Home | History | Annotate | Line # | Download | only in kern
vfs_lockf.c revision 1.60.20.1
      1  1.60.20.1    bouyer /*	$NetBSD: vfs_lockf.c,v 1.60.20.1 2008/01/02 21:56:23 bouyer Exp $	*/
      2        1.5       cgd 
      3        1.1        ws /*
      4        1.4   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
      5        1.4   mycroft  *	The Regents of the University of California.  All rights reserved.
      6        1.1        ws  *
      7        1.1        ws  * This code is derived from software contributed to Berkeley by
      8        1.1        ws  * Scooter Morris at Genentech Inc.
      9        1.1        ws  *
     10        1.1        ws  * Redistribution and use in source and binary forms, with or without
     11        1.1        ws  * modification, are permitted provided that the following conditions
     12        1.1        ws  * are met:
     13        1.1        ws  * 1. Redistributions of source code must retain the above copyright
     14        1.1        ws  *    notice, this list of conditions and the following disclaimer.
     15        1.1        ws  * 2. Redistributions in binary form must reproduce the above copyright
     16        1.1        ws  *    notice, this list of conditions and the following disclaimer in the
     17        1.1        ws  *    documentation and/or other materials provided with the distribution.
     18       1.33       agc  * 3. Neither the name of the University nor the names of its contributors
     19        1.1        ws  *    may be used to endorse or promote products derived from this software
     20        1.1        ws  *    without specific prior written permission.
     21        1.1        ws  *
     22        1.1        ws  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23        1.1        ws  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24        1.1        ws  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25        1.1        ws  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26        1.1        ws  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27        1.1        ws  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28        1.1        ws  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29        1.1        ws  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30        1.1        ws  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31        1.1        ws  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32        1.1        ws  * SUCH DAMAGE.
     33        1.1        ws  *
     34       1.12      fvdl  *	@(#)ufs_lockf.c	8.4 (Berkeley) 10/26/94
     35        1.1        ws  */
     36       1.18     lukem 
     37       1.18     lukem #include <sys/cdefs.h>
     38  1.60.20.1    bouyer __KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.60.20.1 2008/01/02 21:56:23 bouyer Exp $");
     39        1.1        ws 
     40        1.1        ws #include <sys/param.h>
     41        1.1        ws #include <sys/systm.h>
     42        1.1        ws #include <sys/kernel.h>
     43        1.1        ws #include <sys/file.h>
     44        1.1        ws #include <sys/proc.h>
     45        1.1        ws #include <sys/vnode.h>
     46       1.35    simonb #include <sys/pool.h>
     47        1.1        ws #include <sys/fcntl.h>
     48        1.1        ws #include <sys/lockf.h>
     49       1.49      elad #include <sys/kauth.h>
     50       1.22   thorpej 
     51       1.50      yamt /*
     52       1.50      yamt  * The lockf structure is a kernel structure which contains the information
     53       1.50      yamt  * associated with a byte range lock.  The lockf structures are linked into
     54       1.60        ad  * the vnode structure.  Locks are sorted by the starting byte of the lock for
     55       1.50      yamt  * efficiency.
     56       1.50      yamt  *
     57       1.50      yamt  * lf_next is used for two purposes, depending on whether the lock is
     58       1.50      yamt  * being held, or is in conflict with an existing lock.  If this lock
     59       1.50      yamt  * is held, it indicates the next lock on the same vnode.
     60       1.50      yamt  * For pending locks, if lock->lf_next is non-NULL, then lock->lf_block
     61       1.50      yamt  * must be queued on the lf_blkhd TAILQ of lock->lf_next.
     62       1.50      yamt  */
     63       1.50      yamt 
     64       1.50      yamt TAILQ_HEAD(locklist, lockf);
     65       1.50      yamt 
     66       1.50      yamt struct lockf {
     67       1.50      yamt 	short	lf_flags;	 /* Lock semantics: F_POSIX, F_FLOCK, F_WAIT */
     68       1.50      yamt 	short	lf_type;	 /* Lock type: F_RDLCK, F_WRLCK */
     69       1.50      yamt 	off_t	lf_start;	 /* The byte # of the start of the lock */
     70       1.50      yamt 	off_t	lf_end;		 /* The byte # of the end of the lock (-1=EOF)*/
     71       1.50      yamt 	void	*lf_id;		 /* process or file description holding lock */
     72       1.50      yamt 	struct	lockf **lf_head; /* Back pointer to the head of lockf list */
     73       1.50      yamt 	struct	lockf *lf_next;	 /* Next lock on this vnode, or blocking lock */
     74       1.50      yamt 	struct  locklist lf_blkhd; /* List of requests blocked on this lock */
     75       1.50      yamt 	TAILQ_ENTRY(lockf) lf_block;/* A request waiting for a lock */
     76       1.50      yamt 	uid_t	lf_uid;		 /* User ID responsible */
     77  1.60.20.1    bouyer 	kcondvar_t lf_cv;	 /* Signalling */
     78       1.50      yamt };
     79       1.50      yamt 
     80       1.50      yamt /* Maximum length of sleep chains to traverse to try and detect deadlock. */
     81       1.50      yamt #define MAXDEPTH 50
     82       1.50      yamt 
     83       1.51      yamt static POOL_INIT(lockfpool, sizeof(struct lockf), 0, 0, 0, "lockfpl",
     84       1.59        ad     &pool_allocator_nointr, IPL_NONE);
     85        1.1        ws 
     86        1.1        ws /*
     87        1.6   mycroft  * This variable controls the maximum number of processes that will
     88        1.6   mycroft  * be checked in doing deadlock detection.
     89        1.6   mycroft  */
     90        1.6   mycroft int maxlockdepth = MAXDEPTH;
     91        1.6   mycroft 
     92        1.6   mycroft #ifdef LOCKF_DEBUG
     93        1.6   mycroft int	lockf_debug = 0;
     94        1.6   mycroft #endif
     95        1.6   mycroft 
     96        1.6   mycroft #define SELF	0x1
     97        1.6   mycroft #define OTHERS	0x2
     98        1.6   mycroft 
     99        1.6   mycroft /*
    100       1.16  sommerfe  * XXX TODO
    101       1.58  christos  * Misc cleanups: "void *id" should be visible in the API as a
    102       1.16  sommerfe  * "struct proc *".
    103       1.16  sommerfe  * (This requires rototilling all VFS's which support advisory locking).
    104       1.16  sommerfe  */
    105       1.16  sommerfe 
    106       1.16  sommerfe /*
    107       1.16  sommerfe  * If there's a lot of lock contention on a single vnode, locking
    108       1.16  sommerfe  * schemes which allow for more paralleism would be needed.  Given how
    109       1.16  sommerfe  * infrequently byte-range locks are actually used in typical BSD
    110       1.16  sommerfe  * code, a more complex approach probably isn't worth it.
    111       1.16  sommerfe  */
    112       1.16  sommerfe 
    113       1.16  sommerfe /*
    114       1.38  christos  * We enforce a limit on locks by uid, so that a single user cannot
    115       1.38  christos  * run the kernel out of memory.  For now, the limit is pretty coarse.
    116       1.38  christos  * There is no limit on root.
    117       1.38  christos  *
    118       1.38  christos  * Splitting a lock will always succeed, regardless of current allocations.
    119       1.38  christos  * If you're slightly above the limit, we still have to permit an allocation
    120       1.38  christos  * so that the unlock can succeed.  If the unlocking causes too many splits,
    121       1.38  christos  * however, you're totally cutoff.
    122       1.38  christos  */
    123       1.38  christos int maxlocksperuid = 1024;
    124       1.38  christos 
    125       1.45   thorpej #ifdef LOCKF_DEBUG
    126       1.45   thorpej /*
    127       1.45   thorpej  * Print out a lock.
    128       1.45   thorpej  */
    129       1.45   thorpej static void
    130       1.56  christos lf_print(const char *tag, struct lockf *lock)
    131       1.45   thorpej {
    132       1.45   thorpej 
    133       1.45   thorpej 	printf("%s: lock %p for ", tag, lock);
    134       1.45   thorpej 	if (lock->lf_flags & F_POSIX)
    135       1.45   thorpej 		printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
    136       1.45   thorpej 	else
    137       1.45   thorpej 		printf("file %p", (struct file *)lock->lf_id);
    138       1.45   thorpej 	printf(" %s, start %qx, end %qx",
    139       1.45   thorpej 		lock->lf_type == F_RDLCK ? "shared" :
    140       1.45   thorpej 		lock->lf_type == F_WRLCK ? "exclusive" :
    141       1.45   thorpej 		lock->lf_type == F_UNLCK ? "unlock" :
    142       1.45   thorpej 		"unknown", lock->lf_start, lock->lf_end);
    143       1.45   thorpej 	if (TAILQ_FIRST(&lock->lf_blkhd))
    144       1.45   thorpej 		printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
    145       1.45   thorpej 	else
    146       1.45   thorpej 		printf("\n");
    147       1.45   thorpej }
    148       1.45   thorpej 
    149       1.45   thorpej static void
    150       1.56  christos lf_printlist(const char *tag, struct lockf *lock)
    151       1.45   thorpej {
    152       1.45   thorpej 	struct lockf *lf, *blk;
    153       1.45   thorpej 
    154       1.45   thorpej 	printf("%s: Lock list:\n", tag);
    155       1.45   thorpej 	for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
    156       1.45   thorpej 		printf("\tlock %p for ", lf);
    157       1.45   thorpej 		if (lf->lf_flags & F_POSIX)
    158       1.45   thorpej 			printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
    159       1.45   thorpej 		else
    160       1.45   thorpej 			printf("file %p", (struct file *)lf->lf_id);
    161       1.45   thorpej 		printf(", %s, start %qx, end %qx",
    162       1.45   thorpej 			lf->lf_type == F_RDLCK ? "shared" :
    163       1.45   thorpej 			lf->lf_type == F_WRLCK ? "exclusive" :
    164       1.45   thorpej 			lf->lf_type == F_UNLCK ? "unlock" :
    165       1.45   thorpej 			"unknown", lf->lf_start, lf->lf_end);
    166       1.45   thorpej 		TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
    167       1.45   thorpej 			if (blk->lf_flags & F_POSIX)
    168       1.45   thorpej 				printf("proc %d",
    169       1.45   thorpej 				    ((struct proc *)blk->lf_id)->p_pid);
    170       1.45   thorpej 			else
    171       1.45   thorpej 				printf("file %p", (struct file *)blk->lf_id);
    172       1.45   thorpej 			printf(", %s, start %qx, end %qx",
    173       1.45   thorpej 				blk->lf_type == F_RDLCK ? "shared" :
    174       1.45   thorpej 				blk->lf_type == F_WRLCK ? "exclusive" :
    175       1.45   thorpej 				blk->lf_type == F_UNLCK ? "unlock" :
    176       1.45   thorpej 				"unknown", blk->lf_start, blk->lf_end);
    177       1.45   thorpej 			if (TAILQ_FIRST(&blk->lf_blkhd))
    178       1.45   thorpej 				 panic("lf_printlist: bad list");
    179       1.45   thorpej 		}
    180       1.45   thorpej 		printf("\n");
    181       1.45   thorpej 	}
    182       1.45   thorpej }
    183       1.45   thorpej #endif /* LOCKF_DEBUG */
    184       1.45   thorpej 
    185       1.38  christos /*
    186       1.38  christos  * 3 options for allowfail.
    187       1.38  christos  * 0 - always allocate.  1 - cutoff at limit.  2 - cutoff at double limit.
    188       1.38  christos  */
    189       1.45   thorpej static struct lockf *
    190       1.38  christos lf_alloc(uid_t uid, int allowfail)
    191       1.38  christos {
    192       1.38  christos 	struct uidinfo *uip;
    193       1.38  christos 	struct lockf *lock;
    194       1.38  christos 
    195       1.38  christos 	uip = uid_find(uid);
    196       1.60        ad 	mutex_enter(&uip->ui_lock);
    197       1.38  christos 	if (uid && allowfail && uip->ui_lockcnt >
    198       1.40  christos 	    (allowfail == 1 ? maxlocksperuid : (maxlocksperuid * 2))) {
    199       1.60        ad 		mutex_exit(&uip->ui_lock);
    200       1.40  christos 		return NULL;
    201       1.40  christos 	}
    202       1.38  christos 	uip->ui_lockcnt++;
    203       1.60        ad 	mutex_exit(&uip->ui_lock);
    204       1.38  christos 	lock = pool_get(&lockfpool, PR_WAITOK);
    205       1.38  christos 	lock->lf_uid = uid;
    206  1.60.20.1    bouyer 	cv_init(&lock->lf_cv, "lockf");
    207       1.40  christos 	return lock;
    208       1.38  christos }
    209       1.38  christos 
    210       1.45   thorpej static void
    211       1.38  christos lf_free(struct lockf *lock)
    212       1.38  christos {
    213       1.38  christos 	struct uidinfo *uip;
    214       1.38  christos 
    215       1.38  christos 	uip = uid_find(lock->lf_uid);
    216       1.60        ad 	mutex_enter(&uip->ui_lock);
    217       1.38  christos 	uip->ui_lockcnt--;
    218       1.60        ad 	mutex_exit(&uip->ui_lock);
    219  1.60.20.1    bouyer 	cv_destroy(&lock->lf_cv);
    220       1.38  christos 	pool_put(&lockfpool, lock);
    221       1.38  christos }
    222       1.38  christos 
    223       1.38  christos /*
    224       1.45   thorpej  * Walk the list of locks for an inode to
    225       1.45   thorpej  * find an overlapping lock (if any).
    226       1.45   thorpej  *
    227       1.45   thorpej  * NOTE: this returns only the FIRST overlapping lock.  There
    228       1.45   thorpej  *	 may be more than one.
    229        1.1        ws  */
    230       1.45   thorpej static int
    231       1.45   thorpej lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
    232       1.45   thorpej     struct lockf ***prev, struct lockf **overlap)
    233        1.1        ws {
    234        1.1        ws 	off_t start, end;
    235        1.1        ws 
    236       1.45   thorpej 	*overlap = lf;
    237       1.54      yamt 	if (lf == NULL)
    238       1.45   thorpej 		return 0;
    239       1.45   thorpej #ifdef LOCKF_DEBUG
    240       1.45   thorpej 	if (lockf_debug & 2)
    241       1.45   thorpej 		lf_print("lf_findoverlap: looking for overlap in", lock);
    242       1.45   thorpej #endif /* LOCKF_DEBUG */
    243       1.45   thorpej 	start = lock->lf_start;
    244       1.45   thorpej 	end = lock->lf_end;
    245       1.54      yamt 	while (lf != NULL) {
    246       1.45   thorpej 		if (((type == SELF) && lf->lf_id != lock->lf_id) ||
    247       1.45   thorpej 		    ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
    248       1.45   thorpej 			*prev = &lf->lf_next;
    249       1.45   thorpej 			*overlap = lf = lf->lf_next;
    250       1.45   thorpej 			continue;
    251       1.45   thorpej 		}
    252       1.45   thorpej #ifdef LOCKF_DEBUG
    253       1.45   thorpej 		if (lockf_debug & 2)
    254       1.45   thorpej 			lf_print("\tchecking", lf);
    255       1.45   thorpej #endif /* LOCKF_DEBUG */
    256        1.1        ws 		/*
    257       1.45   thorpej 		 * OK, check for overlap
    258       1.45   thorpej 		 *
    259       1.45   thorpej 		 * Six cases:
    260       1.45   thorpej 		 *	0) no overlap
    261       1.45   thorpej 		 *	1) overlap == lock
    262       1.45   thorpej 		 *	2) overlap contains lock
    263       1.45   thorpej 		 *	3) lock contains overlap
    264       1.45   thorpej 		 *	4) overlap starts before lock
    265       1.45   thorpej 		 *	5) overlap ends after lock
    266        1.1        ws 		 */
    267       1.45   thorpej 		if ((lf->lf_end != -1 && start > lf->lf_end) ||
    268       1.45   thorpej 		    (end != -1 && lf->lf_start > end)) {
    269       1.45   thorpej 			/* Case 0 */
    270       1.45   thorpej #ifdef LOCKF_DEBUG
    271       1.45   thorpej 			if (lockf_debug & 2)
    272       1.45   thorpej 				printf("no overlap\n");
    273       1.45   thorpej #endif /* LOCKF_DEBUG */
    274       1.45   thorpej 			if ((type & SELF) && end != -1 && lf->lf_start > end)
    275       1.45   thorpej 				return 0;
    276       1.45   thorpej 			*prev = &lf->lf_next;
    277       1.45   thorpej 			*overlap = lf = lf->lf_next;
    278       1.45   thorpej 			continue;
    279       1.45   thorpej 		}
    280       1.45   thorpej 		if ((lf->lf_start == start) && (lf->lf_end == end)) {
    281       1.45   thorpej 			/* Case 1 */
    282       1.45   thorpej #ifdef LOCKF_DEBUG
    283       1.45   thorpej 			if (lockf_debug & 2)
    284       1.45   thorpej 				printf("overlap == lock\n");
    285       1.45   thorpej #endif /* LOCKF_DEBUG */
    286       1.45   thorpej 			return 1;
    287       1.45   thorpej 		}
    288       1.45   thorpej 		if ((lf->lf_start <= start) &&
    289       1.45   thorpej 		    (end != -1) &&
    290       1.45   thorpej 		    ((lf->lf_end >= end) || (lf->lf_end == -1))) {
    291       1.45   thorpej 			/* Case 2 */
    292       1.45   thorpej #ifdef LOCKF_DEBUG
    293       1.45   thorpej 			if (lockf_debug & 2)
    294       1.45   thorpej 				printf("overlap contains lock\n");
    295       1.45   thorpej #endif /* LOCKF_DEBUG */
    296       1.45   thorpej 			return 2;
    297       1.45   thorpej 		}
    298       1.45   thorpej 		if (start <= lf->lf_start &&
    299       1.45   thorpej 		           (end == -1 ||
    300       1.45   thorpej 			   (lf->lf_end != -1 && end >= lf->lf_end))) {
    301       1.45   thorpej 			/* Case 3 */
    302       1.45   thorpej #ifdef LOCKF_DEBUG
    303       1.45   thorpej 			if (lockf_debug & 2)
    304       1.45   thorpej 				printf("lock contains overlap\n");
    305       1.45   thorpej #endif /* LOCKF_DEBUG */
    306       1.45   thorpej 			return 3;
    307       1.45   thorpej 		}
    308       1.45   thorpej 		if ((lf->lf_start < start) &&
    309       1.45   thorpej 			((lf->lf_end >= start) || (lf->lf_end == -1))) {
    310       1.45   thorpej 			/* Case 4 */
    311       1.45   thorpej #ifdef LOCKF_DEBUG
    312       1.45   thorpej 			if (lockf_debug & 2)
    313       1.45   thorpej 				printf("overlap starts before lock\n");
    314       1.45   thorpej #endif /* LOCKF_DEBUG */
    315       1.45   thorpej 			return 4;
    316       1.45   thorpej 		}
    317       1.45   thorpej 		if ((lf->lf_start > start) &&
    318       1.45   thorpej 			(end != -1) &&
    319       1.45   thorpej 			((lf->lf_end > end) || (lf->lf_end == -1))) {
    320       1.45   thorpej 			/* Case 5 */
    321       1.45   thorpej #ifdef LOCKF_DEBUG
    322       1.45   thorpej 			if (lockf_debug & 2)
    323       1.45   thorpej 				printf("overlap ends after lock\n");
    324       1.45   thorpej #endif /* LOCKF_DEBUG */
    325       1.45   thorpej 			return 5;
    326       1.45   thorpej 		}
    327       1.45   thorpej 		panic("lf_findoverlap: default");
    328       1.45   thorpej 	}
    329       1.45   thorpej 	return 0;
    330       1.45   thorpej }
    331        1.1        ws 
    332       1.45   thorpej /*
    333       1.45   thorpej  * Split a lock and a contained region into
    334       1.45   thorpej  * two or three locks as necessary.
    335       1.45   thorpej  */
    336       1.45   thorpej static void
    337       1.45   thorpej lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
    338       1.45   thorpej {
    339       1.45   thorpej 	struct lockf *splitlock;
    340        1.1        ws 
    341       1.45   thorpej #ifdef LOCKF_DEBUG
    342       1.45   thorpej 	if (lockf_debug & 2) {
    343       1.45   thorpej 		lf_print("lf_split", lock1);
    344       1.45   thorpej 		lf_print("splitting from", lock2);
    345        1.1        ws 	}
    346       1.45   thorpej #endif /* LOCKF_DEBUG */
    347       1.10    kleink 	/*
    348       1.45   thorpej 	 * Check to see if spliting into only two pieces.
    349       1.27      yamt 	 */
    350       1.45   thorpej 	if (lock1->lf_start == lock2->lf_start) {
    351       1.45   thorpej 		lock1->lf_start = lock2->lf_end + 1;
    352       1.45   thorpej 		lock2->lf_next = lock1;
    353       1.45   thorpej 		return;
    354       1.27      yamt 	}
    355       1.45   thorpej 	if (lock1->lf_end == lock2->lf_end) {
    356       1.45   thorpej 		lock1->lf_end = lock2->lf_start - 1;
    357       1.45   thorpej 		lock2->lf_next = lock1->lf_next;
    358       1.45   thorpej 		lock1->lf_next = lock2;
    359       1.45   thorpej 		return;
    360       1.27      yamt 	}
    361       1.27      yamt 	/*
    362       1.45   thorpej 	 * Make a new lock consisting of the last part of
    363       1.45   thorpej 	 * the encompassing lock
    364       1.10    kleink 	 */
    365       1.45   thorpej 	splitlock = *sparelock;
    366       1.45   thorpej 	*sparelock = NULL;
    367       1.45   thorpej 	memcpy(splitlock, lock1, sizeof(*splitlock));
    368       1.45   thorpej 	splitlock->lf_start = lock2->lf_end + 1;
    369       1.45   thorpej 	TAILQ_INIT(&splitlock->lf_blkhd);
    370       1.45   thorpej 	lock1->lf_end = lock2->lf_start - 1;
    371        1.1        ws 	/*
    372       1.45   thorpej 	 * OK, now link it in
    373       1.21   thorpej 	 */
    374       1.45   thorpej 	splitlock->lf_next = lock1->lf_next;
    375       1.45   thorpej 	lock2->lf_next = splitlock;
    376       1.45   thorpej 	lock1->lf_next = lock2;
    377       1.45   thorpej }
    378       1.45   thorpej 
    379       1.45   thorpej /*
    380       1.45   thorpej  * Wakeup a blocklist
    381       1.45   thorpej  */
    382       1.45   thorpej static void
    383       1.45   thorpej lf_wakelock(struct lockf *listhead)
    384       1.45   thorpej {
    385       1.45   thorpej 	struct lockf *wakelock;
    386       1.21   thorpej 
    387       1.45   thorpej 	while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
    388       1.45   thorpej 		KASSERT(wakelock->lf_next == listhead);
    389       1.45   thorpej 		TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
    390       1.54      yamt 		wakelock->lf_next = NULL;
    391       1.45   thorpej #ifdef LOCKF_DEBUG
    392       1.45   thorpej 		if (lockf_debug & 2)
    393       1.45   thorpej 			lf_print("lf_wakelock: awakening", wakelock);
    394       1.45   thorpej #endif
    395  1.60.20.1    bouyer 		cv_broadcast(&wakelock->lf_cv);
    396       1.21   thorpej 	}
    397       1.45   thorpej }
    398       1.45   thorpej 
    399       1.45   thorpej /*
    400       1.45   thorpej  * Remove a byte-range lock on an inode.
    401       1.45   thorpej  *
    402       1.45   thorpej  * Generally, find the lock (or an overlap to that lock)
    403       1.45   thorpej  * and remove it (or shrink it), then wakeup anyone we can.
    404       1.45   thorpej  */
    405       1.45   thorpej static int
    406       1.45   thorpej lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
    407       1.45   thorpej {
    408       1.45   thorpej 	struct lockf **head = unlock->lf_head;
    409       1.45   thorpej 	struct lockf *lf = *head;
    410       1.45   thorpej 	struct lockf *overlap, **prev;
    411       1.45   thorpej 	int ovcase;
    412       1.45   thorpej 
    413       1.54      yamt 	if (lf == NULL)
    414       1.45   thorpej 		return 0;
    415       1.45   thorpej #ifdef LOCKF_DEBUG
    416       1.45   thorpej 	if (unlock->lf_type != F_UNLCK)
    417       1.45   thorpej 		panic("lf_clearlock: bad type");
    418       1.45   thorpej 	if (lockf_debug & 1)
    419       1.45   thorpej 		lf_print("lf_clearlock", unlock);
    420       1.45   thorpej #endif /* LOCKF_DEBUG */
    421       1.45   thorpej 	prev = head;
    422       1.45   thorpej 	while ((ovcase = lf_findoverlap(lf, unlock, SELF,
    423  1.60.20.1    bouyer 	    &prev, &overlap)) != 0) {
    424       1.45   thorpej 		/*
    425       1.45   thorpej 		 * Wakeup the list of locks to be retried.
    426       1.45   thorpej 		 */
    427       1.45   thorpej 		lf_wakelock(overlap);
    428       1.45   thorpej 
    429       1.45   thorpej 		switch (ovcase) {
    430       1.37     perry 
    431       1.45   thorpej 		case 1: /* overlap == lock */
    432       1.45   thorpej 			*prev = overlap->lf_next;
    433       1.45   thorpej 			lf_free(overlap);
    434       1.45   thorpej 			break;
    435        1.4   mycroft 
    436       1.45   thorpej 		case 2: /* overlap contains lock: split it */
    437       1.45   thorpej 			if (overlap->lf_start == unlock->lf_start) {
    438       1.45   thorpej 				overlap->lf_start = unlock->lf_end + 1;
    439       1.45   thorpej 				break;
    440       1.45   thorpej 			}
    441       1.45   thorpej 			lf_split(overlap, unlock, sparelock);
    442       1.45   thorpej 			overlap->lf_next = unlock->lf_next;
    443       1.45   thorpej 			break;
    444        1.1        ws 
    445       1.45   thorpej 		case 3: /* lock contains overlap */
    446       1.45   thorpej 			*prev = overlap->lf_next;
    447       1.45   thorpej 			lf = overlap->lf_next;
    448       1.45   thorpej 			lf_free(overlap);
    449       1.45   thorpej 			continue;
    450        1.1        ws 
    451       1.45   thorpej 		case 4: /* overlap starts before lock */
    452       1.45   thorpej 			overlap->lf_end = unlock->lf_start - 1;
    453       1.45   thorpej 			prev = &overlap->lf_next;
    454       1.45   thorpej 			lf = overlap->lf_next;
    455       1.45   thorpej 			continue;
    456        1.4   mycroft 
    457       1.45   thorpej 		case 5: /* overlap ends after lock */
    458       1.45   thorpej 			overlap->lf_start = unlock->lf_end + 1;
    459       1.45   thorpej 			break;
    460       1.45   thorpej 		}
    461       1.31      fvdl 		break;
    462       1.27      yamt 	}
    463       1.45   thorpej #ifdef LOCKF_DEBUG
    464       1.45   thorpej 	if (lockf_debug & 1)
    465       1.45   thorpej 		lf_printlist("lf_clearlock", unlock);
    466       1.45   thorpej #endif /* LOCKF_DEBUG */
    467       1.45   thorpej 	return 0;
    468       1.45   thorpej }
    469       1.27      yamt 
    470       1.45   thorpej /*
    471       1.45   thorpej  * Walk the list of locks for an inode and
    472       1.45   thorpej  * return the first blocking lock.
    473       1.45   thorpej  */
    474       1.45   thorpej static struct lockf *
    475       1.45   thorpej lf_getblock(struct lockf *lock)
    476       1.45   thorpej {
    477       1.45   thorpej 	struct lockf **prev, *overlap, *lf = *(lock->lf_head);
    478       1.27      yamt 
    479       1.45   thorpej 	prev = lock->lf_head;
    480       1.45   thorpej 	while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
    481       1.45   thorpej 		/*
    482       1.45   thorpej 		 * We've found an overlap, see if it blocks us
    483       1.45   thorpej 		 */
    484       1.45   thorpej 		if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
    485       1.45   thorpej 			return overlap;
    486       1.45   thorpej 		/*
    487       1.45   thorpej 		 * Nope, point to the next one on the list and
    488       1.45   thorpej 		 * see if it blocks us
    489       1.45   thorpej 		 */
    490       1.45   thorpej 		lf = overlap->lf_next;
    491       1.45   thorpej 	}
    492       1.54      yamt 	return NULL;
    493        1.1        ws }
    494        1.1        ws 
    495        1.1        ws /*
    496        1.1        ws  * Set a byte-range lock.
    497        1.1        ws  */
    498       1.24      yamt static int
    499       1.27      yamt lf_setlock(struct lockf *lock, struct lockf **sparelock,
    500  1.60.20.1    bouyer     kmutex_t *interlock)
    501        1.1        ws {
    502       1.15  augustss 	struct lockf *block;
    503        1.1        ws 	struct lockf **head = lock->lf_head;
    504        1.1        ws 	struct lockf **prev, *overlap, *ltmp;
    505        1.1        ws 	static char lockstr[] = "lockf";
    506  1.60.20.1    bouyer 	int ovcase, needtolink, error;
    507        1.1        ws 
    508        1.1        ws #ifdef LOCKF_DEBUG
    509        1.1        ws 	if (lockf_debug & 1)
    510        1.1        ws 		lf_print("lf_setlock", lock);
    511        1.1        ws #endif /* LOCKF_DEBUG */
    512        1.1        ws 
    513        1.1        ws 	/*
    514  1.60.20.1    bouyer 	 * XXX Here we used to set the sleep priority so that writers
    515  1.60.20.1    bouyer 	 * took priority.  That's of dubious use, and is not possible
    516  1.60.20.1    bouyer 	 * with condition variables.  Need to find a better way to ensure
    517  1.60.20.1    bouyer 	 * fairness.
    518        1.1        ws 	 */
    519  1.60.20.1    bouyer 
    520        1.1        ws 	/*
    521        1.1        ws 	 * Scan lock list for this file looking for locks that would block us.
    522        1.1        ws 	 */
    523        1.7  christos 	while ((block = lf_getblock(lock)) != NULL) {
    524        1.1        ws 		/*
    525        1.1        ws 		 * Free the structure and return if nonblocking.
    526        1.1        ws 		 */
    527        1.1        ws 		if ((lock->lf_flags & F_WAIT) == 0) {
    528       1.38  christos 			lf_free(lock);
    529       1.29      yamt 			return EAGAIN;
    530        1.1        ws 		}
    531        1.1        ws 		/*
    532        1.1        ws 		 * We are blocked. Since flock style locks cover
    533        1.1        ws 		 * the whole file, there is no chance for deadlock.
    534        1.1        ws 		 * For byte-range locks we must check for deadlock.
    535        1.1        ws 		 *
    536        1.1        ws 		 * Deadlock detection is done by looking through the
    537        1.1        ws 		 * wait channels to see if there are any cycles that
    538        1.1        ws 		 * involve us. MAXDEPTH is set just to make sure we
    539       1.16  sommerfe 		 * do not go off into neverneverland.
    540        1.1        ws 		 */
    541        1.1        ws 		if ((lock->lf_flags & F_POSIX) &&
    542        1.1        ws 		    (block->lf_flags & F_POSIX)) {
    543       1.21   thorpej 			struct lwp *wlwp;
    544       1.48     perry 			volatile const struct lockf *waitblock;
    545        1.1        ws 			int i = 0;
    546       1.52      yamt 			struct proc *p;
    547        1.1        ws 
    548       1.52      yamt 			p = (struct proc *)block->lf_id;
    549       1.52      yamt 			KASSERT(p != NULL);
    550       1.52      yamt 			while (i++ < maxlockdepth) {
    551       1.57        ad 				mutex_enter(&p->p_smutex);
    552       1.52      yamt 				if (p->p_nlwps > 1) {
    553       1.57        ad 					mutex_exit(&p->p_smutex);
    554       1.52      yamt 					break;
    555       1.52      yamt 				}
    556       1.52      yamt 				wlwp = LIST_FIRST(&p->p_lwps);
    557       1.57        ad 				lwp_lock(wlwp);
    558       1.52      yamt 				if (wlwp->l_wmesg != lockstr) {
    559       1.57        ad 					lwp_unlock(wlwp);
    560       1.57        ad 					mutex_exit(&p->p_smutex);
    561       1.52      yamt 					break;
    562       1.52      yamt 				}
    563       1.44  christos 				waitblock = wlwp->l_wchan;
    564       1.57        ad 				lwp_unlock(wlwp);
    565       1.57        ad 				mutex_exit(&p->p_smutex);
    566       1.52      yamt 				if (waitblock == NULL) {
    567       1.52      yamt 					/*
    568       1.52      yamt 					 * this lwp just got up but
    569       1.52      yamt 					 * not returned from ltsleep yet.
    570       1.52      yamt 					 */
    571       1.52      yamt 					break;
    572       1.52      yamt 				}
    573        1.1        ws 				/* Get the owner of the blocking lock */
    574        1.1        ws 				waitblock = waitblock->lf_next;
    575        1.1        ws 				if ((waitblock->lf_flags & F_POSIX) == 0)
    576        1.1        ws 					break;
    577       1.52      yamt 				p = (struct proc *)waitblock->lf_id;
    578       1.52      yamt 				if (p == curproc) {
    579       1.38  christos 					lf_free(lock);
    580       1.29      yamt 					return EDEADLK;
    581        1.1        ws 				}
    582        1.1        ws 			}
    583       1.16  sommerfe 			/*
    584       1.36     peter 			 * If we're still following a dependency chain
    585       1.16  sommerfe 			 * after maxlockdepth iterations, assume we're in
    586       1.16  sommerfe 			 * a cycle to be safe.
    587       1.16  sommerfe 			 */
    588       1.16  sommerfe 			if (i >= maxlockdepth) {
    589       1.38  christos 				lf_free(lock);
    590       1.29      yamt 				return EDEADLK;
    591       1.16  sommerfe 			}
    592        1.1        ws 		}
    593        1.1        ws 		/*
    594        1.1        ws 		 * For flock type locks, we must first remove
    595        1.1        ws 		 * any shared locks that we hold before we sleep
    596        1.1        ws 		 * waiting for an exclusive lock.
    597        1.1        ws 		 */
    598        1.1        ws 		if ((lock->lf_flags & F_FLOCK) &&
    599        1.1        ws 		    lock->lf_type == F_WRLCK) {
    600        1.1        ws 			lock->lf_type = F_UNLCK;
    601       1.27      yamt 			(void) lf_clearlock(lock, NULL);
    602        1.1        ws 			lock->lf_type = F_WRLCK;
    603        1.1        ws 		}
    604        1.1        ws 		/*
    605        1.1        ws 		 * Add our lock to the blocked list and sleep until we're free.
    606        1.1        ws 		 * Remember who blocked us (for deadlock detection).
    607        1.1        ws 		 */
    608        1.1        ws 		lock->lf_next = block;
    609       1.12      fvdl 		TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
    610        1.1        ws #ifdef LOCKF_DEBUG
    611        1.1        ws 		if (lockf_debug & 1) {
    612        1.1        ws 			lf_print("lf_setlock: blocking on", block);
    613        1.1        ws 			lf_printlist("lf_setlock", block);
    614        1.1        ws 		}
    615        1.1        ws #endif /* LOCKF_DEBUG */
    616  1.60.20.1    bouyer 		error = cv_wait_sig(&lock->lf_cv, interlock);
    617       1.16  sommerfe 
    618       1.16  sommerfe 		/*
    619       1.16  sommerfe 		 * We may have been awakened by a signal (in
    620       1.16  sommerfe 		 * which case we must remove ourselves from the
    621       1.16  sommerfe 		 * blocked list) and/or by another process
    622       1.16  sommerfe 		 * releasing a lock (in which case we have already
    623       1.16  sommerfe 		 * been removed from the blocked list and our
    624       1.54      yamt 		 * lf_next field set to NULL).
    625       1.16  sommerfe 		 */
    626       1.54      yamt 		if (lock->lf_next != NULL) {
    627       1.16  sommerfe 			TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
    628       1.54      yamt 			lock->lf_next = NULL;
    629       1.16  sommerfe 		}
    630        1.7  christos 		if (error) {
    631       1.38  christos 			lf_free(lock);
    632       1.29      yamt 			return error;
    633        1.1        ws 		}
    634        1.1        ws 	}
    635        1.1        ws 	/*
    636        1.1        ws 	 * No blocks!!  Add the lock.  Note that we will
    637        1.1        ws 	 * downgrade or upgrade any overlapping locks this
    638        1.1        ws 	 * process already owns.
    639        1.1        ws 	 *
    640        1.1        ws 	 * Skip over locks owned by other processes.
    641        1.1        ws 	 * Handle any locks that overlap and are owned by ourselves.
    642        1.1        ws 	 */
    643        1.1        ws 	prev = head;
    644        1.1        ws 	block = *head;
    645        1.1        ws 	needtolink = 1;
    646        1.1        ws 	for (;;) {
    647        1.7  christos 		ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
    648        1.7  christos 		if (ovcase)
    649        1.1        ws 			block = overlap->lf_next;
    650        1.1        ws 		/*
    651        1.1        ws 		 * Six cases:
    652        1.1        ws 		 *	0) no overlap
    653        1.1        ws 		 *	1) overlap == lock
    654        1.1        ws 		 *	2) overlap contains lock
    655        1.1        ws 		 *	3) lock contains overlap
    656        1.1        ws 		 *	4) overlap starts before lock
    657        1.1        ws 		 *	5) overlap ends after lock
    658        1.1        ws 		 */
    659        1.1        ws 		switch (ovcase) {
    660        1.1        ws 		case 0: /* no overlap */
    661        1.1        ws 			if (needtolink) {
    662        1.1        ws 				*prev = lock;
    663        1.1        ws 				lock->lf_next = overlap;
    664        1.1        ws 			}
    665        1.1        ws 			break;
    666        1.1        ws 
    667        1.1        ws 		case 1: /* overlap == lock */
    668        1.1        ws 			/*
    669        1.1        ws 			 * If downgrading lock, others may be
    670        1.1        ws 			 * able to acquire it.
    671        1.1        ws 			 */
    672        1.1        ws 			if (lock->lf_type == F_RDLCK &&
    673        1.1        ws 			    overlap->lf_type == F_WRLCK)
    674        1.1        ws 				lf_wakelock(overlap);
    675        1.1        ws 			overlap->lf_type = lock->lf_type;
    676       1.38  christos 			lf_free(lock);
    677        1.1        ws 			lock = overlap; /* for debug output below */
    678        1.1        ws 			break;
    679        1.1        ws 
    680        1.1        ws 		case 2: /* overlap contains lock */
    681        1.1        ws 			/*
    682        1.1        ws 			 * Check for common starting point and different types.
    683        1.1        ws 			 */
    684        1.1        ws 			if (overlap->lf_type == lock->lf_type) {
    685       1.38  christos 				lf_free(lock);
    686        1.1        ws 				lock = overlap; /* for debug output below */
    687        1.1        ws 				break;
    688        1.1        ws 			}
    689        1.1        ws 			if (overlap->lf_start == lock->lf_start) {
    690        1.1        ws 				*prev = lock;
    691        1.1        ws 				lock->lf_next = overlap;
    692        1.1        ws 				overlap->lf_start = lock->lf_end + 1;
    693        1.1        ws 			} else
    694       1.27      yamt 				lf_split(overlap, lock, sparelock);
    695        1.1        ws 			lf_wakelock(overlap);
    696        1.1        ws 			break;
    697        1.1        ws 
    698        1.1        ws 		case 3: /* lock contains overlap */
    699        1.1        ws 			/*
    700        1.1        ws 			 * If downgrading lock, others may be able to
    701        1.1        ws 			 * acquire it, otherwise take the list.
    702        1.1        ws 			 */
    703        1.1        ws 			if (lock->lf_type == F_RDLCK &&
    704        1.1        ws 			    overlap->lf_type == F_WRLCK) {
    705        1.1        ws 				lf_wakelock(overlap);
    706        1.1        ws 			} else {
    707       1.19      matt 				while ((ltmp = TAILQ_FIRST(&overlap->lf_blkhd))) {
    708       1.16  sommerfe 					KASSERT(ltmp->lf_next == overlap);
    709       1.12      fvdl 					TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
    710       1.12      fvdl 					    lf_block);
    711       1.16  sommerfe 					ltmp->lf_next = lock;
    712       1.12      fvdl 					TAILQ_INSERT_TAIL(&lock->lf_blkhd,
    713       1.12      fvdl 					    ltmp, lf_block);
    714       1.12      fvdl 				}
    715        1.1        ws 			}
    716        1.1        ws 			/*
    717        1.1        ws 			 * Add the new lock if necessary and delete the overlap.
    718        1.1        ws 			 */
    719        1.1        ws 			if (needtolink) {
    720        1.1        ws 				*prev = lock;
    721        1.1        ws 				lock->lf_next = overlap->lf_next;
    722        1.1        ws 				prev = &lock->lf_next;
    723        1.1        ws 				needtolink = 0;
    724        1.1        ws 			} else
    725        1.1        ws 				*prev = overlap->lf_next;
    726       1.39  christos 			lf_free(overlap);
    727        1.1        ws 			continue;
    728        1.1        ws 
    729        1.1        ws 		case 4: /* overlap starts before lock */
    730        1.1        ws 			/*
    731        1.1        ws 			 * Add lock after overlap on the list.
    732        1.1        ws 			 */
    733        1.1        ws 			lock->lf_next = overlap->lf_next;
    734        1.1        ws 			overlap->lf_next = lock;
    735        1.1        ws 			overlap->lf_end = lock->lf_start - 1;
    736        1.1        ws 			prev = &lock->lf_next;
    737        1.1        ws 			lf_wakelock(overlap);
    738        1.1        ws 			needtolink = 0;
    739        1.1        ws 			continue;
    740        1.1        ws 
    741        1.1        ws 		case 5: /* overlap ends after lock */
    742        1.1        ws 			/*
    743        1.1        ws 			 * Add the new lock before overlap.
    744        1.1        ws 			 */
    745        1.1        ws 			if (needtolink) {
    746        1.1        ws 				*prev = lock;
    747        1.1        ws 				lock->lf_next = overlap;
    748        1.1        ws 			}
    749        1.1        ws 			overlap->lf_start = lock->lf_end + 1;
    750        1.1        ws 			lf_wakelock(overlap);
    751        1.1        ws 			break;
    752        1.1        ws 		}
    753        1.1        ws 		break;
    754        1.1        ws 	}
    755        1.1        ws #ifdef LOCKF_DEBUG
    756        1.1        ws 	if (lockf_debug & 1) {
    757        1.1        ws 		lf_print("lf_setlock: got the lock", lock);
    758        1.1        ws 		lf_printlist("lf_setlock", lock);
    759        1.1        ws 	}
    760        1.1        ws #endif /* LOCKF_DEBUG */
    761       1.29      yamt 	return 0;
    762        1.1        ws }
    763        1.1        ws 
    764        1.1        ws /*
    765        1.1        ws  * Check whether there is a blocking lock,
    766        1.1        ws  * and if so return its process identifier.
    767        1.1        ws  */
    768       1.24      yamt static int
    769       1.25      yamt lf_getlock(struct lockf *lock, struct flock *fl)
    770        1.1        ws {
    771       1.15  augustss 	struct lockf *block;
    772        1.1        ws 
    773        1.1        ws #ifdef LOCKF_DEBUG
    774        1.1        ws 	if (lockf_debug & 1)
    775        1.1        ws 		lf_print("lf_getlock", lock);
    776        1.1        ws #endif /* LOCKF_DEBUG */
    777        1.1        ws 
    778        1.7  christos 	if ((block = lf_getblock(lock)) != NULL) {
    779        1.1        ws 		fl->l_type = block->lf_type;
    780        1.1        ws 		fl->l_whence = SEEK_SET;
    781        1.1        ws 		fl->l_start = block->lf_start;
    782        1.1        ws 		if (block->lf_end == -1)
    783        1.1        ws 			fl->l_len = 0;
    784        1.1        ws 		else
    785        1.1        ws 			fl->l_len = block->lf_end - block->lf_start + 1;
    786        1.1        ws 		if (block->lf_flags & F_POSIX)
    787       1.23   mycroft 			fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
    788        1.1        ws 		else
    789        1.1        ws 			fl->l_pid = -1;
    790        1.1        ws 	} else {
    791        1.1        ws 		fl->l_type = F_UNLCK;
    792        1.1        ws 	}
    793       1.29      yamt 	return 0;
    794        1.1        ws }
    795        1.1        ws 
    796        1.1        ws /*
    797       1.45   thorpej  * Do an advisory lock operation.
    798        1.1        ws  */
    799       1.45   thorpej int
    800       1.45   thorpej lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
    801        1.1        ws {
    802       1.55        ad 	struct lwp *l = curlwp;
    803       1.45   thorpej 	struct flock *fl = ap->a_fl;
    804       1.45   thorpej 	struct lockf *lock = NULL;
    805       1.45   thorpej 	struct lockf *sparelock;
    806  1.60.20.1    bouyer 	kmutex_t *interlock = &ap->a_vp->v_interlock;
    807       1.45   thorpej 	off_t start, end;
    808       1.45   thorpej 	int error = 0;
    809        1.1        ws 
    810       1.45   thorpej 	/*
    811       1.45   thorpej 	 * Convert the flock structure into a start and end.
    812       1.45   thorpej 	 */
    813       1.45   thorpej 	switch (fl->l_whence) {
    814       1.45   thorpej 	case SEEK_SET:
    815       1.45   thorpej 	case SEEK_CUR:
    816        1.1        ws 		/*
    817       1.45   thorpej 		 * Caller is responsible for adding any necessary offset
    818       1.45   thorpej 		 * when SEEK_CUR is used.
    819        1.1        ws 		 */
    820       1.45   thorpej 		start = fl->l_start;
    821       1.45   thorpej 		break;
    822       1.45   thorpej 
    823       1.45   thorpej 	case SEEK_END:
    824       1.45   thorpej 		start = size + fl->l_start;
    825       1.45   thorpej 		break;
    826       1.45   thorpej 
    827       1.45   thorpej 	default:
    828       1.45   thorpej 		return EINVAL;
    829        1.1        ws 	}
    830       1.45   thorpej 	if (start < 0)
    831       1.45   thorpej 		return EINVAL;
    832        1.1        ws 
    833       1.45   thorpej 	/*
    834  1.60.20.1    bouyer 	 * Allocate locks before acquiring the interlock.  We need two
    835       1.55        ad 	 * locks in the worst case.
    836       1.45   thorpej 	 */
    837       1.45   thorpej 	switch (ap->a_op) {
    838       1.45   thorpej 	case F_SETLK:
    839       1.45   thorpej 	case F_UNLCK:
    840        1.1        ws 		/*
    841       1.55        ad 		 * XXX For F_UNLCK case, we can re-use the lock.
    842        1.1        ws 		 */
    843       1.46  christos 		if ((ap->a_flags & F_FLOCK) == 0) {
    844       1.45   thorpej 			/*
    845       1.55        ad 			 * Byte-range lock might need one more lock.
    846       1.45   thorpej 			 */
    847       1.55        ad 			sparelock = lf_alloc(kauth_cred_geteuid(l->l_cred), 0);
    848       1.45   thorpej 			if (sparelock == NULL) {
    849       1.45   thorpej 				error = ENOMEM;
    850       1.45   thorpej 				goto quit;
    851       1.45   thorpej 			}
    852       1.45   thorpej 			break;
    853        1.1        ws 		}
    854       1.45   thorpej 		/* FALLTHROUGH */
    855       1.45   thorpej 
    856       1.45   thorpej 	case F_GETLK:
    857       1.45   thorpej 		sparelock = NULL;
    858       1.45   thorpej 		break;
    859       1.45   thorpej 
    860       1.45   thorpej 	default:
    861       1.45   thorpej 		return EINVAL;
    862       1.45   thorpej 	}
    863       1.45   thorpej 
    864       1.55        ad 	lock = lf_alloc(kauth_cred_geteuid(l->l_cred),
    865       1.55        ad 	    ap->a_op != F_UNLCK ? 1 : 2);
    866       1.45   thorpej 	if (lock == NULL) {
    867       1.45   thorpej 		error = ENOMEM;
    868       1.45   thorpej 		goto quit;
    869        1.1        ws 	}
    870        1.1        ws 
    871  1.60.20.1    bouyer 	mutex_enter(interlock);
    872        1.1        ws 
    873        1.1        ws 	/*
    874       1.45   thorpej 	 * Avoid the common case of unlocking when inode has no locks.
    875        1.1        ws 	 */
    876       1.45   thorpej 	if (*head == (struct lockf *)0) {
    877       1.45   thorpej 		if (ap->a_op != F_SETLK) {
    878       1.45   thorpej 			fl->l_type = F_UNLCK;
    879       1.45   thorpej 			error = 0;
    880       1.45   thorpej 			goto quit_unlock;
    881       1.45   thorpej 		}
    882        1.1        ws 	}
    883       1.45   thorpej 
    884       1.45   thorpej 	if (fl->l_len == 0)
    885       1.45   thorpej 		end = -1;
    886       1.45   thorpej 	else
    887       1.45   thorpej 		end = start + fl->l_len - 1;
    888        1.1        ws 	/*
    889       1.45   thorpej 	 * Create the lockf structure.
    890       1.45   thorpej 	 */
    891       1.45   thorpej 	lock->lf_start = start;
    892       1.45   thorpej 	lock->lf_end = end;
    893       1.45   thorpej 	/* XXX NJWLWP
    894       1.45   thorpej 	 * I don't want to make the entire VFS universe use LWPs, because
    895       1.45   thorpej 	 * they don't need them, for the most part. This is an exception,
    896       1.45   thorpej 	 * and a kluge.
    897        1.1        ws 	 */
    898       1.45   thorpej 
    899       1.45   thorpej 	lock->lf_head = head;
    900       1.45   thorpej 	lock->lf_type = fl->l_type;
    901       1.45   thorpej 	lock->lf_next = (struct lockf *)0;
    902       1.45   thorpej 	TAILQ_INIT(&lock->lf_blkhd);
    903       1.45   thorpej 	lock->lf_flags = ap->a_flags;
    904       1.45   thorpej 	if (lock->lf_flags & F_POSIX) {
    905       1.45   thorpej 		KASSERT(curproc == (struct proc *)ap->a_id);
    906       1.45   thorpej 	}
    907       1.45   thorpej 	lock->lf_id = (struct proc *)ap->a_id;
    908       1.45   thorpej 
    909        1.1        ws 	/*
    910       1.45   thorpej 	 * Do the requested operation.
    911        1.1        ws 	 */
    912       1.45   thorpej 	switch (ap->a_op) {
    913        1.1        ws 
    914       1.45   thorpej 	case F_SETLK:
    915       1.45   thorpej 		error = lf_setlock(lock, &sparelock, interlock);
    916       1.45   thorpej 		lock = NULL; /* lf_setlock freed it */
    917       1.45   thorpej 		break;
    918        1.1        ws 
    919       1.45   thorpej 	case F_UNLCK:
    920       1.45   thorpej 		error = lf_clearlock(lock, &sparelock);
    921       1.45   thorpej 		break;
    922        1.1        ws 
    923       1.45   thorpej 	case F_GETLK:
    924       1.45   thorpej 		error = lf_getlock(lock, fl);
    925       1.45   thorpej 		break;
    926       1.37     perry 
    927       1.45   thorpej 	default:
    928       1.45   thorpej 		break;
    929       1.45   thorpej 		/* NOTREACHED */
    930       1.45   thorpej 	}
    931        1.1        ws 
    932       1.45   thorpej quit_unlock:
    933  1.60.20.1    bouyer 	mutex_exit(interlock);
    934       1.45   thorpej quit:
    935       1.45   thorpej 	if (lock)
    936       1.45   thorpej 		lf_free(lock);
    937       1.45   thorpej 	if (sparelock)
    938       1.45   thorpej 		lf_free(sparelock);
    939        1.1        ws 
    940       1.45   thorpej 	return error;
    941        1.1        ws }
    942