vfs_lockf.c revision 1.4 1 1.1 ws /*
2 1.4 mycroft * Copyright (c) 1982, 1986, 1989, 1993
3 1.4 mycroft * The Regents of the University of California. All rights reserved.
4 1.1 ws *
5 1.1 ws * This code is derived from software contributed to Berkeley by
6 1.1 ws * Scooter Morris at Genentech Inc.
7 1.1 ws *
8 1.1 ws * Redistribution and use in source and binary forms, with or without
9 1.1 ws * modification, are permitted provided that the following conditions
10 1.1 ws * are met:
11 1.1 ws * 1. Redistributions of source code must retain the above copyright
12 1.1 ws * notice, this list of conditions and the following disclaimer.
13 1.1 ws * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 ws * notice, this list of conditions and the following disclaimer in the
15 1.1 ws * documentation and/or other materials provided with the distribution.
16 1.1 ws * 3. All advertising materials mentioning features or use of this software
17 1.1 ws * must display the following acknowledgement:
18 1.1 ws * This product includes software developed by the University of
19 1.1 ws * California, Berkeley and its contributors.
20 1.1 ws * 4. Neither the name of the University nor the names of its contributors
21 1.1 ws * may be used to endorse or promote products derived from this software
22 1.1 ws * without specific prior written permission.
23 1.1 ws *
24 1.1 ws * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 1.1 ws * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 1.1 ws * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 1.1 ws * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 1.1 ws * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 1.1 ws * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 1.1 ws * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 1.1 ws * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 1.1 ws * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 1.1 ws * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 1.1 ws * SUCH DAMAGE.
35 1.1 ws *
36 1.4 mycroft * from: @(#)ufs_lockf.c 8.3 (Berkeley) 1/6/94
37 1.4 mycroft * $Id: vfs_lockf.c,v 1.4 1994/05/19 06:13:50 mycroft Exp $
38 1.1 ws */
39 1.1 ws
40 1.1 ws #include <sys/param.h>
41 1.1 ws #include <sys/systm.h>
42 1.1 ws #include <sys/kernel.h>
43 1.1 ws #include <sys/file.h>
44 1.1 ws #include <sys/proc.h>
45 1.1 ws #include <sys/vnode.h>
46 1.1 ws #include <sys/malloc.h>
47 1.1 ws #include <sys/fcntl.h>
48 1.1 ws #include <sys/lockf.h>
49 1.1 ws
50 1.1 ws /*
51 1.4 mycroft * Do an advisory lock operation.
52 1.1 ws */
53 1.4 mycroft int
54 1.1 ws lf_advlock(head, size, id, op, fl, flags)
55 1.1 ws struct lockf **head;
56 1.3 cgd off_t size;
57 1.1 ws caddr_t id;
58 1.1 ws int op;
59 1.1 ws register struct flock *fl;
60 1.1 ws int flags;
61 1.1 ws {
62 1.1 ws register struct lockf *lock;
63 1.1 ws off_t start, end;
64 1.1 ws int error;
65 1.1 ws
66 1.1 ws /*
67 1.1 ws * Avoid the common case of unlocking when inode has no locks.
68 1.1 ws */
69 1.1 ws if (*head == (struct lockf *)0) {
70 1.1 ws if (op != F_SETLK) {
71 1.1 ws fl->l_type = F_UNLCK;
72 1.1 ws return (0);
73 1.1 ws }
74 1.1 ws }
75 1.1 ws /*
76 1.1 ws * Convert the flock structure into a start and end.
77 1.1 ws */
78 1.1 ws switch (fl->l_whence) {
79 1.1 ws
80 1.1 ws case SEEK_SET:
81 1.1 ws case SEEK_CUR:
82 1.1 ws /*
83 1.1 ws * Caller is responsible for adding any necessary offset
84 1.1 ws * when SEEK_CUR is used.
85 1.1 ws */
86 1.1 ws start = fl->l_start;
87 1.1 ws break;
88 1.1 ws
89 1.1 ws case SEEK_END:
90 1.1 ws start = size + fl->l_start;
91 1.1 ws break;
92 1.1 ws
93 1.1 ws default:
94 1.1 ws return (EINVAL);
95 1.1 ws }
96 1.1 ws if (start < 0)
97 1.1 ws return (EINVAL);
98 1.1 ws if (fl->l_len == 0)
99 1.1 ws end = -1;
100 1.1 ws else
101 1.1 ws end = start + fl->l_len - 1;
102 1.1 ws /*
103 1.4 mycroft * Create the lockf structure.
104 1.1 ws */
105 1.1 ws MALLOC(lock, struct lockf *, sizeof *lock, M_LOCKF, M_WAITOK);
106 1.1 ws lock->lf_start = start;
107 1.1 ws lock->lf_end = end;
108 1.1 ws lock->lf_id = id;
109 1.1 ws lock->lf_head = head;
110 1.1 ws lock->lf_type = fl->l_type;
111 1.1 ws lock->lf_next = (struct lockf *)0;
112 1.1 ws lock->lf_block = (struct lockf *)0;
113 1.1 ws lock->lf_flags = flags;
114 1.1 ws /*
115 1.1 ws * Do the requested operation.
116 1.1 ws */
117 1.4 mycroft switch (op) {
118 1.4 mycroft
119 1.1 ws case F_SETLK:
120 1.1 ws return (lf_setlock(lock));
121 1.1 ws
122 1.1 ws case F_UNLCK:
123 1.1 ws error = lf_clearlock(lock);
124 1.1 ws FREE(lock, M_LOCKF);
125 1.1 ws return (error);
126 1.1 ws
127 1.1 ws case F_GETLK:
128 1.1 ws error = lf_getlock(lock, fl);
129 1.1 ws FREE(lock, M_LOCKF);
130 1.1 ws return (error);
131 1.4 mycroft
132 1.1 ws default:
133 1.4 mycroft FREE(lock, M_LOCKF);
134 1.1 ws return (EINVAL);
135 1.1 ws }
136 1.1 ws /* NOTREACHED */
137 1.1 ws }
138 1.1 ws
139 1.1 ws /*
140 1.1 ws * This variable controls the maximum number of processes that will
141 1.1 ws * be checked in doing deadlock detection.
142 1.1 ws */
143 1.1 ws int maxlockdepth = MAXDEPTH;
144 1.1 ws
145 1.1 ws #ifdef LOCKF_DEBUG
146 1.1 ws int lockf_debug = 0;
147 1.4 mycroft #endif
148 1.1 ws
149 1.1 ws #define NOLOCKF (struct lockf *)0
150 1.1 ws #define SELF 0x1
151 1.1 ws #define OTHERS 0x2
152 1.1 ws
153 1.1 ws /*
154 1.1 ws * Set a byte-range lock.
155 1.1 ws */
156 1.4 mycroft int
157 1.1 ws lf_setlock(lock)
158 1.1 ws register struct lockf *lock;
159 1.1 ws {
160 1.1 ws register struct lockf *block;
161 1.1 ws struct lockf **head = lock->lf_head;
162 1.1 ws struct lockf **prev, *overlap, *ltmp;
163 1.1 ws static char lockstr[] = "lockf";
164 1.1 ws int ovcase, priority, needtolink, error;
165 1.1 ws
166 1.1 ws #ifdef LOCKF_DEBUG
167 1.1 ws if (lockf_debug & 1)
168 1.1 ws lf_print("lf_setlock", lock);
169 1.1 ws #endif /* LOCKF_DEBUG */
170 1.1 ws
171 1.1 ws /*
172 1.1 ws * Set the priority
173 1.1 ws */
174 1.1 ws priority = PLOCK;
175 1.1 ws if (lock->lf_type == F_WRLCK)
176 1.1 ws priority += 4;
177 1.1 ws priority |= PCATCH;
178 1.1 ws /*
179 1.1 ws * Scan lock list for this file looking for locks that would block us.
180 1.1 ws */
181 1.1 ws while (block = lf_getblock(lock)) {
182 1.1 ws /*
183 1.1 ws * Free the structure and return if nonblocking.
184 1.1 ws */
185 1.1 ws if ((lock->lf_flags & F_WAIT) == 0) {
186 1.1 ws FREE(lock, M_LOCKF);
187 1.1 ws return (EAGAIN);
188 1.1 ws }
189 1.1 ws /*
190 1.1 ws * We are blocked. Since flock style locks cover
191 1.1 ws * the whole file, there is no chance for deadlock.
192 1.1 ws * For byte-range locks we must check for deadlock.
193 1.1 ws *
194 1.1 ws * Deadlock detection is done by looking through the
195 1.1 ws * wait channels to see if there are any cycles that
196 1.1 ws * involve us. MAXDEPTH is set just to make sure we
197 1.1 ws * do not go off into neverland.
198 1.1 ws */
199 1.1 ws if ((lock->lf_flags & F_POSIX) &&
200 1.1 ws (block->lf_flags & F_POSIX)) {
201 1.1 ws register struct proc *wproc;
202 1.1 ws register struct lockf *waitblock;
203 1.1 ws int i = 0;
204 1.1 ws
205 1.1 ws /* The block is waiting on something */
206 1.1 ws wproc = (struct proc *)block->lf_id;
207 1.1 ws while (wproc->p_wchan &&
208 1.1 ws (wproc->p_wmesg == lockstr) &&
209 1.1 ws (i++ < maxlockdepth)) {
210 1.1 ws waitblock = (struct lockf *)wproc->p_wchan;
211 1.1 ws /* Get the owner of the blocking lock */
212 1.1 ws waitblock = waitblock->lf_next;
213 1.1 ws if ((waitblock->lf_flags & F_POSIX) == 0)
214 1.1 ws break;
215 1.1 ws wproc = (struct proc *)waitblock->lf_id;
216 1.1 ws if (wproc == (struct proc *)lock->lf_id) {
217 1.1 ws free(lock, M_LOCKF);
218 1.1 ws return (EDEADLK);
219 1.1 ws }
220 1.1 ws }
221 1.1 ws }
222 1.1 ws /*
223 1.1 ws * For flock type locks, we must first remove
224 1.1 ws * any shared locks that we hold before we sleep
225 1.1 ws * waiting for an exclusive lock.
226 1.1 ws */
227 1.1 ws if ((lock->lf_flags & F_FLOCK) &&
228 1.1 ws lock->lf_type == F_WRLCK) {
229 1.1 ws lock->lf_type = F_UNLCK;
230 1.1 ws (void) lf_clearlock(lock);
231 1.1 ws lock->lf_type = F_WRLCK;
232 1.1 ws }
233 1.1 ws /*
234 1.1 ws * Add our lock to the blocked list and sleep until we're free.
235 1.1 ws * Remember who blocked us (for deadlock detection).
236 1.1 ws */
237 1.1 ws lock->lf_next = block;
238 1.1 ws lf_addblock(block, lock);
239 1.1 ws #ifdef LOCKF_DEBUG
240 1.1 ws if (lockf_debug & 1) {
241 1.1 ws lf_print("lf_setlock: blocking on", block);
242 1.1 ws lf_printlist("lf_setlock", block);
243 1.1 ws }
244 1.1 ws #endif /* LOCKF_DEBUG */
245 1.4 mycroft if (error = tsleep((caddr_t)lock, priority, lockstr, 0)) {
246 1.1 ws /*
247 1.1 ws * Delete ourselves from the waiting to lock list.
248 1.1 ws */
249 1.1 ws for (block = lock->lf_next;
250 1.1 ws block != NOLOCKF;
251 1.1 ws block = block->lf_block) {
252 1.1 ws if (block->lf_block != lock)
253 1.1 ws continue;
254 1.1 ws block->lf_block = block->lf_block->lf_block;
255 1.4 mycroft break;
256 1.1 ws }
257 1.4 mycroft /*
258 1.4 mycroft * If we did not find ourselves on the list, but
259 1.4 mycroft * are still linked onto a lock list, then something
260 1.4 mycroft * is very wrong.
261 1.4 mycroft */
262 1.4 mycroft if (block == NOLOCKF && lock->lf_next != NOLOCKF)
263 1.4 mycroft panic("lf_setlock: lost lock");
264 1.4 mycroft free(lock, M_LOCKF);
265 1.4 mycroft return (error);
266 1.1 ws }
267 1.1 ws }
268 1.1 ws /*
269 1.1 ws * No blocks!! Add the lock. Note that we will
270 1.1 ws * downgrade or upgrade any overlapping locks this
271 1.1 ws * process already owns.
272 1.1 ws *
273 1.1 ws * Skip over locks owned by other processes.
274 1.1 ws * Handle any locks that overlap and are owned by ourselves.
275 1.1 ws */
276 1.1 ws prev = head;
277 1.1 ws block = *head;
278 1.1 ws needtolink = 1;
279 1.1 ws for (;;) {
280 1.1 ws if (ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap))
281 1.1 ws block = overlap->lf_next;
282 1.1 ws /*
283 1.1 ws * Six cases:
284 1.1 ws * 0) no overlap
285 1.1 ws * 1) overlap == lock
286 1.1 ws * 2) overlap contains lock
287 1.1 ws * 3) lock contains overlap
288 1.1 ws * 4) overlap starts before lock
289 1.1 ws * 5) overlap ends after lock
290 1.1 ws */
291 1.1 ws switch (ovcase) {
292 1.1 ws case 0: /* no overlap */
293 1.1 ws if (needtolink) {
294 1.1 ws *prev = lock;
295 1.1 ws lock->lf_next = overlap;
296 1.1 ws }
297 1.1 ws break;
298 1.1 ws
299 1.1 ws case 1: /* overlap == lock */
300 1.1 ws /*
301 1.1 ws * If downgrading lock, others may be
302 1.1 ws * able to acquire it.
303 1.1 ws */
304 1.1 ws if (lock->lf_type == F_RDLCK &&
305 1.1 ws overlap->lf_type == F_WRLCK)
306 1.1 ws lf_wakelock(overlap);
307 1.1 ws overlap->lf_type = lock->lf_type;
308 1.1 ws FREE(lock, M_LOCKF);
309 1.1 ws lock = overlap; /* for debug output below */
310 1.1 ws break;
311 1.1 ws
312 1.1 ws case 2: /* overlap contains lock */
313 1.1 ws /*
314 1.1 ws * Check for common starting point and different types.
315 1.1 ws */
316 1.1 ws if (overlap->lf_type == lock->lf_type) {
317 1.1 ws free(lock, M_LOCKF);
318 1.1 ws lock = overlap; /* for debug output below */
319 1.1 ws break;
320 1.1 ws }
321 1.1 ws if (overlap->lf_start == lock->lf_start) {
322 1.1 ws *prev = lock;
323 1.1 ws lock->lf_next = overlap;
324 1.1 ws overlap->lf_start = lock->lf_end + 1;
325 1.1 ws } else
326 1.1 ws lf_split(overlap, lock);
327 1.1 ws lf_wakelock(overlap);
328 1.1 ws break;
329 1.1 ws
330 1.1 ws case 3: /* lock contains overlap */
331 1.1 ws /*
332 1.1 ws * If downgrading lock, others may be able to
333 1.1 ws * acquire it, otherwise take the list.
334 1.1 ws */
335 1.1 ws if (lock->lf_type == F_RDLCK &&
336 1.1 ws overlap->lf_type == F_WRLCK) {
337 1.1 ws lf_wakelock(overlap);
338 1.1 ws } else {
339 1.1 ws ltmp = lock->lf_block;
340 1.1 ws lock->lf_block = overlap->lf_block;
341 1.1 ws lf_addblock(lock, ltmp);
342 1.1 ws }
343 1.1 ws /*
344 1.1 ws * Add the new lock if necessary and delete the overlap.
345 1.1 ws */
346 1.1 ws if (needtolink) {
347 1.1 ws *prev = lock;
348 1.1 ws lock->lf_next = overlap->lf_next;
349 1.1 ws prev = &lock->lf_next;
350 1.1 ws needtolink = 0;
351 1.1 ws } else
352 1.1 ws *prev = overlap->lf_next;
353 1.1 ws free(overlap, M_LOCKF);
354 1.1 ws continue;
355 1.1 ws
356 1.1 ws case 4: /* overlap starts before lock */
357 1.1 ws /*
358 1.1 ws * Add lock after overlap on the list.
359 1.1 ws */
360 1.1 ws lock->lf_next = overlap->lf_next;
361 1.1 ws overlap->lf_next = lock;
362 1.1 ws overlap->lf_end = lock->lf_start - 1;
363 1.1 ws prev = &lock->lf_next;
364 1.1 ws lf_wakelock(overlap);
365 1.1 ws needtolink = 0;
366 1.1 ws continue;
367 1.1 ws
368 1.1 ws case 5: /* overlap ends after lock */
369 1.1 ws /*
370 1.1 ws * Add the new lock before overlap.
371 1.1 ws */
372 1.1 ws if (needtolink) {
373 1.1 ws *prev = lock;
374 1.1 ws lock->lf_next = overlap;
375 1.1 ws }
376 1.1 ws overlap->lf_start = lock->lf_end + 1;
377 1.1 ws lf_wakelock(overlap);
378 1.1 ws break;
379 1.1 ws }
380 1.1 ws break;
381 1.1 ws }
382 1.1 ws #ifdef LOCKF_DEBUG
383 1.1 ws if (lockf_debug & 1) {
384 1.1 ws lf_print("lf_setlock: got the lock", lock);
385 1.1 ws lf_printlist("lf_setlock", lock);
386 1.1 ws }
387 1.1 ws #endif /* LOCKF_DEBUG */
388 1.1 ws return (0);
389 1.1 ws }
390 1.1 ws
391 1.1 ws /*
392 1.1 ws * Remove a byte-range lock on an inode.
393 1.1 ws *
394 1.1 ws * Generally, find the lock (or an overlap to that lock)
395 1.1 ws * and remove it (or shrink it), then wakeup anyone we can.
396 1.1 ws */
397 1.4 mycroft int
398 1.1 ws lf_clearlock(unlock)
399 1.1 ws register struct lockf *unlock;
400 1.1 ws {
401 1.1 ws struct lockf **head = unlock->lf_head;
402 1.1 ws register struct lockf *lf = *head;
403 1.1 ws struct lockf *overlap, **prev;
404 1.1 ws int ovcase;
405 1.1 ws
406 1.1 ws if (lf == NOLOCKF)
407 1.1 ws return (0);
408 1.1 ws #ifdef LOCKF_DEBUG
409 1.1 ws if (unlock->lf_type != F_UNLCK)
410 1.1 ws panic("lf_clearlock: bad type");
411 1.1 ws if (lockf_debug & 1)
412 1.1 ws lf_print("lf_clearlock", unlock);
413 1.1 ws #endif /* LOCKF_DEBUG */
414 1.1 ws prev = head;
415 1.1 ws while (ovcase = lf_findoverlap(lf, unlock, SELF, &prev, &overlap)) {
416 1.1 ws /*
417 1.1 ws * Wakeup the list of locks to be retried.
418 1.1 ws */
419 1.1 ws lf_wakelock(overlap);
420 1.1 ws
421 1.1 ws switch (ovcase) {
422 1.1 ws
423 1.1 ws case 1: /* overlap == lock */
424 1.1 ws *prev = overlap->lf_next;
425 1.1 ws FREE(overlap, M_LOCKF);
426 1.1 ws break;
427 1.1 ws
428 1.1 ws case 2: /* overlap contains lock: split it */
429 1.1 ws if (overlap->lf_start == unlock->lf_start) {
430 1.1 ws overlap->lf_start = unlock->lf_end + 1;
431 1.1 ws break;
432 1.1 ws }
433 1.1 ws lf_split(overlap, unlock);
434 1.1 ws overlap->lf_next = unlock->lf_next;
435 1.1 ws break;
436 1.1 ws
437 1.1 ws case 3: /* lock contains overlap */
438 1.1 ws *prev = overlap->lf_next;
439 1.1 ws lf = overlap->lf_next;
440 1.1 ws free(overlap, M_LOCKF);
441 1.1 ws continue;
442 1.1 ws
443 1.1 ws case 4: /* overlap starts before lock */
444 1.1 ws overlap->lf_end = unlock->lf_start - 1;
445 1.1 ws prev = &overlap->lf_next;
446 1.1 ws lf = overlap->lf_next;
447 1.1 ws continue;
448 1.1 ws
449 1.1 ws case 5: /* overlap ends after lock */
450 1.1 ws overlap->lf_start = unlock->lf_end + 1;
451 1.1 ws break;
452 1.1 ws }
453 1.1 ws break;
454 1.1 ws }
455 1.1 ws #ifdef LOCKF_DEBUG
456 1.1 ws if (lockf_debug & 1)
457 1.1 ws lf_printlist("lf_clearlock", unlock);
458 1.1 ws #endif /* LOCKF_DEBUG */
459 1.1 ws return (0);
460 1.1 ws }
461 1.1 ws
462 1.1 ws /*
463 1.1 ws * Check whether there is a blocking lock,
464 1.1 ws * and if so return its process identifier.
465 1.1 ws */
466 1.4 mycroft int
467 1.1 ws lf_getlock(lock, fl)
468 1.1 ws register struct lockf *lock;
469 1.1 ws register struct flock *fl;
470 1.1 ws {
471 1.1 ws register struct lockf *block;
472 1.1 ws
473 1.1 ws #ifdef LOCKF_DEBUG
474 1.1 ws if (lockf_debug & 1)
475 1.1 ws lf_print("lf_getlock", lock);
476 1.1 ws #endif /* LOCKF_DEBUG */
477 1.1 ws
478 1.1 ws if (block = lf_getblock(lock)) {
479 1.1 ws fl->l_type = block->lf_type;
480 1.1 ws fl->l_whence = SEEK_SET;
481 1.1 ws fl->l_start = block->lf_start;
482 1.1 ws if (block->lf_end == -1)
483 1.1 ws fl->l_len = 0;
484 1.1 ws else
485 1.1 ws fl->l_len = block->lf_end - block->lf_start + 1;
486 1.1 ws if (block->lf_flags & F_POSIX)
487 1.1 ws fl->l_pid = ((struct proc *)(block->lf_id))->p_pid;
488 1.1 ws else
489 1.1 ws fl->l_pid = -1;
490 1.1 ws } else {
491 1.1 ws fl->l_type = F_UNLCK;
492 1.1 ws }
493 1.1 ws return (0);
494 1.1 ws }
495 1.1 ws
496 1.1 ws /*
497 1.1 ws * Walk the list of locks for an inode and
498 1.1 ws * return the first blocking lock.
499 1.1 ws */
500 1.1 ws struct lockf *
501 1.1 ws lf_getblock(lock)
502 1.1 ws register struct lockf *lock;
503 1.1 ws {
504 1.1 ws struct lockf **prev, *overlap, *lf = *(lock->lf_head);
505 1.1 ws int ovcase;
506 1.1 ws
507 1.1 ws prev = lock->lf_head;
508 1.1 ws while (ovcase = lf_findoverlap(lf, lock, OTHERS, &prev, &overlap)) {
509 1.1 ws /*
510 1.1 ws * We've found an overlap, see if it blocks us
511 1.1 ws */
512 1.1 ws if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
513 1.1 ws return (overlap);
514 1.1 ws /*
515 1.1 ws * Nope, point to the next one on the list and
516 1.1 ws * see if it blocks us
517 1.1 ws */
518 1.1 ws lf = overlap->lf_next;
519 1.1 ws }
520 1.1 ws return (NOLOCKF);
521 1.1 ws }
522 1.1 ws
523 1.1 ws /*
524 1.1 ws * Walk the list of locks for an inode to
525 1.1 ws * find an overlapping lock (if any).
526 1.1 ws *
527 1.1 ws * NOTE: this returns only the FIRST overlapping lock. There
528 1.1 ws * may be more than one.
529 1.1 ws */
530 1.4 mycroft int
531 1.1 ws lf_findoverlap(lf, lock, type, prev, overlap)
532 1.1 ws register struct lockf *lf;
533 1.1 ws struct lockf *lock;
534 1.1 ws int type;
535 1.1 ws struct lockf ***prev;
536 1.1 ws struct lockf **overlap;
537 1.1 ws {
538 1.1 ws off_t start, end;
539 1.1 ws
540 1.1 ws *overlap = lf;
541 1.1 ws if (lf == NOLOCKF)
542 1.1 ws return (0);
543 1.1 ws #ifdef LOCKF_DEBUG
544 1.1 ws if (lockf_debug & 2)
545 1.1 ws lf_print("lf_findoverlap: looking for overlap in", lock);
546 1.1 ws #endif /* LOCKF_DEBUG */
547 1.1 ws start = lock->lf_start;
548 1.1 ws end = lock->lf_end;
549 1.1 ws while (lf != NOLOCKF) {
550 1.1 ws if (((type & SELF) && lf->lf_id != lock->lf_id) ||
551 1.1 ws ((type & OTHERS) && lf->lf_id == lock->lf_id)) {
552 1.1 ws *prev = &lf->lf_next;
553 1.1 ws *overlap = lf = lf->lf_next;
554 1.1 ws continue;
555 1.1 ws }
556 1.1 ws #ifdef LOCKF_DEBUG
557 1.1 ws if (lockf_debug & 2)
558 1.1 ws lf_print("\tchecking", lf);
559 1.1 ws #endif /* LOCKF_DEBUG */
560 1.1 ws /*
561 1.1 ws * OK, check for overlap
562 1.1 ws *
563 1.1 ws * Six cases:
564 1.1 ws * 0) no overlap
565 1.1 ws * 1) overlap == lock
566 1.1 ws * 2) overlap contains lock
567 1.1 ws * 3) lock contains overlap
568 1.1 ws * 4) overlap starts before lock
569 1.1 ws * 5) overlap ends after lock
570 1.1 ws */
571 1.1 ws if ((lf->lf_end != -1 && start > lf->lf_end) ||
572 1.1 ws (end != -1 && lf->lf_start > end)) {
573 1.1 ws /* Case 0 */
574 1.1 ws #ifdef LOCKF_DEBUG
575 1.1 ws if (lockf_debug & 2)
576 1.1 ws printf("no overlap\n");
577 1.1 ws #endif /* LOCKF_DEBUG */
578 1.1 ws if ((type & SELF) && end != -1 && lf->lf_start > end)
579 1.1 ws return (0);
580 1.1 ws *prev = &lf->lf_next;
581 1.1 ws *overlap = lf = lf->lf_next;
582 1.1 ws continue;
583 1.1 ws }
584 1.1 ws if ((lf->lf_start == start) && (lf->lf_end == end)) {
585 1.1 ws /* Case 1 */
586 1.1 ws #ifdef LOCKF_DEBUG
587 1.1 ws if (lockf_debug & 2)
588 1.1 ws printf("overlap == lock\n");
589 1.1 ws #endif /* LOCKF_DEBUG */
590 1.1 ws return (1);
591 1.1 ws }
592 1.1 ws if ((lf->lf_start <= start) &&
593 1.1 ws (end != -1) &&
594 1.1 ws ((lf->lf_end >= end) || (lf->lf_end == -1))) {
595 1.1 ws /* Case 2 */
596 1.1 ws #ifdef LOCKF_DEBUG
597 1.1 ws if (lockf_debug & 2)
598 1.1 ws printf("overlap contains lock\n");
599 1.1 ws #endif /* LOCKF_DEBUG */
600 1.1 ws return (2);
601 1.1 ws }
602 1.1 ws if (start <= lf->lf_start &&
603 1.4 mycroft (end == -1 ||
604 1.1 ws (lf->lf_end != -1 && end >= lf->lf_end))) {
605 1.1 ws /* Case 3 */
606 1.1 ws #ifdef LOCKF_DEBUG
607 1.1 ws if (lockf_debug & 2)
608 1.1 ws printf("lock contains overlap\n");
609 1.1 ws #endif /* LOCKF_DEBUG */
610 1.1 ws return (3);
611 1.1 ws }
612 1.1 ws if ((lf->lf_start < start) &&
613 1.1 ws ((lf->lf_end >= start) || (lf->lf_end == -1))) {
614 1.1 ws /* Case 4 */
615 1.1 ws #ifdef LOCKF_DEBUG
616 1.1 ws if (lockf_debug & 2)
617 1.1 ws printf("overlap starts before lock\n");
618 1.1 ws #endif /* LOCKF_DEBUG */
619 1.1 ws return (4);
620 1.1 ws }
621 1.1 ws if ((lf->lf_start > start) &&
622 1.1 ws (end != -1) &&
623 1.1 ws ((lf->lf_end > end) || (lf->lf_end == -1))) {
624 1.1 ws /* Case 5 */
625 1.1 ws #ifdef LOCKF_DEBUG
626 1.1 ws if (lockf_debug & 2)
627 1.1 ws printf("overlap ends after lock\n");
628 1.1 ws #endif /* LOCKF_DEBUG */
629 1.1 ws return (5);
630 1.1 ws }
631 1.1 ws panic("lf_findoverlap: default");
632 1.1 ws }
633 1.1 ws return (0);
634 1.1 ws }
635 1.1 ws
636 1.1 ws /*
637 1.1 ws * Add a lock to the end of the blocked list.
638 1.1 ws */
639 1.3 cgd void
640 1.1 ws lf_addblock(lock, blocked)
641 1.1 ws struct lockf *lock;
642 1.1 ws struct lockf *blocked;
643 1.1 ws {
644 1.1 ws register struct lockf *lf;
645 1.1 ws
646 1.1 ws if (blocked == NOLOCKF)
647 1.1 ws return;
648 1.1 ws #ifdef LOCKF_DEBUG
649 1.1 ws if (lockf_debug & 2) {
650 1.1 ws lf_print("addblock: adding", blocked);
651 1.1 ws lf_print("to blocked list of", lock);
652 1.1 ws }
653 1.1 ws #endif /* LOCKF_DEBUG */
654 1.1 ws if ((lf = lock->lf_block) == NOLOCKF) {
655 1.1 ws lock->lf_block = blocked;
656 1.1 ws return;
657 1.1 ws }
658 1.1 ws while (lf->lf_block != NOLOCKF)
659 1.1 ws lf = lf->lf_block;
660 1.1 ws lf->lf_block = blocked;
661 1.1 ws return;
662 1.1 ws }
663 1.1 ws
664 1.1 ws /*
665 1.1 ws * Split a lock and a contained region into
666 1.1 ws * two or three locks as necessary.
667 1.1 ws */
668 1.2 cgd void
669 1.1 ws lf_split(lock1, lock2)
670 1.1 ws register struct lockf *lock1;
671 1.1 ws register struct lockf *lock2;
672 1.1 ws {
673 1.1 ws register struct lockf *splitlock;
674 1.1 ws
675 1.1 ws #ifdef LOCKF_DEBUG
676 1.1 ws if (lockf_debug & 2) {
677 1.1 ws lf_print("lf_split", lock1);
678 1.1 ws lf_print("splitting from", lock2);
679 1.1 ws }
680 1.1 ws #endif /* LOCKF_DEBUG */
681 1.1 ws /*
682 1.1 ws * Check to see if spliting into only two pieces.
683 1.1 ws */
684 1.1 ws if (lock1->lf_start == lock2->lf_start) {
685 1.1 ws lock1->lf_start = lock2->lf_end + 1;
686 1.1 ws lock2->lf_next = lock1;
687 1.1 ws return;
688 1.1 ws }
689 1.1 ws if (lock1->lf_end == lock2->lf_end) {
690 1.1 ws lock1->lf_end = lock2->lf_start - 1;
691 1.1 ws lock2->lf_next = lock1->lf_next;
692 1.1 ws lock1->lf_next = lock2;
693 1.1 ws return;
694 1.1 ws }
695 1.1 ws /*
696 1.1 ws * Make a new lock consisting of the last part of
697 1.1 ws * the encompassing lock
698 1.1 ws */
699 1.1 ws MALLOC(splitlock, struct lockf *, sizeof *splitlock, M_LOCKF, M_WAITOK);
700 1.1 ws bcopy((caddr_t)lock1, (caddr_t)splitlock, sizeof *splitlock);
701 1.1 ws splitlock->lf_start = lock2->lf_end + 1;
702 1.1 ws splitlock->lf_block = NOLOCKF;
703 1.1 ws lock1->lf_end = lock2->lf_start - 1;
704 1.1 ws /*
705 1.1 ws * OK, now link it in
706 1.1 ws */
707 1.1 ws splitlock->lf_next = lock1->lf_next;
708 1.1 ws lock2->lf_next = splitlock;
709 1.1 ws lock1->lf_next = lock2;
710 1.1 ws }
711 1.1 ws
712 1.1 ws /*
713 1.1 ws * Wakeup a blocklist
714 1.1 ws */
715 1.2 cgd void
716 1.1 ws lf_wakelock(listhead)
717 1.1 ws struct lockf *listhead;
718 1.1 ws {
719 1.1 ws register struct lockf *blocklist, *wakelock;
720 1.1 ws
721 1.1 ws blocklist = listhead->lf_block;
722 1.1 ws listhead->lf_block = NOLOCKF;
723 1.1 ws while (blocklist != NOLOCKF) {
724 1.1 ws wakelock = blocklist;
725 1.1 ws blocklist = blocklist->lf_block;
726 1.1 ws wakelock->lf_block = NOLOCKF;
727 1.1 ws wakelock->lf_next = NOLOCKF;
728 1.1 ws #ifdef LOCKF_DEBUG
729 1.1 ws if (lockf_debug & 2)
730 1.1 ws lf_print("lf_wakelock: awakening", wakelock);
731 1.1 ws #endif /* LOCKF_DEBUG */
732 1.1 ws wakeup((caddr_t)wakelock);
733 1.1 ws }
734 1.1 ws }
735 1.1 ws
736 1.1 ws #ifdef LOCKF_DEBUG
737 1.1 ws /*
738 1.1 ws * Print out a lock.
739 1.1 ws */
740 1.4 mycroft void
741 1.1 ws lf_print(tag, lock)
742 1.1 ws char *tag;
743 1.1 ws register struct lockf *lock;
744 1.1 ws {
745 1.1 ws
746 1.1 ws printf("%s: lock 0x%lx for ", tag, lock);
747 1.1 ws if (lock->lf_flags & F_POSIX)
748 1.1 ws printf("proc %d", ((struct proc *)(lock->lf_id))->p_pid);
749 1.1 ws else
750 1.1 ws printf("id 0x%x", lock->lf_id);
751 1.1 ws printf(" in ino %d on dev <%d, %d>, %s, start %d, end %d",
752 1.1 ws lock->lf_inode->i_number,
753 1.1 ws major(lock->lf_inode->i_dev),
754 1.1 ws minor(lock->lf_inode->i_dev),
755 1.1 ws lock->lf_type == F_RDLCK ? "shared" :
756 1.1 ws lock->lf_type == F_WRLCK ? "exclusive" :
757 1.1 ws lock->lf_type == F_UNLCK ? "unlock" :
758 1.1 ws "unknown", lock->lf_start, lock->lf_end);
759 1.1 ws if (lock->lf_block)
760 1.1 ws printf(" block 0x%x\n", lock->lf_block);
761 1.1 ws else
762 1.1 ws printf("\n");
763 1.1 ws }
764 1.1 ws
765 1.4 mycroft void
766 1.1 ws lf_printlist(tag, lock)
767 1.1 ws char *tag;
768 1.1 ws struct lockf *lock;
769 1.1 ws {
770 1.1 ws register struct lockf *lf;
771 1.1 ws
772 1.1 ws printf("%s: Lock list for ino %d on dev <%d, %d>:\n",
773 1.1 ws tag, lock->lf_inode->i_number,
774 1.1 ws major(lock->lf_inode->i_dev),
775 1.1 ws minor(lock->lf_inode->i_dev));
776 1.1 ws for (lf = lock->lf_inode->i_lockf; lf; lf = lf->lf_next) {
777 1.1 ws printf("\tlock 0x%lx for ", lf);
778 1.1 ws if (lf->lf_flags & F_POSIX)
779 1.1 ws printf("proc %d", ((struct proc *)(lf->lf_id))->p_pid);
780 1.1 ws else
781 1.1 ws printf("id 0x%x", lf->lf_id);
782 1.1 ws printf(", %s, start %d, end %d",
783 1.1 ws lf->lf_type == F_RDLCK ? "shared" :
784 1.1 ws lf->lf_type == F_WRLCK ? "exclusive" :
785 1.1 ws lf->lf_type == F_UNLCK ? "unlock" :
786 1.1 ws "unknown", lf->lf_start, lf->lf_end);
787 1.1 ws if (lf->lf_block)
788 1.1 ws printf(" block 0x%x\n", lf->lf_block);
789 1.1 ws else
790 1.1 ws printf("\n");
791 1.1 ws }
792 1.1 ws }
793 1.1 ws #endif /* LOCKF_DEBUG */
794