Home | History | Annotate | Line # | Download | only in kern
vfs_lockf.c revision 1.41
      1  1.41  christos /*	$NetBSD: vfs_lockf.c,v 1.41 2005/05/09 11:10:07 christos Exp $	*/
      2   1.5       cgd 
      3   1.1        ws /*
      4   1.4   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
      5   1.4   mycroft  *	The Regents of the University of California.  All rights reserved.
      6   1.1        ws  *
      7   1.1        ws  * This code is derived from software contributed to Berkeley by
      8   1.1        ws  * Scooter Morris at Genentech Inc.
      9   1.1        ws  *
     10   1.1        ws  * Redistribution and use in source and binary forms, with or without
     11   1.1        ws  * modification, are permitted provided that the following conditions
     12   1.1        ws  * are met:
     13   1.1        ws  * 1. Redistributions of source code must retain the above copyright
     14   1.1        ws  *    notice, this list of conditions and the following disclaimer.
     15   1.1        ws  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1        ws  *    notice, this list of conditions and the following disclaimer in the
     17   1.1        ws  *    documentation and/or other materials provided with the distribution.
     18  1.33       agc  * 3. Neither the name of the University nor the names of its contributors
     19   1.1        ws  *    may be used to endorse or promote products derived from this software
     20   1.1        ws  *    without specific prior written permission.
     21   1.1        ws  *
     22   1.1        ws  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23   1.1        ws  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24   1.1        ws  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25   1.1        ws  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26   1.1        ws  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27   1.1        ws  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28   1.1        ws  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29   1.1        ws  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30   1.1        ws  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31   1.1        ws  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32   1.1        ws  * SUCH DAMAGE.
     33   1.1        ws  *
     34  1.12      fvdl  *	@(#)ufs_lockf.c	8.4 (Berkeley) 10/26/94
     35   1.1        ws  */
     36  1.18     lukem 
     37  1.18     lukem #include <sys/cdefs.h>
     38  1.41  christos __KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.41 2005/05/09 11:10:07 christos Exp $");
     39   1.1        ws 
     40   1.1        ws #include <sys/param.h>
     41   1.1        ws #include <sys/systm.h>
     42   1.1        ws #include <sys/kernel.h>
     43   1.1        ws #include <sys/file.h>
     44   1.1        ws #include <sys/proc.h>
     45   1.1        ws #include <sys/vnode.h>
     46  1.35    simonb #include <sys/pool.h>
     47   1.1        ws #include <sys/fcntl.h>
     48   1.1        ws #include <sys/lockf.h>
     49  1.22   thorpej 
     50  1.35    simonb POOL_INIT(lockfpool, sizeof(struct lockf), 0, 0, 0, "lockfpl",
     51  1.35    simonb     &pool_allocator_nointr);
     52   1.1        ws 
     53   1.1        ws /*
     54   1.6   mycroft  * This variable controls the maximum number of processes that will
     55   1.6   mycroft  * be checked in doing deadlock detection.
     56   1.6   mycroft  */
     57   1.6   mycroft int maxlockdepth = MAXDEPTH;
     58   1.6   mycroft 
     59   1.6   mycroft #ifdef LOCKF_DEBUG
     60   1.6   mycroft int	lockf_debug = 0;
     61   1.6   mycroft #endif
     62   1.6   mycroft 
     63   1.6   mycroft #define NOLOCKF (struct lockf *)0
     64   1.6   mycroft #define SELF	0x1
     65   1.6   mycroft #define OTHERS	0x2
     66   1.6   mycroft 
     67  1.27      yamt static int lf_clearlock(struct lockf *, struct lockf **);
     68  1.25      yamt static int lf_findoverlap(struct lockf *,
     69  1.25      yamt 	    struct lockf *, int, struct lockf ***, struct lockf **);
     70  1.25      yamt static struct lockf *lf_getblock(struct lockf *);
     71  1.25      yamt static int lf_getlock(struct lockf *, struct flock *);
     72  1.27      yamt static int lf_setlock(struct lockf *, struct lockf **, struct simplelock *);
     73  1.27      yamt static void lf_split(struct lockf *, struct lockf *, struct lockf **);
     74  1.25      yamt static void lf_wakelock(struct lockf *);
     75  1.38  christos static struct lockf *lf_alloc(uid_t, int);
     76  1.38  christos static void lf_free(struct lockf *);
     77  1.38  christos 
     78  1.24      yamt 
     79  1.24      yamt #ifdef LOCKF_DEBUG
     80  1.25      yamt static void lf_print(char *, struct lockf *);
     81  1.25      yamt static void lf_printlist(char *, struct lockf *);
     82  1.24      yamt #endif
     83  1.24      yamt 
     84   1.6   mycroft /*
     85  1.16  sommerfe  * XXX TODO
     86  1.16  sommerfe  * Misc cleanups: "caddr_t id" should be visible in the API as a
     87  1.16  sommerfe  * "struct proc *".
     88  1.16  sommerfe  * (This requires rototilling all VFS's which support advisory locking).
     89  1.16  sommerfe  */
     90  1.16  sommerfe 
     91  1.16  sommerfe /*
     92  1.16  sommerfe  * If there's a lot of lock contention on a single vnode, locking
     93  1.16  sommerfe  * schemes which allow for more paralleism would be needed.  Given how
     94  1.16  sommerfe  * infrequently byte-range locks are actually used in typical BSD
     95  1.16  sommerfe  * code, a more complex approach probably isn't worth it.
     96  1.16  sommerfe  */
     97  1.16  sommerfe 
     98  1.16  sommerfe /*
     99  1.38  christos  * We enforce a limit on locks by uid, so that a single user cannot
    100  1.38  christos  * run the kernel out of memory.  For now, the limit is pretty coarse.
    101  1.38  christos  * There is no limit on root.
    102  1.38  christos  *
    103  1.38  christos  * Splitting a lock will always succeed, regardless of current allocations.
    104  1.38  christos  * If you're slightly above the limit, we still have to permit an allocation
    105  1.38  christos  * so that the unlock can succeed.  If the unlocking causes too many splits,
    106  1.38  christos  * however, you're totally cutoff.
    107  1.38  christos  */
    108  1.38  christos int maxlocksperuid = 1024;
    109  1.38  christos 
    110  1.38  christos /*
    111  1.38  christos  * 3 options for allowfail.
    112  1.38  christos  * 0 - always allocate.  1 - cutoff at limit.  2 - cutoff at double limit.
    113  1.38  christos  */
    114  1.38  christos struct lockf *
    115  1.38  christos lf_alloc(uid_t uid, int allowfail)
    116  1.38  christos {
    117  1.38  christos 	struct uidinfo *uip;
    118  1.38  christos 	struct lockf *lock;
    119  1.41  christos 	int s;
    120  1.38  christos 
    121  1.38  christos 	uip = uid_find(uid);
    122  1.41  christos 	UILOCK(uip, s);
    123  1.38  christos 	if (uid && allowfail && uip->ui_lockcnt >
    124  1.40  christos 	    (allowfail == 1 ? maxlocksperuid : (maxlocksperuid * 2))) {
    125  1.41  christos 		UIUNLOCK(uip, s);
    126  1.40  christos 		return NULL;
    127  1.40  christos 	}
    128  1.38  christos 	uip->ui_lockcnt++;
    129  1.41  christos 	UIUNLOCK(uip, s);
    130  1.38  christos 	lock = pool_get(&lockfpool, PR_WAITOK);
    131  1.38  christos 	lock->lf_uid = uid;
    132  1.40  christos 	return lock;
    133  1.38  christos }
    134  1.38  christos 
    135  1.38  christos void
    136  1.38  christos lf_free(struct lockf *lock)
    137  1.38  christos {
    138  1.38  christos 	struct uidinfo *uip;
    139  1.41  christos 	int s;
    140  1.38  christos 
    141  1.38  christos 	uip = uid_find(lock->lf_uid);
    142  1.41  christos 	UILOCK(uip, s);
    143  1.38  christos 	uip->ui_lockcnt--;
    144  1.40  christos 	simple_unlock(&uip->ui_slock);
    145  1.41  christos 	UIUNLOCK(uip, s);
    146  1.38  christos 	pool_put(&lockfpool, lock);
    147  1.38  christos }
    148  1.38  christos 
    149  1.38  christos /*
    150   1.4   mycroft  * Do an advisory lock operation.
    151   1.1        ws  */
    152   1.4   mycroft int
    153  1.25      yamt lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
    154   1.1        ws {
    155  1.38  christos 	struct proc *p = curproc;
    156  1.17  jdolecek 	struct flock *fl = ap->a_fl;
    157  1.27      yamt 	struct lockf *lock = NULL;
    158  1.27      yamt 	struct lockf *sparelock;
    159  1.30      yamt 	struct simplelock *interlock = &ap->a_vp->v_interlock;
    160   1.1        ws 	off_t start, end;
    161  1.34  christos 	int error = 0;
    162   1.1        ws 
    163   1.1        ws 	/*
    164   1.1        ws 	 * Convert the flock structure into a start and end.
    165   1.1        ws 	 */
    166   1.1        ws 	switch (fl->l_whence) {
    167   1.1        ws 	case SEEK_SET:
    168   1.1        ws 	case SEEK_CUR:
    169   1.1        ws 		/*
    170   1.1        ws 		 * Caller is responsible for adding any necessary offset
    171   1.1        ws 		 * when SEEK_CUR is used.
    172   1.1        ws 		 */
    173   1.1        ws 		start = fl->l_start;
    174   1.1        ws 		break;
    175   1.1        ws 
    176   1.1        ws 	case SEEK_END:
    177   1.1        ws 		start = size + fl->l_start;
    178   1.1        ws 		break;
    179   1.1        ws 
    180   1.1        ws 	default:
    181  1.29      yamt 		return EINVAL;
    182   1.1        ws 	}
    183   1.1        ws 	if (start < 0)
    184  1.29      yamt 		return EINVAL;
    185  1.10    kleink 
    186  1.10    kleink 	/*
    187  1.27      yamt 	 * allocate locks before acquire simple lock.
    188  1.27      yamt 	 * we need two locks in the worst case.
    189  1.27      yamt 	 */
    190  1.27      yamt 	switch (ap->a_op) {
    191  1.27      yamt 	case F_SETLK:
    192  1.27      yamt 	case F_UNLCK:
    193  1.27      yamt 		/*
    194  1.27      yamt 		 * XXX for F_UNLCK case, we can re-use lock.
    195  1.27      yamt 		 */
    196  1.27      yamt 		if ((fl->l_type & F_FLOCK) == 0) {
    197  1.27      yamt 			/*
    198  1.27      yamt 			 * byte-range lock might need one more lock.
    199  1.27      yamt 			 */
    200  1.38  christos 			sparelock = lf_alloc(p->p_ucred->cr_uid, 0);
    201  1.27      yamt 			if (sparelock == NULL) {
    202  1.27      yamt 				error = ENOMEM;
    203  1.27      yamt 				goto quit;
    204  1.27      yamt 			}
    205  1.27      yamt 			break;
    206  1.27      yamt 		}
    207  1.27      yamt 		/* FALLTHROUGH */
    208  1.27      yamt 
    209  1.27      yamt 	case F_GETLK:
    210  1.27      yamt 		sparelock = NULL;
    211  1.27      yamt 		break;
    212  1.27      yamt 
    213  1.27      yamt 	default:
    214  1.29      yamt 		return EINVAL;
    215  1.27      yamt 	}
    216  1.27      yamt 
    217  1.38  christos 	lock = lf_alloc(p->p_ucred->cr_uid, ap->a_op != F_UNLCK ? 1 : 2);
    218  1.27      yamt 	if (lock == NULL) {
    219  1.27      yamt 		error = ENOMEM;
    220  1.27      yamt 		goto quit;
    221  1.27      yamt 	}
    222  1.27      yamt 
    223  1.30      yamt 	simple_lock(interlock);
    224  1.27      yamt 
    225  1.27      yamt 	/*
    226  1.10    kleink 	 * Avoid the common case of unlocking when inode has no locks.
    227  1.10    kleink 	 */
    228  1.10    kleink 	if (*head == (struct lockf *)0) {
    229  1.17  jdolecek 		if (ap->a_op != F_SETLK) {
    230  1.10    kleink 			fl->l_type = F_UNLCK;
    231  1.27      yamt 			error = 0;
    232  1.27      yamt 			goto quit_unlock;
    233  1.10    kleink 		}
    234  1.10    kleink 	}
    235  1.10    kleink 
    236   1.1        ws 	if (fl->l_len == 0)
    237   1.1        ws 		end = -1;
    238   1.1        ws 	else
    239   1.1        ws 		end = start + fl->l_len - 1;
    240   1.1        ws 	/*
    241   1.4   mycroft 	 * Create the lockf structure.
    242   1.1        ws 	 */
    243   1.1        ws 	lock->lf_start = start;
    244   1.1        ws 	lock->lf_end = end;
    245  1.37     perry 	/* XXX NJWLWP
    246  1.21   thorpej 	 * I don't want to make the entire VFS universe use LWPs, because
    247  1.21   thorpej 	 * they don't need them, for the most part. This is an exception,
    248  1.21   thorpej 	 * and a kluge.
    249  1.21   thorpej 	 */
    250  1.21   thorpej 
    251   1.1        ws 	lock->lf_head = head;
    252   1.1        ws 	lock->lf_type = fl->l_type;
    253   1.1        ws 	lock->lf_next = (struct lockf *)0;
    254  1.12      fvdl 	TAILQ_INIT(&lock->lf_blkhd);
    255  1.17  jdolecek 	lock->lf_flags = ap->a_flags;
    256  1.21   thorpej 	if (lock->lf_flags & F_POSIX) {
    257  1.21   thorpej 		KASSERT(curproc == (struct proc *)ap->a_id);
    258  1.21   thorpej 	}
    259  1.23   mycroft 	lock->lf_id = (struct proc *)ap->a_id;
    260  1.23   mycroft 	lock->lf_lwp = curlwp;
    261  1.37     perry 
    262   1.1        ws 	/*
    263   1.1        ws 	 * Do the requested operation.
    264   1.1        ws 	 */
    265  1.17  jdolecek 	switch (ap->a_op) {
    266   1.4   mycroft 
    267   1.1        ws 	case F_SETLK:
    268  1.30      yamt 		error = lf_setlock(lock, &sparelock, interlock);
    269  1.27      yamt 		lock = NULL; /* lf_setlock freed it */
    270  1.27      yamt 		break;
    271   1.1        ws 
    272   1.1        ws 	case F_UNLCK:
    273  1.27      yamt 		error = lf_clearlock(lock, &sparelock);
    274  1.27      yamt 		break;
    275   1.1        ws 
    276   1.1        ws 	case F_GETLK:
    277   1.1        ws 		error = lf_getlock(lock, fl);
    278  1.27      yamt 		break;
    279   1.4   mycroft 
    280   1.1        ws 	default:
    281  1.31      fvdl 		break;
    282  1.27      yamt 		/* NOTREACHED */
    283  1.27      yamt 	}
    284  1.27      yamt 
    285  1.27      yamt quit_unlock:
    286  1.30      yamt 	simple_unlock(interlock);
    287  1.27      yamt quit:
    288  1.27      yamt 	if (lock)
    289  1.38  christos 		lf_free(lock);
    290  1.27      yamt 	if (sparelock)
    291  1.38  christos 		lf_free(sparelock);
    292  1.27      yamt 
    293  1.29      yamt 	return error;
    294   1.1        ws }
    295   1.1        ws 
    296   1.1        ws /*
    297   1.1        ws  * Set a byte-range lock.
    298   1.1        ws  */
    299  1.24      yamt static int
    300  1.27      yamt lf_setlock(struct lockf *lock, struct lockf **sparelock,
    301  1.27      yamt     struct simplelock *interlock)
    302   1.1        ws {
    303  1.15  augustss 	struct lockf *block;
    304   1.1        ws 	struct lockf **head = lock->lf_head;
    305   1.1        ws 	struct lockf **prev, *overlap, *ltmp;
    306   1.1        ws 	static char lockstr[] = "lockf";
    307   1.1        ws 	int ovcase, priority, needtolink, error;
    308   1.1        ws 
    309   1.1        ws #ifdef LOCKF_DEBUG
    310   1.1        ws 	if (lockf_debug & 1)
    311   1.1        ws 		lf_print("lf_setlock", lock);
    312   1.1        ws #endif /* LOCKF_DEBUG */
    313   1.1        ws 
    314   1.1        ws 	/*
    315   1.1        ws 	 * Set the priority
    316   1.1        ws 	 */
    317   1.1        ws 	priority = PLOCK;
    318   1.1        ws 	if (lock->lf_type == F_WRLCK)
    319   1.1        ws 		priority += 4;
    320   1.1        ws 	priority |= PCATCH;
    321   1.1        ws 	/*
    322   1.1        ws 	 * Scan lock list for this file looking for locks that would block us.
    323   1.1        ws 	 */
    324   1.7  christos 	while ((block = lf_getblock(lock)) != NULL) {
    325   1.1        ws 		/*
    326   1.1        ws 		 * Free the structure and return if nonblocking.
    327   1.1        ws 		 */
    328   1.1        ws 		if ((lock->lf_flags & F_WAIT) == 0) {
    329  1.38  christos 			lf_free(lock);
    330  1.29      yamt 			return EAGAIN;
    331   1.1        ws 		}
    332   1.1        ws 		/*
    333   1.1        ws 		 * We are blocked. Since flock style locks cover
    334   1.1        ws 		 * the whole file, there is no chance for deadlock.
    335   1.1        ws 		 * For byte-range locks we must check for deadlock.
    336   1.1        ws 		 *
    337   1.1        ws 		 * Deadlock detection is done by looking through the
    338   1.1        ws 		 * wait channels to see if there are any cycles that
    339   1.1        ws 		 * involve us. MAXDEPTH is set just to make sure we
    340  1.16  sommerfe 		 * do not go off into neverneverland.
    341   1.1        ws 		 */
    342   1.1        ws 		if ((lock->lf_flags & F_POSIX) &&
    343   1.1        ws 		    (block->lf_flags & F_POSIX)) {
    344  1.21   thorpej 			struct lwp *wlwp;
    345  1.15  augustss 			struct lockf *waitblock;
    346   1.1        ws 			int i = 0;
    347   1.1        ws 
    348  1.23   mycroft 			/*
    349  1.23   mycroft 			 * The block is waiting on something.  if_lwp will be
    350  1.23   mycroft 			 * 0 once the lock is granted, so we terminate the
    351  1.23   mycroft 			 * loop if we find this.
    352  1.23   mycroft 			 */
    353  1.23   mycroft 			wlwp = block->lf_lwp;
    354  1.23   mycroft 			while (wlwp && (i++ < maxlockdepth)) {
    355  1.21   thorpej 				waitblock = (struct lockf *)wlwp->l_wchan;
    356   1.1        ws 				/* Get the owner of the blocking lock */
    357   1.1        ws 				waitblock = waitblock->lf_next;
    358   1.1        ws 				if ((waitblock->lf_flags & F_POSIX) == 0)
    359   1.1        ws 					break;
    360  1.23   mycroft 				wlwp = waitblock->lf_lwp;
    361  1.23   mycroft 				if (wlwp == lock->lf_lwp) {
    362  1.38  christos 					lf_free(lock);
    363  1.29      yamt 					return EDEADLK;
    364   1.1        ws 				}
    365   1.1        ws 			}
    366  1.16  sommerfe 			/*
    367  1.36     peter 			 * If we're still following a dependency chain
    368  1.16  sommerfe 			 * after maxlockdepth iterations, assume we're in
    369  1.16  sommerfe 			 * a cycle to be safe.
    370  1.16  sommerfe 			 */
    371  1.16  sommerfe 			if (i >= maxlockdepth) {
    372  1.38  christos 				lf_free(lock);
    373  1.29      yamt 				return EDEADLK;
    374  1.16  sommerfe 			}
    375   1.1        ws 		}
    376   1.1        ws 		/*
    377   1.1        ws 		 * For flock type locks, we must first remove
    378   1.1        ws 		 * any shared locks that we hold before we sleep
    379   1.1        ws 		 * waiting for an exclusive lock.
    380   1.1        ws 		 */
    381   1.1        ws 		if ((lock->lf_flags & F_FLOCK) &&
    382   1.1        ws 		    lock->lf_type == F_WRLCK) {
    383   1.1        ws 			lock->lf_type = F_UNLCK;
    384  1.27      yamt 			(void) lf_clearlock(lock, NULL);
    385   1.1        ws 			lock->lf_type = F_WRLCK;
    386   1.1        ws 		}
    387   1.1        ws 		/*
    388   1.1        ws 		 * Add our lock to the blocked list and sleep until we're free.
    389   1.1        ws 		 * Remember who blocked us (for deadlock detection).
    390   1.1        ws 		 */
    391   1.1        ws 		lock->lf_next = block;
    392  1.12      fvdl 		TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
    393   1.1        ws #ifdef LOCKF_DEBUG
    394   1.1        ws 		if (lockf_debug & 1) {
    395   1.1        ws 			lf_print("lf_setlock: blocking on", block);
    396   1.1        ws 			lf_printlist("lf_setlock", block);
    397   1.1        ws 		}
    398   1.1        ws #endif /* LOCKF_DEBUG */
    399  1.27      yamt 		error = ltsleep(lock, priority, lockstr, 0, interlock);
    400  1.16  sommerfe 
    401  1.16  sommerfe 		/*
    402  1.16  sommerfe 		 * We may have been awakened by a signal (in
    403  1.16  sommerfe 		 * which case we must remove ourselves from the
    404  1.16  sommerfe 		 * blocked list) and/or by another process
    405  1.16  sommerfe 		 * releasing a lock (in which case we have already
    406  1.16  sommerfe 		 * been removed from the blocked list and our
    407  1.16  sommerfe 		 * lf_next field set to NOLOCKF).
    408  1.16  sommerfe 		 */
    409  1.16  sommerfe 		if (lock->lf_next != NOLOCKF) {
    410  1.16  sommerfe 			TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
    411  1.16  sommerfe 			lock->lf_next = NOLOCKF;
    412  1.16  sommerfe 		}
    413   1.7  christos 		if (error) {
    414  1.38  christos 			lf_free(lock);
    415  1.29      yamt 			return error;
    416   1.1        ws 		}
    417   1.1        ws 	}
    418   1.1        ws 	/*
    419   1.1        ws 	 * No blocks!!  Add the lock.  Note that we will
    420   1.1        ws 	 * downgrade or upgrade any overlapping locks this
    421   1.1        ws 	 * process already owns.
    422   1.1        ws 	 *
    423   1.1        ws 	 * Skip over locks owned by other processes.
    424   1.1        ws 	 * Handle any locks that overlap and are owned by ourselves.
    425   1.1        ws 	 */
    426  1.23   mycroft 	lock->lf_lwp = 0;
    427   1.1        ws 	prev = head;
    428   1.1        ws 	block = *head;
    429   1.1        ws 	needtolink = 1;
    430   1.1        ws 	for (;;) {
    431   1.7  christos 		ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
    432   1.7  christos 		if (ovcase)
    433   1.1        ws 			block = overlap->lf_next;
    434   1.1        ws 		/*
    435   1.1        ws 		 * Six cases:
    436   1.1        ws 		 *	0) no overlap
    437   1.1        ws 		 *	1) overlap == lock
    438   1.1        ws 		 *	2) overlap contains lock
    439   1.1        ws 		 *	3) lock contains overlap
    440   1.1        ws 		 *	4) overlap starts before lock
    441   1.1        ws 		 *	5) overlap ends after lock
    442   1.1        ws 		 */
    443   1.1        ws 		switch (ovcase) {
    444   1.1        ws 		case 0: /* no overlap */
    445   1.1        ws 			if (needtolink) {
    446   1.1        ws 				*prev = lock;
    447   1.1        ws 				lock->lf_next = overlap;
    448   1.1        ws 			}
    449   1.1        ws 			break;
    450   1.1        ws 
    451   1.1        ws 		case 1: /* overlap == lock */
    452   1.1        ws 			/*
    453   1.1        ws 			 * If downgrading lock, others may be
    454   1.1        ws 			 * able to acquire it.
    455   1.1        ws 			 */
    456   1.1        ws 			if (lock->lf_type == F_RDLCK &&
    457   1.1        ws 			    overlap->lf_type == F_WRLCK)
    458   1.1        ws 				lf_wakelock(overlap);
    459   1.1        ws 			overlap->lf_type = lock->lf_type;
    460  1.38  christos 			lf_free(lock);
    461   1.1        ws 			lock = overlap; /* for debug output below */
    462   1.1        ws 			break;
    463   1.1        ws 
    464   1.1        ws 		case 2: /* overlap contains lock */
    465   1.1        ws 			/*
    466   1.1        ws 			 * Check for common starting point and different types.
    467   1.1        ws 			 */
    468   1.1        ws 			if (overlap->lf_type == lock->lf_type) {
    469  1.38  christos 				lf_free(lock);
    470   1.1        ws 				lock = overlap; /* for debug output below */
    471   1.1        ws 				break;
    472   1.1        ws 			}
    473   1.1        ws 			if (overlap->lf_start == lock->lf_start) {
    474   1.1        ws 				*prev = lock;
    475   1.1        ws 				lock->lf_next = overlap;
    476   1.1        ws 				overlap->lf_start = lock->lf_end + 1;
    477   1.1        ws 			} else
    478  1.27      yamt 				lf_split(overlap, lock, sparelock);
    479   1.1        ws 			lf_wakelock(overlap);
    480   1.1        ws 			break;
    481   1.1        ws 
    482   1.1        ws 		case 3: /* lock contains overlap */
    483   1.1        ws 			/*
    484   1.1        ws 			 * If downgrading lock, others may be able to
    485   1.1        ws 			 * acquire it, otherwise take the list.
    486   1.1        ws 			 */
    487   1.1        ws 			if (lock->lf_type == F_RDLCK &&
    488   1.1        ws 			    overlap->lf_type == F_WRLCK) {
    489   1.1        ws 				lf_wakelock(overlap);
    490   1.1        ws 			} else {
    491  1.19      matt 				while ((ltmp = TAILQ_FIRST(&overlap->lf_blkhd))) {
    492  1.16  sommerfe 					KASSERT(ltmp->lf_next == overlap);
    493  1.12      fvdl 					TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
    494  1.12      fvdl 					    lf_block);
    495  1.16  sommerfe 					ltmp->lf_next = lock;
    496  1.12      fvdl 					TAILQ_INSERT_TAIL(&lock->lf_blkhd,
    497  1.12      fvdl 					    ltmp, lf_block);
    498  1.12      fvdl 				}
    499   1.1        ws 			}
    500   1.1        ws 			/*
    501   1.1        ws 			 * Add the new lock if necessary and delete the overlap.
    502   1.1        ws 			 */
    503   1.1        ws 			if (needtolink) {
    504   1.1        ws 				*prev = lock;
    505   1.1        ws 				lock->lf_next = overlap->lf_next;
    506   1.1        ws 				prev = &lock->lf_next;
    507   1.1        ws 				needtolink = 0;
    508   1.1        ws 			} else
    509   1.1        ws 				*prev = overlap->lf_next;
    510  1.39  christos 			lf_free(overlap);
    511   1.1        ws 			continue;
    512   1.1        ws 
    513   1.1        ws 		case 4: /* overlap starts before lock */
    514   1.1        ws 			/*
    515   1.1        ws 			 * Add lock after overlap on the list.
    516   1.1        ws 			 */
    517   1.1        ws 			lock->lf_next = overlap->lf_next;
    518   1.1        ws 			overlap->lf_next = lock;
    519   1.1        ws 			overlap->lf_end = lock->lf_start - 1;
    520   1.1        ws 			prev = &lock->lf_next;
    521   1.1        ws 			lf_wakelock(overlap);
    522   1.1        ws 			needtolink = 0;
    523   1.1        ws 			continue;
    524   1.1        ws 
    525   1.1        ws 		case 5: /* overlap ends after lock */
    526   1.1        ws 			/*
    527   1.1        ws 			 * Add the new lock before overlap.
    528   1.1        ws 			 */
    529   1.1        ws 			if (needtolink) {
    530   1.1        ws 				*prev = lock;
    531   1.1        ws 				lock->lf_next = overlap;
    532   1.1        ws 			}
    533   1.1        ws 			overlap->lf_start = lock->lf_end + 1;
    534   1.1        ws 			lf_wakelock(overlap);
    535   1.1        ws 			break;
    536   1.1        ws 		}
    537   1.1        ws 		break;
    538   1.1        ws 	}
    539   1.1        ws #ifdef LOCKF_DEBUG
    540   1.1        ws 	if (lockf_debug & 1) {
    541   1.1        ws 		lf_print("lf_setlock: got the lock", lock);
    542   1.1        ws 		lf_printlist("lf_setlock", lock);
    543   1.1        ws 	}
    544   1.1        ws #endif /* LOCKF_DEBUG */
    545  1.29      yamt 	return 0;
    546   1.1        ws }
    547   1.1        ws 
    548   1.1        ws /*
    549   1.1        ws  * Remove a byte-range lock on an inode.
    550   1.1        ws  *
    551   1.1        ws  * Generally, find the lock (or an overlap to that lock)
    552   1.1        ws  * and remove it (or shrink it), then wakeup anyone we can.
    553   1.1        ws  */
    554  1.24      yamt static int
    555  1.27      yamt lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
    556   1.1        ws {
    557   1.1        ws 	struct lockf **head = unlock->lf_head;
    558  1.15  augustss 	struct lockf *lf = *head;
    559   1.1        ws 	struct lockf *overlap, **prev;
    560   1.1        ws 	int ovcase;
    561   1.1        ws 
    562   1.1        ws 	if (lf == NOLOCKF)
    563  1.29      yamt 		return 0;
    564   1.1        ws #ifdef LOCKF_DEBUG
    565   1.1        ws 	if (unlock->lf_type != F_UNLCK)
    566   1.1        ws 		panic("lf_clearlock: bad type");
    567   1.1        ws 	if (lockf_debug & 1)
    568   1.1        ws 		lf_print("lf_clearlock", unlock);
    569   1.1        ws #endif /* LOCKF_DEBUG */
    570   1.1        ws 	prev = head;
    571   1.7  christos 	while ((ovcase = lf_findoverlap(lf, unlock, SELF,
    572   1.7  christos 					&prev, &overlap)) != 0) {
    573   1.1        ws 		/*
    574   1.1        ws 		 * Wakeup the list of locks to be retried.
    575   1.1        ws 		 */
    576   1.1        ws 		lf_wakelock(overlap);
    577   1.1        ws 
    578   1.1        ws 		switch (ovcase) {
    579   1.1        ws 
    580   1.1        ws 		case 1: /* overlap == lock */
    581   1.1        ws 			*prev = overlap->lf_next;
    582  1.38  christos 			lf_free(overlap);
    583   1.1        ws 			break;
    584   1.1        ws 
    585   1.1        ws 		case 2: /* overlap contains lock: split it */
    586   1.1        ws 			if (overlap->lf_start == unlock->lf_start) {
    587   1.1        ws 				overlap->lf_start = unlock->lf_end + 1;
    588   1.1        ws 				break;
    589   1.1        ws 			}
    590  1.27      yamt 			lf_split(overlap, unlock, sparelock);
    591   1.1        ws 			overlap->lf_next = unlock->lf_next;
    592   1.1        ws 			break;
    593   1.1        ws 
    594   1.1        ws 		case 3: /* lock contains overlap */
    595   1.1        ws 			*prev = overlap->lf_next;
    596   1.1        ws 			lf = overlap->lf_next;
    597  1.38  christos 			lf_free(overlap);
    598   1.1        ws 			continue;
    599   1.1        ws 
    600   1.1        ws 		case 4: /* overlap starts before lock */
    601   1.1        ws 			overlap->lf_end = unlock->lf_start - 1;
    602   1.1        ws 			prev = &overlap->lf_next;
    603   1.1        ws 			lf = overlap->lf_next;
    604   1.1        ws 			continue;
    605   1.1        ws 
    606   1.1        ws 		case 5: /* overlap ends after lock */
    607   1.1        ws 			overlap->lf_start = unlock->lf_end + 1;
    608   1.1        ws 			break;
    609   1.1        ws 		}
    610   1.1        ws 		break;
    611   1.1        ws 	}
    612   1.1        ws #ifdef LOCKF_DEBUG
    613   1.1        ws 	if (lockf_debug & 1)
    614   1.1        ws 		lf_printlist("lf_clearlock", unlock);
    615   1.1        ws #endif /* LOCKF_DEBUG */
    616  1.29      yamt 	return 0;
    617   1.1        ws }
    618   1.1        ws 
    619   1.1        ws /*
    620   1.1        ws  * Check whether there is a blocking lock,
    621   1.1        ws  * and if so return its process identifier.
    622   1.1        ws  */
    623  1.24      yamt static int
    624  1.25      yamt lf_getlock(struct lockf *lock, struct flock *fl)
    625   1.1        ws {
    626  1.15  augustss 	struct lockf *block;
    627   1.1        ws 
    628   1.1        ws #ifdef LOCKF_DEBUG
    629   1.1        ws 	if (lockf_debug & 1)
    630   1.1        ws 		lf_print("lf_getlock", lock);
    631   1.1        ws #endif /* LOCKF_DEBUG */
    632   1.1        ws 
    633   1.7  christos 	if ((block = lf_getblock(lock)) != NULL) {
    634   1.1        ws 		fl->l_type = block->lf_type;
    635   1.1        ws 		fl->l_whence = SEEK_SET;
    636   1.1        ws 		fl->l_start = block->lf_start;
    637   1.1        ws 		if (block->lf_end == -1)
    638   1.1        ws 			fl->l_len = 0;
    639   1.1        ws 		else
    640   1.1        ws 			fl->l_len = block->lf_end - block->lf_start + 1;
    641   1.1        ws 		if (block->lf_flags & F_POSIX)
    642  1.23   mycroft 			fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
    643   1.1        ws 		else
    644   1.1        ws 			fl->l_pid = -1;
    645   1.1        ws 	} else {
    646   1.1        ws 		fl->l_type = F_UNLCK;
    647   1.1        ws 	}
    648  1.29      yamt 	return 0;
    649   1.1        ws }
    650   1.1        ws 
    651   1.1        ws /*
    652   1.1        ws  * Walk the list of locks for an inode and
    653   1.1        ws  * return the first blocking lock.
    654   1.1        ws  */
    655  1.24      yamt static struct lockf *
    656  1.25      yamt lf_getblock(struct lockf *lock)
    657   1.1        ws {
    658   1.1        ws 	struct lockf **prev, *overlap, *lf = *(lock->lf_head);
    659   1.1        ws 
    660   1.1        ws 	prev = lock->lf_head;
    661  1.20    simonb 	while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
    662   1.1        ws 		/*
    663   1.1        ws 		 * We've found an overlap, see if it blocks us
    664   1.1        ws 		 */
    665   1.1        ws 		if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
    666  1.29      yamt 			return overlap;
    667   1.1        ws 		/*
    668   1.1        ws 		 * Nope, point to the next one on the list and
    669   1.1        ws 		 * see if it blocks us
    670   1.1        ws 		 */
    671   1.1        ws 		lf = overlap->lf_next;
    672   1.1        ws 	}
    673  1.29      yamt 	return NOLOCKF;
    674   1.1        ws }
    675   1.1        ws 
    676   1.1        ws /*
    677   1.1        ws  * Walk the list of locks for an inode to
    678   1.1        ws  * find an overlapping lock (if any).
    679   1.1        ws  *
    680   1.1        ws  * NOTE: this returns only the FIRST overlapping lock.  There
    681   1.1        ws  *	 may be more than one.
    682   1.1        ws  */
    683  1.24      yamt static int
    684  1.25      yamt lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
    685  1.25      yamt     struct lockf ***prev, struct lockf **overlap)
    686   1.1        ws {
    687   1.1        ws 	off_t start, end;
    688   1.1        ws 
    689   1.1        ws 	*overlap = lf;
    690   1.1        ws 	if (lf == NOLOCKF)
    691  1.29      yamt 		return 0;
    692   1.1        ws #ifdef LOCKF_DEBUG
    693   1.1        ws 	if (lockf_debug & 2)
    694   1.1        ws 		lf_print("lf_findoverlap: looking for overlap in", lock);
    695   1.1        ws #endif /* LOCKF_DEBUG */
    696   1.1        ws 	start = lock->lf_start;
    697   1.1        ws 	end = lock->lf_end;
    698   1.1        ws 	while (lf != NOLOCKF) {
    699  1.23   mycroft 		if (((type == SELF) && lf->lf_id != lock->lf_id) ||
    700  1.23   mycroft 		    ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
    701   1.1        ws 			*prev = &lf->lf_next;
    702   1.1        ws 			*overlap = lf = lf->lf_next;
    703   1.1        ws 			continue;
    704   1.1        ws 		}
    705   1.1        ws #ifdef LOCKF_DEBUG
    706   1.1        ws 		if (lockf_debug & 2)
    707   1.1        ws 			lf_print("\tchecking", lf);
    708   1.1        ws #endif /* LOCKF_DEBUG */
    709   1.1        ws 		/*
    710   1.1        ws 		 * OK, check for overlap
    711   1.1        ws 		 *
    712   1.1        ws 		 * Six cases:
    713   1.1        ws 		 *	0) no overlap
    714   1.1        ws 		 *	1) overlap == lock
    715   1.1        ws 		 *	2) overlap contains lock
    716   1.1        ws 		 *	3) lock contains overlap
    717   1.1        ws 		 *	4) overlap starts before lock
    718   1.1        ws 		 *	5) overlap ends after lock
    719   1.1        ws 		 */
    720   1.1        ws 		if ((lf->lf_end != -1 && start > lf->lf_end) ||
    721   1.1        ws 		    (end != -1 && lf->lf_start > end)) {
    722   1.1        ws 			/* Case 0 */
    723   1.1        ws #ifdef LOCKF_DEBUG
    724   1.1        ws 			if (lockf_debug & 2)
    725   1.9  christos 				printf("no overlap\n");
    726   1.1        ws #endif /* LOCKF_DEBUG */
    727   1.1        ws 			if ((type & SELF) && end != -1 && lf->lf_start > end)
    728  1.29      yamt 				return 0;
    729   1.1        ws 			*prev = &lf->lf_next;
    730   1.1        ws 			*overlap = lf = lf->lf_next;
    731   1.1        ws 			continue;
    732   1.1        ws 		}
    733   1.1        ws 		if ((lf->lf_start == start) && (lf->lf_end == end)) {
    734   1.1        ws 			/* Case 1 */
    735   1.1        ws #ifdef LOCKF_DEBUG
    736   1.1        ws 			if (lockf_debug & 2)
    737   1.9  christos 				printf("overlap == lock\n");
    738   1.1        ws #endif /* LOCKF_DEBUG */
    739  1.29      yamt 			return 1;
    740   1.1        ws 		}
    741   1.1        ws 		if ((lf->lf_start <= start) &&
    742   1.1        ws 		    (end != -1) &&
    743   1.1        ws 		    ((lf->lf_end >= end) || (lf->lf_end == -1))) {
    744   1.1        ws 			/* Case 2 */
    745   1.1        ws #ifdef LOCKF_DEBUG
    746   1.1        ws 			if (lockf_debug & 2)
    747   1.9  christos 				printf("overlap contains lock\n");
    748   1.1        ws #endif /* LOCKF_DEBUG */
    749  1.29      yamt 			return 2;
    750   1.1        ws 		}
    751   1.1        ws 		if (start <= lf->lf_start &&
    752   1.4   mycroft 		           (end == -1 ||
    753   1.1        ws 			   (lf->lf_end != -1 && end >= lf->lf_end))) {
    754   1.1        ws 			/* Case 3 */
    755   1.1        ws #ifdef LOCKF_DEBUG
    756   1.1        ws 			if (lockf_debug & 2)
    757   1.9  christos 				printf("lock contains overlap\n");
    758   1.1        ws #endif /* LOCKF_DEBUG */
    759  1.29      yamt 			return 3;
    760   1.1        ws 		}
    761   1.1        ws 		if ((lf->lf_start < start) &&
    762   1.1        ws 			((lf->lf_end >= start) || (lf->lf_end == -1))) {
    763   1.1        ws 			/* Case 4 */
    764   1.1        ws #ifdef LOCKF_DEBUG
    765   1.1        ws 			if (lockf_debug & 2)
    766   1.9  christos 				printf("overlap starts before lock\n");
    767   1.1        ws #endif /* LOCKF_DEBUG */
    768  1.29      yamt 			return 4;
    769   1.1        ws 		}
    770   1.1        ws 		if ((lf->lf_start > start) &&
    771   1.1        ws 			(end != -1) &&
    772   1.1        ws 			((lf->lf_end > end) || (lf->lf_end == -1))) {
    773   1.1        ws 			/* Case 5 */
    774   1.1        ws #ifdef LOCKF_DEBUG
    775   1.1        ws 			if (lockf_debug & 2)
    776   1.9  christos 				printf("overlap ends after lock\n");
    777   1.1        ws #endif /* LOCKF_DEBUG */
    778  1.29      yamt 			return 5;
    779   1.1        ws 		}
    780   1.1        ws 		panic("lf_findoverlap: default");
    781   1.1        ws 	}
    782  1.29      yamt 	return 0;
    783   1.1        ws }
    784   1.1        ws 
    785   1.1        ws /*
    786   1.1        ws  * Split a lock and a contained region into
    787   1.1        ws  * two or three locks as necessary.
    788   1.1        ws  */
    789  1.24      yamt static void
    790  1.27      yamt lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
    791   1.1        ws {
    792  1.15  augustss 	struct lockf *splitlock;
    793   1.1        ws 
    794   1.1        ws #ifdef LOCKF_DEBUG
    795   1.1        ws 	if (lockf_debug & 2) {
    796   1.1        ws 		lf_print("lf_split", lock1);
    797   1.1        ws 		lf_print("splitting from", lock2);
    798   1.1        ws 	}
    799   1.1        ws #endif /* LOCKF_DEBUG */
    800   1.1        ws 	/*
    801   1.1        ws 	 * Check to see if spliting into only two pieces.
    802   1.1        ws 	 */
    803   1.1        ws 	if (lock1->lf_start == lock2->lf_start) {
    804   1.1        ws 		lock1->lf_start = lock2->lf_end + 1;
    805   1.1        ws 		lock2->lf_next = lock1;
    806   1.1        ws 		return;
    807   1.1        ws 	}
    808   1.1        ws 	if (lock1->lf_end == lock2->lf_end) {
    809   1.1        ws 		lock1->lf_end = lock2->lf_start - 1;
    810   1.1        ws 		lock2->lf_next = lock1->lf_next;
    811   1.1        ws 		lock1->lf_next = lock2;
    812   1.1        ws 		return;
    813   1.1        ws 	}
    814   1.1        ws 	/*
    815   1.1        ws 	 * Make a new lock consisting of the last part of
    816   1.1        ws 	 * the encompassing lock
    817   1.1        ws 	 */
    818  1.27      yamt 	splitlock = *sparelock;
    819  1.27      yamt 	*sparelock = NULL;
    820  1.29      yamt 	memcpy(splitlock, lock1, sizeof(*splitlock));
    821   1.1        ws 	splitlock->lf_start = lock2->lf_end + 1;
    822  1.12      fvdl 	TAILQ_INIT(&splitlock->lf_blkhd);
    823   1.1        ws 	lock1->lf_end = lock2->lf_start - 1;
    824   1.1        ws 	/*
    825   1.1        ws 	 * OK, now link it in
    826   1.1        ws 	 */
    827   1.1        ws 	splitlock->lf_next = lock1->lf_next;
    828   1.1        ws 	lock2->lf_next = splitlock;
    829   1.1        ws 	lock1->lf_next = lock2;
    830   1.1        ws }
    831   1.1        ws 
    832   1.1        ws /*
    833   1.1        ws  * Wakeup a blocklist
    834   1.1        ws  */
    835  1.24      yamt static void
    836  1.25      yamt lf_wakelock(struct lockf *listhead)
    837   1.1        ws {
    838  1.15  augustss 	struct lockf *wakelock;
    839   1.1        ws 
    840  1.19      matt 	while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
    841  1.16  sommerfe 		KASSERT(wakelock->lf_next == listhead);
    842  1.12      fvdl 		TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
    843   1.1        ws 		wakelock->lf_next = NOLOCKF;
    844   1.1        ws #ifdef LOCKF_DEBUG
    845   1.1        ws 		if (lockf_debug & 2)
    846   1.1        ws 			lf_print("lf_wakelock: awakening", wakelock);
    847  1.12      fvdl #endif
    848  1.29      yamt 		wakeup(wakelock);
    849   1.1        ws 	}
    850   1.1        ws }
    851   1.1        ws 
    852   1.1        ws #ifdef LOCKF_DEBUG
    853   1.1        ws /*
    854   1.1        ws  * Print out a lock.
    855   1.1        ws  */
    856  1.24      yamt static void
    857  1.25      yamt lf_print(char *tag, struct lockf *lock)
    858   1.1        ws {
    859  1.37     perry 
    860   1.9  christos 	printf("%s: lock %p for ", tag, lock);
    861   1.1        ws 	if (lock->lf_flags & F_POSIX)
    862  1.23   mycroft 		printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
    863   1.1        ws 	else
    864  1.23   mycroft 		printf("file 0x%p", (struct file *)lock->lf_id);
    865  1.11       jtk 	printf(" %s, start %qx, end %qx",
    866   1.1        ws 		lock->lf_type == F_RDLCK ? "shared" :
    867   1.1        ws 		lock->lf_type == F_WRLCK ? "exclusive" :
    868   1.1        ws 		lock->lf_type == F_UNLCK ? "unlock" :
    869   1.1        ws 		"unknown", lock->lf_start, lock->lf_end);
    870  1.19      matt 	if (TAILQ_FIRST(&lock->lf_blkhd))
    871  1.19      matt 		printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
    872   1.1        ws 	else
    873   1.9  christos 		printf("\n");
    874   1.1        ws }
    875   1.1        ws 
    876  1.24      yamt static void
    877  1.25      yamt lf_printlist(char *tag, struct lockf *lock)
    878   1.1        ws {
    879  1.15  augustss 	struct lockf *lf, *blk;
    880   1.1        ws 
    881  1.11       jtk 	printf("%s: Lock list:\n", tag);
    882  1.12      fvdl 	for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
    883   1.9  christos 		printf("\tlock %p for ", lf);
    884   1.1        ws 		if (lf->lf_flags & F_POSIX)
    885  1.23   mycroft 			printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
    886   1.1        ws 		else
    887  1.23   mycroft 			printf("file 0x%p", (struct file *)lf->lf_id);
    888  1.11       jtk 		printf(", %s, start %qx, end %qx",
    889   1.1        ws 			lf->lf_type == F_RDLCK ? "shared" :
    890   1.1        ws 			lf->lf_type == F_WRLCK ? "exclusive" :
    891   1.1        ws 			lf->lf_type == F_UNLCK ? "unlock" :
    892   1.1        ws 			"unknown", lf->lf_start, lf->lf_end);
    893  1.19      matt 		TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
    894  1.12      fvdl 			if (blk->lf_flags & F_POSIX)
    895  1.12      fvdl 				printf("proc %d",
    896  1.23   mycroft 				    ((struct proc *)blk->lf_id)->p_pid);
    897  1.12      fvdl 			else
    898  1.23   mycroft 				printf("file 0x%p", (struct file *)blk->lf_id);
    899  1.12      fvdl 			printf(", %s, start %qx, end %qx",
    900  1.12      fvdl 				blk->lf_type == F_RDLCK ? "shared" :
    901  1.12      fvdl 				blk->lf_type == F_WRLCK ? "exclusive" :
    902  1.12      fvdl 				blk->lf_type == F_UNLCK ? "unlock" :
    903  1.12      fvdl 				"unknown", blk->lf_start, blk->lf_end);
    904  1.19      matt 			if (TAILQ_FIRST(&blk->lf_blkhd))
    905  1.12      fvdl 				 panic("lf_printlist: bad list");
    906  1.12      fvdl 		}
    907  1.12      fvdl 		printf("\n");
    908   1.1        ws 	}
    909   1.1        ws }
    910   1.1        ws #endif /* LOCKF_DEBUG */
    911