Home | History | Annotate | Line # | Download | only in kern
vfs_lockf.c revision 1.40
      1  1.40  christos /*	$NetBSD: vfs_lockf.c,v 1.40 2005/05/07 17:42:09 christos Exp $	*/
      2   1.5       cgd 
      3   1.1        ws /*
      4   1.4   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
      5   1.4   mycroft  *	The Regents of the University of California.  All rights reserved.
      6   1.1        ws  *
      7   1.1        ws  * This code is derived from software contributed to Berkeley by
      8   1.1        ws  * Scooter Morris at Genentech Inc.
      9   1.1        ws  *
     10   1.1        ws  * Redistribution and use in source and binary forms, with or without
     11   1.1        ws  * modification, are permitted provided that the following conditions
     12   1.1        ws  * are met:
     13   1.1        ws  * 1. Redistributions of source code must retain the above copyright
     14   1.1        ws  *    notice, this list of conditions and the following disclaimer.
     15   1.1        ws  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1        ws  *    notice, this list of conditions and the following disclaimer in the
     17   1.1        ws  *    documentation and/or other materials provided with the distribution.
     18  1.33       agc  * 3. Neither the name of the University nor the names of its contributors
     19   1.1        ws  *    may be used to endorse or promote products derived from this software
     20   1.1        ws  *    without specific prior written permission.
     21   1.1        ws  *
     22   1.1        ws  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23   1.1        ws  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24   1.1        ws  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25   1.1        ws  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26   1.1        ws  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27   1.1        ws  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28   1.1        ws  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29   1.1        ws  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30   1.1        ws  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31   1.1        ws  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32   1.1        ws  * SUCH DAMAGE.
     33   1.1        ws  *
     34  1.12      fvdl  *	@(#)ufs_lockf.c	8.4 (Berkeley) 10/26/94
     35   1.1        ws  */
     36  1.18     lukem 
     37  1.18     lukem #include <sys/cdefs.h>
     38  1.40  christos __KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.40 2005/05/07 17:42:09 christos Exp $");
     39   1.1        ws 
     40   1.1        ws #include <sys/param.h>
     41   1.1        ws #include <sys/systm.h>
     42   1.1        ws #include <sys/kernel.h>
     43   1.1        ws #include <sys/file.h>
     44   1.1        ws #include <sys/proc.h>
     45   1.1        ws #include <sys/vnode.h>
     46  1.35    simonb #include <sys/pool.h>
     47   1.1        ws #include <sys/fcntl.h>
     48   1.1        ws #include <sys/lockf.h>
     49  1.22   thorpej 
     50  1.35    simonb POOL_INIT(lockfpool, sizeof(struct lockf), 0, 0, 0, "lockfpl",
     51  1.35    simonb     &pool_allocator_nointr);
     52   1.1        ws 
     53   1.1        ws /*
     54   1.6   mycroft  * This variable controls the maximum number of processes that will
     55   1.6   mycroft  * be checked in doing deadlock detection.
     56   1.6   mycroft  */
     57   1.6   mycroft int maxlockdepth = MAXDEPTH;
     58   1.6   mycroft 
     59   1.6   mycroft #ifdef LOCKF_DEBUG
     60   1.6   mycroft int	lockf_debug = 0;
     61   1.6   mycroft #endif
     62   1.6   mycroft 
     63   1.6   mycroft #define NOLOCKF (struct lockf *)0
     64   1.6   mycroft #define SELF	0x1
     65   1.6   mycroft #define OTHERS	0x2
     66   1.6   mycroft 
     67  1.27      yamt static int lf_clearlock(struct lockf *, struct lockf **);
     68  1.25      yamt static int lf_findoverlap(struct lockf *,
     69  1.25      yamt 	    struct lockf *, int, struct lockf ***, struct lockf **);
     70  1.25      yamt static struct lockf *lf_getblock(struct lockf *);
     71  1.25      yamt static int lf_getlock(struct lockf *, struct flock *);
     72  1.27      yamt static int lf_setlock(struct lockf *, struct lockf **, struct simplelock *);
     73  1.27      yamt static void lf_split(struct lockf *, struct lockf *, struct lockf **);
     74  1.25      yamt static void lf_wakelock(struct lockf *);
     75  1.38  christos static struct lockf *lf_alloc(uid_t, int);
     76  1.38  christos static void lf_free(struct lockf *);
     77  1.38  christos 
     78  1.24      yamt 
     79  1.24      yamt #ifdef LOCKF_DEBUG
     80  1.25      yamt static void lf_print(char *, struct lockf *);
     81  1.25      yamt static void lf_printlist(char *, struct lockf *);
     82  1.24      yamt #endif
     83  1.24      yamt 
     84   1.6   mycroft /*
     85  1.16  sommerfe  * XXX TODO
     86  1.16  sommerfe  * Misc cleanups: "caddr_t id" should be visible in the API as a
     87  1.16  sommerfe  * "struct proc *".
     88  1.16  sommerfe  * (This requires rototilling all VFS's which support advisory locking).
     89  1.16  sommerfe  */
     90  1.16  sommerfe 
     91  1.16  sommerfe /*
     92  1.16  sommerfe  * If there's a lot of lock contention on a single vnode, locking
     93  1.16  sommerfe  * schemes which allow for more paralleism would be needed.  Given how
     94  1.16  sommerfe  * infrequently byte-range locks are actually used in typical BSD
     95  1.16  sommerfe  * code, a more complex approach probably isn't worth it.
     96  1.16  sommerfe  */
     97  1.16  sommerfe 
     98  1.16  sommerfe /*
     99  1.38  christos  * We enforce a limit on locks by uid, so that a single user cannot
    100  1.38  christos  * run the kernel out of memory.  For now, the limit is pretty coarse.
    101  1.38  christos  * There is no limit on root.
    102  1.38  christos  *
    103  1.38  christos  * Splitting a lock will always succeed, regardless of current allocations.
    104  1.38  christos  * If you're slightly above the limit, we still have to permit an allocation
    105  1.38  christos  * so that the unlock can succeed.  If the unlocking causes too many splits,
    106  1.38  christos  * however, you're totally cutoff.
    107  1.38  christos  */
    108  1.38  christos int maxlocksperuid = 1024;
    109  1.38  christos 
    110  1.38  christos /*
    111  1.38  christos  * 3 options for allowfail.
    112  1.38  christos  * 0 - always allocate.  1 - cutoff at limit.  2 - cutoff at double limit.
    113  1.38  christos  */
    114  1.38  christos struct lockf *
    115  1.38  christos lf_alloc(uid_t uid, int allowfail)
    116  1.38  christos {
    117  1.38  christos 	struct uidinfo *uip;
    118  1.38  christos 	struct lockf *lock;
    119  1.38  christos 
    120  1.38  christos 	uip = uid_find(uid);
    121  1.40  christos 	simple_lock(&uip->ui_slock);
    122  1.38  christos 	if (uid && allowfail && uip->ui_lockcnt >
    123  1.40  christos 	    (allowfail == 1 ? maxlocksperuid : (maxlocksperuid * 2))) {
    124  1.40  christos 		simple_unlock(&uip->ui_slock);
    125  1.40  christos 		return NULL;
    126  1.40  christos 	}
    127  1.38  christos 	uip->ui_lockcnt++;
    128  1.40  christos 	simple_unlock(&uip->ui_slock);
    129  1.38  christos 	lock = pool_get(&lockfpool, PR_WAITOK);
    130  1.38  christos 	lock->lf_uid = uid;
    131  1.40  christos 	return lock;
    132  1.38  christos }
    133  1.38  christos 
    134  1.38  christos void
    135  1.38  christos lf_free(struct lockf *lock)
    136  1.38  christos {
    137  1.38  christos 	struct uidinfo *uip;
    138  1.38  christos 
    139  1.38  christos 	uip = uid_find(lock->lf_uid);
    140  1.40  christos 	simple_lock(&uip->ui_slock);
    141  1.38  christos 	uip->ui_lockcnt--;
    142  1.40  christos 	simple_unlock(&uip->ui_slock);
    143  1.38  christos 	pool_put(&lockfpool, lock);
    144  1.38  christos }
    145  1.38  christos 
    146  1.38  christos /*
    147   1.4   mycroft  * Do an advisory lock operation.
    148   1.1        ws  */
    149   1.4   mycroft int
    150  1.25      yamt lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
    151   1.1        ws {
    152  1.38  christos 	struct proc *p = curproc;
    153  1.17  jdolecek 	struct flock *fl = ap->a_fl;
    154  1.27      yamt 	struct lockf *lock = NULL;
    155  1.27      yamt 	struct lockf *sparelock;
    156  1.30      yamt 	struct simplelock *interlock = &ap->a_vp->v_interlock;
    157   1.1        ws 	off_t start, end;
    158  1.34  christos 	int error = 0;
    159   1.1        ws 
    160   1.1        ws 	/*
    161   1.1        ws 	 * Convert the flock structure into a start and end.
    162   1.1        ws 	 */
    163   1.1        ws 	switch (fl->l_whence) {
    164   1.1        ws 	case SEEK_SET:
    165   1.1        ws 	case SEEK_CUR:
    166   1.1        ws 		/*
    167   1.1        ws 		 * Caller is responsible for adding any necessary offset
    168   1.1        ws 		 * when SEEK_CUR is used.
    169   1.1        ws 		 */
    170   1.1        ws 		start = fl->l_start;
    171   1.1        ws 		break;
    172   1.1        ws 
    173   1.1        ws 	case SEEK_END:
    174   1.1        ws 		start = size + fl->l_start;
    175   1.1        ws 		break;
    176   1.1        ws 
    177   1.1        ws 	default:
    178  1.29      yamt 		return EINVAL;
    179   1.1        ws 	}
    180   1.1        ws 	if (start < 0)
    181  1.29      yamt 		return EINVAL;
    182  1.10    kleink 
    183  1.10    kleink 	/*
    184  1.27      yamt 	 * allocate locks before acquire simple lock.
    185  1.27      yamt 	 * we need two locks in the worst case.
    186  1.27      yamt 	 */
    187  1.27      yamt 	switch (ap->a_op) {
    188  1.27      yamt 	case F_SETLK:
    189  1.27      yamt 	case F_UNLCK:
    190  1.27      yamt 		/*
    191  1.27      yamt 		 * XXX for F_UNLCK case, we can re-use lock.
    192  1.27      yamt 		 */
    193  1.27      yamt 		if ((fl->l_type & F_FLOCK) == 0) {
    194  1.27      yamt 			/*
    195  1.27      yamt 			 * byte-range lock might need one more lock.
    196  1.27      yamt 			 */
    197  1.38  christos 			sparelock = lf_alloc(p->p_ucred->cr_uid, 0);
    198  1.27      yamt 			if (sparelock == NULL) {
    199  1.27      yamt 				error = ENOMEM;
    200  1.27      yamt 				goto quit;
    201  1.27      yamt 			}
    202  1.27      yamt 			break;
    203  1.27      yamt 		}
    204  1.27      yamt 		/* FALLTHROUGH */
    205  1.27      yamt 
    206  1.27      yamt 	case F_GETLK:
    207  1.27      yamt 		sparelock = NULL;
    208  1.27      yamt 		break;
    209  1.27      yamt 
    210  1.27      yamt 	default:
    211  1.29      yamt 		return EINVAL;
    212  1.27      yamt 	}
    213  1.27      yamt 
    214  1.38  christos 	lock = lf_alloc(p->p_ucred->cr_uid, ap->a_op != F_UNLCK ? 1 : 2);
    215  1.27      yamt 	if (lock == NULL) {
    216  1.27      yamt 		error = ENOMEM;
    217  1.27      yamt 		goto quit;
    218  1.27      yamt 	}
    219  1.27      yamt 
    220  1.30      yamt 	simple_lock(interlock);
    221  1.27      yamt 
    222  1.27      yamt 	/*
    223  1.10    kleink 	 * Avoid the common case of unlocking when inode has no locks.
    224  1.10    kleink 	 */
    225  1.10    kleink 	if (*head == (struct lockf *)0) {
    226  1.17  jdolecek 		if (ap->a_op != F_SETLK) {
    227  1.10    kleink 			fl->l_type = F_UNLCK;
    228  1.27      yamt 			error = 0;
    229  1.27      yamt 			goto quit_unlock;
    230  1.10    kleink 		}
    231  1.10    kleink 	}
    232  1.10    kleink 
    233   1.1        ws 	if (fl->l_len == 0)
    234   1.1        ws 		end = -1;
    235   1.1        ws 	else
    236   1.1        ws 		end = start + fl->l_len - 1;
    237   1.1        ws 	/*
    238   1.4   mycroft 	 * Create the lockf structure.
    239   1.1        ws 	 */
    240   1.1        ws 	lock->lf_start = start;
    241   1.1        ws 	lock->lf_end = end;
    242  1.37     perry 	/* XXX NJWLWP
    243  1.21   thorpej 	 * I don't want to make the entire VFS universe use LWPs, because
    244  1.21   thorpej 	 * they don't need them, for the most part. This is an exception,
    245  1.21   thorpej 	 * and a kluge.
    246  1.21   thorpej 	 */
    247  1.21   thorpej 
    248   1.1        ws 	lock->lf_head = head;
    249   1.1        ws 	lock->lf_type = fl->l_type;
    250   1.1        ws 	lock->lf_next = (struct lockf *)0;
    251  1.12      fvdl 	TAILQ_INIT(&lock->lf_blkhd);
    252  1.17  jdolecek 	lock->lf_flags = ap->a_flags;
    253  1.21   thorpej 	if (lock->lf_flags & F_POSIX) {
    254  1.21   thorpej 		KASSERT(curproc == (struct proc *)ap->a_id);
    255  1.21   thorpej 	}
    256  1.23   mycroft 	lock->lf_id = (struct proc *)ap->a_id;
    257  1.23   mycroft 	lock->lf_lwp = curlwp;
    258  1.37     perry 
    259   1.1        ws 	/*
    260   1.1        ws 	 * Do the requested operation.
    261   1.1        ws 	 */
    262  1.17  jdolecek 	switch (ap->a_op) {
    263   1.4   mycroft 
    264   1.1        ws 	case F_SETLK:
    265  1.30      yamt 		error = lf_setlock(lock, &sparelock, interlock);
    266  1.27      yamt 		lock = NULL; /* lf_setlock freed it */
    267  1.27      yamt 		break;
    268   1.1        ws 
    269   1.1        ws 	case F_UNLCK:
    270  1.27      yamt 		error = lf_clearlock(lock, &sparelock);
    271  1.27      yamt 		break;
    272   1.1        ws 
    273   1.1        ws 	case F_GETLK:
    274   1.1        ws 		error = lf_getlock(lock, fl);
    275  1.27      yamt 		break;
    276   1.4   mycroft 
    277   1.1        ws 	default:
    278  1.31      fvdl 		break;
    279  1.27      yamt 		/* NOTREACHED */
    280  1.27      yamt 	}
    281  1.27      yamt 
    282  1.27      yamt quit_unlock:
    283  1.30      yamt 	simple_unlock(interlock);
    284  1.27      yamt quit:
    285  1.27      yamt 	if (lock)
    286  1.38  christos 		lf_free(lock);
    287  1.27      yamt 	if (sparelock)
    288  1.38  christos 		lf_free(sparelock);
    289  1.27      yamt 
    290  1.29      yamt 	return error;
    291   1.1        ws }
    292   1.1        ws 
    293   1.1        ws /*
    294   1.1        ws  * Set a byte-range lock.
    295   1.1        ws  */
    296  1.24      yamt static int
    297  1.27      yamt lf_setlock(struct lockf *lock, struct lockf **sparelock,
    298  1.27      yamt     struct simplelock *interlock)
    299   1.1        ws {
    300  1.15  augustss 	struct lockf *block;
    301   1.1        ws 	struct lockf **head = lock->lf_head;
    302   1.1        ws 	struct lockf **prev, *overlap, *ltmp;
    303   1.1        ws 	static char lockstr[] = "lockf";
    304   1.1        ws 	int ovcase, priority, needtolink, error;
    305   1.1        ws 
    306   1.1        ws #ifdef LOCKF_DEBUG
    307   1.1        ws 	if (lockf_debug & 1)
    308   1.1        ws 		lf_print("lf_setlock", lock);
    309   1.1        ws #endif /* LOCKF_DEBUG */
    310   1.1        ws 
    311   1.1        ws 	/*
    312   1.1        ws 	 * Set the priority
    313   1.1        ws 	 */
    314   1.1        ws 	priority = PLOCK;
    315   1.1        ws 	if (lock->lf_type == F_WRLCK)
    316   1.1        ws 		priority += 4;
    317   1.1        ws 	priority |= PCATCH;
    318   1.1        ws 	/*
    319   1.1        ws 	 * Scan lock list for this file looking for locks that would block us.
    320   1.1        ws 	 */
    321   1.7  christos 	while ((block = lf_getblock(lock)) != NULL) {
    322   1.1        ws 		/*
    323   1.1        ws 		 * Free the structure and return if nonblocking.
    324   1.1        ws 		 */
    325   1.1        ws 		if ((lock->lf_flags & F_WAIT) == 0) {
    326  1.38  christos 			lf_free(lock);
    327  1.29      yamt 			return EAGAIN;
    328   1.1        ws 		}
    329   1.1        ws 		/*
    330   1.1        ws 		 * We are blocked. Since flock style locks cover
    331   1.1        ws 		 * the whole file, there is no chance for deadlock.
    332   1.1        ws 		 * For byte-range locks we must check for deadlock.
    333   1.1        ws 		 *
    334   1.1        ws 		 * Deadlock detection is done by looking through the
    335   1.1        ws 		 * wait channels to see if there are any cycles that
    336   1.1        ws 		 * involve us. MAXDEPTH is set just to make sure we
    337  1.16  sommerfe 		 * do not go off into neverneverland.
    338   1.1        ws 		 */
    339   1.1        ws 		if ((lock->lf_flags & F_POSIX) &&
    340   1.1        ws 		    (block->lf_flags & F_POSIX)) {
    341  1.21   thorpej 			struct lwp *wlwp;
    342  1.15  augustss 			struct lockf *waitblock;
    343   1.1        ws 			int i = 0;
    344   1.1        ws 
    345  1.23   mycroft 			/*
    346  1.23   mycroft 			 * The block is waiting on something.  if_lwp will be
    347  1.23   mycroft 			 * 0 once the lock is granted, so we terminate the
    348  1.23   mycroft 			 * loop if we find this.
    349  1.23   mycroft 			 */
    350  1.23   mycroft 			wlwp = block->lf_lwp;
    351  1.23   mycroft 			while (wlwp && (i++ < maxlockdepth)) {
    352  1.21   thorpej 				waitblock = (struct lockf *)wlwp->l_wchan;
    353   1.1        ws 				/* Get the owner of the blocking lock */
    354   1.1        ws 				waitblock = waitblock->lf_next;
    355   1.1        ws 				if ((waitblock->lf_flags & F_POSIX) == 0)
    356   1.1        ws 					break;
    357  1.23   mycroft 				wlwp = waitblock->lf_lwp;
    358  1.23   mycroft 				if (wlwp == lock->lf_lwp) {
    359  1.38  christos 					lf_free(lock);
    360  1.29      yamt 					return EDEADLK;
    361   1.1        ws 				}
    362   1.1        ws 			}
    363  1.16  sommerfe 			/*
    364  1.36     peter 			 * If we're still following a dependency chain
    365  1.16  sommerfe 			 * after maxlockdepth iterations, assume we're in
    366  1.16  sommerfe 			 * a cycle to be safe.
    367  1.16  sommerfe 			 */
    368  1.16  sommerfe 			if (i >= maxlockdepth) {
    369  1.38  christos 				lf_free(lock);
    370  1.29      yamt 				return EDEADLK;
    371  1.16  sommerfe 			}
    372   1.1        ws 		}
    373   1.1        ws 		/*
    374   1.1        ws 		 * For flock type locks, we must first remove
    375   1.1        ws 		 * any shared locks that we hold before we sleep
    376   1.1        ws 		 * waiting for an exclusive lock.
    377   1.1        ws 		 */
    378   1.1        ws 		if ((lock->lf_flags & F_FLOCK) &&
    379   1.1        ws 		    lock->lf_type == F_WRLCK) {
    380   1.1        ws 			lock->lf_type = F_UNLCK;
    381  1.27      yamt 			(void) lf_clearlock(lock, NULL);
    382   1.1        ws 			lock->lf_type = F_WRLCK;
    383   1.1        ws 		}
    384   1.1        ws 		/*
    385   1.1        ws 		 * Add our lock to the blocked list and sleep until we're free.
    386   1.1        ws 		 * Remember who blocked us (for deadlock detection).
    387   1.1        ws 		 */
    388   1.1        ws 		lock->lf_next = block;
    389  1.12      fvdl 		TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
    390   1.1        ws #ifdef LOCKF_DEBUG
    391   1.1        ws 		if (lockf_debug & 1) {
    392   1.1        ws 			lf_print("lf_setlock: blocking on", block);
    393   1.1        ws 			lf_printlist("lf_setlock", block);
    394   1.1        ws 		}
    395   1.1        ws #endif /* LOCKF_DEBUG */
    396  1.27      yamt 		error = ltsleep(lock, priority, lockstr, 0, interlock);
    397  1.16  sommerfe 
    398  1.16  sommerfe 		/*
    399  1.16  sommerfe 		 * We may have been awakened by a signal (in
    400  1.16  sommerfe 		 * which case we must remove ourselves from the
    401  1.16  sommerfe 		 * blocked list) and/or by another process
    402  1.16  sommerfe 		 * releasing a lock (in which case we have already
    403  1.16  sommerfe 		 * been removed from the blocked list and our
    404  1.16  sommerfe 		 * lf_next field set to NOLOCKF).
    405  1.16  sommerfe 		 */
    406  1.16  sommerfe 		if (lock->lf_next != NOLOCKF) {
    407  1.16  sommerfe 			TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
    408  1.16  sommerfe 			lock->lf_next = NOLOCKF;
    409  1.16  sommerfe 		}
    410   1.7  christos 		if (error) {
    411  1.38  christos 			lf_free(lock);
    412  1.29      yamt 			return error;
    413   1.1        ws 		}
    414   1.1        ws 	}
    415   1.1        ws 	/*
    416   1.1        ws 	 * No blocks!!  Add the lock.  Note that we will
    417   1.1        ws 	 * downgrade or upgrade any overlapping locks this
    418   1.1        ws 	 * process already owns.
    419   1.1        ws 	 *
    420   1.1        ws 	 * Skip over locks owned by other processes.
    421   1.1        ws 	 * Handle any locks that overlap and are owned by ourselves.
    422   1.1        ws 	 */
    423  1.23   mycroft 	lock->lf_lwp = 0;
    424   1.1        ws 	prev = head;
    425   1.1        ws 	block = *head;
    426   1.1        ws 	needtolink = 1;
    427   1.1        ws 	for (;;) {
    428   1.7  christos 		ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
    429   1.7  christos 		if (ovcase)
    430   1.1        ws 			block = overlap->lf_next;
    431   1.1        ws 		/*
    432   1.1        ws 		 * Six cases:
    433   1.1        ws 		 *	0) no overlap
    434   1.1        ws 		 *	1) overlap == lock
    435   1.1        ws 		 *	2) overlap contains lock
    436   1.1        ws 		 *	3) lock contains overlap
    437   1.1        ws 		 *	4) overlap starts before lock
    438   1.1        ws 		 *	5) overlap ends after lock
    439   1.1        ws 		 */
    440   1.1        ws 		switch (ovcase) {
    441   1.1        ws 		case 0: /* no overlap */
    442   1.1        ws 			if (needtolink) {
    443   1.1        ws 				*prev = lock;
    444   1.1        ws 				lock->lf_next = overlap;
    445   1.1        ws 			}
    446   1.1        ws 			break;
    447   1.1        ws 
    448   1.1        ws 		case 1: /* overlap == lock */
    449   1.1        ws 			/*
    450   1.1        ws 			 * If downgrading lock, others may be
    451   1.1        ws 			 * able to acquire it.
    452   1.1        ws 			 */
    453   1.1        ws 			if (lock->lf_type == F_RDLCK &&
    454   1.1        ws 			    overlap->lf_type == F_WRLCK)
    455   1.1        ws 				lf_wakelock(overlap);
    456   1.1        ws 			overlap->lf_type = lock->lf_type;
    457  1.38  christos 			lf_free(lock);
    458   1.1        ws 			lock = overlap; /* for debug output below */
    459   1.1        ws 			break;
    460   1.1        ws 
    461   1.1        ws 		case 2: /* overlap contains lock */
    462   1.1        ws 			/*
    463   1.1        ws 			 * Check for common starting point and different types.
    464   1.1        ws 			 */
    465   1.1        ws 			if (overlap->lf_type == lock->lf_type) {
    466  1.38  christos 				lf_free(lock);
    467   1.1        ws 				lock = overlap; /* for debug output below */
    468   1.1        ws 				break;
    469   1.1        ws 			}
    470   1.1        ws 			if (overlap->lf_start == lock->lf_start) {
    471   1.1        ws 				*prev = lock;
    472   1.1        ws 				lock->lf_next = overlap;
    473   1.1        ws 				overlap->lf_start = lock->lf_end + 1;
    474   1.1        ws 			} else
    475  1.27      yamt 				lf_split(overlap, lock, sparelock);
    476   1.1        ws 			lf_wakelock(overlap);
    477   1.1        ws 			break;
    478   1.1        ws 
    479   1.1        ws 		case 3: /* lock contains overlap */
    480   1.1        ws 			/*
    481   1.1        ws 			 * If downgrading lock, others may be able to
    482   1.1        ws 			 * acquire it, otherwise take the list.
    483   1.1        ws 			 */
    484   1.1        ws 			if (lock->lf_type == F_RDLCK &&
    485   1.1        ws 			    overlap->lf_type == F_WRLCK) {
    486   1.1        ws 				lf_wakelock(overlap);
    487   1.1        ws 			} else {
    488  1.19      matt 				while ((ltmp = TAILQ_FIRST(&overlap->lf_blkhd))) {
    489  1.16  sommerfe 					KASSERT(ltmp->lf_next == overlap);
    490  1.12      fvdl 					TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
    491  1.12      fvdl 					    lf_block);
    492  1.16  sommerfe 					ltmp->lf_next = lock;
    493  1.12      fvdl 					TAILQ_INSERT_TAIL(&lock->lf_blkhd,
    494  1.12      fvdl 					    ltmp, lf_block);
    495  1.12      fvdl 				}
    496   1.1        ws 			}
    497   1.1        ws 			/*
    498   1.1        ws 			 * Add the new lock if necessary and delete the overlap.
    499   1.1        ws 			 */
    500   1.1        ws 			if (needtolink) {
    501   1.1        ws 				*prev = lock;
    502   1.1        ws 				lock->lf_next = overlap->lf_next;
    503   1.1        ws 				prev = &lock->lf_next;
    504   1.1        ws 				needtolink = 0;
    505   1.1        ws 			} else
    506   1.1        ws 				*prev = overlap->lf_next;
    507  1.39  christos 			lf_free(overlap);
    508   1.1        ws 			continue;
    509   1.1        ws 
    510   1.1        ws 		case 4: /* overlap starts before lock */
    511   1.1        ws 			/*
    512   1.1        ws 			 * Add lock after overlap on the list.
    513   1.1        ws 			 */
    514   1.1        ws 			lock->lf_next = overlap->lf_next;
    515   1.1        ws 			overlap->lf_next = lock;
    516   1.1        ws 			overlap->lf_end = lock->lf_start - 1;
    517   1.1        ws 			prev = &lock->lf_next;
    518   1.1        ws 			lf_wakelock(overlap);
    519   1.1        ws 			needtolink = 0;
    520   1.1        ws 			continue;
    521   1.1        ws 
    522   1.1        ws 		case 5: /* overlap ends after lock */
    523   1.1        ws 			/*
    524   1.1        ws 			 * Add the new lock before overlap.
    525   1.1        ws 			 */
    526   1.1        ws 			if (needtolink) {
    527   1.1        ws 				*prev = lock;
    528   1.1        ws 				lock->lf_next = overlap;
    529   1.1        ws 			}
    530   1.1        ws 			overlap->lf_start = lock->lf_end + 1;
    531   1.1        ws 			lf_wakelock(overlap);
    532   1.1        ws 			break;
    533   1.1        ws 		}
    534   1.1        ws 		break;
    535   1.1        ws 	}
    536   1.1        ws #ifdef LOCKF_DEBUG
    537   1.1        ws 	if (lockf_debug & 1) {
    538   1.1        ws 		lf_print("lf_setlock: got the lock", lock);
    539   1.1        ws 		lf_printlist("lf_setlock", lock);
    540   1.1        ws 	}
    541   1.1        ws #endif /* LOCKF_DEBUG */
    542  1.29      yamt 	return 0;
    543   1.1        ws }
    544   1.1        ws 
    545   1.1        ws /*
    546   1.1        ws  * Remove a byte-range lock on an inode.
    547   1.1        ws  *
    548   1.1        ws  * Generally, find the lock (or an overlap to that lock)
    549   1.1        ws  * and remove it (or shrink it), then wakeup anyone we can.
    550   1.1        ws  */
    551  1.24      yamt static int
    552  1.27      yamt lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
    553   1.1        ws {
    554   1.1        ws 	struct lockf **head = unlock->lf_head;
    555  1.15  augustss 	struct lockf *lf = *head;
    556   1.1        ws 	struct lockf *overlap, **prev;
    557   1.1        ws 	int ovcase;
    558   1.1        ws 
    559   1.1        ws 	if (lf == NOLOCKF)
    560  1.29      yamt 		return 0;
    561   1.1        ws #ifdef LOCKF_DEBUG
    562   1.1        ws 	if (unlock->lf_type != F_UNLCK)
    563   1.1        ws 		panic("lf_clearlock: bad type");
    564   1.1        ws 	if (lockf_debug & 1)
    565   1.1        ws 		lf_print("lf_clearlock", unlock);
    566   1.1        ws #endif /* LOCKF_DEBUG */
    567   1.1        ws 	prev = head;
    568   1.7  christos 	while ((ovcase = lf_findoverlap(lf, unlock, SELF,
    569   1.7  christos 					&prev, &overlap)) != 0) {
    570   1.1        ws 		/*
    571   1.1        ws 		 * Wakeup the list of locks to be retried.
    572   1.1        ws 		 */
    573   1.1        ws 		lf_wakelock(overlap);
    574   1.1        ws 
    575   1.1        ws 		switch (ovcase) {
    576   1.1        ws 
    577   1.1        ws 		case 1: /* overlap == lock */
    578   1.1        ws 			*prev = overlap->lf_next;
    579  1.38  christos 			lf_free(overlap);
    580   1.1        ws 			break;
    581   1.1        ws 
    582   1.1        ws 		case 2: /* overlap contains lock: split it */
    583   1.1        ws 			if (overlap->lf_start == unlock->lf_start) {
    584   1.1        ws 				overlap->lf_start = unlock->lf_end + 1;
    585   1.1        ws 				break;
    586   1.1        ws 			}
    587  1.27      yamt 			lf_split(overlap, unlock, sparelock);
    588   1.1        ws 			overlap->lf_next = unlock->lf_next;
    589   1.1        ws 			break;
    590   1.1        ws 
    591   1.1        ws 		case 3: /* lock contains overlap */
    592   1.1        ws 			*prev = overlap->lf_next;
    593   1.1        ws 			lf = overlap->lf_next;
    594  1.38  christos 			lf_free(overlap);
    595   1.1        ws 			continue;
    596   1.1        ws 
    597   1.1        ws 		case 4: /* overlap starts before lock */
    598   1.1        ws 			overlap->lf_end = unlock->lf_start - 1;
    599   1.1        ws 			prev = &overlap->lf_next;
    600   1.1        ws 			lf = overlap->lf_next;
    601   1.1        ws 			continue;
    602   1.1        ws 
    603   1.1        ws 		case 5: /* overlap ends after lock */
    604   1.1        ws 			overlap->lf_start = unlock->lf_end + 1;
    605   1.1        ws 			break;
    606   1.1        ws 		}
    607   1.1        ws 		break;
    608   1.1        ws 	}
    609   1.1        ws #ifdef LOCKF_DEBUG
    610   1.1        ws 	if (lockf_debug & 1)
    611   1.1        ws 		lf_printlist("lf_clearlock", unlock);
    612   1.1        ws #endif /* LOCKF_DEBUG */
    613  1.29      yamt 	return 0;
    614   1.1        ws }
    615   1.1        ws 
    616   1.1        ws /*
    617   1.1        ws  * Check whether there is a blocking lock,
    618   1.1        ws  * and if so return its process identifier.
    619   1.1        ws  */
    620  1.24      yamt static int
    621  1.25      yamt lf_getlock(struct lockf *lock, struct flock *fl)
    622   1.1        ws {
    623  1.15  augustss 	struct lockf *block;
    624   1.1        ws 
    625   1.1        ws #ifdef LOCKF_DEBUG
    626   1.1        ws 	if (lockf_debug & 1)
    627   1.1        ws 		lf_print("lf_getlock", lock);
    628   1.1        ws #endif /* LOCKF_DEBUG */
    629   1.1        ws 
    630   1.7  christos 	if ((block = lf_getblock(lock)) != NULL) {
    631   1.1        ws 		fl->l_type = block->lf_type;
    632   1.1        ws 		fl->l_whence = SEEK_SET;
    633   1.1        ws 		fl->l_start = block->lf_start;
    634   1.1        ws 		if (block->lf_end == -1)
    635   1.1        ws 			fl->l_len = 0;
    636   1.1        ws 		else
    637   1.1        ws 			fl->l_len = block->lf_end - block->lf_start + 1;
    638   1.1        ws 		if (block->lf_flags & F_POSIX)
    639  1.23   mycroft 			fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
    640   1.1        ws 		else
    641   1.1        ws 			fl->l_pid = -1;
    642   1.1        ws 	} else {
    643   1.1        ws 		fl->l_type = F_UNLCK;
    644   1.1        ws 	}
    645  1.29      yamt 	return 0;
    646   1.1        ws }
    647   1.1        ws 
    648   1.1        ws /*
    649   1.1        ws  * Walk the list of locks for an inode and
    650   1.1        ws  * return the first blocking lock.
    651   1.1        ws  */
    652  1.24      yamt static struct lockf *
    653  1.25      yamt lf_getblock(struct lockf *lock)
    654   1.1        ws {
    655   1.1        ws 	struct lockf **prev, *overlap, *lf = *(lock->lf_head);
    656   1.1        ws 
    657   1.1        ws 	prev = lock->lf_head;
    658  1.20    simonb 	while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
    659   1.1        ws 		/*
    660   1.1        ws 		 * We've found an overlap, see if it blocks us
    661   1.1        ws 		 */
    662   1.1        ws 		if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
    663  1.29      yamt 			return overlap;
    664   1.1        ws 		/*
    665   1.1        ws 		 * Nope, point to the next one on the list and
    666   1.1        ws 		 * see if it blocks us
    667   1.1        ws 		 */
    668   1.1        ws 		lf = overlap->lf_next;
    669   1.1        ws 	}
    670  1.29      yamt 	return NOLOCKF;
    671   1.1        ws }
    672   1.1        ws 
    673   1.1        ws /*
    674   1.1        ws  * Walk the list of locks for an inode to
    675   1.1        ws  * find an overlapping lock (if any).
    676   1.1        ws  *
    677   1.1        ws  * NOTE: this returns only the FIRST overlapping lock.  There
    678   1.1        ws  *	 may be more than one.
    679   1.1        ws  */
    680  1.24      yamt static int
    681  1.25      yamt lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
    682  1.25      yamt     struct lockf ***prev, struct lockf **overlap)
    683   1.1        ws {
    684   1.1        ws 	off_t start, end;
    685   1.1        ws 
    686   1.1        ws 	*overlap = lf;
    687   1.1        ws 	if (lf == NOLOCKF)
    688  1.29      yamt 		return 0;
    689   1.1        ws #ifdef LOCKF_DEBUG
    690   1.1        ws 	if (lockf_debug & 2)
    691   1.1        ws 		lf_print("lf_findoverlap: looking for overlap in", lock);
    692   1.1        ws #endif /* LOCKF_DEBUG */
    693   1.1        ws 	start = lock->lf_start;
    694   1.1        ws 	end = lock->lf_end;
    695   1.1        ws 	while (lf != NOLOCKF) {
    696  1.23   mycroft 		if (((type == SELF) && lf->lf_id != lock->lf_id) ||
    697  1.23   mycroft 		    ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
    698   1.1        ws 			*prev = &lf->lf_next;
    699   1.1        ws 			*overlap = lf = lf->lf_next;
    700   1.1        ws 			continue;
    701   1.1        ws 		}
    702   1.1        ws #ifdef LOCKF_DEBUG
    703   1.1        ws 		if (lockf_debug & 2)
    704   1.1        ws 			lf_print("\tchecking", lf);
    705   1.1        ws #endif /* LOCKF_DEBUG */
    706   1.1        ws 		/*
    707   1.1        ws 		 * OK, check for overlap
    708   1.1        ws 		 *
    709   1.1        ws 		 * Six cases:
    710   1.1        ws 		 *	0) no overlap
    711   1.1        ws 		 *	1) overlap == lock
    712   1.1        ws 		 *	2) overlap contains lock
    713   1.1        ws 		 *	3) lock contains overlap
    714   1.1        ws 		 *	4) overlap starts before lock
    715   1.1        ws 		 *	5) overlap ends after lock
    716   1.1        ws 		 */
    717   1.1        ws 		if ((lf->lf_end != -1 && start > lf->lf_end) ||
    718   1.1        ws 		    (end != -1 && lf->lf_start > end)) {
    719   1.1        ws 			/* Case 0 */
    720   1.1        ws #ifdef LOCKF_DEBUG
    721   1.1        ws 			if (lockf_debug & 2)
    722   1.9  christos 				printf("no overlap\n");
    723   1.1        ws #endif /* LOCKF_DEBUG */
    724   1.1        ws 			if ((type & SELF) && end != -1 && lf->lf_start > end)
    725  1.29      yamt 				return 0;
    726   1.1        ws 			*prev = &lf->lf_next;
    727   1.1        ws 			*overlap = lf = lf->lf_next;
    728   1.1        ws 			continue;
    729   1.1        ws 		}
    730   1.1        ws 		if ((lf->lf_start == start) && (lf->lf_end == end)) {
    731   1.1        ws 			/* Case 1 */
    732   1.1        ws #ifdef LOCKF_DEBUG
    733   1.1        ws 			if (lockf_debug & 2)
    734   1.9  christos 				printf("overlap == lock\n");
    735   1.1        ws #endif /* LOCKF_DEBUG */
    736  1.29      yamt 			return 1;
    737   1.1        ws 		}
    738   1.1        ws 		if ((lf->lf_start <= start) &&
    739   1.1        ws 		    (end != -1) &&
    740   1.1        ws 		    ((lf->lf_end >= end) || (lf->lf_end == -1))) {
    741   1.1        ws 			/* Case 2 */
    742   1.1        ws #ifdef LOCKF_DEBUG
    743   1.1        ws 			if (lockf_debug & 2)
    744   1.9  christos 				printf("overlap contains lock\n");
    745   1.1        ws #endif /* LOCKF_DEBUG */
    746  1.29      yamt 			return 2;
    747   1.1        ws 		}
    748   1.1        ws 		if (start <= lf->lf_start &&
    749   1.4   mycroft 		           (end == -1 ||
    750   1.1        ws 			   (lf->lf_end != -1 && end >= lf->lf_end))) {
    751   1.1        ws 			/* Case 3 */
    752   1.1        ws #ifdef LOCKF_DEBUG
    753   1.1        ws 			if (lockf_debug & 2)
    754   1.9  christos 				printf("lock contains overlap\n");
    755   1.1        ws #endif /* LOCKF_DEBUG */
    756  1.29      yamt 			return 3;
    757   1.1        ws 		}
    758   1.1        ws 		if ((lf->lf_start < start) &&
    759   1.1        ws 			((lf->lf_end >= start) || (lf->lf_end == -1))) {
    760   1.1        ws 			/* Case 4 */
    761   1.1        ws #ifdef LOCKF_DEBUG
    762   1.1        ws 			if (lockf_debug & 2)
    763   1.9  christos 				printf("overlap starts before lock\n");
    764   1.1        ws #endif /* LOCKF_DEBUG */
    765  1.29      yamt 			return 4;
    766   1.1        ws 		}
    767   1.1        ws 		if ((lf->lf_start > start) &&
    768   1.1        ws 			(end != -1) &&
    769   1.1        ws 			((lf->lf_end > end) || (lf->lf_end == -1))) {
    770   1.1        ws 			/* Case 5 */
    771   1.1        ws #ifdef LOCKF_DEBUG
    772   1.1        ws 			if (lockf_debug & 2)
    773   1.9  christos 				printf("overlap ends after lock\n");
    774   1.1        ws #endif /* LOCKF_DEBUG */
    775  1.29      yamt 			return 5;
    776   1.1        ws 		}
    777   1.1        ws 		panic("lf_findoverlap: default");
    778   1.1        ws 	}
    779  1.29      yamt 	return 0;
    780   1.1        ws }
    781   1.1        ws 
    782   1.1        ws /*
    783   1.1        ws  * Split a lock and a contained region into
    784   1.1        ws  * two or three locks as necessary.
    785   1.1        ws  */
    786  1.24      yamt static void
    787  1.27      yamt lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
    788   1.1        ws {
    789  1.15  augustss 	struct lockf *splitlock;
    790   1.1        ws 
    791   1.1        ws #ifdef LOCKF_DEBUG
    792   1.1        ws 	if (lockf_debug & 2) {
    793   1.1        ws 		lf_print("lf_split", lock1);
    794   1.1        ws 		lf_print("splitting from", lock2);
    795   1.1        ws 	}
    796   1.1        ws #endif /* LOCKF_DEBUG */
    797   1.1        ws 	/*
    798   1.1        ws 	 * Check to see if spliting into only two pieces.
    799   1.1        ws 	 */
    800   1.1        ws 	if (lock1->lf_start == lock2->lf_start) {
    801   1.1        ws 		lock1->lf_start = lock2->lf_end + 1;
    802   1.1        ws 		lock2->lf_next = lock1;
    803   1.1        ws 		return;
    804   1.1        ws 	}
    805   1.1        ws 	if (lock1->lf_end == lock2->lf_end) {
    806   1.1        ws 		lock1->lf_end = lock2->lf_start - 1;
    807   1.1        ws 		lock2->lf_next = lock1->lf_next;
    808   1.1        ws 		lock1->lf_next = lock2;
    809   1.1        ws 		return;
    810   1.1        ws 	}
    811   1.1        ws 	/*
    812   1.1        ws 	 * Make a new lock consisting of the last part of
    813   1.1        ws 	 * the encompassing lock
    814   1.1        ws 	 */
    815  1.27      yamt 	splitlock = *sparelock;
    816  1.27      yamt 	*sparelock = NULL;
    817  1.29      yamt 	memcpy(splitlock, lock1, sizeof(*splitlock));
    818   1.1        ws 	splitlock->lf_start = lock2->lf_end + 1;
    819  1.12      fvdl 	TAILQ_INIT(&splitlock->lf_blkhd);
    820   1.1        ws 	lock1->lf_end = lock2->lf_start - 1;
    821   1.1        ws 	/*
    822   1.1        ws 	 * OK, now link it in
    823   1.1        ws 	 */
    824   1.1        ws 	splitlock->lf_next = lock1->lf_next;
    825   1.1        ws 	lock2->lf_next = splitlock;
    826   1.1        ws 	lock1->lf_next = lock2;
    827   1.1        ws }
    828   1.1        ws 
    829   1.1        ws /*
    830   1.1        ws  * Wakeup a blocklist
    831   1.1        ws  */
    832  1.24      yamt static void
    833  1.25      yamt lf_wakelock(struct lockf *listhead)
    834   1.1        ws {
    835  1.15  augustss 	struct lockf *wakelock;
    836   1.1        ws 
    837  1.19      matt 	while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
    838  1.16  sommerfe 		KASSERT(wakelock->lf_next == listhead);
    839  1.12      fvdl 		TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
    840   1.1        ws 		wakelock->lf_next = NOLOCKF;
    841   1.1        ws #ifdef LOCKF_DEBUG
    842   1.1        ws 		if (lockf_debug & 2)
    843   1.1        ws 			lf_print("lf_wakelock: awakening", wakelock);
    844  1.12      fvdl #endif
    845  1.29      yamt 		wakeup(wakelock);
    846   1.1        ws 	}
    847   1.1        ws }
    848   1.1        ws 
    849   1.1        ws #ifdef LOCKF_DEBUG
    850   1.1        ws /*
    851   1.1        ws  * Print out a lock.
    852   1.1        ws  */
    853  1.24      yamt static void
    854  1.25      yamt lf_print(char *tag, struct lockf *lock)
    855   1.1        ws {
    856  1.37     perry 
    857   1.9  christos 	printf("%s: lock %p for ", tag, lock);
    858   1.1        ws 	if (lock->lf_flags & F_POSIX)
    859  1.23   mycroft 		printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
    860   1.1        ws 	else
    861  1.23   mycroft 		printf("file 0x%p", (struct file *)lock->lf_id);
    862  1.11       jtk 	printf(" %s, start %qx, end %qx",
    863   1.1        ws 		lock->lf_type == F_RDLCK ? "shared" :
    864   1.1        ws 		lock->lf_type == F_WRLCK ? "exclusive" :
    865   1.1        ws 		lock->lf_type == F_UNLCK ? "unlock" :
    866   1.1        ws 		"unknown", lock->lf_start, lock->lf_end);
    867  1.19      matt 	if (TAILQ_FIRST(&lock->lf_blkhd))
    868  1.19      matt 		printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
    869   1.1        ws 	else
    870   1.9  christos 		printf("\n");
    871   1.1        ws }
    872   1.1        ws 
    873  1.24      yamt static void
    874  1.25      yamt lf_printlist(char *tag, struct lockf *lock)
    875   1.1        ws {
    876  1.15  augustss 	struct lockf *lf, *blk;
    877   1.1        ws 
    878  1.11       jtk 	printf("%s: Lock list:\n", tag);
    879  1.12      fvdl 	for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
    880   1.9  christos 		printf("\tlock %p for ", lf);
    881   1.1        ws 		if (lf->lf_flags & F_POSIX)
    882  1.23   mycroft 			printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
    883   1.1        ws 		else
    884  1.23   mycroft 			printf("file 0x%p", (struct file *)lf->lf_id);
    885  1.11       jtk 		printf(", %s, start %qx, end %qx",
    886   1.1        ws 			lf->lf_type == F_RDLCK ? "shared" :
    887   1.1        ws 			lf->lf_type == F_WRLCK ? "exclusive" :
    888   1.1        ws 			lf->lf_type == F_UNLCK ? "unlock" :
    889   1.1        ws 			"unknown", lf->lf_start, lf->lf_end);
    890  1.19      matt 		TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
    891  1.12      fvdl 			if (blk->lf_flags & F_POSIX)
    892  1.12      fvdl 				printf("proc %d",
    893  1.23   mycroft 				    ((struct proc *)blk->lf_id)->p_pid);
    894  1.12      fvdl 			else
    895  1.23   mycroft 				printf("file 0x%p", (struct file *)blk->lf_id);
    896  1.12      fvdl 			printf(", %s, start %qx, end %qx",
    897  1.12      fvdl 				blk->lf_type == F_RDLCK ? "shared" :
    898  1.12      fvdl 				blk->lf_type == F_WRLCK ? "exclusive" :
    899  1.12      fvdl 				blk->lf_type == F_UNLCK ? "unlock" :
    900  1.12      fvdl 				"unknown", blk->lf_start, blk->lf_end);
    901  1.19      matt 			if (TAILQ_FIRST(&blk->lf_blkhd))
    902  1.12      fvdl 				 panic("lf_printlist: bad list");
    903  1.12      fvdl 		}
    904  1.12      fvdl 		printf("\n");
    905   1.1        ws 	}
    906   1.1        ws }
    907   1.1        ws #endif /* LOCKF_DEBUG */
    908