VFS's which support advisory locking).
     89      1.16  sommerfe  */
     90      1.16  sommerfe 
     91      1.16  sommerfe /*
     92      1.16  sommerfe  * If there's a lot of lock contention on a single vnode, locking
     93      1.16  sommerfe  * schemes which allow for more paralleism would be needed.  Given how
     94      1.16  sommerfe  * infrequently byte-range locks are actually used in typical BSD
     95      1.16  sommerfe  * code, a more complex approach probably isn't worth it.
     96      1.16  sommerfe  */
     97      1.16  sommerfe 
     98      1.16  sommerfe /*
     99  1.36.4.1      kent  * We enforce a limit on locks by uid, so that a single user cannot
    100  1.36.4.1      kent  * run the kernel out of memory.  For now, the limit is pretty coarse.
    101  1.36.4.1      kent  * There is no limit on root.
    102  1.36.4.1      kent  *
    103  1.36.4.1      kent  * Splitting a lock will always succeed, regardless of current allocations.
    104  1.36.4.1      kent  * If you're slightly above the limit, we still have to permit an allocation
    105  1.36.4.1      kent  * so that the unlock can succeed.  If the unlocking causes too many splits,
    106  1.36.4.1      kent  * however, you're totally cutoff.
    107  1.36.4.1      kent  */
    108  1.36.4.1      kent int maxlocksperuid = 1024;
    109  1.36.4.1      kent 
    110  1.36.4.1      kent /*
    111  1.36.4.1      kent  * 3 options for allowfail.
    112  1.36.4.1      kent  * 0 - always allocate.  1 - cutoff at limit.  2 - cutoff at double limit.
    113  1.36.4.1      kent  */
    114  1.36.4.1      kent struct lockf *
    115  1.36.4.1      kent lf_alloc(uid_t uid, int allowfail)
    116  1.36.4.1      kent {
    117  1.36.4.1      kent 	struct uidinfo *uip;
    118  1.36.4.1      kent 	struct lockf *lock;
    119  1.36.4.1      kent 
    120  1.36.4.1      kent 	uip = uid_find(uid);
    121  1.36.4.1      kent 	if (uid && allowfail && uip->ui_lockcnt >
    122  1.36.4.1      kent 	    (allowfail == 1 ? maxlocksperuid : (maxlocksperuid * 2)))
    123  1.36.4.1      kent 		return (NULL);
    124  1.36.4.1      kent 	uip->ui_lockcnt++;
    125  1.36.4.1      kent 	lock = pool_get(&lockfpool, PR_WAITOK);
    126  1.36.4.1      kent 	lock->lf_uid = uid;
    127  1.36.4.1      kent 	return (lock);
    128  1.36.4.1      kent }
    129  1.36.4.1      kent 
    130  1.36.4.1      kent void
    131  1.36.4.1      kent lf_free(struct lockf *lock)
    132  1.36.4.1      kent {
    133  1.36.4.1      kent 	struct uidinfo *uip;
    134  1.36.4.1      kent 
    135  1.36.4.1      kent 	uip = uid_find(lock->lf_uid);
    136  1.36.4.1      kent 	uip->ui_lockcnt--;
    137  1.36.4.1      kent 	pool_put(&lockfpool, lock);
    138  1.36.4.1      kent }
    139  1.36.4.1      kent 
    140  1.36.4.1      kent /*
    141       1.4   mycroft  * Do an advisory lock operation.
    142       1.1        ws  */
    143       1.4   mycroft int
    144      1.25      yamt lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
    145       1.1        ws {
    146  1.36.4.1      kent 	struct proc *p = curproc;
    147      1.17  jdolecek 	struct flock *fl = ap->a_fl;
    148      1.27      yamt 	struct lockf *lock = NULL;
    149      1.27      yamt 	struct lockf *sparelock;
    150      1.30      yamt 	struct simplelock *interlock = &ap->a_vp->v_interlock;
    151       1.1        ws 	off_t start, end;
    152      1.34  christos 	int error = 0;
    153       1.1        ws 
    154       1.1        ws 	/*
    155       1.1        ws 	 * Convert the flock structure into a start and end.
    156       1.1        ws 	 */
    157       1.1        ws 	switch (fl->l_whence) {
    158       1.1        ws 	case SEEK_SET:
    159       1.1        ws 	case SEEK_CUR:
    160       1.1        ws 		/*
    161       1.1        ws 		 * Caller is responsible for adding any necessary offset
    162       1.1        ws 		 * when SEEK_CUR is used.
    163       1.1        ws 		 */
    164       1.1        ws 		start = fl->l_start;
    165       1.1        ws 		break;
    166       1.1        ws 
    167       1.1        ws 	case SEEK_END:
    168       1.1        ws 		start = size + fl->l_start;
    169       1.1        ws 		break;
    170       1.1        ws 
    171       1.1        ws 	default:
    172      1.29      yamt 		return EINVAL;
    173       1.1        ws 	}
    174       1.1        ws 	if (start < 0)
    175      1.29      yamt 		return EINVAL;
    176      1.10    kleink 
    177      1.10    kleink 	/*
    178      1.27      yamt 	 * allocate locks before acquire simple lock.
    179      1.27      yamt 	 * we need two locks in the worst case.
    180      1.27      yamt 	 */
    181      1.27      yamt 	switch (ap->a_op) {
    182      1.27      yamt 	case F_SETLK:
    183      1.27      yamt 	case F_UNLCK:
    184      1.27      yamt 		/*
    185      1.27      yamt 		 * XXX for F_UNLCK case, we can re-use lock.
    186      1.27      yamt 		 */
    187      1.27      yamt 		if ((fl->l_type & F_FLOCK) == 0) {
    188      1.27      yamt 			/*
    189      1.27      yamt 			 * byte-range lock might need one more lock.
    190      1.27      yamt 			 */
    191  1.36.4.1      kent 			sparelock = lf_alloc(p->p_ucred->cr_uid, 0);
    192      1.27      yamt 			if (sparelock == NULL) {
    193      1.27      yamt 				error = ENOMEM;
    194      1.27      yamt 				goto quit;
    195      1.27      yamt 			}
    196      1.27      yamt 			break;
    197      1.27      yamt 		}
    198      1.27      yamt 		/* FALLTHROUGH */
    199      1.27      yamt 
    200      1.27      yamt 	case F_GETLK:
    201      1.27      yamt 		sparelock = NULL;
    202      1.27      yamt 		break;
    203      1.27      yamt 
    204      1.27      yamt 	default:
    205      1.29      yamt 		return EINVAL;
    206      1.27      yamt 	}
    207      1.27      yamt 
    208  1.36.4.1      kent 	lock = lf_alloc(p->p_ucred->cr_uid, ap->a_op != F_UNLCK ? 1 : 2);
    209      1.27      yamt 	if (lock == NULL) {
    210      1.27      yamt 		error = ENOMEM;
    211      1.27      yamt 		goto quit;
    212      1.27      yamt 	}
    213      1.27      yamt 
    214      1.30      yamt 	simple_lock(interlock);
    215      1.27      yamt 
    216      1.27      yamt 	/*
    217      1.10    kleink 	 * Avoid the common case of unlocking when inode has no locks.
    218      1.10    kleink 	 */
    219      1.10    kleink 	if (*head == (struct lockf *)0) {
    220      1.17  jdolecek 		if (ap->a_op != F_SETLK) {
    221      1.10    kleink 			fl->l_type = F_UNLCK;
    222      1.27      yamt 			error = 0;
    223      1.27      yamt 			goto quit_unlock;
    224      1.10    kleink 		}
    225      1.10    kleink 	}
    226      1.10    kleink 
    227       1.1        ws 	if (fl->l_len == 0)
    228       1.1        ws 		end = -1;
    229       1.1        ws 	else
    230       1.1        ws 		end = start + fl->l_len - 1;
    231       1.1        ws 	/*
    232       1.4   mycroft 	 * Create the lockf structure.
    233       1.1        ws 	 */
    234       1.1        ws 	lock->lf_start = start;
    235       1.1        ws 	lock->lf_end = end;
    236  1.36.4.1      kent 	/* XXX NJWLWP
    237      1.21   thorpej 	 * I don't want to make the entire VFS universe use LWPs, because
    238      1.21   thorpej 	 * they don't need them, for the most part. This is an exception,
    239      1.21   thorpej 	 * and a kluge.
    240      1.21   thorpej 	 */
    241      1.21   thorpej 
    242       1.1        ws 	lock->lf_head = head;
    243       1.1        ws 	lock->lf_type = fl->l_type;
    244       1.1        ws 	lock->lf_next = (struct lockf *)0;
    245      1.12      fvdl 	TAILQ_INIT(&lock->lf_blkhd);
    246      1.17  jdolecek 	lock->lf_flags = ap->a_flags;
    247      1.21   thorpej 	if (lock->lf_flags & F_POSIX) {
    248      1.21   thorpej 		KASSERT(curproc == (struct proc *)ap->a_id);
    249      1.21   thorpej 	}
    250      1.23   mycroft 	lock->lf_id = (struct proc *)ap->a_id;
    251      1.23   mycroft 	lock->lf_lwp = curlwp;
    252  1.36.4.1      kent 
    253       1.1        ws 	/*
    254       1.1        ws 	 * Do the requested operation.
    255       1.1        ws 	 */
    256      1.17  jdolecek 	switch (ap->a_op) {
    257       1.4   mycroft 
    258       1.1        ws 	case F_SETLK:
    259      1.30      yamt 		error = lf_setlock(lock, &sparelock, interlock);
    260      1.27      yamt 		lock = NULL; /* lf_setlock freed it */
    261      1.27      yamt 		break;
    262       1.1        ws 
    263       1.1        ws 	case F_UNLCK:
    264      1.27      yamt 		error = lf_clearlock(lock, &sparelock);
    265      1.27      yamt 		break;
    266       1.1        ws 
    267       1.1        ws 	case F_GETLK:
    268       1.1        ws 		error = lf_getlock(lock, fl);
    269      1.27      yamt 		break;
    270       1.4   mycroft 
    271       1.1        ws 	default:
    272      1.31      fvdl 		break;
    273      1.27      yamt 		/* NOTREACHED */
    274      1.27      yamt 	}
    275      1.27      yamt 
    276      1.27      yamt quit_unlock:
    277      1.30      yamt 	simple_unlock(interlock);
    278      1.27      yamt quit:
    279      1.27      yamt 	if (lock)
    280  1.36.4.1      kent 		lf_free(lock);
    281      1.27      yamt 	if (sparelock)
    282  1.36.4.1      kent 		lf_free(sparelock);
    283      1.27      yamt 
    284      1.29      yamt 	return error;
    285       1.1        ws }
    286       1.1        ws 
    287       1.1        ws /*
    288       1.1        ws  * Set a byte-range lock.
    289       1.1        ws  */
    290      1.24      yamt static int
    291      1.27      yamt lf_setlock(struct lockf *lock, struct lockf **sparelock,
    292      1.27      yamt     struct simplelock *interlock)
    293       1.1        ws {
    294      1.15  augustss 	struct lockf *block;
    295       1.1        ws 	struct lockf **head = lock->lf_head;
    296       1.1        ws 	struct lockf **prev, *overlap, *ltmp;
    297       1.1        ws 	static char lockstr[] = "lockf";
    298       1.1        ws 	int ovcase, priority, needtolink, error;
    299       1.1        ws 
    300       1.1        ws #ifdef LOCKF_DEBUG
    301       1.1        ws 	if (lockf_debug & 1)
    302       1.1        ws 		lf_print("lf_setlock", lock);
    303       1.1        ws #endif /* LOCKF_DEBUG */
    304       1.1        ws 
    305       1.1        ws 	/*
    306       1.1        ws 	 * Set the priority
    307       1.1        ws 	 */
    308       1.1        ws 	priority = PLOCK;
    309       1.1        ws 	if (lock->lf_type == F_WRLCK)
    310       1.1        ws 		priority += 4;
    311       1.1        ws 	priority |= PCATCH;
    312       1.1        ws 	/*
    313       1.1        ws 	 * Scan lock list for this file looking for locks that would block us.
    314       1.1        ws 	 */
    315       1.7  christos 	while ((block = lf_getblock(lock)) != NULL) {
    316       1.1        ws 		/*
    317       1.1        ws 		 * Free the structure and return if nonblocking.
    318       1.1        ws 		 */
    319       1.1        ws 		if ((lock->lf_flags & F_WAIT) == 0) {
    320  1.36.4.1      kent 			lf_free(lock);
    321      1.29      yamt 			return EAGAIN;
    322       1.1        ws 		}
    323       1.1        ws 		/*
    324       1.1        ws 		 * We are blocked. Since flock style locks cover
    325       1.1        ws 		 * the whole file, there is no chance for deadlock.
    326       1.1        ws 		 * For byte-range locks we must check for deadlock.
    327       1.1        ws 		 *
    328       1.1        ws 		 * Deadlock detection is done by looking through the
    329       1.1        ws 		 * wait channels to see if there are any cycles that
    330       1.1        ws 		 * involve us. MAXDEPTH is set just to make sure we
    331      1.16  sommerfe 		 * do not go off into neverneverland.
    332       1.1        ws 		 */
    333       1.1        ws 		if ((lock->lf_flags & F_POSIX) &&
    334       1.1        ws 		    (block->lf_flags & F_POSIX)) {
    335      1.21   thorpej 			struct lwp *wlwp;
    336      1.15  augustss 			struct lockf *waitblock;
    337       1.1        ws 			int i = 0;
    338       1.1        ws 
    339      1.23   mycroft 			/*
    340      1.23   mycroft 			 * The block is waiting on something.  if_lwp will be
    341      1.23   mycroft 			 * 0 once the lock is granted, so we terminate the
    342      1.23   mycroft 			 * loop if we find this.
    343      1.23   mycroft 			 */
    344      1.23   mycroft 			wlwp = block->lf_lwp;
    345      1.23   mycroft 			while (wlwp && (i++ < maxlockdepth)) {
    346      1.21   thorpej 				waitblock = (struct lockf *)wlwp->l_wchan;
    347       1.1        ws 				/* Get the owner of the blocking lock */
    348       1.1        ws 				waitblock = waitblock->lf_next;
    349       1.1        ws 				if ((waitblock->lf_flags & F_POSIX) == 0)
    350       1.1        ws 					break;
    351      1.23   mycroft 				wlwp = waitblock->lf_lwp;
    352      1.23   mycroft 				if (wlwp == lock->lf_lwp) {
    353  1.36.4.1      kent 					lf_free(lock);
    354      1.29      yamt 					return EDEADLK;
    355       1.1        ws 				}
    356       1.1        ws 			}
    357      1.16  sommerfe 			/*
    358      1.36     peter 			 * If we're still following a dependency chain
    359      1.16  sommerfe 			 * after maxlockdepth iterations, assume we're in
    360      1.16  sommerfe 			 * a cycle to be safe.
    361      1.16  sommerfe 			 */
    362      1.16  sommerfe 			if (i >= maxlockdepth) {
    363  1.36.4.1      kent 				lf_free(lock);
    364      1.29      yamt 				return EDEADLK;
    365      1.16  sommerfe 			}
    366       1.1        ws 		}
    367       1.1        ws 		/*
    368       1.1        ws 		 * For flock type locks, we must first remove
    369       1.1        ws 		 * any shared locks that we hold before we sleep
    370       1.1        ws 		 * waiting for an exclusive lock.
    371       1.1        ws 		 */
    372       1.1        ws 		if ((lock->lf_flags & F_FLOCK) &&
    373       1.1        ws 		    lock->lf_type == F_WRLCK) {
    374       1.1        ws 			lock->lf_type = F_UNLCK;
    375      1.27      yamt 			(void) lf_clearlock(lock, NULL);
    376       1.1        ws 			lock->lf_type = F_WRLCK;
    377       1.1        ws 		}
    378       1.1        ws 		/*
    379       1.1        ws 		 * Add our lock to the blocked list and sleep until we're free.
    380       1.1        ws 		 * Remember who blocked us (for deadlock detection).
    381       1.1        ws 		 */
    382       1.1        ws 		lock->lf_next = block;
    383      1.12      fvdl 		TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
    384       1.1        ws #ifdef LOCKF_DEBUG
    385       1.1        ws 		if (lockf_debug & 1) {
    386       1.1        ws 			lf_print("lf_setlock: blocking on", block);
    387       1.1        ws 			lf_printlist("lf_setlock", block);
    388       1.1        ws 		}
    389       1.1        ws #endif /* LOCKF_DEBUG */
    390      1.27      yamt 		error = ltsleep(lock, priority, lockstr, 0, interlock);
    391      1.16  sommerfe 
    392      1.16  sommerfe 		/*
    393      1.16  sommerfe 		 * We may have been awakened by a signal (in
    394      1.16  sommerfe 		 * which case we must remove ourselves from the
    395      1.16  sommerfe 		 * blocked list) and/or by another process
    396      1.16  sommerfe 		 * releasing a lock (in which case we have already
    397      1.16  sommerfe 		 * been removed from the blocked list and our
    398      1.16  sommerfe 		 * lf_next field set to NOLOCKF).
    399      1.16  sommerfe 		 */
    400      1.16  sommerfe 		if (lock->lf_next != NOLOCKF) {
    401      1.16  sommerfe 			TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
    402      1.16  sommerfe 			lock->lf_next = NOLOCKF;
    403      1.16  sommerfe 		}
    404       1.7  christos 		if (error) {
    405  1.36.4.1      kent 			lf_free(lock);
    406      1.29      yamt 			return error;
    407       1.1        ws 		}
    408       1.1        ws 	}
    409       1.1        ws 	/*
    410       1.1        ws 	 * No blocks!!  Add the lock.  Note that we will
    411       1.1        ws 	 * downgrade or upgrade any overlapping locks this
    412       1.1        ws 	 * process already owns.
    413       1.1        ws 	 *
    414       1.1        ws 	 * Skip over locks owned by other processes.
    415       1.1        ws 	 * Handle any locks that overlap and are owned by ourselves.
    416       1.1        ws 	 */
    417      1.23   mycroft 	lock->lf_lwp = 0;
    418       1.1        ws 	prev = head;
    419       1.1        ws 	block = *head;
    420       1.1        ws 	needtolink = 1;
    421       1.1        ws 	for (;;) {
    422       1.7  christos 		ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
    423       1.7  christos 		if (ovcase)
    424       1.1        ws 			block = overlap->lf_next;
    425       1.1        ws 		/*
    426       1.1        ws 		 * Six cases:
    427       1.1        ws 		 *	0) no overlap
    428       1.1        ws 		 *	1) overlap == lock
    429       1.1        ws 		 *	2) overlap contains lock
    430       1.1        ws 		 *	3) lock contains overlap
    431       1.1        ws 		 *	4) overlap starts before lock
    432       1.1        ws 		 *	5) overlap ends after lock
    433       1.1        ws 		 */
    434       1.1        ws 		switch (ovcase) {
    435       1.1        ws 		case 0: /* no overlap */
    436       1.1        ws 			if (needtolink) {
    437       1.1        ws 				*prev = lock;
    438       1.1        ws 				lock->lf_next = overlap;
    439       1.1        ws 			}
    440       1.1        ws 			break;
    441       1.1        ws 
    442       1.1        ws 		case 1: /* overlap == lock */
    443       1.1        ws 			/*
    444       1.1        ws 			 * If downgrading lock, others may be
    445       1.1        ws 			 * able to acquire it.
    446       1.1        ws 			 */
    447       1.1        ws 			if (lock->lf_type == F_RDLCK &&
    448       1.1        ws 			    overlap->lf_type == F_WRLCK)
    449       1.1        ws 				lf_wakelock(overlap);
    450       1.1        ws 			overlap->lf_type = lock->lf_type;
    451  1.36.4.1      kent 			lf_free(lock);
    452       1.1        ws 			lock = overlap; /* for debug output below */
    453       1.1        ws 			break;
    454       1.1        ws 
    455       1.1        ws 		case 2: /* overlap contains lock */
    456       1.1        ws 			/*
    457       1.1        ws 			 * Check for common starting point and different types.
    458       1.1        ws 			 */
    459       1.1        ws 			if (overlap->lf_type == lock->lf_type) {
    460  1.36.4.1      kent 				lf_free(lock);
    461       1.1        ws 				lock = overlap; /* for debug output below */
    462       1.1        ws 				break;
    463       1.1        ws 			}
    464       1.1        ws 			if (overlap->lf_start == lock->lf_start) {
    465       1.1        ws 				*prev = lock;
    466       1.1        ws 				lock->lf_next = overlap;
    467       1.1        ws 				overlap->lf_start = lock->lf_end + 1;
    468       1.1        ws 			} else
    469      1.27      yamt 				lf_split(overlap, lock, sparelock);
    470       1.1        ws 			lf_wakelock(overlap);
    471       1.1        ws 			break;
    472       1.1        ws 
    473       1.1        ws 		case 3: /* lock contains overlap */
    474       1.1        ws 			/*
    475       1.1        ws 			 * If downgrading lock, others may be able to
    476       1.1        ws 			 * acquire it, otherwise take the list.
    477       1.1        ws 			 */
    478       1.1        ws 			if (lock->lf_type == F_RDLCK &&
    479       1.1        ws 			    overlap->lf_type == F_WRLCK) {
    480       1.1        ws 				lf_wakelock(overlap);
    481       1.1        ws 			} else {
    482      1.19      matt 				while ((ltmp = TAILQ_FIRST(&overlap->lf_blkhd))) {
    483      1.16  sommerfe 					KASSERT(ltmp->lf_next == overlap);
    484      1.12      fvdl 					TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
    485      1.12      fvdl 					    lf_block);
    486      1.16  sommerfe 					ltmp->lf_next = lock;
    487      1.12      fvdl 					TAILQ_INSERT_TAIL(&lock->lf_blkhd,
    488      1.12      fvdl 					    ltmp, lf_block);
    489      1.12      fvdl 				}
    490       1.1        ws 			}
    491       1.1        ws 			/*
    492       1.1        ws 			 * Add the new lock if necessary and delete the overlap.
    493       1.1        ws 			 */
    494       1.1        ws 			if (needtolink) {
    495       1.1        ws 				*prev = lock;
    496       1.1        ws 				lock->lf_next = overlap->lf_next;
    497       1.1        ws 				prev = &lock->lf_next;
    498       1.1        ws 				needtolink = 0;
    499       1.1        ws 			} else
    500       1.1        ws 				*prev = overlap->lf_next;
    501  1.36.4.1      kent 			lf_free(overlap);
    502       1.1        ws 			continue;
    503       1.1        ws 
    504       1.1        ws 		case 4: /* overlap starts before lock */
    505       1.1        ws 			/*
    506       1.1        ws 			 * Add lock after overlap on the list.
    507       1.1        ws 			 */
    508       1.1        ws 			lock->lf_next = overlap->lf_next;
    509       1.1        ws 			overlap->lf_next = lock;
    510       1.1        ws 			overlap->lf_end = lock->lf_start - 1;
    511       1.1        ws 			prev = &lock->lf_next;
    512       1.1        ws 			lf_wakelock(overlap);
    513       1.1        ws 			needtolink = 0;
    514       1.1        ws 			continue;
    515       1.1        ws 
    516       1.1        ws 		case 5: /* overlap ends after lock */
    517       1.1        ws 			/*
    518       1.1        ws 			 * Add the new lock before overlap.
    519       1.1        ws 			 */
    520       1.1        ws 			if (needtolink) {
    521       1.1        ws 				*prev = lock;
    522       1.1        ws 				lock->lf_next = overlap;
    523       1.1        ws 			}
    524       1.1        ws 			overlap->lf_start = lock->lf_end + 1;
    525       1.1        ws 			lf_wakelock(overlap);
    526       1.1        ws 			break;
    527       1.1        ws 		}
    528       1.1        ws 		break;
    529       1.1        ws 	}
    530       1.1        ws #ifdef LOCKF_DEBUG
    531       1.1        ws 	if (lockf_debug & 1) {
    532       1.1        ws 		lf_print("lf_setlock: got the lock", lock);
    533       1.1        ws 		lf_printlist("lf_setlock", lock);
    534       1.1        ws 	}
    535       1.1        ws #endif /* LOCKF_DEBUG */
    536      1.29      yamt 	return 0;
    537       1.1        ws }
    538       1.1        ws 
    539       1.1        ws /*
    540       1.1        ws  * Remove a byte-range lock on an inode.
    541       1.1        ws  *
    542       1.1        ws  * Generally, find the lock (or an overlap to that lock)
    543       1.1        ws  * and remove it (or shrink it), then wakeup anyone we can.
    544       1.1        ws  */
    545      1.24      yamt static int
    546      1.27      yamt lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
    547       1.1        ws {
    548       1.1        ws 	struct lockf **head = unlock->lf_head;
    549      1.15  augustss 	struct lockf *lf = *head;
    550       1.1        ws 	struct lockf *overlap, **prev;
    551       1.1        ws 	int ovcase;
    552       1.1        ws 
    553       1.1        ws 	if (lf == NOLOCKF)
    554      1.29      yamt 		return 0;
    555       1.1        ws #ifdef LOCKF_DEBUG
    556       1.1        ws 	if (unlock->lf_type != F_UNLCK)
    557       1.1        ws 		panic("lf_clearlock: bad type");
    558       1.1        ws 	if (lockf_debug & 1)
    559       1.1        ws 		lf_print("lf_clearlock", unlock);
    560       1.1        ws #endif /* LOCKF_DEBUG */
    561       1.1        ws 	prev = head;
    562       1.7  christos 	while ((ovcase = lf_findoverlap(lf, unlock, SELF,
    563       1.7  christos 					&prev, &overlap)) != 0) {
    564       1.1        ws 		/*
    565       1.1        ws 		 * Wakeup the list of locks to be retried.
    566       1.1        ws 		 */
    567       1.1        ws 		lf_wakelock(overlap);
    568       1.1        ws 
    569       1.1        ws 		switch (ovcase) {
    570       1.1        ws 
    571       1.1        ws 		case 1: /* overlap == lock */
    572       1.1        ws 			*prev = overlap->lf_next;
    573  1.36.4.1      kent 			lf_free(overlap);
    574       1.1        ws 			break;
    575       1.1        ws 
    576       1.1        ws 		case 2: /* overlap contains lock: split it */
    577       1.1        ws 			if (overlap->lf_start == unlock->lf_start) {
    578       1.1        ws 				overlap->lf_start = unlock->lf_end + 1;
    579       1.1        ws 				break;
    580       1.1        ws 			}
    581      1.27      yamt 			lf_split(overlap, unlock, sparelock);
    582       1.1        ws 			overlap->lf_next = unlock->lf_next;
    583       1.1        ws 			break;
    584       1.1        ws 
    585       1.1        ws 		case 3: /* lock contains overlap */
    586       1.1        ws 			*prev = overlap->lf_next;
    587       1.1        ws 			lf = overlap->lf_next;
    588  1.36.4.1      kent 			lf_free(overlap);
    589       1.1        ws 			continue;
    590       1.1        ws 
    591       1.1        ws 		case 4: /* overlap starts before lock */
    592       1.1        ws 			overlap->lf_end = unlock->lf_start - 1;
    593       1.1        ws 			prev = &overlap->lf_next;
    594       1.1        ws 			lf = overlap->lf_next;
    595       1.1        ws 			continue;
    596       1.1        ws 
    597       1.1        ws 		case 5: /* overlap ends after lock */
    598       1.1        ws 			overlap->lf_start = unlock->lf_end + 1;
    599       1.1        ws 			break;
    600       1.1        ws 		}
    601       1.1        ws 		break;
    602       1.1        ws 	}
    603       1.1        ws #ifdef LOCKF_DEBUG
    604       1.1        ws 	if (lockf_debug & 1)
    605       1.1        ws 		lf_printlist("lf_clearlock", unlock);
    606       1.1        ws #endif /* LOCKF_DEBUG */
    607      1.29      yamt 	return 0;
    608       1.1        ws }
    609       1.1        ws 
    610       1.1        ws /*
    611       1.1        ws  * Check whether there is a blocking lock,
    612       1.1        ws  * and if so return its process identifier.
    613       1.1        ws  */
    614      1.24      yamt static int
    615      1.25      yamt lf_getlock(struct lockf *lock, struct flock *fl)
    616       1.1        ws {
    617      1.15  augustss 	struct lockf *block;
    618       1.1        ws 
    619       1.1        ws #ifdef LOCKF_DEBUG
    620       1.1        ws 	if (lockf_debug & 1)
    621       1.1        ws 		lf_print("lf_getlock", lock);
    622       1.1        ws #endif /* LOCKF_DEBUG */
    623       1.1        ws 
    624       1.7  christos 	if ((block = lf_getblock(lock)) != NULL) {
    625       1.1        ws 		fl->l_type = block->lf_type;
    626       1.1        ws 		fl->l_whence = SEEK_SET;
    627       1.1        ws 		fl->l_start = block->lf_start;
    628       1.1        ws 		if (block->lf_end == -1)
    629       1.1        ws 			fl->l_len = 0;
    630       1.1        ws 		else
    631       1.1        ws 			fl->l_len = block->lf_end - block->lf_start + 1;
    632       1.1        ws 		if (block->lf_flags & F_POSIX)
    633      1.23   mycroft 			fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
    634       1.1        ws 		else
    635       1.1        ws 			fl->l_pid = -1;
    636       1.1        ws 	} else {
    637       1.1        ws 		fl->l_type = F_UNLCK;
    638       1.1        ws 	}
    639      1.29      yamt 	return 0;
    640       1.1        ws }
    641       1.1        ws 
    642       1.1        ws /*
    643       1.1        ws  * Walk the list of locks for an inode and
    644       1.1        ws  * return the first blocking lock.
    645       1.1        ws  */
    646      1.24      yamt static struct lockf *
    647      1.25      yamt lf_getblock(struct lockf *lock)
    648       1.1        ws {
    649       1.1        ws 	struct lockf **prev, *overlap, *lf = *(lock->lf_head);
    650       1.1        ws 
    651       1.1        ws 	prev = lock->lf_head;
    652      1.20    simonb 	while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
    653       1.1        ws 		/*
    654       1.1        ws 		 * We've found an overlap, see if it blocks us
    655       1.1        ws 		 */
    656       1.1        ws 		if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
    657      1.29      yamt 			return overlap;
    658       1.1        ws 		/*
    659       1.1        ws 		 * Nope, point to the next one on the list and
    660       1.1        ws 		 * see if it blocks us
    661       1.1        ws 		 */
    662       1.1        ws 		lf = overlap->lf_next;
    663       1.1        ws 	}
    664      1.29      yamt 	return NOLOCKF;
    665       1.1        ws }
    666       1.1        ws 
    667       1.1        ws /*
    668       1.1        ws  * Walk the list of locks for an inode to
    669       1.1        ws  * find an overlapping lock (if any).
    670       1.1        ws  *
    671       1.1        ws  * NOTE: this returns only the FIRST overlapping lock.  There
    672       1.1        ws  *	 may be more than one.
    673       1.1        ws  */
    674      1.24      yamt static int
    675      1.25      yamt lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
    676      1.25      yamt     struct lockf ***prev, struct lockf **overlap)
    677       1.1        ws {
    678       1.1        ws 	off_t start, end;
    679       1.1        ws 
    680       1.1        ws 	*overlap = lf;
    681       1.1        ws 	if (lf == NOLOCKF)
    682      1.29      yamt 		return 0;
    683       1.1        ws #ifdef LOCKF_DEBUG
    684       1.1        ws 	if (lockf_debug & 2)
    685       1.1        ws 		lf_print("lf_findoverlap: looking for overlap in", lock);
    686       1.1        ws #endif /* LOCKF_DEBUG */
    687       1.1        ws 	start = lock->lf_start;
    688       1.1        ws 	end = lock->lf_end;
    689       1.1        ws 	while (lf != NOLOCKF) {
    690      1.23   mycroft 		if (((type == SELF) && lf->lf_id != lock->lf_id) ||
    691      1.23   mycroft 		    ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
    692       1.1        ws 			*prev = &lf->lf_next;
    693       1.1        ws 			*overlap = lf = lf->lf_next;
    694       1.1        ws 			continue;
    695       1.1        ws 		}
    696       1.1        ws #ifdef LOCKF_DEBUG
    697       1.1        ws 		if (lockf_debug & 2)
    698       1.1        ws 			lf_print("\tchecking", lf);
    699       1.1        ws #endif /* LOCKF_DEBUG */
    700       1.1        ws 		/*
    701       1.1        ws 		 * OK, check for overlap
    702       1.1        ws 		 *
    703       1.1        ws 		 * Six cases:
    704       1.1        ws 		 *	0) no overlap
    705       1.1        ws 		 *	1) overlap == lock
    706       1.1        ws 		 *	2) overlap contains lock
    707       1.1        ws 		 *	3) lock contains overlap
    708       1.1        ws 		 *	4) overlap starts before lock
    709       1.1        ws 		 *	5) overlap ends after lock
    710       1.1        ws 		 */
    711       1.1        ws 		if ((lf->lf_end != -1 && start > lf->lf_end) ||
    712       1.1        ws 		    (end != -1 && lf->lf_start > end)) {
    713       1.1        ws 			/* Case 0 */
    714       1.1        ws #ifdef LOCKF_DEBUG
    715       1.1        ws 			if (lockf_debug & 2)
    716       1.9  christos 				printf("no overlap\n");
    717       1.1        ws #endif /* LOCKF_DEBUG */
    718       1.1        ws 			if ((type & SELF) && end != -1 && lf->lf_start > end)
    719      1.29      yamt 				return 0;
    720       1.1        ws 			*prev = &lf->lf_next;
    721       1.1        ws 			*overlap = lf = lf->lf_next;
    722       1.1        ws 			continue;
    723       1.1        ws 		}
    724       1.1        ws 		if ((lf->lf_start == start) && (lf->lf_end == end)) {
    725       1.1        ws 			/* Case 1 */
    726       1.1        ws #ifdef LOCKF_DEBUG
    727       1.1        ws 			if (lockf_debug & 2)
    728       1.9  christos 				printf("overlap == lock\n");
    729       1.1        ws #endif /* LOCKF_DEBUG */
    730      1.29      yamt 			return 1;
    731       1.1        ws 		}
    732       1.1        ws 		if ((lf->lf_start <= start) &&
    733       1.1        ws 		    (end != -1) &&
    734       1.1        ws 		    ((lf->lf_end >= end) || (lf->lf_end == -1))) {
    735       1.1        ws 			/* Case 2 */
    736       1.1        ws #ifdef LOCKF_DEBUG
    737       1.1        ws 			if (lockf_debug & 2)
    738       1.9  christos 				printf("overlap contains lock\n");
    739       1.1        ws #endif /* LOCKF_DEBUG */
    740      1.29      yamt 			return 2;
    741       1.1        ws 		}
    742       1.1        ws 		if (start <= lf->lf_start &&
    743       1.4   mycroft 		           (end == -1 ||
    744       1.1        ws 			   (lf->lf_end != -1 && end >= lf->lf_end))) {
    745       1.1        ws 			/* Case 3 */
    746       1.1        ws #ifdef LOCKF_DEBUG
    747       1.1        ws 			if (lockf_debug & 2)
    748       1.9  christos 				printf("lock contains overlap\n");
    749       1.1        ws #endif /* LOCKF_DEBUG */
    750      1.29      yamt 			return 3;
    751       1.1        ws 		}
    752       1.1        ws 		if ((lf->lf_start < start) &&
    753       1.1        ws 			((lf->lf_end >= start) || (lf->lf_end == -1))) {
    754       1.1        ws 			/* Case 4 */
    755       1.1        ws #ifdef LOCKF_DEBUG
    756       1.1        ws 			if (lockf_debug & 2)
    757       1.9  christos 				printf("overlap starts before lock\n");
    758       1.1        ws #endif /* LOCKF_DEBUG */
    759      1.29      yamt 			return 4;
    760       1.1        ws 		}
    761       1.1        ws 		if ((lf->lf_start > start) &&
    762       1.1        ws 			(end != -1) &&
    763       1.1        ws 			((lf->lf_end > end) || (lf->lf_end == -1))) {
    764       1.1        ws 			/* Case 5 */
    765       1.1        ws #ifdef LOCKF_DEBUG
    766       1.1        ws 			if (lockf_debug & 2)
    767       1.9  christos 				printf("overlap ends after lock\n");
    768       1.1        ws #endif /* LOCKF_DEBUG */
    769      1.29      yamt 			return 5;
    770       1.1        ws 		}
    771       1.1        ws 		panic("lf_findoverlap: default");
    772       1.1        ws 	}
    773      1.29      yamt 	return 0;
    774       1.1        ws }
    775       1.1        ws 
    776       1.1        ws /*
    777       1.1        ws  * Split a lock and a contained region into
    778       1.1        ws  * two or three locks as necessary.
    779       1.1        ws  */
    780      1.24      yamt static void
    781      1.27      yamt lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
    782       1.1        ws {
    783      1.15  augustss 	struct lockf *splitlock;
    784       1.1        ws 
    785       1.1        ws #ifdef LOCKF_DEBUG
    786       1.1        ws 	if (lockf_debug & 2) {
    787       1.1        ws 		lf_print("lf_split", lock1);
    788       1.1        ws 		lf_print("splitting from", lock2);
    789       1.1        ws 	}
    790       1.1        ws #endif /* LOCKF_DEBUG */
    791       1.1        ws 	/*
    792       1.1        ws 	 * Check to see if spliting into only two pieces.
    793       1.1        ws 	 */
    794       1.1        ws 	if (lock1->lf_start == lock2->lf_start) {
    795       1.1        ws 		lock1->lf_start = lock2->lf_end + 1;
    796       1.1        ws 		lock2->lf_next = lock1;
    797       1.1        ws 		return;
    798       1.1        ws 	}
    799       1.1        ws 	if (lock1->lf_end == lock2->lf_end) {
    800       1.1        ws 		lock1->lf_end = lock2->lf_start - 1;
    801       1.1        ws 		lock2->lf_next = lock1->lf_next;
    802       1.1        ws 		lock1->lf_next = lock2;
    803       1.1        ws 		return;
    804       1.1        ws 	}
    805       1.1        ws 	/*
    806       1.1        ws 	 * Make a new lock consisting of the last part of
    807       1.1        ws 	 * the encompassing lock
    808       1.1        ws 	 */
    809      1.27      yamt 	splitlock = *sparelock;
    810      1.27      yamt 	*sparelock = NULL;
    811      1.29      yamt 	memcpy(splitlock, lock1, sizeof(*splitlock));
    812       1.1        ws 	splitlock->lf_start = lock2->lf_end + 1;
    813      1.12      fvdl 	TAILQ_INIT(&splitlock->lf_blkhd);
    814       1.1        ws 	lock1->lf_end = lock2->lf_start - 1;
    815       1.1        ws 	/*
    816       1.1        ws 	 * OK, now link it in
    817       1.1        ws 	 */
    818       1.1        ws 	splitlock->lf_next = lock1->lf_next;
    819       1.1        ws 	lock2->lf_next = splitlock;
    820       1.1        ws 	lock1->lf_next = lock2;
    821       1.1        ws }
    822       1.1        ws 
    823       1.1        ws /*
    824       1.1        ws  * Wakeup a blocklist
    825       1.1        ws  */
    826      1.24      yamt static void
    827      1.25      yamt lf_wakelock(struct lockf *listhead)
    828       1.1        ws {
    829      1.15  augustss 	struct lockf *wakelock;
    830       1.1        ws 
    831      1.19      matt 	while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
    832      1.16  sommerfe 		KASSERT(wakelock->lf_next == listhead);
    833      1.12      fvdl 		TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
    834       1.1        ws 		wakelock->lf_next = NOLOCKF;
    835       1.1        ws #ifdef LOCKF_DEBUG
    836       1.1        ws 		if (lockf_debug & 2)
    837       1.1        ws 			lf_print("lf_wakelock: awakening", wakelock);
    838      1.12      fvdl #endif
    839      1.29      yamt 		wakeup(wakelock);
    840       1.1        ws 	}
    841       1.1        ws }
    842       1.1        ws 
    843       1.1        ws #ifdef LOCKF_DEBUG
    844       1.1        ws /*
    845       1.1        ws  * Print out a lock.
    846       1.1        ws  */
    847      1.24      yamt static void
    848      1.25      yamt lf_print(char *tag, struct lockf *lock)
    849       1.1        ws {
    850  1.36.4.1      kent 
    851       1.9  christos 	printf("%s: lock %p for ", tag, lock);
    852       1.1        ws 	if (lock->lf_flags & F_POSIX)
    853      1.23   mycroft 		printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
    854       1.1        ws 	else
    855      1.23   mycroft 		printf("file 0x%p", (struct file *)lock->lf_id);
    856      1.11       jtk 	printf(" %s, start %qx, end %qx",
    857       1.1        ws 		lock->lf_type == F_RDLCK ? "shared" :
    858       1.1        ws 		lock->lf_type == F_WRLCK ? "exclusive" :
    859       1.1        ws 		lock->lf_type == F_UNLCK ? "unlock" :
    860       1.1        ws 		"unknown", lock->lf_start, lock->lf_end);
    861      1.19      matt 	if (TAILQ_FIRST(&lock->lf_blkhd))
    862      1.19      matt 		printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
    863       1.1        ws 	else
    864       1.9  christos 		printf("\n");
    865       1.1        ws }
    866       1.1        ws 
    867      1.24      yamt static void
    868      1.25      yamt lf_printlist(char *tag, struct lockf *lock)
    869       1.1        ws {
    870      1.15  augustss 	struct lockf *lf, *blk;
    871       1.1        ws 
    872      1.11       jtk 	printf("%s: Lock list:\n", tag);
    873      1.12      fvdl 	for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
    874       1.9  christos 		printf("\tlock %p for ", lf);
    875       1.1        ws 		if (lf->lf_flags & F_POSIX)
    876      1.23   mycroft 			printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
    877       1.1        ws 		else
    878      1.23   mycroft 			printf("file 0x%p", (struct file *)lf->lf_id);
    879      1.11       jtk 		printf(", %s, start %qx, end %qx",
    880       1.1        ws 			lf->lf_type == F_RDLCK ? "shared" :
    881       1.1        ws 			lf->lf_type == F_WRLCK ? "exclusive" :
    882       1.1        ws 			lf->lf_type == F_UNLCK ? "unlock" :
    883       1.1        ws 			"unknown", lf->lf_start, lf->lf_end);
    884      1.19      matt 		TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
    885      1.12      fvdl 			if (blk->lf_flags & F_POSIX)
    886      1.12      fvdl 				printf("proc %d",
    887      1.23   mycroft 				    ((struct proc *)blk->lf_id)->p_pid);
    888      1.12      fvdl 			else
    889      1.23   mycroft 				printf("file 0x%p", (struct file *)blk->lf_id);
    890      1.12      fvdl 			printf(", %s, start %qx, end %qx",
    891      1.12      fvdl 				blk->lf_type == F_RDLCK ? "shared" :
    892      1.12      fvdl 				blk->lf_type == F_WRLCK ? "exclusive" :
    893      1.12      fvdl 				blk->lf_type == F_UNLCK ? "unlock" :
    894      1.12      fvdl 				"unknown", blk->lf_start, blk->lf_end);
    895      1.19      matt 			if (TAILQ_FIRST(&blk->lf_blkhd))
    896      1.12      fvdl 				 panic("lf_printlist: bad list");
    897      1.12      fvdl 		}
    898      1.12      fvdl 		printf("\n");
    899       1.1        ws 	}
    900       1.1        ws }
    901       1.1        ws #endif /* LOCKF_DEBUG */
    902