Home | History | Annotate | Line # | Download | only in kern
vfs_lockf.c revision 1.61.6.4
      1  1.61.6.1       mjf /*	$NetBSD: vfs_lockf.c,v 1.61.6.4 2009/01/17 13:29:20 mjf Exp $	*/
      2       1.5       cgd 
      3       1.1        ws /*
      4       1.4   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
      5       1.4   mycroft  *	The Regents of the University of California.  All rights reserved.
      6       1.1        ws  *
      7       1.1        ws  * This code is derived from software contributed to Berkeley by
      8       1.1        ws  * Scooter Morris at Genentech Inc.
      9       1.1        ws  *
     10       1.1        ws  * Redistribution and use in source and binary forms, with or without
     11       1.1        ws  * modification, are permitted provided that the following conditions
     12       1.1        ws  * are met:
     13       1.1        ws  * 1. Redistributions of source code must retain the above copyright
     14       1.1        ws  *    notice, this list of conditions and the following disclaimer.
     15       1.1        ws  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.1        ws  *    notice, this list of conditions and the following disclaimer in the
     17       1.1        ws  *    documentation and/or other materials provided with the distribution.
     18      1.33       agc  * 3. Neither the name of the University nor the names of its contributors
     19       1.1        ws  *    may be used to endorse or promote products derived from this software
     20       1.1        ws  *    without specific prior written permission.
     21       1.1        ws  *
     22       1.1        ws  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23       1.1        ws  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24       1.1        ws  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25       1.1        ws  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26       1.1        ws  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27       1.1        ws  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28       1.1        ws  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29       1.1        ws  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30       1.1        ws  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31       1.1        ws  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32       1.1        ws  * SUCH DAMAGE.
     33       1.1        ws  *
     34      1.12      fvdl  *	@(#)ufs_lockf.c	8.4 (Berkeley) 10/26/94
     35       1.1        ws  */
     36      1.18     lukem 
     37      1.18     lukem #include <sys/cdefs.h>
     38  1.61.6.1       mjf __KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.61.6.4 2009/01/17 13:29:20 mjf Exp $");
     39       1.1        ws 
     40       1.1        ws #include <sys/param.h>
     41       1.1        ws #include <sys/systm.h>
     42       1.1        ws #include <sys/kernel.h>
     43       1.1        ws #include <sys/file.h>
     44       1.1        ws #include <sys/proc.h>
     45       1.1        ws #include <sys/vnode.h>
     46      1.35    simonb #include <sys/pool.h>
     47       1.1        ws #include <sys/fcntl.h>
     48       1.1        ws #include <sys/lockf.h>
     49  1.61.6.1       mjf #include <sys/atomic.h>
     50      1.49      elad #include <sys/kauth.h>
     51  1.61.6.4       mjf #include <sys/uidinfo.h>
     52      1.22   thorpej 
     53      1.50      yamt /*
     54      1.50      yamt  * The lockf structure is a kernel structure which contains the information
     55      1.50      yamt  * associated with a byte range lock.  The lockf structures are linked into
     56      1.60        ad  * the vnode structure.  Locks are sorted by the starting byte of the lock for
     57      1.50      yamt  * efficiency.
     58      1.50      yamt  *
     59      1.50      yamt  * lf_next is used for two purposes, depending on whether the lock is
     60      1.50      yamt  * being held, or is in conflict with an existing lock.  If this lock
     61      1.50      yamt  * is held, it indicates the next lock on the same vnode.
     62      1.50      yamt  * For pending locks, if lock->lf_next is non-NULL, then lock->lf_block
     63      1.50      yamt  * must be queued on the lf_blkhd TAILQ of lock->lf_next.
     64      1.50      yamt  */
     65      1.50      yamt 
     66      1.50      yamt TAILQ_HEAD(locklist, lockf);
     67      1.50      yamt 
     68      1.50      yamt struct lockf {
     69  1.61.6.2       mjf 	kcondvar_t lf_cv;	 /* Signalling */
     70      1.50      yamt 	short	lf_flags;	 /* Lock semantics: F_POSIX, F_FLOCK, F_WAIT */
     71      1.50      yamt 	short	lf_type;	 /* Lock type: F_RDLCK, F_WRLCK */
     72      1.50      yamt 	off_t	lf_start;	 /* The byte # of the start of the lock */
     73      1.50      yamt 	off_t	lf_end;		 /* The byte # of the end of the lock (-1=EOF)*/
     74      1.50      yamt 	void	*lf_id;		 /* process or file description holding lock */
     75      1.50      yamt 	struct	lockf **lf_head; /* Back pointer to the head of lockf list */
     76      1.50      yamt 	struct	lockf *lf_next;	 /* Next lock on this vnode, or blocking lock */
     77      1.50      yamt 	struct  locklist lf_blkhd; /* List of requests blocked on this lock */
     78      1.50      yamt 	TAILQ_ENTRY(lockf) lf_block;/* A request waiting for a lock */
     79      1.50      yamt 	uid_t	lf_uid;		 /* User ID responsible */
     80      1.50      yamt };
     81      1.50      yamt 
     82      1.50      yamt /* Maximum length of sleep chains to traverse to try and detect deadlock. */
     83      1.50      yamt #define MAXDEPTH 50
     84      1.50      yamt 
     85  1.61.6.2       mjf static pool_cache_t lockf_cache;
     86  1.61.6.2       mjf static kmutex_t *lockf_lock;
     87  1.61.6.2       mjf static char lockstr[] = "lockf";
     88       1.1        ws 
     89       1.1        ws /*
     90       1.6   mycroft  * This variable controls the maximum number of processes that will
     91       1.6   mycroft  * be checked in doing deadlock detection.
     92       1.6   mycroft  */
     93       1.6   mycroft int maxlockdepth = MAXDEPTH;
     94       1.6   mycroft 
     95       1.6   mycroft #ifdef LOCKF_DEBUG
     96       1.6   mycroft int	lockf_debug = 0;
     97       1.6   mycroft #endif
     98       1.6   mycroft 
     99       1.6   mycroft #define SELF	0x1
    100       1.6   mycroft #define OTHERS	0x2
    101       1.6   mycroft 
    102       1.6   mycroft /*
    103      1.16  sommerfe  * XXX TODO
    104      1.58  christos  * Misc cleanups: "void *id" should be visible in the API as a
    105      1.16  sommerfe  * "struct proc *".
    106      1.16  sommerfe  * (This requires rototilling all VFS's which support advisory locking).
    107      1.16  sommerfe  */
    108      1.16  sommerfe 
    109      1.16  sommerfe /*
    110      1.16  sommerfe  * If there's a lot of lock contention on a single vnode, locking
    111      1.16  sommerfe  * schemes which allow for more paralleism would be needed.  Given how
    112      1.16  sommerfe  * infrequently byte-range locks are actually used in typical BSD
    113      1.16  sommerfe  * code, a more complex approach probably isn't worth it.
    114      1.16  sommerfe  */
    115      1.16  sommerfe 
    116      1.16  sommerfe /*
    117      1.38  christos  * We enforce a limit on locks by uid, so that a single user cannot
    118      1.38  christos  * run the kernel out of memory.  For now, the limit is pretty coarse.
    119      1.38  christos  * There is no limit on root.
    120      1.38  christos  *
    121      1.38  christos  * Splitting a lock will always succeed, regardless of current allocations.
    122      1.38  christos  * If you're slightly above the limit, we still have to permit an allocation
    123      1.38  christos  * so that the unlock can succeed.  If the unlocking causes too many splits,
    124      1.38  christos  * however, you're totally cutoff.
    125      1.38  christos  */
    126      1.38  christos int maxlocksperuid = 1024;
    127      1.38  christos 
    128      1.45   thorpej #ifdef LOCKF_DEBUG
    129      1.45   thorpej /*
    130      1.45   thorpej  * Print out a lock.
    131      1.45   thorpej  */
    132      1.45   thorpej static void
    133      1.56  christos lf_print(const char *tag, struct lockf *lock)
    134      1.45   thorpej {
    135      1.45   thorpej 
    136      1.45   thorpej 	printf("%s: lock %p for ", tag, lock);
    137      1.45   thorpej 	if (lock->lf_flags & F_POSIX)
    138      1.45   thorpej 		printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
    139      1.45   thorpej 	else
    140      1.45   thorpej 		printf("file %p", (struct file *)lock->lf_id);
    141      1.45   thorpej 	printf(" %s, start %qx, end %qx",
    142      1.45   thorpej 		lock->lf_type == F_RDLCK ? "shared" :
    143      1.45   thorpej 		lock->lf_type == F_WRLCK ? "exclusive" :
    144      1.45   thorpej 		lock->lf_type == F_UNLCK ? "unlock" :
    145      1.45   thorpej 		"unknown", lock->lf_start, lock->lf_end);
    146      1.45   thorpej 	if (TAILQ_FIRST(&lock->lf_blkhd))
    147      1.45   thorpej 		printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
    148      1.45   thorpej 	else
    149      1.45   thorpej 		printf("\n");
    150      1.45   thorpej }
    151      1.45   thorpej 
    152      1.45   thorpej static void
    153      1.56  christos lf_printlist(const char *tag, struct lockf *lock)
    154      1.45   thorpej {
    155      1.45   thorpej 	struct lockf *lf, *blk;
    156      1.45   thorpej 
    157      1.45   thorpej 	printf("%s: Lock list:\n", tag);
    158      1.45   thorpej 	for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
    159      1.45   thorpej 		printf("\tlock %p for ", lf);
    160      1.45   thorpej 		if (lf->lf_flags & F_POSIX)
    161      1.45   thorpej 			printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
    162      1.45   thorpej 		else
    163      1.45   thorpej 			printf("file %p", (struct file *)lf->lf_id);
    164      1.45   thorpej 		printf(", %s, start %qx, end %qx",
    165      1.45   thorpej 			lf->lf_type == F_RDLCK ? "shared" :
    166      1.45   thorpej 			lf->lf_type == F_WRLCK ? "exclusive" :
    167      1.45   thorpej 			lf->lf_type == F_UNLCK ? "unlock" :
    168      1.45   thorpej 			"unknown", lf->lf_start, lf->lf_end);
    169      1.45   thorpej 		TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
    170      1.45   thorpej 			if (blk->lf_flags & F_POSIX)
    171  1.61.6.3       mjf 				printf("; proc %d",
    172      1.45   thorpej 				    ((struct proc *)blk->lf_id)->p_pid);
    173      1.45   thorpej 			else
    174  1.61.6.3       mjf 				printf("; file %p", (struct file *)blk->lf_id);
    175      1.45   thorpej 			printf(", %s, start %qx, end %qx",
    176      1.45   thorpej 				blk->lf_type == F_RDLCK ? "shared" :
    177      1.45   thorpej 				blk->lf_type == F_WRLCK ? "exclusive" :
    178      1.45   thorpej 				blk->lf_type == F_UNLCK ? "unlock" :
    179      1.45   thorpej 				"unknown", blk->lf_start, blk->lf_end);
    180      1.45   thorpej 			if (TAILQ_FIRST(&blk->lf_blkhd))
    181      1.45   thorpej 				 panic("lf_printlist: bad list");
    182      1.45   thorpej 		}
    183      1.45   thorpej 		printf("\n");
    184      1.45   thorpej 	}
    185      1.45   thorpej }
    186      1.45   thorpej #endif /* LOCKF_DEBUG */
    187      1.45   thorpej 
    188      1.38  christos /*
    189      1.38  christos  * 3 options for allowfail.
    190      1.38  christos  * 0 - always allocate.  1 - cutoff at limit.  2 - cutoff at double limit.
    191      1.38  christos  */
    192      1.45   thorpej static struct lockf *
    193      1.38  christos lf_alloc(uid_t uid, int allowfail)
    194      1.38  christos {
    195      1.38  christos 	struct uidinfo *uip;
    196      1.38  christos 	struct lockf *lock;
    197  1.61.6.1       mjf 	u_long lcnt;
    198      1.38  christos 
    199      1.38  christos 	uip = uid_find(uid);
    200  1.61.6.1       mjf 	lcnt = atomic_inc_ulong_nv(&uip->ui_lockcnt);
    201  1.61.6.1       mjf 	if (uid && allowfail && lcnt >
    202      1.40  christos 	    (allowfail == 1 ? maxlocksperuid : (maxlocksperuid * 2))) {
    203  1.61.6.1       mjf 		atomic_dec_ulong(&uip->ui_lockcnt);
    204      1.40  christos 		return NULL;
    205      1.40  christos 	}
    206  1.61.6.1       mjf 
    207  1.61.6.2       mjf 	lock = pool_cache_get(lockf_cache, PR_WAITOK);
    208      1.38  christos 	lock->lf_uid = uid;
    209      1.40  christos 	return lock;
    210      1.38  christos }
    211      1.38  christos 
    212      1.45   thorpej static void
    213      1.38  christos lf_free(struct lockf *lock)
    214      1.38  christos {
    215      1.38  christos 	struct uidinfo *uip;
    216      1.38  christos 
    217      1.38  christos 	uip = uid_find(lock->lf_uid);
    218  1.61.6.1       mjf 	atomic_dec_ulong(&uip->ui_lockcnt);
    219  1.61.6.2       mjf 	pool_cache_put(lockf_cache, lock);
    220  1.61.6.2       mjf }
    221  1.61.6.2       mjf 
    222  1.61.6.2       mjf static int
    223  1.61.6.2       mjf lf_ctor(void *arg, void *obj, int flag)
    224  1.61.6.2       mjf {
    225  1.61.6.2       mjf 	struct lockf *lock;
    226  1.61.6.1       mjf 
    227  1.61.6.2       mjf 	lock = obj;
    228  1.61.6.2       mjf 	cv_init(&lock->lf_cv, lockstr);
    229  1.61.6.2       mjf 
    230  1.61.6.2       mjf 	return 0;
    231  1.61.6.2       mjf }
    232  1.61.6.2       mjf 
    233  1.61.6.2       mjf static void
    234  1.61.6.2       mjf lf_dtor(void *arg, void *obj)
    235  1.61.6.2       mjf {
    236  1.61.6.2       mjf 	struct lockf *lock;
    237  1.61.6.2       mjf 
    238  1.61.6.2       mjf 	lock = obj;
    239      1.61        ad 	cv_destroy(&lock->lf_cv);
    240      1.38  christos }
    241      1.38  christos 
    242      1.38  christos /*
    243      1.45   thorpej  * Walk the list of locks for an inode to
    244      1.45   thorpej  * find an overlapping lock (if any).
    245      1.45   thorpej  *
    246      1.45   thorpej  * NOTE: this returns only the FIRST overlapping lock.  There
    247      1.45   thorpej  *	 may be more than one.
    248       1.1        ws  */
    249      1.45   thorpej static int
    250      1.45   thorpej lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
    251      1.45   thorpej     struct lockf ***prev, struct lockf **overlap)
    252       1.1        ws {
    253       1.1        ws 	off_t start, end;
    254       1.1        ws 
    255      1.45   thorpej 	*overlap = lf;
    256      1.54      yamt 	if (lf == NULL)
    257      1.45   thorpej 		return 0;
    258      1.45   thorpej #ifdef LOCKF_DEBUG
    259      1.45   thorpej 	if (lockf_debug & 2)
    260      1.45   thorpej 		lf_print("lf_findoverlap: looking for overlap in", lock);
    261      1.45   thorpej #endif /* LOCKF_DEBUG */
    262      1.45   thorpej 	start = lock->lf_start;
    263      1.45   thorpej 	end = lock->lf_end;
    264      1.54      yamt 	while (lf != NULL) {
    265      1.45   thorpej 		if (((type == SELF) && lf->lf_id != lock->lf_id) ||
    266      1.45   thorpej 		    ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
    267      1.45   thorpej 			*prev = &lf->lf_next;
    268      1.45   thorpej 			*overlap = lf = lf->lf_next;
    269      1.45   thorpej 			continue;
    270      1.45   thorpej 		}
    271      1.45   thorpej #ifdef LOCKF_DEBUG
    272      1.45   thorpej 		if (lockf_debug & 2)
    273      1.45   thorpej 			lf_print("\tchecking", lf);
    274      1.45   thorpej #endif /* LOCKF_DEBUG */
    275       1.1        ws 		/*
    276      1.45   thorpej 		 * OK, check for overlap
    277      1.45   thorpej 		 *
    278      1.45   thorpej 		 * Six cases:
    279      1.45   thorpej 		 *	0) no overlap
    280      1.45   thorpej 		 *	1) overlap == lock
    281      1.45   thorpej 		 *	2) overlap contains lock
    282      1.45   thorpej 		 *	3) lock contains overlap
    283      1.45   thorpej 		 *	4) overlap starts before lock
    284      1.45   thorpej 		 *	5) overlap ends after lock
    285       1.1        ws 		 */
    286      1.45   thorpej 		if ((lf->lf_end != -1 && start > lf->lf_end) ||
    287      1.45   thorpej 		    (end != -1 && lf->lf_start > end)) {
    288      1.45   thorpej 			/* Case 0 */
    289      1.45   thorpej #ifdef LOCKF_DEBUG
    290      1.45   thorpej 			if (lockf_debug & 2)
    291      1.45   thorpej 				printf("no overlap\n");
    292      1.45   thorpej #endif /* LOCKF_DEBUG */
    293      1.45   thorpej 			if ((type & SELF) && end != -1 && lf->lf_start > end)
    294      1.45   thorpej 				return 0;
    295      1.45   thorpej 			*prev = &lf->lf_next;
    296      1.45   thorpej 			*overlap = lf = lf->lf_next;
    297      1.45   thorpej 			continue;
    298      1.45   thorpej 		}
    299      1.45   thorpej 		if ((lf->lf_start == start) && (lf->lf_end == end)) {
    300      1.45   thorpej 			/* Case 1 */
    301      1.45   thorpej #ifdef LOCKF_DEBUG
    302      1.45   thorpej 			if (lockf_debug & 2)
    303      1.45   thorpej 				printf("overlap == lock\n");
    304      1.45   thorpej #endif /* LOCKF_DEBUG */
    305      1.45   thorpej 			return 1;
    306      1.45   thorpej 		}
    307      1.45   thorpej 		if ((lf->lf_start <= start) &&
    308      1.45   thorpej 		    (end != -1) &&
    309      1.45   thorpej 		    ((lf->lf_end >= end) || (lf->lf_end == -1))) {
    310      1.45   thorpej 			/* Case 2 */
    311      1.45   thorpej #ifdef LOCKF_DEBUG
    312      1.45   thorpej 			if (lockf_debug & 2)
    313      1.45   thorpej 				printf("overlap contains lock\n");
    314      1.45   thorpej #endif /* LOCKF_DEBUG */
    315      1.45   thorpej 			return 2;
    316      1.45   thorpej 		}
    317      1.45   thorpej 		if (start <= lf->lf_start &&
    318      1.45   thorpej 		           (end == -1 ||
    319      1.45   thorpej 			   (lf->lf_end != -1 && end >= lf->lf_end))) {
    320      1.45   thorpej 			/* Case 3 */
    321      1.45   thorpej #ifdef LOCKF_DEBUG
    322      1.45   thorpej 			if (lockf_debug & 2)
    323      1.45   thorpej 				printf("lock contains overlap\n");
    324      1.45   thorpej #endif /* LOCKF_DEBUG */
    325      1.45   thorpej 			return 3;
    326      1.45   thorpej 		}
    327      1.45   thorpej 		if ((lf->lf_start < start) &&
    328      1.45   thorpej 			((lf->lf_end >= start) || (lf->lf_end == -1))) {
    329      1.45   thorpej 			/* Case 4 */
    330      1.45   thorpej #ifdef LOCKF_DEBUG
    331      1.45   thorpej 			if (lockf_debug & 2)
    332      1.45   thorpej 				printf("overlap starts before lock\n");
    333      1.45   thorpej #endif /* LOCKF_DEBUG */
    334      1.45   thorpej 			return 4;
    335      1.45   thorpej 		}
    336      1.45   thorpej 		if ((lf->lf_start > start) &&
    337      1.45   thorpej 			(end != -1) &&
    338      1.45   thorpej 			((lf->lf_end > end) || (lf->lf_end == -1))) {
    339      1.45   thorpej 			/* Case 5 */
    340      1.45   thorpej #ifdef LOCKF_DEBUG
    341      1.45   thorpej 			if (lockf_debug & 2)
    342      1.45   thorpej 				printf("overlap ends after lock\n");
    343      1.45   thorpej #endif /* LOCKF_DEBUG */
    344      1.45   thorpej 			return 5;
    345      1.45   thorpej 		}
    346      1.45   thorpej 		panic("lf_findoverlap: default");
    347      1.45   thorpej 	}
    348      1.45   thorpej 	return 0;
    349      1.45   thorpej }
    350       1.1        ws 
    351      1.45   thorpej /*
    352      1.45   thorpej  * Split a lock and a contained region into
    353      1.45   thorpej  * two or three locks as necessary.
    354      1.45   thorpej  */
    355      1.45   thorpej static void
    356      1.45   thorpej lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
    357      1.45   thorpej {
    358      1.45   thorpej 	struct lockf *splitlock;
    359       1.1        ws 
    360      1.45   thorpej #ifdef LOCKF_DEBUG
    361      1.45   thorpej 	if (lockf_debug & 2) {
    362      1.45   thorpej 		lf_print("lf_split", lock1);
    363      1.45   thorpej 		lf_print("splitting from", lock2);
    364       1.1        ws 	}
    365      1.45   thorpej #endif /* LOCKF_DEBUG */
    366      1.10    kleink 	/*
    367      1.45   thorpej 	 * Check to see if spliting into only two pieces.
    368      1.27      yamt 	 */
    369      1.45   thorpej 	if (lock1->lf_start == lock2->lf_start) {
    370      1.45   thorpej 		lock1->lf_start = lock2->lf_end + 1;
    371      1.45   thorpej 		lock2->lf_next = lock1;
    372      1.45   thorpej 		return;
    373      1.27      yamt 	}
    374      1.45   thorpej 	if (lock1->lf_end == lock2->lf_end) {
    375      1.45   thorpej 		lock1->lf_end = lock2->lf_start - 1;
    376      1.45   thorpej 		lock2->lf_next = lock1->lf_next;
    377      1.45   thorpej 		lock1->lf_next = lock2;
    378      1.45   thorpej 		return;
    379      1.27      yamt 	}
    380      1.27      yamt 	/*
    381      1.45   thorpej 	 * Make a new lock consisting of the last part of
    382      1.45   thorpej 	 * the encompassing lock
    383      1.10    kleink 	 */
    384      1.45   thorpej 	splitlock = *sparelock;
    385      1.45   thorpej 	*sparelock = NULL;
    386      1.45   thorpej 	memcpy(splitlock, lock1, sizeof(*splitlock));
    387  1.61.6.3       mjf 	cv_init(&splitlock->lf_cv, lockstr);
    388  1.61.6.3       mjf 
    389      1.45   thorpej 	splitlock->lf_start = lock2->lf_end + 1;
    390      1.45   thorpej 	TAILQ_INIT(&splitlock->lf_blkhd);
    391      1.45   thorpej 	lock1->lf_end = lock2->lf_start - 1;
    392       1.1        ws 	/*
    393      1.45   thorpej 	 * OK, now link it in
    394      1.21   thorpej 	 */
    395      1.45   thorpej 	splitlock->lf_next = lock1->lf_next;
    396      1.45   thorpej 	lock2->lf_next = splitlock;
    397      1.45   thorpej 	lock1->lf_next = lock2;
    398      1.45   thorpej }
    399      1.45   thorpej 
    400      1.45   thorpej /*
    401      1.45   thorpej  * Wakeup a blocklist
    402      1.45   thorpej  */
    403      1.45   thorpej static void
    404      1.45   thorpej lf_wakelock(struct lockf *listhead)
    405      1.45   thorpej {
    406      1.45   thorpej 	struct lockf *wakelock;
    407      1.21   thorpej 
    408      1.45   thorpej 	while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
    409      1.45   thorpej 		KASSERT(wakelock->lf_next == listhead);
    410      1.45   thorpej 		TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
    411      1.54      yamt 		wakelock->lf_next = NULL;
    412      1.45   thorpej #ifdef LOCKF_DEBUG
    413      1.45   thorpej 		if (lockf_debug & 2)
    414      1.45   thorpej 			lf_print("lf_wakelock: awakening", wakelock);
    415      1.45   thorpej #endif
    416      1.61        ad 		cv_broadcast(&wakelock->lf_cv);
    417      1.21   thorpej 	}
    418      1.45   thorpej }
    419      1.45   thorpej 
    420      1.45   thorpej /*
    421      1.45   thorpej  * Remove a byte-range lock on an inode.
    422      1.45   thorpej  *
    423      1.45   thorpej  * Generally, find the lock (or an overlap to that lock)
    424      1.45   thorpej  * and remove it (or shrink it), then wakeup anyone we can.
    425      1.45   thorpej  */
    426      1.45   thorpej static int
    427      1.45   thorpej lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
    428      1.45   thorpej {
    429      1.45   thorpej 	struct lockf **head = unlock->lf_head;
    430      1.45   thorpej 	struct lockf *lf = *head;
    431      1.45   thorpej 	struct lockf *overlap, **prev;
    432      1.45   thorpej 	int ovcase;
    433      1.45   thorpej 
    434      1.54      yamt 	if (lf == NULL)
    435      1.45   thorpej 		return 0;
    436      1.45   thorpej #ifdef LOCKF_DEBUG
    437      1.45   thorpej 	if (unlock->lf_type != F_UNLCK)
    438      1.45   thorpej 		panic("lf_clearlock: bad type");
    439      1.45   thorpej 	if (lockf_debug & 1)
    440      1.45   thorpej 		lf_print("lf_clearlock", unlock);
    441      1.45   thorpej #endif /* LOCKF_DEBUG */
    442      1.45   thorpej 	prev = head;
    443      1.45   thorpej 	while ((ovcase = lf_findoverlap(lf, unlock, SELF,
    444      1.61        ad 	    &prev, &overlap)) != 0) {
    445      1.45   thorpej 		/*
    446      1.45   thorpej 		 * Wakeup the list of locks to be retried.
    447      1.45   thorpej 		 */
    448      1.45   thorpej 		lf_wakelock(overlap);
    449      1.45   thorpej 
    450      1.45   thorpej 		switch (ovcase) {
    451      1.37     perry 
    452      1.45   thorpej 		case 1: /* overlap == lock */
    453      1.45   thorpej 			*prev = overlap->lf_next;
    454      1.45   thorpej 			lf_free(overlap);
    455      1.45   thorpej 			break;
    456       1.4   mycroft 
    457      1.45   thorpej 		case 2: /* overlap contains lock: split it */
    458      1.45   thorpej 			if (overlap->lf_start == unlock->lf_start) {
    459      1.45   thorpej 				overlap->lf_start = unlock->lf_end + 1;
    460      1.45   thorpej 				break;
    461      1.45   thorpej 			}
    462      1.45   thorpej 			lf_split(overlap, unlock, sparelock);
    463      1.45   thorpej 			overlap->lf_next = unlock->lf_next;
    464      1.45   thorpej 			break;
    465       1.1        ws 
    466      1.45   thorpej 		case 3: /* lock contains overlap */
    467      1.45   thorpej 			*prev = overlap->lf_next;
    468      1.45   thorpej 			lf = overlap->lf_next;
    469      1.45   thorpej 			lf_free(overlap);
    470      1.45   thorpej 			continue;
    471       1.1        ws 
    472      1.45   thorpej 		case 4: /* overlap starts before lock */
    473      1.45   thorpej 			overlap->lf_end = unlock->lf_start - 1;
    474      1.45   thorpej 			prev = &overlap->lf_next;
    475      1.45   thorpej 			lf = overlap->lf_next;
    476      1.45   thorpej 			continue;
    477       1.4   mycroft 
    478      1.45   thorpej 		case 5: /* overlap ends after lock */
    479      1.45   thorpej 			overlap->lf_start = unlock->lf_end + 1;
    480      1.45   thorpej 			break;
    481      1.45   thorpej 		}
    482      1.31      fvdl 		break;
    483      1.27      yamt 	}
    484      1.45   thorpej #ifdef LOCKF_DEBUG
    485      1.45   thorpej 	if (lockf_debug & 1)
    486      1.45   thorpej 		lf_printlist("lf_clearlock", unlock);
    487      1.45   thorpej #endif /* LOCKF_DEBUG */
    488      1.45   thorpej 	return 0;
    489      1.45   thorpej }
    490      1.27      yamt 
    491      1.45   thorpej /*
    492      1.45   thorpej  * Walk the list of locks for an inode and
    493      1.45   thorpej  * return the first blocking lock.
    494      1.45   thorpej  */
    495      1.45   thorpej static struct lockf *
    496      1.45   thorpej lf_getblock(struct lockf *lock)
    497      1.45   thorpej {
    498      1.45   thorpej 	struct lockf **prev, *overlap, *lf = *(lock->lf_head);
    499      1.27      yamt 
    500      1.45   thorpej 	prev = lock->lf_head;
    501      1.45   thorpej 	while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
    502      1.45   thorpej 		/*
    503      1.45   thorpej 		 * We've found an overlap, see if it blocks us
    504      1.45   thorpej 		 */
    505      1.45   thorpej 		if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
    506      1.45   thorpej 			return overlap;
    507      1.45   thorpej 		/*
    508      1.45   thorpej 		 * Nope, point to the next one on the list and
    509      1.45   thorpej 		 * see if it blocks us
    510      1.45   thorpej 		 */
    511      1.45   thorpej 		lf = overlap->lf_next;
    512      1.45   thorpej 	}
    513      1.54      yamt 	return NULL;
    514       1.1        ws }
    515       1.1        ws 
    516       1.1        ws /*
    517       1.1        ws  * Set a byte-range lock.
    518       1.1        ws  */
    519      1.24      yamt static int
    520      1.27      yamt lf_setlock(struct lockf *lock, struct lockf **sparelock,
    521      1.61        ad     kmutex_t *interlock)
    522       1.1        ws {
    523      1.15  augustss 	struct lockf *block;
    524       1.1        ws 	struct lockf **head = lock->lf_head;
    525       1.1        ws 	struct lockf **prev, *overlap, *ltmp;
    526      1.61        ad 	int ovcase, needtolink, error;
    527       1.1        ws 
    528       1.1        ws #ifdef LOCKF_DEBUG
    529       1.1        ws 	if (lockf_debug & 1)
    530       1.1        ws 		lf_print("lf_setlock", lock);
    531       1.1        ws #endif /* LOCKF_DEBUG */
    532       1.1        ws 
    533       1.1        ws 	/*
    534       1.1        ws 	 * Scan lock list for this file looking for locks that would block us.
    535       1.1        ws 	 */
    536       1.7  christos 	while ((block = lf_getblock(lock)) != NULL) {
    537       1.1        ws 		/*
    538       1.1        ws 		 * Free the structure and return if nonblocking.
    539       1.1        ws 		 */
    540       1.1        ws 		if ((lock->lf_flags & F_WAIT) == 0) {
    541      1.38  christos 			lf_free(lock);
    542      1.29      yamt 			return EAGAIN;
    543       1.1        ws 		}
    544       1.1        ws 		/*
    545       1.1        ws 		 * We are blocked. Since flock style locks cover
    546       1.1        ws 		 * the whole file, there is no chance for deadlock.
    547       1.1        ws 		 * For byte-range locks we must check for deadlock.
    548       1.1        ws 		 *
    549       1.1        ws 		 * Deadlock detection is done by looking through the
    550       1.1        ws 		 * wait channels to see if there are any cycles that
    551       1.1        ws 		 * involve us. MAXDEPTH is set just to make sure we
    552      1.16  sommerfe 		 * do not go off into neverneverland.
    553       1.1        ws 		 */
    554       1.1        ws 		if ((lock->lf_flags & F_POSIX) &&
    555       1.1        ws 		    (block->lf_flags & F_POSIX)) {
    556      1.21   thorpej 			struct lwp *wlwp;
    557      1.48     perry 			volatile const struct lockf *waitblock;
    558       1.1        ws 			int i = 0;
    559      1.52      yamt 			struct proc *p;
    560       1.1        ws 
    561      1.52      yamt 			p = (struct proc *)block->lf_id;
    562      1.52      yamt 			KASSERT(p != NULL);
    563      1.52      yamt 			while (i++ < maxlockdepth) {
    564  1.61.6.2       mjf 				mutex_enter(p->p_lock);
    565      1.52      yamt 				if (p->p_nlwps > 1) {
    566  1.61.6.2       mjf 					mutex_exit(p->p_lock);
    567      1.52      yamt 					break;
    568      1.52      yamt 				}
    569      1.52      yamt 				wlwp = LIST_FIRST(&p->p_lwps);
    570      1.57        ad 				lwp_lock(wlwp);
    571  1.61.6.2       mjf 				if (wlwp->l_wchan == NULL ||
    572  1.61.6.2       mjf 				    wlwp->l_wmesg != lockstr) {
    573      1.57        ad 					lwp_unlock(wlwp);
    574  1.61.6.2       mjf 					mutex_exit(p->p_lock);
    575      1.52      yamt 					break;
    576      1.52      yamt 				}
    577      1.44  christos 				waitblock = wlwp->l_wchan;
    578      1.57        ad 				lwp_unlock(wlwp);
    579  1.61.6.2       mjf 				mutex_exit(p->p_lock);
    580       1.1        ws 				/* Get the owner of the blocking lock */
    581       1.1        ws 				waitblock = waitblock->lf_next;
    582       1.1        ws 				if ((waitblock->lf_flags & F_POSIX) == 0)
    583       1.1        ws 					break;
    584      1.52      yamt 				p = (struct proc *)waitblock->lf_id;
    585      1.52      yamt 				if (p == curproc) {
    586      1.38  christos 					lf_free(lock);
    587      1.29      yamt 					return EDEADLK;
    588       1.1        ws 				}
    589       1.1        ws 			}
    590      1.16  sommerfe 			/*
    591      1.36     peter 			 * If we're still following a dependency chain
    592      1.16  sommerfe 			 * after maxlockdepth iterations, assume we're in
    593      1.16  sommerfe 			 * a cycle to be safe.
    594      1.16  sommerfe 			 */
    595      1.16  sommerfe 			if (i >= maxlockdepth) {
    596      1.38  christos 				lf_free(lock);
    597      1.29      yamt 				return EDEADLK;
    598      1.16  sommerfe 			}
    599       1.1        ws 		}
    600       1.1        ws 		/*
    601       1.1        ws 		 * For flock type locks, we must first remove
    602       1.1        ws 		 * any shared locks that we hold before we sleep
    603       1.1        ws 		 * waiting for an exclusive lock.
    604       1.1        ws 		 */
    605       1.1        ws 		if ((lock->lf_flags & F_FLOCK) &&
    606       1.1        ws 		    lock->lf_type == F_WRLCK) {
    607       1.1        ws 			lock->lf_type = F_UNLCK;
    608      1.27      yamt 			(void) lf_clearlock(lock, NULL);
    609       1.1        ws 			lock->lf_type = F_WRLCK;
    610       1.1        ws 		}
    611       1.1        ws 		/*
    612       1.1        ws 		 * Add our lock to the blocked list and sleep until we're free.
    613       1.1        ws 		 * Remember who blocked us (for deadlock detection).
    614       1.1        ws 		 */
    615       1.1        ws 		lock->lf_next = block;
    616      1.12      fvdl 		TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
    617       1.1        ws #ifdef LOCKF_DEBUG
    618       1.1        ws 		if (lockf_debug & 1) {
    619       1.1        ws 			lf_print("lf_setlock: blocking on", block);
    620       1.1        ws 			lf_printlist("lf_setlock", block);
    621       1.1        ws 		}
    622       1.1        ws #endif /* LOCKF_DEBUG */
    623      1.61        ad 		error = cv_wait_sig(&lock->lf_cv, interlock);
    624      1.16  sommerfe 
    625      1.16  sommerfe 		/*
    626  1.61.6.2       mjf 		 * We may have been awoken by a signal (in
    627      1.16  sommerfe 		 * which case we must remove ourselves from the
    628      1.16  sommerfe 		 * blocked list) and/or by another process
    629      1.16  sommerfe 		 * releasing a lock (in which case we have already
    630      1.16  sommerfe 		 * been removed from the blocked list and our
    631      1.54      yamt 		 * lf_next field set to NULL).
    632      1.16  sommerfe 		 */
    633      1.54      yamt 		if (lock->lf_next != NULL) {
    634      1.16  sommerfe 			TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
    635      1.54      yamt 			lock->lf_next = NULL;
    636      1.16  sommerfe 		}
    637       1.7  christos 		if (error) {
    638      1.38  christos 			lf_free(lock);
    639      1.29      yamt 			return error;
    640       1.1        ws 		}
    641       1.1        ws 	}
    642       1.1        ws 	/*
    643       1.1        ws 	 * No blocks!!  Add the lock.  Note that we will
    644       1.1        ws 	 * downgrade or upgrade any overlapping locks this
    645       1.1        ws 	 * process already owns.
    646       1.1        ws 	 *
    647       1.1        ws 	 * Skip over locks owned by other processes.
    648       1.1        ws 	 * Handle any locks that overlap and are owned by ourselves.
    649       1.1        ws 	 */
    650       1.1        ws 	prev = head;
    651       1.1        ws 	block = *head;
    652       1.1        ws 	needtolink = 1;
    653       1.1        ws 	for (;;) {
    654       1.7  christos 		ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
    655       1.7  christos 		if (ovcase)
    656       1.1        ws 			block = overlap->lf_next;
    657       1.1        ws 		/*
    658       1.1        ws 		 * Six cases:
    659       1.1        ws 		 *	0) no overlap
    660       1.1        ws 		 *	1) overlap == lock
    661       1.1        ws 		 *	2) overlap contains lock
    662       1.1        ws 		 *	3) lock contains overlap
    663       1.1        ws 		 *	4) overlap starts before lock
    664       1.1        ws 		 *	5) overlap ends after lock
    665       1.1        ws 		 */
    666       1.1        ws 		switch (ovcase) {
    667       1.1        ws 		case 0: /* no overlap */
    668       1.1        ws 			if (needtolink) {
    669       1.1        ws 				*prev = lock;
    670       1.1        ws 				lock->lf_next = overlap;
    671       1.1        ws 			}
    672       1.1        ws 			break;
    673       1.1        ws 
    674       1.1        ws 		case 1: /* overlap == lock */
    675       1.1        ws 			/*
    676       1.1        ws 			 * If downgrading lock, others may be
    677       1.1        ws 			 * able to acquire it.
    678       1.1        ws 			 */
    679       1.1        ws 			if (lock->lf_type == F_RDLCK &&
    680       1.1        ws 			    overlap->lf_type == F_WRLCK)
    681       1.1        ws 				lf_wakelock(overlap);
    682       1.1        ws 			overlap->lf_type = lock->lf_type;
    683      1.38  christos 			lf_free(lock);
    684       1.1        ws 			lock = overlap; /* for debug output below */
    685       1.1        ws 			break;
    686       1.1        ws 
    687       1.1        ws 		case 2: /* overlap contains lock */
    688       1.1        ws 			/*
    689       1.1        ws 			 * Check for common starting point and different types.
    690       1.1        ws 			 */
    691       1.1        ws 			if (overlap->lf_type == lock->lf_type) {
    692      1.38  christos 				lf_free(lock);
    693       1.1        ws 				lock = overlap; /* for debug output below */
    694       1.1        ws 				break;
    695       1.1        ws 			}
    696       1.1        ws 			if (overlap->lf_start == lock->lf_start) {
    697       1.1        ws 				*prev = lock;
    698       1.1        ws 				lock->lf_next = overlap;
    699       1.1        ws 				overlap->lf_start = lock->lf_end + 1;
    700       1.1        ws 			} else
    701      1.27      yamt 				lf_split(overlap, lock, sparelock);
    702       1.1        ws 			lf_wakelock(overlap);
    703       1.1        ws 			break;
    704       1.1        ws 
    705       1.1        ws 		case 3: /* lock contains overlap */
    706       1.1        ws 			/*
    707       1.1        ws 			 * If downgrading lock, others may be able to
    708       1.1        ws 			 * acquire it, otherwise take the list.
    709       1.1        ws 			 */
    710       1.1        ws 			if (lock->lf_type == F_RDLCK &&
    711       1.1        ws 			    overlap->lf_type == F_WRLCK) {
    712       1.1        ws 				lf_wakelock(overlap);
    713       1.1        ws 			} else {
    714      1.19      matt 				while ((ltmp = TAILQ_FIRST(&overlap->lf_blkhd))) {
    715      1.16  sommerfe 					KASSERT(ltmp->lf_next == overlap);
    716      1.12      fvdl 					TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
    717      1.12      fvdl 					    lf_block);
    718      1.16  sommerfe 					ltmp->lf_next = lock;
    719      1.12      fvdl 					TAILQ_INSERT_TAIL(&lock->lf_blkhd,
    720      1.12      fvdl 					    ltmp, lf_block);
    721      1.12      fvdl 				}
    722       1.1        ws 			}
    723       1.1        ws 			/*
    724       1.1        ws 			 * Add the new lock if necessary and delete the overlap.
    725       1.1        ws 			 */
    726       1.1        ws 			if (needtolink) {
    727       1.1        ws 				*prev = lock;
    728       1.1        ws 				lock->lf_next = overlap->lf_next;
    729       1.1        ws 				prev = &lock->lf_next;
    730       1.1        ws 				needtolink = 0;
    731       1.1        ws 			} else
    732       1.1        ws 				*prev = overlap->lf_next;
    733      1.39  christos 			lf_free(overlap);
    734       1.1        ws 			continue;
    735       1.1        ws 
    736       1.1        ws 		case 4: /* overlap starts before lock */
    737       1.1        ws 			/*
    738       1.1        ws 			 * Add lock after overlap on the list.
    739       1.1        ws 			 */
    740       1.1        ws 			lock->lf_next = overlap->lf_next;
    741       1.1        ws 			overlap->lf_next = lock;
    742       1.1        ws 			overlap->lf_end = lock->lf_start - 1;
    743       1.1        ws 			prev = &lock->lf_next;
    744       1.1        ws 			lf_wakelock(overlap);
    745       1.1        ws 			needtolink = 0;
    746       1.1        ws 			continue;
    747       1.1        ws 
    748       1.1        ws 		case 5: /* overlap ends after lock */
    749       1.1        ws 			/*
    750       1.1        ws 			 * Add the new lock before overlap.
    751       1.1        ws 			 */
    752       1.1        ws 			if (needtolink) {
    753       1.1        ws 				*prev = lock;
    754       1.1        ws 				lock->lf_next = overlap;
    755       1.1        ws 			}
    756       1.1        ws 			overlap->lf_start = lock->lf_end + 1;
    757       1.1        ws 			lf_wakelock(overlap);
    758       1.1        ws 			break;
    759       1.1        ws 		}
    760       1.1        ws 		break;
    761       1.1        ws 	}
    762       1.1        ws #ifdef LOCKF_DEBUG
    763       1.1        ws 	if (lockf_debug & 1) {
    764       1.1        ws 		lf_print("lf_setlock: got the lock", lock);
    765       1.1        ws 		lf_printlist("lf_setlock", lock);
    766       1.1        ws 	}
    767       1.1        ws #endif /* LOCKF_DEBUG */
    768      1.29      yamt 	return 0;
    769       1.1        ws }
    770       1.1        ws 
    771       1.1        ws /*
    772       1.1        ws  * Check whether there is a blocking lock,
    773       1.1        ws  * and if so return its process identifier.
    774       1.1        ws  */
    775      1.24      yamt static int
    776      1.25      yamt lf_getlock(struct lockf *lock, struct flock *fl)
    777       1.1        ws {
    778      1.15  augustss 	struct lockf *block;
    779       1.1        ws 
    780       1.1        ws #ifdef LOCKF_DEBUG
    781       1.1        ws 	if (lockf_debug & 1)
    782       1.1        ws 		lf_print("lf_getlock", lock);
    783       1.1        ws #endif /* LOCKF_DEBUG */
    784       1.1        ws 
    785       1.7  christos 	if ((block = lf_getblock(lock)) != NULL) {
    786       1.1        ws 		fl->l_type = block->lf_type;
    787       1.1        ws 		fl->l_whence = SEEK_SET;
    788       1.1        ws 		fl->l_start = block->lf_start;
    789       1.1        ws 		if (block->lf_end == -1)
    790       1.1        ws 			fl->l_len = 0;
    791       1.1        ws 		else
    792       1.1        ws 			fl->l_len = block->lf_end - block->lf_start + 1;
    793       1.1        ws 		if (block->lf_flags & F_POSIX)
    794      1.23   mycroft 			fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
    795       1.1        ws 		else
    796       1.1        ws 			fl->l_pid = -1;
    797       1.1        ws 	} else {
    798       1.1        ws 		fl->l_type = F_UNLCK;
    799       1.1        ws 	}
    800      1.29      yamt 	return 0;
    801       1.1        ws }
    802       1.1        ws 
    803       1.1        ws /*
    804      1.45   thorpej  * Do an advisory lock operation.
    805       1.1        ws  */
    806      1.45   thorpej int
    807      1.45   thorpej lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
    808       1.1        ws {
    809      1.55        ad 	struct lwp *l = curlwp;
    810      1.45   thorpej 	struct flock *fl = ap->a_fl;
    811      1.45   thorpej 	struct lockf *lock = NULL;
    812      1.45   thorpej 	struct lockf *sparelock;
    813  1.61.6.2       mjf 	kmutex_t *interlock = lockf_lock;
    814      1.45   thorpej 	off_t start, end;
    815      1.45   thorpej 	int error = 0;
    816       1.1        ws 
    817      1.45   thorpej 	/*
    818      1.45   thorpej 	 * Convert the flock structure into a start and end.
    819      1.45   thorpej 	 */
    820      1.45   thorpej 	switch (fl->l_whence) {
    821      1.45   thorpej 	case SEEK_SET:
    822      1.45   thorpej 	case SEEK_CUR:
    823       1.1        ws 		/*
    824      1.45   thorpej 		 * Caller is responsible for adding any necessary offset
    825      1.45   thorpej 		 * when SEEK_CUR is used.
    826       1.1        ws 		 */
    827      1.45   thorpej 		start = fl->l_start;
    828      1.45   thorpej 		break;
    829      1.45   thorpej 
    830      1.45   thorpej 	case SEEK_END:
    831      1.45   thorpej 		start = size + fl->l_start;
    832      1.45   thorpej 		break;
    833      1.45   thorpej 
    834      1.45   thorpej 	default:
    835      1.45   thorpej 		return EINVAL;
    836       1.1        ws 	}
    837      1.45   thorpej 	if (start < 0)
    838      1.45   thorpej 		return EINVAL;
    839       1.1        ws 
    840      1.45   thorpej 	/*
    841      1.61        ad 	 * Allocate locks before acquiring the interlock.  We need two
    842      1.55        ad 	 * locks in the worst case.
    843      1.45   thorpej 	 */
    844      1.45   thorpej 	switch (ap->a_op) {
    845      1.45   thorpej 	case F_SETLK:
    846      1.45   thorpej 	case F_UNLCK:
    847       1.1        ws 		/*
    848      1.55        ad 		 * XXX For F_UNLCK case, we can re-use the lock.
    849       1.1        ws 		 */
    850      1.46  christos 		if ((ap->a_flags & F_FLOCK) == 0) {
    851      1.45   thorpej 			/*
    852      1.55        ad 			 * Byte-range lock might need one more lock.
    853      1.45   thorpej 			 */
    854      1.55        ad 			sparelock = lf_alloc(kauth_cred_geteuid(l->l_cred), 0);
    855      1.45   thorpej 			if (sparelock == NULL) {
    856      1.45   thorpej 				error = ENOMEM;
    857      1.45   thorpej 				goto quit;
    858      1.45   thorpej 			}
    859      1.45   thorpej 			break;
    860       1.1        ws 		}
    861      1.45   thorpej 		/* FALLTHROUGH */
    862      1.45   thorpej 
    863      1.45   thorpej 	case F_GETLK:
    864      1.45   thorpej 		sparelock = NULL;
    865      1.45   thorpej 		break;
    866      1.45   thorpej 
    867      1.45   thorpej 	default:
    868      1.45   thorpej 		return EINVAL;
    869      1.45   thorpej 	}
    870      1.45   thorpej 
    871      1.55        ad 	lock = lf_alloc(kauth_cred_geteuid(l->l_cred),
    872      1.55        ad 	    ap->a_op != F_UNLCK ? 1 : 2);
    873      1.45   thorpej 	if (lock == NULL) {
    874      1.45   thorpej 		error = ENOMEM;
    875      1.45   thorpej 		goto quit;
    876       1.1        ws 	}
    877       1.1        ws 
    878      1.61        ad 	mutex_enter(interlock);
    879       1.1        ws 
    880       1.1        ws 	/*
    881      1.45   thorpej 	 * Avoid the common case of unlocking when inode has no locks.
    882       1.1        ws 	 */
    883      1.45   thorpej 	if (*head == (struct lockf *)0) {
    884      1.45   thorpej 		if (ap->a_op != F_SETLK) {
    885      1.45   thorpej 			fl->l_type = F_UNLCK;
    886      1.45   thorpej 			error = 0;
    887      1.45   thorpej 			goto quit_unlock;
    888      1.45   thorpej 		}
    889       1.1        ws 	}
    890      1.45   thorpej 
    891      1.45   thorpej 	if (fl->l_len == 0)
    892      1.45   thorpej 		end = -1;
    893      1.45   thorpej 	else
    894      1.45   thorpej 		end = start + fl->l_len - 1;
    895       1.1        ws 	/*
    896      1.45   thorpej 	 * Create the lockf structure.
    897      1.45   thorpej 	 */
    898      1.45   thorpej 	lock->lf_start = start;
    899      1.45   thorpej 	lock->lf_end = end;
    900      1.45   thorpej 	lock->lf_head = head;
    901      1.45   thorpej 	lock->lf_type = fl->l_type;
    902      1.45   thorpej 	lock->lf_next = (struct lockf *)0;
    903      1.45   thorpej 	TAILQ_INIT(&lock->lf_blkhd);
    904      1.45   thorpej 	lock->lf_flags = ap->a_flags;
    905      1.45   thorpej 	if (lock->lf_flags & F_POSIX) {
    906      1.45   thorpej 		KASSERT(curproc == (struct proc *)ap->a_id);
    907      1.45   thorpej 	}
    908      1.45   thorpej 	lock->lf_id = (struct proc *)ap->a_id;
    909      1.45   thorpej 
    910       1.1        ws 	/*
    911      1.45   thorpej 	 * Do the requested operation.
    912       1.1        ws 	 */
    913      1.45   thorpej 	switch (ap->a_op) {
    914       1.1        ws 
    915      1.45   thorpej 	case F_SETLK:
    916      1.45   thorpej 		error = lf_setlock(lock, &sparelock, interlock);
    917      1.45   thorpej 		lock = NULL; /* lf_setlock freed it */
    918      1.45   thorpej 		break;
    919       1.1        ws 
    920      1.45   thorpej 	case F_UNLCK:
    921      1.45   thorpej 		error = lf_clearlock(lock, &sparelock);
    922      1.45   thorpej 		break;
    923       1.1        ws 
    924      1.45   thorpej 	case F_GETLK:
    925      1.45   thorpej 		error = lf_getlock(lock, fl);
    926      1.45   thorpej 		break;
    927      1.37     perry 
    928      1.45   thorpej 	default:
    929      1.45   thorpej 		break;
    930      1.45   thorpej 		/* NOTREACHED */
    931      1.45   thorpej 	}
    932       1.1        ws 
    933      1.45   thorpej quit_unlock:
    934      1.61        ad 	mutex_exit(interlock);
    935      1.45   thorpej quit:
    936      1.45   thorpej 	if (lock)
    937      1.45   thorpej 		lf_free(lock);
    938      1.45   thorpej 	if (sparelock)
    939      1.45   thorpej 		lf_free(sparelock);
    940       1.1        ws 
    941      1.45   thorpej 	return error;
    942       1.1        ws }
    943  1.61.6.2       mjf 
    944  1.61.6.2       mjf /*
    945  1.61.6.2       mjf  * Initialize subsystem.   XXX We use a global lock.  This could be the
    946  1.61.6.2       mjf  * vnode interlock, but the deadlock detection code may need to inspect
    947  1.61.6.2       mjf  * locks belonging to other files.
    948  1.61.6.2       mjf  */
    949  1.61.6.2       mjf void
    950  1.61.6.2       mjf lf_init(void)
    951  1.61.6.2       mjf {
    952  1.61.6.2       mjf 
    953  1.61.6.2       mjf 	lockf_cache = pool_cache_init(sizeof(struct lockf), 0, 0, 0, "lockf",
    954  1.61.6.2       mjf  	    NULL, IPL_NONE, lf_ctor, lf_dtor, NULL);
    955  1.61.6.2       mjf         lockf_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
    956  1.61.6.2       mjf }
    957