Home | History | Annotate | Line # | Download | only in kern
vfs_lockf.c revision 1.60.8.2
      1  1.60.8.2      matt /*	vfs_lockf.c,v 1.60.8.1 2008/01/09 01:56:30 matt Exp	*/
      2       1.5       cgd 
      3       1.1        ws /*
      4       1.4   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
      5       1.4   mycroft  *	The Regents of the University of California.  All rights reserved.
      6       1.1        ws  *
      7       1.1        ws  * This code is derived from software contributed to Berkeley by
      8       1.1        ws  * Scooter Morris at Genentech Inc.
      9       1.1        ws  *
     10       1.1        ws  * Redistribution and use in source and binary forms, with or without
     11       1.1        ws  * modification, are permitted provided that the following conditions
     12       1.1        ws  * are met:
     13       1.1        ws  * 1. Redistributions of source code must retain the above copyright
     14       1.1        ws  *    notice, this list of conditions and the following disclaimer.
     15       1.1        ws  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.1        ws  *    notice, this list of conditions and the following disclaimer in the
     17       1.1        ws  *    documentation and/or other materials provided with the distribution.
     18      1.33       agc  * 3. Neither the name of the University nor the names of its contributors
     19       1.1        ws  *    may be used to endorse or promote products derived from this software
     20       1.1        ws  *    without specific prior written permission.
     21       1.1        ws  *
     22       1.1        ws  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23       1.1        ws  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24       1.1        ws  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25       1.1        ws  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26       1.1        ws  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27       1.1        ws  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28       1.1        ws  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29       1.1        ws  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30       1.1        ws  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31       1.1        ws  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32       1.1        ws  * SUCH DAMAGE.
     33       1.1        ws  *
     34      1.12      fvdl  *	@(#)ufs_lockf.c	8.4 (Berkeley) 10/26/94
     35       1.1        ws  */
     36      1.18     lukem 
     37      1.18     lukem #include <sys/cdefs.h>
     38  1.60.8.2      matt __KERNEL_RCSID(0, "vfs_lockf.c,v 1.60.8.1 2008/01/09 01:56:30 matt Exp");
     39       1.1        ws 
     40       1.1        ws #include <sys/param.h>
     41       1.1        ws #include <sys/systm.h>
     42       1.1        ws #include <sys/kernel.h>
     43       1.1        ws #include <sys/file.h>
     44       1.1        ws #include <sys/proc.h>
     45       1.1        ws #include <sys/vnode.h>
     46      1.35    simonb #include <sys/pool.h>
     47       1.1        ws #include <sys/fcntl.h>
     48       1.1        ws #include <sys/lockf.h>
     49  1.60.8.2      matt #include <sys/atomic.h>
     50      1.49      elad #include <sys/kauth.h>
     51      1.22   thorpej 
     52      1.50      yamt /*
     53      1.50      yamt  * The lockf structure is a kernel structure which contains the information
     54      1.50      yamt  * associated with a byte range lock.  The lockf structures are linked into
     55      1.60        ad  * the vnode structure.  Locks are sorted by the starting byte of the lock for
     56      1.50      yamt  * efficiency.
     57      1.50      yamt  *
     58      1.50      yamt  * lf_next is used for two purposes, depending on whether the lock is
     59      1.50      yamt  * being held, or is in conflict with an existing lock.  If this lock
     60      1.50      yamt  * is held, it indicates the next lock on the same vnode.
     61      1.50      yamt  * For pending locks, if lock->lf_next is non-NULL, then lock->lf_block
     62      1.50      yamt  * must be queued on the lf_blkhd TAILQ of lock->lf_next.
     63      1.50      yamt  */
     64      1.50      yamt 
     65      1.50      yamt TAILQ_HEAD(locklist, lockf);
     66      1.50      yamt 
     67      1.50      yamt struct lockf {
     68      1.50      yamt 	short	lf_flags;	 /* Lock semantics: F_POSIX, F_FLOCK, F_WAIT */
     69      1.50      yamt 	short	lf_type;	 /* Lock type: F_RDLCK, F_WRLCK */
     70      1.50      yamt 	off_t	lf_start;	 /* The byte # of the start of the lock */
     71      1.50      yamt 	off_t	lf_end;		 /* The byte # of the end of the lock (-1=EOF)*/
     72      1.50      yamt 	void	*lf_id;		 /* process or file description holding lock */
     73      1.50      yamt 	struct	lockf **lf_head; /* Back pointer to the head of lockf list */
     74      1.50      yamt 	struct	lockf *lf_next;	 /* Next lock on this vnode, or blocking lock */
     75      1.50      yamt 	struct  locklist lf_blkhd; /* List of requests blocked on this lock */
     76      1.50      yamt 	TAILQ_ENTRY(lockf) lf_block;/* A request waiting for a lock */
     77      1.50      yamt 	uid_t	lf_uid;		 /* User ID responsible */
     78  1.60.8.1      matt 	kcondvar_t lf_cv;	 /* Signalling */
     79      1.50      yamt };
     80      1.50      yamt 
     81      1.50      yamt /* Maximum length of sleep chains to traverse to try and detect deadlock. */
     82      1.50      yamt #define MAXDEPTH 50
     83      1.50      yamt 
     84      1.51      yamt static POOL_INIT(lockfpool, sizeof(struct lockf), 0, 0, 0, "lockfpl",
     85      1.59        ad     &pool_allocator_nointr, IPL_NONE);
     86       1.1        ws 
     87       1.1        ws /*
     88       1.6   mycroft  * This variable controls the maximum number of processes that will
     89       1.6   mycroft  * be checked in doing deadlock detection.
     90       1.6   mycroft  */
     91       1.6   mycroft int maxlockdepth = MAXDEPTH;
     92       1.6   mycroft 
     93       1.6   mycroft #ifdef LOCKF_DEBUG
     94       1.6   mycroft int	lockf_debug = 0;
     95       1.6   mycroft #endif
     96       1.6   mycroft 
     97       1.6   mycroft #define SELF	0x1
     98       1.6   mycroft #define OTHERS	0x2
     99       1.6   mycroft 
    100       1.6   mycroft /*
    101      1.16  sommerfe  * XXX TODO
    102      1.58  christos  * Misc cleanups: "void *id" should be visible in the API as a
    103      1.16  sommerfe  * "struct proc *".
    104      1.16  sommerfe  * (This requires rototilling all VFS's which support advisory locking).
    105      1.16  sommerfe  */
    106      1.16  sommerfe 
    107      1.16  sommerfe /*
    108      1.16  sommerfe  * If there's a lot of lock contention on a single vnode, locking
    109      1.16  sommerfe  * schemes which allow for more paralleism would be needed.  Given how
    110      1.16  sommerfe  * infrequently byte-range locks are actually used in typical BSD
    111      1.16  sommerfe  * code, a more complex approach probably isn't worth it.
    112      1.16  sommerfe  */
    113      1.16  sommerfe 
    114      1.16  sommerfe /*
    115      1.38  christos  * We enforce a limit on locks by uid, so that a single user cannot
    116      1.38  christos  * run the kernel out of memory.  For now, the limit is pretty coarse.
    117      1.38  christos  * There is no limit on root.
    118      1.38  christos  *
    119      1.38  christos  * Splitting a lock will always succeed, regardless of current allocations.
    120      1.38  christos  * If you're slightly above the limit, we still have to permit an allocation
    121      1.38  christos  * so that the unlock can succeed.  If the unlocking causes too many splits,
    122      1.38  christos  * however, you're totally cutoff.
    123      1.38  christos  */
    124      1.38  christos int maxlocksperuid = 1024;
    125      1.38  christos 
    126      1.45   thorpej #ifdef LOCKF_DEBUG
    127      1.45   thorpej /*
    128      1.45   thorpej  * Print out a lock.
    129      1.45   thorpej  */
    130      1.45   thorpej static void
    131      1.56  christos lf_print(const char *tag, struct lockf *lock)
    132      1.45   thorpej {
    133      1.45   thorpej 
    134      1.45   thorpej 	printf("%s: lock %p for ", tag, lock);
    135      1.45   thorpej 	if (lock->lf_flags & F_POSIX)
    136      1.45   thorpej 		printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
    137      1.45   thorpej 	else
    138      1.45   thorpej 		printf("file %p", (struct file *)lock->lf_id);
    139      1.45   thorpej 	printf(" %s, start %qx, end %qx",
    140      1.45   thorpej 		lock->lf_type == F_RDLCK ? "shared" :
    141      1.45   thorpej 		lock->lf_type == F_WRLCK ? "exclusive" :
    142      1.45   thorpej 		lock->lf_type == F_UNLCK ? "unlock" :
    143      1.45   thorpej 		"unknown", lock->lf_start, lock->lf_end);
    144      1.45   thorpej 	if (TAILQ_FIRST(&lock->lf_blkhd))
    145      1.45   thorpej 		printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
    146      1.45   thorpej 	else
    147      1.45   thorpej 		printf("\n");
    148      1.45   thorpej }
    149      1.45   thorpej 
    150      1.45   thorpej static void
    151      1.56  christos lf_printlist(const char *tag, struct lockf *lock)
    152      1.45   thorpej {
    153      1.45   thorpej 	struct lockf *lf, *blk;
    154      1.45   thorpej 
    155      1.45   thorpej 	printf("%s: Lock list:\n", tag);
    156      1.45   thorpej 	for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
    157      1.45   thorpej 		printf("\tlock %p for ", lf);
    158      1.45   thorpej 		if (lf->lf_flags & F_POSIX)
    159      1.45   thorpej 			printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
    160      1.45   thorpej 		else
    161      1.45   thorpej 			printf("file %p", (struct file *)lf->lf_id);
    162      1.45   thorpej 		printf(", %s, start %qx, end %qx",
    163      1.45   thorpej 			lf->lf_type == F_RDLCK ? "shared" :
    164      1.45   thorpej 			lf->lf_type == F_WRLCK ? "exclusive" :
    165      1.45   thorpej 			lf->lf_type == F_UNLCK ? "unlock" :
    166      1.45   thorpej 			"unknown", lf->lf_start, lf->lf_end);
    167      1.45   thorpej 		TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
    168      1.45   thorpej 			if (blk->lf_flags & F_POSIX)
    169      1.45   thorpej 				printf("proc %d",
    170      1.45   thorpej 				    ((struct proc *)blk->lf_id)->p_pid);
    171      1.45   thorpej 			else
    172      1.45   thorpej 				printf("file %p", (struct file *)blk->lf_id);
    173      1.45   thorpej 			printf(", %s, start %qx, end %qx",
    174      1.45   thorpej 				blk->lf_type == F_RDLCK ? "shared" :
    175      1.45   thorpej 				blk->lf_type == F_WRLCK ? "exclusive" :
    176      1.45   thorpej 				blk->lf_type == F_UNLCK ? "unlock" :
    177      1.45   thorpej 				"unknown", blk->lf_start, blk->lf_end);
    178      1.45   thorpej 			if (TAILQ_FIRST(&blk->lf_blkhd))
    179      1.45   thorpej 				 panic("lf_printlist: bad list");
    180      1.45   thorpej 		}
    181      1.45   thorpej 		printf("\n");
    182      1.45   thorpej 	}
    183      1.45   thorpej }
    184      1.45   thorpej #endif /* LOCKF_DEBUG */
    185      1.45   thorpej 
    186      1.38  christos /*
    187      1.38  christos  * 3 options for allowfail.
    188      1.38  christos  * 0 - always allocate.  1 - cutoff at limit.  2 - cutoff at double limit.
    189      1.38  christos  */
    190      1.45   thorpej static struct lockf *
    191      1.38  christos lf_alloc(uid_t uid, int allowfail)
    192      1.38  christos {
    193      1.38  christos 	struct uidinfo *uip;
    194      1.38  christos 	struct lockf *lock;
    195  1.60.8.2      matt 	u_long lcnt;
    196      1.38  christos 
    197      1.38  christos 	uip = uid_find(uid);
    198  1.60.8.2      matt 	lcnt = atomic_inc_ulong_nv(&uip->ui_lockcnt);
    199  1.60.8.2      matt 	if (uid && allowfail && lcnt >
    200      1.40  christos 	    (allowfail == 1 ? maxlocksperuid : (maxlocksperuid * 2))) {
    201  1.60.8.2      matt 		atomic_dec_ulong(&uip->ui_lockcnt);
    202      1.40  christos 		return NULL;
    203      1.40  christos 	}
    204  1.60.8.2      matt 
    205      1.38  christos 	lock = pool_get(&lockfpool, PR_WAITOK);
    206      1.38  christos 	lock->lf_uid = uid;
    207  1.60.8.1      matt 	cv_init(&lock->lf_cv, "lockf");
    208      1.40  christos 	return lock;
    209      1.38  christos }
    210      1.38  christos 
    211      1.45   thorpej static void
    212      1.38  christos lf_free(struct lockf *lock)
    213      1.38  christos {
    214      1.38  christos 	struct uidinfo *uip;
    215      1.38  christos 
    216      1.38  christos 	uip = uid_find(lock->lf_uid);
    217  1.60.8.2      matt 	atomic_dec_ulong(&uip->ui_lockcnt);
    218  1.60.8.2      matt 
    219  1.60.8.1      matt 	cv_destroy(&lock->lf_cv);
    220      1.38  christos 	pool_put(&lockfpool, lock);
    221      1.38  christos }
    222      1.38  christos 
    223      1.38  christos /*
    224      1.45   thorpej  * Walk the list of locks for an inode to
    225      1.45   thorpej  * find an overlapping lock (if any).
    226      1.45   thorpej  *
    227      1.45   thorpej  * NOTE: this returns only the FIRST overlapping lock.  There
    228      1.45   thorpej  *	 may be more than one.
    229       1.1        ws  */
    230      1.45   thorpej static int
    231      1.45   thorpej lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
    232      1.45   thorpej     struct lockf ***prev, struct lockf **overlap)
    233       1.1        ws {
    234       1.1        ws 	off_t start, end;
    235       1.1        ws 
    236      1.45   thorpej 	*overlap = lf;
    237      1.54      yamt 	if (lf == NULL)
    238      1.45   thorpej 		return 0;
    239      1.45   thorpej #ifdef LOCKF_DEBUG
    240      1.45   thorpej 	if (lockf_debug & 2)
    241      1.45   thorpej 		lf_print("lf_findoverlap: looking for overlap in", lock);
    242      1.45   thorpej #endif /* LOCKF_DEBUG */
    243      1.45   thorpej 	start = lock->lf_start;
    244      1.45   thorpej 	end = lock->lf_end;
    245      1.54      yamt 	while (lf != NULL) {
    246      1.45   thorpej 		if (((type == SELF) && lf->lf_id != lock->lf_id) ||
    247      1.45   thorpej 		    ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
    248      1.45   thorpej 			*prev = &lf->lf_next;
    249      1.45   thorpej 			*overlap = lf = lf->lf_next;
    250      1.45   thorpej 			continue;
    251      1.45   thorpej 		}
    252      1.45   thorpej #ifdef LOCKF_DEBUG
    253      1.45   thorpej 		if (lockf_debug & 2)
    254      1.45   thorpej 			lf_print("\tchecking", lf);
    255      1.45   thorpej #endif /* LOCKF_DEBUG */
    256       1.1        ws 		/*
    257      1.45   thorpej 		 * OK, check for overlap
    258      1.45   thorpej 		 *
    259      1.45   thorpej 		 * Six cases:
    260      1.45   thorpej 		 *	0) no overlap
    261      1.45   thorpej 		 *	1) overlap == lock
    262      1.45   thorpej 		 *	2) overlap contains lock
    263      1.45   thorpej 		 *	3) lock contains overlap
    264      1.45   thorpej 		 *	4) overlap starts before lock
    265      1.45   thorpej 		 *	5) overlap ends after lock
    266       1.1        ws 		 */
    267      1.45   thorpej 		if ((lf->lf_end != -1 && start > lf->lf_end) ||
    268      1.45   thorpej 		    (end != -1 && lf->lf_start > end)) {
    269      1.45   thorpej 			/* Case 0 */
    270      1.45   thorpej #ifdef LOCKF_DEBUG
    271      1.45   thorpej 			if (lockf_debug & 2)
    272      1.45   thorpej 				printf("no overlap\n");
    273      1.45   thorpej #endif /* LOCKF_DEBUG */
    274      1.45   thorpej 			if ((type & SELF) && end != -1 && lf->lf_start > end)
    275      1.45   thorpej 				return 0;
    276      1.45   thorpej 			*prev = &lf->lf_next;
    277      1.45   thorpej 			*overlap = lf = lf->lf_next;
    278      1.45   thorpej 			continue;
    279      1.45   thorpej 		}
    280      1.45   thorpej 		if ((lf->lf_start == start) && (lf->lf_end == end)) {
    281      1.45   thorpej 			/* Case 1 */
    282      1.45   thorpej #ifdef LOCKF_DEBUG
    283      1.45   thorpej 			if (lockf_debug & 2)
    284      1.45   thorpej 				printf("overlap == lock\n");
    285      1.45   thorpej #endif /* LOCKF_DEBUG */
    286      1.45   thorpej 			return 1;
    287      1.45   thorpej 		}
    288      1.45   thorpej 		if ((lf->lf_start <= start) &&
    289      1.45   thorpej 		    (end != -1) &&
    290      1.45   thorpej 		    ((lf->lf_end >= end) || (lf->lf_end == -1))) {
    291      1.45   thorpej 			/* Case 2 */
    292      1.45   thorpej #ifdef LOCKF_DEBUG
    293      1.45   thorpej 			if (lockf_debug & 2)
    294      1.45   thorpej 				printf("overlap contains lock\n");
    295      1.45   thorpej #endif /* LOCKF_DEBUG */
    296      1.45   thorpej 			return 2;
    297      1.45   thorpej 		}
    298      1.45   thorpej 		if (start <= lf->lf_start &&
    299      1.45   thorpej 		           (end == -1 ||
    300      1.45   thorpej 			   (lf->lf_end != -1 && end >= lf->lf_end))) {
    301      1.45   thorpej 			/* Case 3 */
    302      1.45   thorpej #ifdef LOCKF_DEBUG
    303      1.45   thorpej 			if (lockf_debug & 2)
    304      1.45   thorpej 				printf("lock contains overlap\n");
    305      1.45   thorpej #endif /* LOCKF_DEBUG */
    306      1.45   thorpej 			return 3;
    307      1.45   thorpej 		}
    308      1.45   thorpej 		if ((lf->lf_start < start) &&
    309      1.45   thorpej 			((lf->lf_end >= start) || (lf->lf_end == -1))) {
    310      1.45   thorpej 			/* Case 4 */
    311      1.45   thorpej #ifdef LOCKF_DEBUG
    312      1.45   thorpej 			if (lockf_debug & 2)
    313      1.45   thorpej 				printf("overlap starts before lock\n");
    314      1.45   thorpej #endif /* LOCKF_DEBUG */
    315      1.45   thorpej 			return 4;
    316      1.45   thorpej 		}
    317      1.45   thorpej 		if ((lf->lf_start > start) &&
    318      1.45   thorpej 			(end != -1) &&
    319      1.45   thorpej 			((lf->lf_end > end) || (lf->lf_end == -1))) {
    320      1.45   thorpej 			/* Case 5 */
    321      1.45   thorpej #ifdef LOCKF_DEBUG
    322      1.45   thorpej 			if (lockf_debug & 2)
    323      1.45   thorpej 				printf("overlap ends after lock\n");
    324      1.45   thorpej #endif /* LOCKF_DEBUG */
    325      1.45   thorpej 			return 5;
    326      1.45   thorpej 		}
    327      1.45   thorpej 		panic("lf_findoverlap: default");
    328      1.45   thorpej 	}
    329      1.45   thorpej 	return 0;
    330      1.45   thorpej }
    331       1.1        ws 
    332      1.45   thorpej /*
    333      1.45   thorpej  * Split a lock and a contained region into
    334      1.45   thorpej  * two or three locks as necessary.
    335      1.45   thorpej  */
    336      1.45   thorpej static void
    337      1.45   thorpej lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
    338      1.45   thorpej {
    339      1.45   thorpej 	struct lockf *splitlock;
    340       1.1        ws 
    341      1.45   thorpej #ifdef LOCKF_DEBUG
    342      1.45   thorpej 	if (lockf_debug & 2) {
    343      1.45   thorpej 		lf_print("lf_split", lock1);
    344      1.45   thorpej 		lf_print("splitting from", lock2);
    345       1.1        ws 	}
    346      1.45   thorpej #endif /* LOCKF_DEBUG */
    347      1.10    kleink 	/*
    348      1.45   thorpej 	 * Check to see if spliting into only two pieces.
    349      1.27      yamt 	 */
    350      1.45   thorpej 	if (lock1->lf_start == lock2->lf_start) {
    351      1.45   thorpej 		lock1->lf_start = lock2->lf_end + 1;
    352      1.45   thorpej 		lock2->lf_next = lock1;
    353      1.45   thorpej 		return;
    354      1.27      yamt 	}
    355      1.45   thorpej 	if (lock1->lf_end == lock2->lf_end) {
    356      1.45   thorpej 		lock1->lf_end = lock2->lf_start - 1;
    357      1.45   thorpej 		lock2->lf_next = lock1->lf_next;
    358      1.45   thorpej 		lock1->lf_next = lock2;
    359      1.45   thorpej 		return;
    360      1.27      yamt 	}
    361      1.27      yamt 	/*
    362      1.45   thorpej 	 * Make a new lock consisting of the last part of
    363      1.45   thorpej 	 * the encompassing lock
    364      1.10    kleink 	 */
    365      1.45   thorpej 	splitlock = *sparelock;
    366      1.45   thorpej 	*sparelock = NULL;
    367      1.45   thorpej 	memcpy(splitlock, lock1, sizeof(*splitlock));
    368      1.45   thorpej 	splitlock->lf_start = lock2->lf_end + 1;
    369      1.45   thorpej 	TAILQ_INIT(&splitlock->lf_blkhd);
    370      1.45   thorpej 	lock1->lf_end = lock2->lf_start - 1;
    371       1.1        ws 	/*
    372      1.45   thorpej 	 * OK, now link it in
    373      1.21   thorpej 	 */
    374      1.45   thorpej 	splitlock->lf_next = lock1->lf_next;
    375      1.45   thorpej 	lock2->lf_next = splitlock;
    376      1.45   thorpej 	lock1->lf_next = lock2;
    377      1.45   thorpej }
    378      1.45   thorpej 
    379      1.45   thorpej /*
    380      1.45   thorpej  * Wakeup a blocklist
    381      1.45   thorpej  */
    382      1.45   thorpej static void
    383      1.45   thorpej lf_wakelock(struct lockf *listhead)
    384      1.45   thorpej {
    385      1.45   thorpej 	struct lockf *wakelock;
    386      1.21   thorpej 
    387      1.45   thorpej 	while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
    388      1.45   thorpej 		KASSERT(wakelock->lf_next == listhead);
    389      1.45   thorpej 		TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
    390      1.54      yamt 		wakelock->lf_next = NULL;
    391      1.45   thorpej #ifdef LOCKF_DEBUG
    392      1.45   thorpej 		if (lockf_debug & 2)
    393      1.45   thorpej 			lf_print("lf_wakelock: awakening", wakelock);
    394      1.45   thorpej #endif
    395  1.60.8.1      matt 		cv_broadcast(&wakelock->lf_cv);
    396      1.21   thorpej 	}
    397      1.45   thorpej }
    398      1.45   thorpej 
    399      1.45   thorpej /*
    400      1.45   thorpej  * Remove a byte-range lock on an inode.
    401      1.45   thorpej  *
    402      1.45   thorpej  * Generally, find the lock (or an overlap to that lock)
    403      1.45   thorpej  * and remove it (or shrink it), then wakeup anyone we can.
    404      1.45   thorpej  */
    405      1.45   thorpej static int
    406      1.45   thorpej lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
    407      1.45   thorpej {
    408      1.45   thorpej 	struct lockf **head = unlock->lf_head;
    409      1.45   thorpej 	struct lockf *lf = *head;
    410      1.45   thorpej 	struct lockf *overlap, **prev;
    411      1.45   thorpej 	int ovcase;
    412      1.45   thorpej 
    413      1.54      yamt 	if (lf == NULL)
    414      1.45   thorpej 		return 0;
    415      1.45   thorpej #ifdef LOCKF_DEBUG
    416      1.45   thorpej 	if (unlock->lf_type != F_UNLCK)
    417      1.45   thorpej 		panic("lf_clearlock: bad type");
    418      1.45   thorpej 	if (lockf_debug & 1)
    419      1.45   thorpej 		lf_print("lf_clearlock", unlock);
    420      1.45   thorpej #endif /* LOCKF_DEBUG */
    421      1.45   thorpej 	prev = head;
    422      1.45   thorpej 	while ((ovcase = lf_findoverlap(lf, unlock, SELF,
    423  1.60.8.1      matt 	    &prev, &overlap)) != 0) {
    424      1.45   thorpej 		/*
    425      1.45   thorpej 		 * Wakeup the list of locks to be retried.
    426      1.45   thorpej 		 */
    427      1.45   thorpej 		lf_wakelock(overlap);
    428      1.45   thorpej 
    429      1.45   thorpej 		switch (ovcase) {
    430      1.37     perry 
    431      1.45   thorpej 		case 1: /* overlap == lock */
    432      1.45   thorpej 			*prev = overlap->lf_next;
    433      1.45   thorpej 			lf_free(overlap);
    434      1.45   thorpej 			break;
    435       1.4   mycroft 
    436      1.45   thorpej 		case 2: /* overlap contains lock: split it */
    437      1.45   thorpej 			if (overlap->lf_start == unlock->lf_start) {
    438      1.45   thorpej 				overlap->lf_start = unlock->lf_end + 1;
    439      1.45   thorpej 				break;
    440      1.45   thorpej 			}
    441      1.45   thorpej 			lf_split(overlap, unlock, sparelock);
    442      1.45   thorpej 			overlap->lf_next = unlock->lf_next;
    443      1.45   thorpej 			break;
    444       1.1        ws 
    445      1.45   thorpej 		case 3: /* lock contains overlap */
    446      1.45   thorpej 			*prev = overlap->lf_next;
    447      1.45   thorpej 			lf = overlap->lf_next;
    448      1.45   thorpej 			lf_free(overlap);
    449      1.45   thorpej 			continue;
    450       1.1        ws 
    451      1.45   thorpej 		case 4: /* overlap starts before lock */
    452      1.45   thorpej 			overlap->lf_end = unlock->lf_start - 1;
    453      1.45   thorpej 			prev = &overlap->lf_next;
    454      1.45   thorpej 			lf = overlap->lf_next;
    455      1.45   thorpej 			continue;
    456       1.4   mycroft 
    457      1.45   thorpej 		case 5: /* overlap ends after lock */
    458      1.45   thorpej 			overlap->lf_start = unlock->lf_end + 1;
    459      1.45   thorpej 			break;
    460      1.45   thorpej 		}
    461      1.31      fvdl 		break;
    462      1.27      yamt 	}
    463      1.45   thorpej #ifdef LOCKF_DEBUG
    464      1.45   thorpej 	if (lockf_debug & 1)
    465      1.45   thorpej 		lf_printlist("lf_clearlock", unlock);
    466      1.45   thorpej #endif /* LOCKF_DEBUG */
    467      1.45   thorpej 	return 0;
    468      1.45   thorpej }
    469      1.27      yamt 
    470      1.45   thorpej /*
    471      1.45   thorpej  * Walk the list of locks for an inode and
    472      1.45   thorpej  * return the first blocking lock.
    473      1.45   thorpej  */
    474      1.45   thorpej static struct lockf *
    475      1.45   thorpej lf_getblock(struct lockf *lock)
    476      1.45   thorpej {
    477      1.45   thorpej 	struct lockf **prev, *overlap, *lf = *(lock->lf_head);
    478      1.27      yamt 
    479      1.45   thorpej 	prev = lock->lf_head;
    480      1.45   thorpej 	while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
    481      1.45   thorpej 		/*
    482      1.45   thorpej 		 * We've found an overlap, see if it blocks us
    483      1.45   thorpej 		 */
    484      1.45   thorpej 		if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
    485      1.45   thorpej 			return overlap;
    486      1.45   thorpej 		/*
    487      1.45   thorpej 		 * Nope, point to the next one on the list and
    488      1.45   thorpej 		 * see if it blocks us
    489      1.45   thorpej 		 */
    490      1.45   thorpej 		lf = overlap->lf_next;
    491      1.45   thorpej 	}
    492      1.54      yamt 	return NULL;
    493       1.1        ws }
    494       1.1        ws 
    495       1.1        ws /*
    496       1.1        ws  * Set a byte-range lock.
    497       1.1        ws  */
    498      1.24      yamt static int
    499      1.27      yamt lf_setlock(struct lockf *lock, struct lockf **sparelock,
    500  1.60.8.1      matt     kmutex_t *interlock)
    501       1.1        ws {
    502      1.15  augustss 	struct lockf *block;
    503       1.1        ws 	struct lockf **head = lock->lf_head;
    504       1.1        ws 	struct lockf **prev, *overlap, *ltmp;
    505       1.1        ws 	static char lockstr[] = "lockf";
    506  1.60.8.1      matt 	int ovcase, needtolink, error;
    507       1.1        ws 
    508       1.1        ws #ifdef LOCKF_DEBUG
    509       1.1        ws 	if (lockf_debug & 1)
    510       1.1        ws 		lf_print("lf_setlock", lock);
    511       1.1        ws #endif /* LOCKF_DEBUG */
    512       1.1        ws 
    513       1.1        ws 	/*
    514  1.60.8.1      matt 	 * XXX Here we used to set the sleep priority so that writers
    515  1.60.8.1      matt 	 * took priority.  That's of dubious use, and is not possible
    516  1.60.8.1      matt 	 * with condition variables.  Need to find a better way to ensure
    517  1.60.8.1      matt 	 * fairness.
    518       1.1        ws 	 */
    519  1.60.8.1      matt 
    520       1.1        ws 	/*
    521       1.1        ws 	 * Scan lock list for this file looking for locks that would block us.
    522       1.1        ws 	 */
    523       1.7  christos 	while ((block = lf_getblock(lock)) != NULL) {
    524       1.1        ws 		/*
    525       1.1        ws 		 * Free the structure and return if nonblocking.
    526       1.1        ws 		 */
    527       1.1        ws 		if ((lock->lf_flags & F_WAIT) == 0) {
    528      1.38  christos 			lf_free(lock);
    529      1.29      yamt 			return EAGAIN;
    530       1.1        ws 		}
    531       1.1        ws 		/*
    532       1.1        ws 		 * We are blocked. Since flock style locks cover
    533       1.1        ws 		 * the whole file, there is no chance for deadlock.
    534       1.1        ws 		 * For byte-range locks we must check for deadlock.
    535       1.1        ws 		 *
    536       1.1        ws 		 * Deadlock detection is done by looking through the
    537       1.1        ws 		 * wait channels to see if there are any cycles that
    538       1.1        ws 		 * involve us. MAXDEPTH is set just to make sure we
    539      1.16  sommerfe 		 * do not go off into neverneverland.
    540       1.1        ws 		 */
    541       1.1        ws 		if ((lock->lf_flags & F_POSIX) &&
    542       1.1        ws 		    (block->lf_flags & F_POSIX)) {
    543      1.21   thorpej 			struct lwp *wlwp;
    544      1.48     perry 			volatile const struct lockf *waitblock;
    545       1.1        ws 			int i = 0;
    546      1.52      yamt 			struct proc *p;
    547       1.1        ws 
    548      1.52      yamt 			p = (struct proc *)block->lf_id;
    549      1.52      yamt 			KASSERT(p != NULL);
    550      1.52      yamt 			while (i++ < maxlockdepth) {
    551      1.57        ad 				mutex_enter(&p->p_smutex);
    552      1.52      yamt 				if (p->p_nlwps > 1) {
    553      1.57        ad 					mutex_exit(&p->p_smutex);
    554      1.52      yamt 					break;
    555      1.52      yamt 				}
    556      1.52      yamt 				wlwp = LIST_FIRST(&p->p_lwps);
    557      1.57        ad 				lwp_lock(wlwp);
    558      1.52      yamt 				if (wlwp->l_wmesg != lockstr) {
    559      1.57        ad 					lwp_unlock(wlwp);
    560      1.57        ad 					mutex_exit(&p->p_smutex);
    561      1.52      yamt 					break;
    562      1.52      yamt 				}
    563      1.44  christos 				waitblock = wlwp->l_wchan;
    564      1.57        ad 				lwp_unlock(wlwp);
    565      1.57        ad 				mutex_exit(&p->p_smutex);
    566      1.52      yamt 				if (waitblock == NULL) {
    567      1.52      yamt 					/*
    568      1.52      yamt 					 * this lwp just got up but
    569      1.52      yamt 					 * not returned from ltsleep yet.
    570      1.52      yamt 					 */
    571      1.52      yamt 					break;
    572      1.52      yamt 				}
    573       1.1        ws 				/* Get the owner of the blocking lock */
    574       1.1        ws 				waitblock = waitblock->lf_next;
    575       1.1        ws 				if ((waitblock->lf_flags & F_POSIX) == 0)
    576       1.1        ws 					break;
    577      1.52      yamt 				p = (struct proc *)waitblock->lf_id;
    578      1.52      yamt 				if (p == curproc) {
    579      1.38  christos 					lf_free(lock);
    580      1.29      yamt 					return EDEADLK;
    581       1.1        ws 				}
    582       1.1        ws 			}
    583      1.16  sommerfe 			/*
    584      1.36     peter 			 * If we're still following a dependency chain
    585      1.16  sommerfe 			 * after maxlockdepth iterations, assume we're in
    586      1.16  sommerfe 			 * a cycle to be safe.
    587      1.16  sommerfe 			 */
    588      1.16  sommerfe 			if (i >= maxlockdepth) {
    589      1.38  christos 				lf_free(lock);
    590      1.29      yamt 				return EDEADLK;
    591      1.16  sommerfe 			}
    592       1.1        ws 		}
    593       1.1        ws 		/*
    594       1.1        ws 		 * For flock type locks, we must first remove
    595       1.1        ws 		 * any shared locks that we hold before we sleep
    596       1.1        ws 		 * waiting for an exclusive lock.
    597       1.1        ws 		 */
    598       1.1        ws 		if ((lock->lf_flags & F_FLOCK) &&
    599       1.1        ws 		    lock->lf_type == F_WRLCK) {
    600       1.1        ws 			lock->lf_type = F_UNLCK;
    601      1.27      yamt 			(void) lf_clearlock(lock, NULL);
    602       1.1        ws 			lock->lf_type = F_WRLCK;
    603       1.1        ws 		}
    604       1.1        ws 		/*
    605       1.1        ws 		 * Add our lock to the blocked list and sleep until we're free.
    606       1.1        ws 		 * Remember who blocked us (for deadlock detection).
    607       1.1        ws 		 */
    608       1.1        ws 		lock->lf_next = block;
    609      1.12      fvdl 		TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
    610       1.1        ws #ifdef LOCKF_DEBUG
    611       1.1        ws 		if (lockf_debug & 1) {
    612       1.1        ws 			lf_print("lf_setlock: blocking on", block);
    613       1.1        ws 			lf_printlist("lf_setlock", block);
    614       1.1        ws 		}
    615       1.1        ws #endif /* LOCKF_DEBUG */
    616  1.60.8.1      matt 		error = cv_wait_sig(&lock->lf_cv, interlock);
    617      1.16  sommerfe 
    618      1.16  sommerfe 		/*
    619      1.16  sommerfe 		 * We may have been awakened by a signal (in
    620      1.16  sommerfe 		 * which case we must remove ourselves from the
    621      1.16  sommerfe 		 * blocked list) and/or by another process
    622      1.16  sommerfe 		 * releasing a lock (in which case we have already
    623      1.16  sommerfe 		 * been removed from the blocked list and our
    624      1.54      yamt 		 * lf_next field set to NULL).
    625      1.16  sommerfe 		 */
    626      1.54      yamt 		if (lock->lf_next != NULL) {
    627      1.16  sommerfe 			TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
    628      1.54      yamt 			lock->lf_next = NULL;
    629      1.16  sommerfe 		}
    630       1.7  christos 		if (error) {
    631      1.38  christos 			lf_free(lock);
    632      1.29      yamt 			return error;
    633       1.1        ws 		}
    634       1.1        ws 	}
    635       1.1        ws 	/*
    636       1.1        ws 	 * No blocks!!  Add the lock.  Note that we will
    637       1.1        ws 	 * downgrade or upgrade any overlapping locks this
    638       1.1        ws 	 * process already owns.
    639       1.1        ws 	 *
    640       1.1        ws 	 * Skip over locks owned by other processes.
    641       1.1        ws 	 * Handle any locks that overlap and are owned by ourselves.
    642       1.1        ws 	 */
    643       1.1        ws 	prev = head;
    644       1.1        ws 	block = *head;
    645       1.1        ws 	needtolink = 1;
    646       1.1        ws 	for (;;) {
    647       1.7  christos 		ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
    648       1.7  christos 		if (ovcase)
    649       1.1        ws 			block = overlap->lf_next;
    650       1.1        ws 		/*
    651       1.1        ws 		 * Six cases:
    652       1.1        ws 		 *	0) no overlap
    653       1.1        ws 		 *	1) overlap == lock
    654       1.1        ws 		 *	2) overlap contains lock
    655       1.1        ws 		 *	3) lock contains overlap
    656       1.1        ws 		 *	4) overlap starts before lock
    657       1.1        ws 		 *	5) overlap ends after lock
    658       1.1        ws 		 */
    659       1.1        ws 		switch (ovcase) {
    660       1.1        ws 		case 0: /* no overlap */
    661       1.1        ws 			if (needtolink) {
    662       1.1        ws 				*prev = lock;
    663       1.1        ws 				lock->lf_next = overlap;
    664       1.1        ws 			}
    665       1.1        ws 			break;
    666       1.1        ws 
    667       1.1        ws 		case 1: /* overlap == lock */
    668       1.1        ws 			/*
    669       1.1        ws 			 * If downgrading lock, others may be
    670       1.1        ws 			 * able to acquire it.
    671       1.1        ws 			 */
    672       1.1        ws 			if (lock->lf_type == F_RDLCK &&
    673       1.1        ws 			    overlap->lf_type == F_WRLCK)
    674       1.1        ws 				lf_wakelock(overlap);
    675       1.1        ws 			overlap->lf_type = lock->lf_type;
    676      1.38  christos 			lf_free(lock);
    677       1.1        ws 			lock = overlap; /* for debug output below */
    678       1.1        ws 			break;
    679       1.1        ws 
    680       1.1        ws 		case 2: /* overlap contains lock */
    681       1.1        ws 			/*
    682       1.1        ws 			 * Check for common starting point and different types.
    683       1.1        ws 			 */
    684       1.1        ws 			if (overlap->lf_type == lock->lf_type) {
    685      1.38  christos 				lf_free(lock);
    686       1.1        ws 				lock = overlap; /* for debug output below */
    687       1.1        ws 				break;
    688       1.1        ws 			}
    689       1.1        ws 			if (overlap->lf_start == lock->lf_start) {
    690       1.1        ws 				*prev = lock;
    691       1.1        ws 				lock->lf_next = overlap;
    692       1.1        ws 				overlap->lf_start = lock->lf_end + 1;
    693       1.1        ws 			} else
    694      1.27      yamt 				lf_split(overlap, lock, sparelock);
    695       1.1        ws 			lf_wakelock(overlap);
    696       1.1        ws 			break;
    697       1.1        ws 
    698       1.1        ws 		case 3: /* lock contains overlap */
    699       1.1        ws 			/*
    700       1.1        ws 			 * If downgrading lock, others may be able to
    701       1.1        ws 			 * acquire it, otherwise take the list.
    702       1.1        ws 			 */
    703       1.1        ws 			if (lock->lf_type == F_RDLCK &&
    704       1.1        ws 			    overlap->lf_type == F_WRLCK) {
    705       1.1        ws 				lf_wakelock(overlap);
    706       1.1        ws 			} else {
    707      1.19      matt 				while ((ltmp = TAILQ_FIRST(&overlap->lf_blkhd))) {
    708      1.16  sommerfe 					KASSERT(ltmp->lf_next == overlap);
    709      1.12      fvdl 					TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
    710      1.12      fvdl 					    lf_block);
    711      1.16  sommerfe 					ltmp->lf_next = lock;
    712      1.12      fvdl 					TAILQ_INSERT_TAIL(&lock->lf_blkhd,
    713      1.12      fvdl 					    ltmp, lf_block);
    714      1.12      fvdl 				}
    715       1.1        ws 			}
    716       1.1        ws 			/*
    717       1.1        ws 			 * Add the new lock if necessary and delete the overlap.
    718       1.1        ws 			 */
    719       1.1        ws 			if (needtolink) {
    720       1.1        ws 				*prev = lock;
    721       1.1        ws 				lock->lf_next = overlap->lf_next;
    722       1.1        ws 				prev = &lock->lf_next;
    723       1.1        ws 				needtolink = 0;
    724       1.1        ws 			} else
    725       1.1        ws 				*prev = overlap->lf_next;
    726      1.39  christos 			lf_free(overlap);
    727       1.1        ws 			continue;
    728       1.1        ws 
    729       1.1        ws 		case 4: /* overlap starts before lock */
    730       1.1        ws 			/*
    731       1.1        ws 			 * Add lock after overlap on the list.
    732       1.1        ws 			 */
    733       1.1        ws 			lock->lf_next = overlap->lf_next;
    734       1.1        ws 			overlap->lf_next = lock;
    735       1.1        ws 			overlap->lf_end = lock->lf_start - 1;
    736       1.1        ws 			prev = &lock->lf_next;
    737       1.1        ws 			lf_wakelock(overlap);
    738       1.1        ws 			needtolink = 0;
    739       1.1        ws 			continue;
    740       1.1        ws 
    741       1.1        ws 		case 5: /* overlap ends after lock */
    742       1.1        ws 			/*
    743       1.1        ws 			 * Add the new lock before overlap.
    744       1.1        ws 			 */
    745       1.1        ws 			if (needtolink) {
    746       1.1        ws 				*prev = lock;
    747       1.1        ws 				lock->lf_next = overlap;
    748       1.1        ws 			}
    749       1.1        ws 			overlap->lf_start = lock->lf_end + 1;
    750       1.1        ws 			lf_wakelock(overlap);
    751       1.1        ws 			break;
    752       1.1        ws 		}
    753       1.1        ws 		break;
    754       1.1        ws 	}
    755       1.1        ws #ifdef LOCKF_DEBUG
    756       1.1        ws 	if (lockf_debug & 1) {
    757       1.1        ws 		lf_print("lf_setlock: got the lock", lock);
    758       1.1        ws 		lf_printlist("lf_setlock", lock);
    759       1.1        ws 	}
    760       1.1        ws #endif /* LOCKF_DEBUG */
    761      1.29      yamt 	return 0;
    762       1.1        ws }
    763       1.1        ws 
    764       1.1        ws /*
    765       1.1        ws  * Check whether there is a blocking lock,
    766       1.1        ws  * and if so return its process identifier.
    767       1.1        ws  */
    768      1.24      yamt static int
    769      1.25      yamt lf_getlock(struct lockf *lock, struct flock *fl)
    770       1.1        ws {
    771      1.15  augustss 	struct lockf *block;
    772       1.1        ws 
    773       1.1        ws #ifdef LOCKF_DEBUG
    774       1.1        ws 	if (lockf_debug & 1)
    775       1.1        ws 		lf_print("lf_getlock", lock);
    776       1.1        ws #endif /* LOCKF_DEBUG */
    777       1.1        ws 
    778       1.7  christos 	if ((block = lf_getblock(lock)) != NULL) {
    779       1.1        ws 		fl->l_type = block->lf_type;
    780       1.1        ws 		fl->l_whence = SEEK_SET;
    781       1.1        ws 		fl->l_start = block->lf_start;
    782       1.1        ws 		if (block->lf_end == -1)
    783       1.1        ws 			fl->l_len = 0;
    784       1.1        ws 		else
    785       1.1        ws 			fl->l_len = block->lf_end - block->lf_start + 1;
    786       1.1        ws 		if (block->lf_flags & F_POSIX)
    787      1.23   mycroft 			fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
    788       1.1        ws 		else
    789       1.1        ws 			fl->l_pid = -1;
    790       1.1        ws 	} else {
    791       1.1        ws 		fl->l_type = F_UNLCK;
    792       1.1        ws 	}
    793      1.29      yamt 	return 0;
    794       1.1        ws }
    795       1.1        ws 
    796       1.1        ws /*
    797      1.45   thorpej  * Do an advisory lock operation.
    798       1.1        ws  */
    799      1.45   thorpej int
    800      1.45   thorpej lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
    801       1.1        ws {
    802      1.55        ad 	struct lwp *l = curlwp;
    803      1.45   thorpej 	struct flock *fl = ap->a_fl;
    804      1.45   thorpej 	struct lockf *lock = NULL;
    805      1.45   thorpej 	struct lockf *sparelock;
    806  1.60.8.1      matt 	kmutex_t *interlock = &ap->a_vp->v_interlock;
    807      1.45   thorpej 	off_t start, end;
    808      1.45   thorpej 	int error = 0;
    809       1.1        ws 
    810      1.45   thorpej 	/*
    811      1.45   thorpej 	 * Convert the flock structure into a start and end.
    812      1.45   thorpej 	 */
    813      1.45   thorpej 	switch (fl->l_whence) {
    814      1.45   thorpej 	case SEEK_SET:
    815      1.45   thorpej 	case SEEK_CUR:
    816       1.1        ws 		/*
    817      1.45   thorpej 		 * Caller is responsible for adding any necessary offset
    818      1.45   thorpej 		 * when SEEK_CUR is used.
    819       1.1        ws 		 */
    820      1.45   thorpej 		start = fl->l_start;
    821      1.45   thorpej 		break;
    822      1.45   thorpej 
    823      1.45   thorpej 	case SEEK_END:
    824      1.45   thorpej 		start = size + fl->l_start;
    825      1.45   thorpej 		break;
    826      1.45   thorpej 
    827      1.45   thorpej 	default:
    828      1.45   thorpej 		return EINVAL;
    829       1.1        ws 	}
    830      1.45   thorpej 	if (start < 0)
    831      1.45   thorpej 		return EINVAL;
    832       1.1        ws 
    833      1.45   thorpej 	/*
    834  1.60.8.1      matt 	 * Allocate locks before acquiring the interlock.  We need two
    835      1.55        ad 	 * locks in the worst case.
    836      1.45   thorpej 	 */
    837      1.45   thorpej 	switch (ap->a_op) {
    838      1.45   thorpej 	case F_SETLK:
    839      1.45   thorpej 	case F_UNLCK:
    840       1.1        ws 		/*
    841      1.55        ad 		 * XXX For F_UNLCK case, we can re-use the lock.
    842       1.1        ws 		 */
    843      1.46  christos 		if ((ap->a_flags & F_FLOCK) == 0) {
    844      1.45   thorpej 			/*
    845      1.55        ad 			 * Byte-range lock might need one more lock.
    846      1.45   thorpej 			 */
    847      1.55        ad 			sparelock = lf_alloc(kauth_cred_geteuid(l->l_cred), 0);
    848      1.45   thorpej 			if (sparelock == NULL) {
    849      1.45   thorpej 				error = ENOMEM;
    850      1.45   thorpej 				goto quit;
    851      1.45   thorpej 			}
    852      1.45   thorpej 			break;
    853       1.1        ws 		}
    854      1.45   thorpej 		/* FALLTHROUGH */
    855      1.45   thorpej 
    856      1.45   thorpej 	case F_GETLK:
    857      1.45   thorpej 		sparelock = NULL;
    858      1.45   thorpej 		break;
    859      1.45   thorpej 
    860      1.45   thorpej 	default:
    861      1.45   thorpej 		return EINVAL;
    862      1.45   thorpej 	}
    863      1.45   thorpej 
    864      1.55        ad 	lock = lf_alloc(kauth_cred_geteuid(l->l_cred),
    865      1.55        ad 	    ap->a_op != F_UNLCK ? 1 : 2);
    866      1.45   thorpej 	if (lock == NULL) {
    867      1.45   thorpej 		error = ENOMEM;
    868      1.45   thorpej 		goto quit;
    869       1.1        ws 	}
    870       1.1        ws 
    871  1.60.8.1      matt 	mutex_enter(interlock);
    872       1.1        ws 
    873       1.1        ws 	/*
    874      1.45   thorpej 	 * Avoid the common case of unlocking when inode has no locks.
    875       1.1        ws 	 */
    876      1.45   thorpej 	if (*head == (struct lockf *)0) {
    877      1.45   thorpej 		if (ap->a_op != F_SETLK) {
    878      1.45   thorpej 			fl->l_type = F_UNLCK;
    879      1.45   thorpej 			error = 0;
    880      1.45   thorpej 			goto quit_unlock;
    881      1.45   thorpej 		}
    882       1.1        ws 	}
    883      1.45   thorpej 
    884      1.45   thorpej 	if (fl->l_len == 0)
    885      1.45   thorpej 		end = -1;
    886      1.45   thorpej 	else
    887      1.45   thorpej 		end = start + fl->l_len - 1;
    888       1.1        ws 	/*
    889      1.45   thorpej 	 * Create the lockf structure.
    890      1.45   thorpej 	 */
    891      1.45   thorpej 	lock->lf_start = start;
    892      1.45   thorpej 	lock->lf_end = end;
    893      1.45   thorpej 	/* XXX NJWLWP
    894      1.45   thorpej 	 * I don't want to make the entire VFS universe use LWPs, because
    895      1.45   thorpej 	 * they don't need them, for the most part. This is an exception,
    896      1.45   thorpej 	 * and a kluge.
    897       1.1        ws 	 */
    898      1.45   thorpej 
    899      1.45   thorpej 	lock->lf_head = head;
    900      1.45   thorpej 	lock->lf_type = fl->l_type;
    901      1.45   thorpej 	lock->lf_next = (struct lockf *)0;
    902      1.45   thorpej 	TAILQ_INIT(&lock->lf_blkhd);
    903      1.45   thorpej 	lock->lf_flags = ap->a_flags;
    904      1.45   thorpej 	if (lock->lf_flags & F_POSIX) {
    905      1.45   thorpej 		KASSERT(curproc == (struct proc *)ap->a_id);
    906      1.45   thorpej 	}
    907      1.45   thorpej 	lock->lf_id = (struct proc *)ap->a_id;
    908      1.45   thorpej 
    909       1.1        ws 	/*
    910      1.45   thorpej 	 * Do the requested operation.
    911       1.1        ws 	 */
    912      1.45   thorpej 	switch (ap->a_op) {
    913       1.1        ws 
    914      1.45   thorpej 	case F_SETLK:
    915      1.45   thorpej 		error = lf_setlock(lock, &sparelock, interlock);
    916      1.45   thorpej 		lock = NULL; /* lf_setlock freed it */
    917      1.45   thorpej 		break;
    918       1.1        ws 
    919      1.45   thorpej 	case F_UNLCK:
    920      1.45   thorpej 		error = lf_clearlock(lock, &sparelock);
    921      1.45   thorpej 		break;
    922       1.1        ws 
    923      1.45   thorpej 	case F_GETLK:
    924      1.45   thorpej 		error = lf_getlock(lock, fl);
    925      1.45   thorpej 		break;
    926      1.37     perry 
    927      1.45   thorpej 	default:
    928      1.45   thorpej 		break;
    929      1.45   thorpej 		/* NOTREACHED */
    930      1.45   thorpej 	}
    931       1.1        ws 
    932      1.45   thorpej quit_unlock:
    933  1.60.8.1      matt 	mutex_exit(interlock);
    934      1.45   thorpej quit:
    935      1.45   thorpej 	if (lock)
    936      1.45   thorpej 		lf_free(lock);
    937      1.45   thorpej 	if (sparelock)
    938      1.45   thorpej 		lf_free(sparelock);
    939       1.1        ws 
    940      1.45   thorpej 	return error;
    941       1.1        ws }
    942