vfs_lockf.c revision 1.72 1 1.72 dsl /* $NetBSD: vfs_lockf.c,v 1.72 2009/08/05 19:39:50 dsl Exp $ */
2 1.5 cgd
3 1.1 ws /*
4 1.4 mycroft * Copyright (c) 1982, 1986, 1989, 1993
5 1.4 mycroft * The Regents of the University of California. All rights reserved.
6 1.1 ws *
7 1.1 ws * This code is derived from software contributed to Berkeley by
8 1.1 ws * Scooter Morris at Genentech Inc.
9 1.1 ws *
10 1.1 ws * Redistribution and use in source and binary forms, with or without
11 1.1 ws * modification, are permitted provided that the following conditions
12 1.1 ws * are met:
13 1.1 ws * 1. Redistributions of source code must retain the above copyright
14 1.1 ws * notice, this list of conditions and the following disclaimer.
15 1.1 ws * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 ws * notice, this list of conditions and the following disclaimer in the
17 1.1 ws * documentation and/or other materials provided with the distribution.
18 1.33 agc * 3. Neither the name of the University nor the names of its contributors
19 1.1 ws * may be used to endorse or promote products derived from this software
20 1.1 ws * without specific prior written permission.
21 1.1 ws *
22 1.1 ws * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 ws * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 ws * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 ws * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 ws * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 ws * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 ws * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 ws * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 ws * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 ws * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 ws * SUCH DAMAGE.
33 1.1 ws *
34 1.12 fvdl * @(#)ufs_lockf.c 8.4 (Berkeley) 10/26/94
35 1.1 ws */
36 1.18 lukem
37 1.18 lukem #include <sys/cdefs.h>
38 1.72 dsl __KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.72 2009/08/05 19:39:50 dsl Exp $");
39 1.1 ws
40 1.1 ws #include <sys/param.h>
41 1.1 ws #include <sys/systm.h>
42 1.1 ws #include <sys/kernel.h>
43 1.1 ws #include <sys/file.h>
44 1.1 ws #include <sys/proc.h>
45 1.1 ws #include <sys/vnode.h>
46 1.35 simonb #include <sys/pool.h>
47 1.1 ws #include <sys/fcntl.h>
48 1.1 ws #include <sys/lockf.h>
49 1.63 mrg #include <sys/atomic.h>
50 1.49 elad #include <sys/kauth.h>
51 1.69 pooka #include <sys/uidinfo.h>
52 1.22 thorpej
53 1.50 yamt /*
54 1.50 yamt * The lockf structure is a kernel structure which contains the information
55 1.50 yamt * associated with a byte range lock. The lockf structures are linked into
56 1.60 ad * the vnode structure. Locks are sorted by the starting byte of the lock for
57 1.50 yamt * efficiency.
58 1.50 yamt *
59 1.50 yamt * lf_next is used for two purposes, depending on whether the lock is
60 1.50 yamt * being held, or is in conflict with an existing lock. If this lock
61 1.50 yamt * is held, it indicates the next lock on the same vnode.
62 1.50 yamt * For pending locks, if lock->lf_next is non-NULL, then lock->lf_block
63 1.50 yamt * must be queued on the lf_blkhd TAILQ of lock->lf_next.
64 1.50 yamt */
65 1.50 yamt
66 1.50 yamt TAILQ_HEAD(locklist, lockf);
67 1.50 yamt
68 1.50 yamt struct lockf {
69 1.65 ad kcondvar_t lf_cv; /* Signalling */
70 1.50 yamt short lf_flags; /* Lock semantics: F_POSIX, F_FLOCK, F_WAIT */
71 1.50 yamt short lf_type; /* Lock type: F_RDLCK, F_WRLCK */
72 1.50 yamt off_t lf_start; /* The byte # of the start of the lock */
73 1.50 yamt off_t lf_end; /* The byte # of the end of the lock (-1=EOF)*/
74 1.50 yamt void *lf_id; /* process or file description holding lock */
75 1.50 yamt struct lockf **lf_head; /* Back pointer to the head of lockf list */
76 1.50 yamt struct lockf *lf_next; /* Next lock on this vnode, or blocking lock */
77 1.50 yamt struct locklist lf_blkhd; /* List of requests blocked on this lock */
78 1.50 yamt TAILQ_ENTRY(lockf) lf_block;/* A request waiting for a lock */
79 1.50 yamt uid_t lf_uid; /* User ID responsible */
80 1.50 yamt };
81 1.50 yamt
82 1.50 yamt /* Maximum length of sleep chains to traverse to try and detect deadlock. */
83 1.50 yamt #define MAXDEPTH 50
84 1.50 yamt
85 1.65 ad static pool_cache_t lockf_cache;
86 1.65 ad static kmutex_t *lockf_lock;
87 1.65 ad static char lockstr[] = "lockf";
88 1.1 ws
89 1.1 ws /*
90 1.6 mycroft * This variable controls the maximum number of processes that will
91 1.6 mycroft * be checked in doing deadlock detection.
92 1.6 mycroft */
93 1.6 mycroft int maxlockdepth = MAXDEPTH;
94 1.6 mycroft
95 1.6 mycroft #ifdef LOCKF_DEBUG
96 1.6 mycroft int lockf_debug = 0;
97 1.6 mycroft #endif
98 1.6 mycroft
99 1.6 mycroft #define SELF 0x1
100 1.6 mycroft #define OTHERS 0x2
101 1.6 mycroft
102 1.6 mycroft /*
103 1.16 sommerfe * XXX TODO
104 1.58 christos * Misc cleanups: "void *id" should be visible in the API as a
105 1.16 sommerfe * "struct proc *".
106 1.16 sommerfe * (This requires rototilling all VFS's which support advisory locking).
107 1.16 sommerfe */
108 1.16 sommerfe
109 1.16 sommerfe /*
110 1.16 sommerfe * If there's a lot of lock contention on a single vnode, locking
111 1.16 sommerfe * schemes which allow for more paralleism would be needed. Given how
112 1.16 sommerfe * infrequently byte-range locks are actually used in typical BSD
113 1.16 sommerfe * code, a more complex approach probably isn't worth it.
114 1.16 sommerfe */
115 1.16 sommerfe
116 1.16 sommerfe /*
117 1.38 christos * We enforce a limit on locks by uid, so that a single user cannot
118 1.38 christos * run the kernel out of memory. For now, the limit is pretty coarse.
119 1.38 christos * There is no limit on root.
120 1.38 christos *
121 1.38 christos * Splitting a lock will always succeed, regardless of current allocations.
122 1.38 christos * If you're slightly above the limit, we still have to permit an allocation
123 1.38 christos * so that the unlock can succeed. If the unlocking causes too many splits,
124 1.38 christos * however, you're totally cutoff.
125 1.38 christos */
126 1.38 christos int maxlocksperuid = 1024;
127 1.38 christos
128 1.45 thorpej #ifdef LOCKF_DEBUG
129 1.45 thorpej /*
130 1.45 thorpej * Print out a lock.
131 1.45 thorpej */
132 1.45 thorpej static void
133 1.56 christos lf_print(const char *tag, struct lockf *lock)
134 1.45 thorpej {
135 1.45 thorpej
136 1.45 thorpej printf("%s: lock %p for ", tag, lock);
137 1.45 thorpej if (lock->lf_flags & F_POSIX)
138 1.45 thorpej printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
139 1.45 thorpej else
140 1.45 thorpej printf("file %p", (struct file *)lock->lf_id);
141 1.45 thorpej printf(" %s, start %qx, end %qx",
142 1.45 thorpej lock->lf_type == F_RDLCK ? "shared" :
143 1.45 thorpej lock->lf_type == F_WRLCK ? "exclusive" :
144 1.45 thorpej lock->lf_type == F_UNLCK ? "unlock" :
145 1.45 thorpej "unknown", lock->lf_start, lock->lf_end);
146 1.45 thorpej if (TAILQ_FIRST(&lock->lf_blkhd))
147 1.45 thorpej printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
148 1.45 thorpej else
149 1.45 thorpej printf("\n");
150 1.45 thorpej }
151 1.45 thorpej
152 1.45 thorpej static void
153 1.56 christos lf_printlist(const char *tag, struct lockf *lock)
154 1.45 thorpej {
155 1.45 thorpej struct lockf *lf, *blk;
156 1.45 thorpej
157 1.45 thorpej printf("%s: Lock list:\n", tag);
158 1.45 thorpej for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
159 1.45 thorpej printf("\tlock %p for ", lf);
160 1.45 thorpej if (lf->lf_flags & F_POSIX)
161 1.45 thorpej printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
162 1.45 thorpej else
163 1.45 thorpej printf("file %p", (struct file *)lf->lf_id);
164 1.45 thorpej printf(", %s, start %qx, end %qx",
165 1.45 thorpej lf->lf_type == F_RDLCK ? "shared" :
166 1.45 thorpej lf->lf_type == F_WRLCK ? "exclusive" :
167 1.45 thorpej lf->lf_type == F_UNLCK ? "unlock" :
168 1.45 thorpej "unknown", lf->lf_start, lf->lf_end);
169 1.45 thorpej TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
170 1.45 thorpej if (blk->lf_flags & F_POSIX)
171 1.66 skrll printf("; proc %d",
172 1.45 thorpej ((struct proc *)blk->lf_id)->p_pid);
173 1.45 thorpej else
174 1.66 skrll printf("; file %p", (struct file *)blk->lf_id);
175 1.45 thorpej printf(", %s, start %qx, end %qx",
176 1.45 thorpej blk->lf_type == F_RDLCK ? "shared" :
177 1.45 thorpej blk->lf_type == F_WRLCK ? "exclusive" :
178 1.45 thorpej blk->lf_type == F_UNLCK ? "unlock" :
179 1.45 thorpej "unknown", blk->lf_start, blk->lf_end);
180 1.45 thorpej if (TAILQ_FIRST(&blk->lf_blkhd))
181 1.45 thorpej panic("lf_printlist: bad list");
182 1.45 thorpej }
183 1.45 thorpej printf("\n");
184 1.45 thorpej }
185 1.45 thorpej }
186 1.45 thorpej #endif /* LOCKF_DEBUG */
187 1.45 thorpej
188 1.38 christos /*
189 1.38 christos * 3 options for allowfail.
190 1.38 christos * 0 - always allocate. 1 - cutoff at limit. 2 - cutoff at double limit.
191 1.38 christos */
192 1.45 thorpej static struct lockf *
193 1.71 yamt lf_alloc(int allowfail)
194 1.38 christos {
195 1.38 christos struct uidinfo *uip;
196 1.38 christos struct lockf *lock;
197 1.62 rmind u_long lcnt;
198 1.71 yamt const uid_t uid = kauth_cred_geteuid(kauth_cred_get());
199 1.38 christos
200 1.38 christos uip = uid_find(uid);
201 1.62 rmind lcnt = atomic_inc_ulong_nv(&uip->ui_lockcnt);
202 1.62 rmind if (uid && allowfail && lcnt >
203 1.40 christos (allowfail == 1 ? maxlocksperuid : (maxlocksperuid * 2))) {
204 1.62 rmind atomic_dec_ulong(&uip->ui_lockcnt);
205 1.40 christos return NULL;
206 1.40 christos }
207 1.62 rmind
208 1.65 ad lock = pool_cache_get(lockf_cache, PR_WAITOK);
209 1.38 christos lock->lf_uid = uid;
210 1.40 christos return lock;
211 1.38 christos }
212 1.38 christos
213 1.45 thorpej static void
214 1.38 christos lf_free(struct lockf *lock)
215 1.38 christos {
216 1.38 christos struct uidinfo *uip;
217 1.38 christos
218 1.38 christos uip = uid_find(lock->lf_uid);
219 1.62 rmind atomic_dec_ulong(&uip->ui_lockcnt);
220 1.65 ad pool_cache_put(lockf_cache, lock);
221 1.65 ad }
222 1.65 ad
223 1.65 ad static int
224 1.65 ad lf_ctor(void *arg, void *obj, int flag)
225 1.65 ad {
226 1.65 ad struct lockf *lock;
227 1.62 rmind
228 1.65 ad lock = obj;
229 1.65 ad cv_init(&lock->lf_cv, lockstr);
230 1.65 ad
231 1.65 ad return 0;
232 1.65 ad }
233 1.65 ad
234 1.65 ad static void
235 1.65 ad lf_dtor(void *arg, void *obj)
236 1.65 ad {
237 1.65 ad struct lockf *lock;
238 1.65 ad
239 1.65 ad lock = obj;
240 1.61 ad cv_destroy(&lock->lf_cv);
241 1.38 christos }
242 1.38 christos
243 1.38 christos /*
244 1.45 thorpej * Walk the list of locks for an inode to
245 1.45 thorpej * find an overlapping lock (if any).
246 1.45 thorpej *
247 1.45 thorpej * NOTE: this returns only the FIRST overlapping lock. There
248 1.45 thorpej * may be more than one.
249 1.1 ws */
250 1.45 thorpej static int
251 1.45 thorpej lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
252 1.45 thorpej struct lockf ***prev, struct lockf **overlap)
253 1.1 ws {
254 1.1 ws off_t start, end;
255 1.1 ws
256 1.45 thorpej *overlap = lf;
257 1.54 yamt if (lf == NULL)
258 1.45 thorpej return 0;
259 1.45 thorpej #ifdef LOCKF_DEBUG
260 1.45 thorpej if (lockf_debug & 2)
261 1.45 thorpej lf_print("lf_findoverlap: looking for overlap in", lock);
262 1.45 thorpej #endif /* LOCKF_DEBUG */
263 1.45 thorpej start = lock->lf_start;
264 1.45 thorpej end = lock->lf_end;
265 1.54 yamt while (lf != NULL) {
266 1.45 thorpej if (((type == SELF) && lf->lf_id != lock->lf_id) ||
267 1.45 thorpej ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
268 1.45 thorpej *prev = &lf->lf_next;
269 1.45 thorpej *overlap = lf = lf->lf_next;
270 1.45 thorpej continue;
271 1.45 thorpej }
272 1.45 thorpej #ifdef LOCKF_DEBUG
273 1.45 thorpej if (lockf_debug & 2)
274 1.45 thorpej lf_print("\tchecking", lf);
275 1.45 thorpej #endif /* LOCKF_DEBUG */
276 1.1 ws /*
277 1.45 thorpej * OK, check for overlap
278 1.45 thorpej *
279 1.45 thorpej * Six cases:
280 1.45 thorpej * 0) no overlap
281 1.45 thorpej * 1) overlap == lock
282 1.45 thorpej * 2) overlap contains lock
283 1.45 thorpej * 3) lock contains overlap
284 1.45 thorpej * 4) overlap starts before lock
285 1.45 thorpej * 5) overlap ends after lock
286 1.1 ws */
287 1.45 thorpej if ((lf->lf_end != -1 && start > lf->lf_end) ||
288 1.45 thorpej (end != -1 && lf->lf_start > end)) {
289 1.45 thorpej /* Case 0 */
290 1.45 thorpej #ifdef LOCKF_DEBUG
291 1.45 thorpej if (lockf_debug & 2)
292 1.45 thorpej printf("no overlap\n");
293 1.45 thorpej #endif /* LOCKF_DEBUG */
294 1.45 thorpej if ((type & SELF) && end != -1 && lf->lf_start > end)
295 1.45 thorpej return 0;
296 1.45 thorpej *prev = &lf->lf_next;
297 1.45 thorpej *overlap = lf = lf->lf_next;
298 1.45 thorpej continue;
299 1.45 thorpej }
300 1.45 thorpej if ((lf->lf_start == start) && (lf->lf_end == end)) {
301 1.45 thorpej /* Case 1 */
302 1.45 thorpej #ifdef LOCKF_DEBUG
303 1.45 thorpej if (lockf_debug & 2)
304 1.45 thorpej printf("overlap == lock\n");
305 1.45 thorpej #endif /* LOCKF_DEBUG */
306 1.45 thorpej return 1;
307 1.45 thorpej }
308 1.45 thorpej if ((lf->lf_start <= start) &&
309 1.45 thorpej (end != -1) &&
310 1.45 thorpej ((lf->lf_end >= end) || (lf->lf_end == -1))) {
311 1.45 thorpej /* Case 2 */
312 1.45 thorpej #ifdef LOCKF_DEBUG
313 1.45 thorpej if (lockf_debug & 2)
314 1.45 thorpej printf("overlap contains lock\n");
315 1.45 thorpej #endif /* LOCKF_DEBUG */
316 1.45 thorpej return 2;
317 1.45 thorpej }
318 1.45 thorpej if (start <= lf->lf_start &&
319 1.45 thorpej (end == -1 ||
320 1.45 thorpej (lf->lf_end != -1 && end >= lf->lf_end))) {
321 1.45 thorpej /* Case 3 */
322 1.45 thorpej #ifdef LOCKF_DEBUG
323 1.45 thorpej if (lockf_debug & 2)
324 1.45 thorpej printf("lock contains overlap\n");
325 1.45 thorpej #endif /* LOCKF_DEBUG */
326 1.45 thorpej return 3;
327 1.45 thorpej }
328 1.45 thorpej if ((lf->lf_start < start) &&
329 1.45 thorpej ((lf->lf_end >= start) || (lf->lf_end == -1))) {
330 1.45 thorpej /* Case 4 */
331 1.45 thorpej #ifdef LOCKF_DEBUG
332 1.45 thorpej if (lockf_debug & 2)
333 1.45 thorpej printf("overlap starts before lock\n");
334 1.45 thorpej #endif /* LOCKF_DEBUG */
335 1.45 thorpej return 4;
336 1.45 thorpej }
337 1.45 thorpej if ((lf->lf_start > start) &&
338 1.45 thorpej (end != -1) &&
339 1.45 thorpej ((lf->lf_end > end) || (lf->lf_end == -1))) {
340 1.45 thorpej /* Case 5 */
341 1.45 thorpej #ifdef LOCKF_DEBUG
342 1.45 thorpej if (lockf_debug & 2)
343 1.45 thorpej printf("overlap ends after lock\n");
344 1.45 thorpej #endif /* LOCKF_DEBUG */
345 1.45 thorpej return 5;
346 1.45 thorpej }
347 1.45 thorpej panic("lf_findoverlap: default");
348 1.45 thorpej }
349 1.45 thorpej return 0;
350 1.45 thorpej }
351 1.1 ws
352 1.45 thorpej /*
353 1.45 thorpej * Split a lock and a contained region into
354 1.45 thorpej * two or three locks as necessary.
355 1.45 thorpej */
356 1.45 thorpej static void
357 1.45 thorpej lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
358 1.45 thorpej {
359 1.45 thorpej struct lockf *splitlock;
360 1.1 ws
361 1.45 thorpej #ifdef LOCKF_DEBUG
362 1.45 thorpej if (lockf_debug & 2) {
363 1.45 thorpej lf_print("lf_split", lock1);
364 1.45 thorpej lf_print("splitting from", lock2);
365 1.1 ws }
366 1.45 thorpej #endif /* LOCKF_DEBUG */
367 1.10 kleink /*
368 1.45 thorpej * Check to see if spliting into only two pieces.
369 1.27 yamt */
370 1.45 thorpej if (lock1->lf_start == lock2->lf_start) {
371 1.45 thorpej lock1->lf_start = lock2->lf_end + 1;
372 1.45 thorpej lock2->lf_next = lock1;
373 1.45 thorpej return;
374 1.27 yamt }
375 1.45 thorpej if (lock1->lf_end == lock2->lf_end) {
376 1.45 thorpej lock1->lf_end = lock2->lf_start - 1;
377 1.45 thorpej lock2->lf_next = lock1->lf_next;
378 1.45 thorpej lock1->lf_next = lock2;
379 1.45 thorpej return;
380 1.27 yamt }
381 1.27 yamt /*
382 1.45 thorpej * Make a new lock consisting of the last part of
383 1.45 thorpej * the encompassing lock
384 1.10 kleink */
385 1.45 thorpej splitlock = *sparelock;
386 1.45 thorpej *sparelock = NULL;
387 1.70 yamt cv_destroy(&splitlock->lf_cv);
388 1.45 thorpej memcpy(splitlock, lock1, sizeof(*splitlock));
389 1.67 skrll cv_init(&splitlock->lf_cv, lockstr);
390 1.67 skrll
391 1.45 thorpej splitlock->lf_start = lock2->lf_end + 1;
392 1.45 thorpej TAILQ_INIT(&splitlock->lf_blkhd);
393 1.45 thorpej lock1->lf_end = lock2->lf_start - 1;
394 1.1 ws /*
395 1.45 thorpej * OK, now link it in
396 1.21 thorpej */
397 1.45 thorpej splitlock->lf_next = lock1->lf_next;
398 1.45 thorpej lock2->lf_next = splitlock;
399 1.45 thorpej lock1->lf_next = lock2;
400 1.45 thorpej }
401 1.45 thorpej
402 1.45 thorpej /*
403 1.45 thorpej * Wakeup a blocklist
404 1.45 thorpej */
405 1.45 thorpej static void
406 1.45 thorpej lf_wakelock(struct lockf *listhead)
407 1.45 thorpej {
408 1.45 thorpej struct lockf *wakelock;
409 1.21 thorpej
410 1.45 thorpej while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
411 1.45 thorpej KASSERT(wakelock->lf_next == listhead);
412 1.45 thorpej TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
413 1.54 yamt wakelock->lf_next = NULL;
414 1.45 thorpej #ifdef LOCKF_DEBUG
415 1.45 thorpej if (lockf_debug & 2)
416 1.45 thorpej lf_print("lf_wakelock: awakening", wakelock);
417 1.45 thorpej #endif
418 1.61 ad cv_broadcast(&wakelock->lf_cv);
419 1.21 thorpej }
420 1.45 thorpej }
421 1.45 thorpej
422 1.45 thorpej /*
423 1.45 thorpej * Remove a byte-range lock on an inode.
424 1.45 thorpej *
425 1.45 thorpej * Generally, find the lock (or an overlap to that lock)
426 1.45 thorpej * and remove it (or shrink it), then wakeup anyone we can.
427 1.45 thorpej */
428 1.45 thorpej static int
429 1.45 thorpej lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
430 1.45 thorpej {
431 1.45 thorpej struct lockf **head = unlock->lf_head;
432 1.45 thorpej struct lockf *lf = *head;
433 1.45 thorpej struct lockf *overlap, **prev;
434 1.45 thorpej int ovcase;
435 1.45 thorpej
436 1.54 yamt if (lf == NULL)
437 1.45 thorpej return 0;
438 1.45 thorpej #ifdef LOCKF_DEBUG
439 1.45 thorpej if (unlock->lf_type != F_UNLCK)
440 1.45 thorpej panic("lf_clearlock: bad type");
441 1.45 thorpej if (lockf_debug & 1)
442 1.45 thorpej lf_print("lf_clearlock", unlock);
443 1.45 thorpej #endif /* LOCKF_DEBUG */
444 1.45 thorpej prev = head;
445 1.45 thorpej while ((ovcase = lf_findoverlap(lf, unlock, SELF,
446 1.61 ad &prev, &overlap)) != 0) {
447 1.45 thorpej /*
448 1.45 thorpej * Wakeup the list of locks to be retried.
449 1.45 thorpej */
450 1.45 thorpej lf_wakelock(overlap);
451 1.45 thorpej
452 1.45 thorpej switch (ovcase) {
453 1.37 perry
454 1.45 thorpej case 1: /* overlap == lock */
455 1.45 thorpej *prev = overlap->lf_next;
456 1.45 thorpej lf_free(overlap);
457 1.45 thorpej break;
458 1.4 mycroft
459 1.45 thorpej case 2: /* overlap contains lock: split it */
460 1.45 thorpej if (overlap->lf_start == unlock->lf_start) {
461 1.45 thorpej overlap->lf_start = unlock->lf_end + 1;
462 1.45 thorpej break;
463 1.45 thorpej }
464 1.45 thorpej lf_split(overlap, unlock, sparelock);
465 1.45 thorpej overlap->lf_next = unlock->lf_next;
466 1.45 thorpej break;
467 1.1 ws
468 1.45 thorpej case 3: /* lock contains overlap */
469 1.45 thorpej *prev = overlap->lf_next;
470 1.45 thorpej lf = overlap->lf_next;
471 1.45 thorpej lf_free(overlap);
472 1.45 thorpej continue;
473 1.1 ws
474 1.45 thorpej case 4: /* overlap starts before lock */
475 1.45 thorpej overlap->lf_end = unlock->lf_start - 1;
476 1.45 thorpej prev = &overlap->lf_next;
477 1.45 thorpej lf = overlap->lf_next;
478 1.45 thorpej continue;
479 1.4 mycroft
480 1.45 thorpej case 5: /* overlap ends after lock */
481 1.45 thorpej overlap->lf_start = unlock->lf_end + 1;
482 1.45 thorpej break;
483 1.45 thorpej }
484 1.31 fvdl break;
485 1.27 yamt }
486 1.45 thorpej #ifdef LOCKF_DEBUG
487 1.45 thorpej if (lockf_debug & 1)
488 1.45 thorpej lf_printlist("lf_clearlock", unlock);
489 1.45 thorpej #endif /* LOCKF_DEBUG */
490 1.45 thorpej return 0;
491 1.45 thorpej }
492 1.27 yamt
493 1.45 thorpej /*
494 1.45 thorpej * Walk the list of locks for an inode and
495 1.45 thorpej * return the first blocking lock.
496 1.45 thorpej */
497 1.45 thorpej static struct lockf *
498 1.45 thorpej lf_getblock(struct lockf *lock)
499 1.45 thorpej {
500 1.45 thorpej struct lockf **prev, *overlap, *lf = *(lock->lf_head);
501 1.27 yamt
502 1.45 thorpej prev = lock->lf_head;
503 1.45 thorpej while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
504 1.45 thorpej /*
505 1.45 thorpej * We've found an overlap, see if it blocks us
506 1.45 thorpej */
507 1.45 thorpej if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
508 1.45 thorpej return overlap;
509 1.45 thorpej /*
510 1.45 thorpej * Nope, point to the next one on the list and
511 1.45 thorpej * see if it blocks us
512 1.45 thorpej */
513 1.45 thorpej lf = overlap->lf_next;
514 1.45 thorpej }
515 1.54 yamt return NULL;
516 1.1 ws }
517 1.1 ws
518 1.1 ws /*
519 1.1 ws * Set a byte-range lock.
520 1.1 ws */
521 1.24 yamt static int
522 1.27 yamt lf_setlock(struct lockf *lock, struct lockf **sparelock,
523 1.61 ad kmutex_t *interlock)
524 1.1 ws {
525 1.15 augustss struct lockf *block;
526 1.1 ws struct lockf **head = lock->lf_head;
527 1.1 ws struct lockf **prev, *overlap, *ltmp;
528 1.61 ad int ovcase, needtolink, error;
529 1.1 ws
530 1.1 ws #ifdef LOCKF_DEBUG
531 1.1 ws if (lockf_debug & 1)
532 1.1 ws lf_print("lf_setlock", lock);
533 1.1 ws #endif /* LOCKF_DEBUG */
534 1.1 ws
535 1.1 ws /*
536 1.1 ws * Scan lock list for this file looking for locks that would block us.
537 1.1 ws */
538 1.7 christos while ((block = lf_getblock(lock)) != NULL) {
539 1.1 ws /*
540 1.1 ws * Free the structure and return if nonblocking.
541 1.1 ws */
542 1.1 ws if ((lock->lf_flags & F_WAIT) == 0) {
543 1.38 christos lf_free(lock);
544 1.29 yamt return EAGAIN;
545 1.1 ws }
546 1.1 ws /*
547 1.1 ws * We are blocked. Since flock style locks cover
548 1.1 ws * the whole file, there is no chance for deadlock.
549 1.1 ws * For byte-range locks we must check for deadlock.
550 1.1 ws *
551 1.1 ws * Deadlock detection is done by looking through the
552 1.1 ws * wait channels to see if there are any cycles that
553 1.1 ws * involve us. MAXDEPTH is set just to make sure we
554 1.16 sommerfe * do not go off into neverneverland.
555 1.1 ws */
556 1.1 ws if ((lock->lf_flags & F_POSIX) &&
557 1.1 ws (block->lf_flags & F_POSIX)) {
558 1.21 thorpej struct lwp *wlwp;
559 1.48 perry volatile const struct lockf *waitblock;
560 1.1 ws int i = 0;
561 1.52 yamt struct proc *p;
562 1.1 ws
563 1.52 yamt p = (struct proc *)block->lf_id;
564 1.52 yamt KASSERT(p != NULL);
565 1.52 yamt while (i++ < maxlockdepth) {
566 1.64 ad mutex_enter(p->p_lock);
567 1.52 yamt if (p->p_nlwps > 1) {
568 1.64 ad mutex_exit(p->p_lock);
569 1.52 yamt break;
570 1.52 yamt }
571 1.52 yamt wlwp = LIST_FIRST(&p->p_lwps);
572 1.57 ad lwp_lock(wlwp);
573 1.65 ad if (wlwp->l_wchan == NULL ||
574 1.65 ad wlwp->l_wmesg != lockstr) {
575 1.57 ad lwp_unlock(wlwp);
576 1.64 ad mutex_exit(p->p_lock);
577 1.52 yamt break;
578 1.52 yamt }
579 1.44 christos waitblock = wlwp->l_wchan;
580 1.57 ad lwp_unlock(wlwp);
581 1.64 ad mutex_exit(p->p_lock);
582 1.1 ws /* Get the owner of the blocking lock */
583 1.1 ws waitblock = waitblock->lf_next;
584 1.1 ws if ((waitblock->lf_flags & F_POSIX) == 0)
585 1.1 ws break;
586 1.52 yamt p = (struct proc *)waitblock->lf_id;
587 1.52 yamt if (p == curproc) {
588 1.38 christos lf_free(lock);
589 1.29 yamt return EDEADLK;
590 1.1 ws }
591 1.1 ws }
592 1.16 sommerfe /*
593 1.36 peter * If we're still following a dependency chain
594 1.16 sommerfe * after maxlockdepth iterations, assume we're in
595 1.16 sommerfe * a cycle to be safe.
596 1.16 sommerfe */
597 1.16 sommerfe if (i >= maxlockdepth) {
598 1.38 christos lf_free(lock);
599 1.29 yamt return EDEADLK;
600 1.16 sommerfe }
601 1.1 ws }
602 1.1 ws /*
603 1.1 ws * For flock type locks, we must first remove
604 1.1 ws * any shared locks that we hold before we sleep
605 1.1 ws * waiting for an exclusive lock.
606 1.1 ws */
607 1.1 ws if ((lock->lf_flags & F_FLOCK) &&
608 1.1 ws lock->lf_type == F_WRLCK) {
609 1.1 ws lock->lf_type = F_UNLCK;
610 1.27 yamt (void) lf_clearlock(lock, NULL);
611 1.1 ws lock->lf_type = F_WRLCK;
612 1.1 ws }
613 1.1 ws /*
614 1.1 ws * Add our lock to the blocked list and sleep until we're free.
615 1.1 ws * Remember who blocked us (for deadlock detection).
616 1.1 ws */
617 1.1 ws lock->lf_next = block;
618 1.12 fvdl TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
619 1.1 ws #ifdef LOCKF_DEBUG
620 1.1 ws if (lockf_debug & 1) {
621 1.1 ws lf_print("lf_setlock: blocking on", block);
622 1.1 ws lf_printlist("lf_setlock", block);
623 1.1 ws }
624 1.1 ws #endif /* LOCKF_DEBUG */
625 1.61 ad error = cv_wait_sig(&lock->lf_cv, interlock);
626 1.16 sommerfe
627 1.16 sommerfe /*
628 1.65 ad * We may have been awoken by a signal (in
629 1.16 sommerfe * which case we must remove ourselves from the
630 1.16 sommerfe * blocked list) and/or by another process
631 1.16 sommerfe * releasing a lock (in which case we have already
632 1.16 sommerfe * been removed from the blocked list and our
633 1.54 yamt * lf_next field set to NULL).
634 1.16 sommerfe */
635 1.54 yamt if (lock->lf_next != NULL) {
636 1.16 sommerfe TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
637 1.54 yamt lock->lf_next = NULL;
638 1.16 sommerfe }
639 1.7 christos if (error) {
640 1.38 christos lf_free(lock);
641 1.29 yamt return error;
642 1.1 ws }
643 1.1 ws }
644 1.1 ws /*
645 1.1 ws * No blocks!! Add the lock. Note that we will
646 1.1 ws * downgrade or upgrade any overlapping locks this
647 1.1 ws * process already owns.
648 1.1 ws *
649 1.1 ws * Skip over locks owned by other processes.
650 1.1 ws * Handle any locks that overlap and are owned by ourselves.
651 1.1 ws */
652 1.1 ws prev = head;
653 1.1 ws block = *head;
654 1.1 ws needtolink = 1;
655 1.1 ws for (;;) {
656 1.7 christos ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
657 1.7 christos if (ovcase)
658 1.1 ws block = overlap->lf_next;
659 1.1 ws /*
660 1.1 ws * Six cases:
661 1.1 ws * 0) no overlap
662 1.1 ws * 1) overlap == lock
663 1.1 ws * 2) overlap contains lock
664 1.1 ws * 3) lock contains overlap
665 1.1 ws * 4) overlap starts before lock
666 1.1 ws * 5) overlap ends after lock
667 1.1 ws */
668 1.1 ws switch (ovcase) {
669 1.1 ws case 0: /* no overlap */
670 1.1 ws if (needtolink) {
671 1.1 ws *prev = lock;
672 1.1 ws lock->lf_next = overlap;
673 1.1 ws }
674 1.1 ws break;
675 1.1 ws
676 1.1 ws case 1: /* overlap == lock */
677 1.1 ws /*
678 1.1 ws * If downgrading lock, others may be
679 1.1 ws * able to acquire it.
680 1.1 ws */
681 1.1 ws if (lock->lf_type == F_RDLCK &&
682 1.1 ws overlap->lf_type == F_WRLCK)
683 1.1 ws lf_wakelock(overlap);
684 1.1 ws overlap->lf_type = lock->lf_type;
685 1.38 christos lf_free(lock);
686 1.1 ws lock = overlap; /* for debug output below */
687 1.1 ws break;
688 1.1 ws
689 1.1 ws case 2: /* overlap contains lock */
690 1.1 ws /*
691 1.1 ws * Check for common starting point and different types.
692 1.1 ws */
693 1.1 ws if (overlap->lf_type == lock->lf_type) {
694 1.38 christos lf_free(lock);
695 1.1 ws lock = overlap; /* for debug output below */
696 1.1 ws break;
697 1.1 ws }
698 1.1 ws if (overlap->lf_start == lock->lf_start) {
699 1.1 ws *prev = lock;
700 1.1 ws lock->lf_next = overlap;
701 1.1 ws overlap->lf_start = lock->lf_end + 1;
702 1.1 ws } else
703 1.27 yamt lf_split(overlap, lock, sparelock);
704 1.1 ws lf_wakelock(overlap);
705 1.1 ws break;
706 1.1 ws
707 1.1 ws case 3: /* lock contains overlap */
708 1.1 ws /*
709 1.1 ws * If downgrading lock, others may be able to
710 1.1 ws * acquire it, otherwise take the list.
711 1.1 ws */
712 1.1 ws if (lock->lf_type == F_RDLCK &&
713 1.1 ws overlap->lf_type == F_WRLCK) {
714 1.1 ws lf_wakelock(overlap);
715 1.1 ws } else {
716 1.19 matt while ((ltmp = TAILQ_FIRST(&overlap->lf_blkhd))) {
717 1.16 sommerfe KASSERT(ltmp->lf_next == overlap);
718 1.12 fvdl TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
719 1.12 fvdl lf_block);
720 1.16 sommerfe ltmp->lf_next = lock;
721 1.12 fvdl TAILQ_INSERT_TAIL(&lock->lf_blkhd,
722 1.12 fvdl ltmp, lf_block);
723 1.12 fvdl }
724 1.1 ws }
725 1.1 ws /*
726 1.1 ws * Add the new lock if necessary and delete the overlap.
727 1.1 ws */
728 1.1 ws if (needtolink) {
729 1.1 ws *prev = lock;
730 1.1 ws lock->lf_next = overlap->lf_next;
731 1.1 ws prev = &lock->lf_next;
732 1.1 ws needtolink = 0;
733 1.1 ws } else
734 1.1 ws *prev = overlap->lf_next;
735 1.39 christos lf_free(overlap);
736 1.1 ws continue;
737 1.1 ws
738 1.1 ws case 4: /* overlap starts before lock */
739 1.1 ws /*
740 1.1 ws * Add lock after overlap on the list.
741 1.1 ws */
742 1.1 ws lock->lf_next = overlap->lf_next;
743 1.1 ws overlap->lf_next = lock;
744 1.1 ws overlap->lf_end = lock->lf_start - 1;
745 1.1 ws prev = &lock->lf_next;
746 1.1 ws lf_wakelock(overlap);
747 1.1 ws needtolink = 0;
748 1.1 ws continue;
749 1.1 ws
750 1.1 ws case 5: /* overlap ends after lock */
751 1.1 ws /*
752 1.1 ws * Add the new lock before overlap.
753 1.1 ws */
754 1.1 ws if (needtolink) {
755 1.1 ws *prev = lock;
756 1.1 ws lock->lf_next = overlap;
757 1.1 ws }
758 1.1 ws overlap->lf_start = lock->lf_end + 1;
759 1.1 ws lf_wakelock(overlap);
760 1.1 ws break;
761 1.1 ws }
762 1.1 ws break;
763 1.1 ws }
764 1.1 ws #ifdef LOCKF_DEBUG
765 1.1 ws if (lockf_debug & 1) {
766 1.1 ws lf_print("lf_setlock: got the lock", lock);
767 1.1 ws lf_printlist("lf_setlock", lock);
768 1.1 ws }
769 1.1 ws #endif /* LOCKF_DEBUG */
770 1.29 yamt return 0;
771 1.1 ws }
772 1.1 ws
773 1.1 ws /*
774 1.1 ws * Check whether there is a blocking lock,
775 1.1 ws * and if so return its process identifier.
776 1.1 ws */
777 1.24 yamt static int
778 1.25 yamt lf_getlock(struct lockf *lock, struct flock *fl)
779 1.1 ws {
780 1.15 augustss struct lockf *block;
781 1.1 ws
782 1.1 ws #ifdef LOCKF_DEBUG
783 1.1 ws if (lockf_debug & 1)
784 1.1 ws lf_print("lf_getlock", lock);
785 1.1 ws #endif /* LOCKF_DEBUG */
786 1.1 ws
787 1.7 christos if ((block = lf_getblock(lock)) != NULL) {
788 1.1 ws fl->l_type = block->lf_type;
789 1.1 ws fl->l_whence = SEEK_SET;
790 1.1 ws fl->l_start = block->lf_start;
791 1.1 ws if (block->lf_end == -1)
792 1.1 ws fl->l_len = 0;
793 1.1 ws else
794 1.1 ws fl->l_len = block->lf_end - block->lf_start + 1;
795 1.1 ws if (block->lf_flags & F_POSIX)
796 1.23 mycroft fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
797 1.1 ws else
798 1.1 ws fl->l_pid = -1;
799 1.1 ws } else {
800 1.1 ws fl->l_type = F_UNLCK;
801 1.1 ws }
802 1.29 yamt return 0;
803 1.1 ws }
804 1.1 ws
805 1.1 ws /*
806 1.45 thorpej * Do an advisory lock operation.
807 1.1 ws */
808 1.45 thorpej int
809 1.45 thorpej lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
810 1.1 ws {
811 1.45 thorpej struct flock *fl = ap->a_fl;
812 1.45 thorpej struct lockf *lock = NULL;
813 1.45 thorpej struct lockf *sparelock;
814 1.65 ad kmutex_t *interlock = lockf_lock;
815 1.45 thorpej off_t start, end;
816 1.45 thorpej int error = 0;
817 1.1 ws
818 1.45 thorpej /*
819 1.45 thorpej * Convert the flock structure into a start and end.
820 1.45 thorpej */
821 1.45 thorpej switch (fl->l_whence) {
822 1.45 thorpej case SEEK_SET:
823 1.45 thorpej case SEEK_CUR:
824 1.1 ws /*
825 1.45 thorpej * Caller is responsible for adding any necessary offset
826 1.45 thorpej * when SEEK_CUR is used.
827 1.1 ws */
828 1.45 thorpej start = fl->l_start;
829 1.45 thorpej break;
830 1.45 thorpej
831 1.45 thorpej case SEEK_END:
832 1.45 thorpej start = size + fl->l_start;
833 1.45 thorpej break;
834 1.45 thorpej
835 1.45 thorpej default:
836 1.45 thorpej return EINVAL;
837 1.1 ws }
838 1.72 dsl
839 1.72 dsl if (fl->l_len == 0)
840 1.72 dsl end = -1;
841 1.72 dsl else {
842 1.72 dsl if (fl->l_len > 0)
843 1.72 dsl end = start + fl->l_len - 1;
844 1.72 dsl else {
845 1.72 dsl /* lockf() allows -ve lengths */
846 1.72 dsl end = start - 1;
847 1.72 dsl start += fl->l_len;
848 1.72 dsl }
849 1.72 dsl }
850 1.45 thorpej if (start < 0)
851 1.45 thorpej return EINVAL;
852 1.1 ws
853 1.45 thorpej /*
854 1.61 ad * Allocate locks before acquiring the interlock. We need two
855 1.55 ad * locks in the worst case.
856 1.45 thorpej */
857 1.45 thorpej switch (ap->a_op) {
858 1.45 thorpej case F_SETLK:
859 1.45 thorpej case F_UNLCK:
860 1.1 ws /*
861 1.55 ad * XXX For F_UNLCK case, we can re-use the lock.
862 1.1 ws */
863 1.46 christos if ((ap->a_flags & F_FLOCK) == 0) {
864 1.45 thorpej /*
865 1.55 ad * Byte-range lock might need one more lock.
866 1.45 thorpej */
867 1.71 yamt sparelock = lf_alloc(0);
868 1.45 thorpej if (sparelock == NULL) {
869 1.45 thorpej error = ENOMEM;
870 1.45 thorpej goto quit;
871 1.45 thorpej }
872 1.45 thorpej break;
873 1.1 ws }
874 1.45 thorpej /* FALLTHROUGH */
875 1.45 thorpej
876 1.45 thorpej case F_GETLK:
877 1.45 thorpej sparelock = NULL;
878 1.45 thorpej break;
879 1.45 thorpej
880 1.45 thorpej default:
881 1.45 thorpej return EINVAL;
882 1.45 thorpej }
883 1.45 thorpej
884 1.71 yamt switch (ap->a_op) {
885 1.71 yamt case F_SETLK:
886 1.71 yamt lock = lf_alloc(1);
887 1.71 yamt break;
888 1.71 yamt case F_UNLCK:
889 1.71 yamt if (start == 0 || end == -1) {
890 1.71 yamt /* never split */
891 1.71 yamt lock = lf_alloc(0);
892 1.71 yamt } else {
893 1.71 yamt /* might split */
894 1.71 yamt lock = lf_alloc(2);
895 1.71 yamt }
896 1.71 yamt break;
897 1.71 yamt case F_GETLK:
898 1.71 yamt lock = lf_alloc(0);
899 1.71 yamt break;
900 1.71 yamt }
901 1.45 thorpej if (lock == NULL) {
902 1.45 thorpej error = ENOMEM;
903 1.45 thorpej goto quit;
904 1.1 ws }
905 1.1 ws
906 1.61 ad mutex_enter(interlock);
907 1.1 ws
908 1.1 ws /*
909 1.45 thorpej * Avoid the common case of unlocking when inode has no locks.
910 1.1 ws */
911 1.45 thorpej if (*head == (struct lockf *)0) {
912 1.45 thorpej if (ap->a_op != F_SETLK) {
913 1.45 thorpej fl->l_type = F_UNLCK;
914 1.45 thorpej error = 0;
915 1.45 thorpej goto quit_unlock;
916 1.45 thorpej }
917 1.1 ws }
918 1.45 thorpej
919 1.1 ws /*
920 1.45 thorpej * Create the lockf structure.
921 1.45 thorpej */
922 1.45 thorpej lock->lf_start = start;
923 1.45 thorpej lock->lf_end = end;
924 1.45 thorpej lock->lf_head = head;
925 1.45 thorpej lock->lf_type = fl->l_type;
926 1.45 thorpej lock->lf_next = (struct lockf *)0;
927 1.45 thorpej TAILQ_INIT(&lock->lf_blkhd);
928 1.45 thorpej lock->lf_flags = ap->a_flags;
929 1.45 thorpej if (lock->lf_flags & F_POSIX) {
930 1.45 thorpej KASSERT(curproc == (struct proc *)ap->a_id);
931 1.45 thorpej }
932 1.72 dsl lock->lf_id = ap->a_id;
933 1.45 thorpej
934 1.1 ws /*
935 1.45 thorpej * Do the requested operation.
936 1.1 ws */
937 1.45 thorpej switch (ap->a_op) {
938 1.1 ws
939 1.45 thorpej case F_SETLK:
940 1.45 thorpej error = lf_setlock(lock, &sparelock, interlock);
941 1.45 thorpej lock = NULL; /* lf_setlock freed it */
942 1.45 thorpej break;
943 1.1 ws
944 1.45 thorpej case F_UNLCK:
945 1.45 thorpej error = lf_clearlock(lock, &sparelock);
946 1.45 thorpej break;
947 1.1 ws
948 1.45 thorpej case F_GETLK:
949 1.45 thorpej error = lf_getlock(lock, fl);
950 1.45 thorpej break;
951 1.37 perry
952 1.45 thorpej default:
953 1.45 thorpej break;
954 1.45 thorpej /* NOTREACHED */
955 1.45 thorpej }
956 1.1 ws
957 1.45 thorpej quit_unlock:
958 1.61 ad mutex_exit(interlock);
959 1.45 thorpej quit:
960 1.45 thorpej if (lock)
961 1.45 thorpej lf_free(lock);
962 1.45 thorpej if (sparelock)
963 1.45 thorpej lf_free(sparelock);
964 1.1 ws
965 1.45 thorpej return error;
966 1.1 ws }
967 1.65 ad
968 1.65 ad /*
969 1.65 ad * Initialize subsystem. XXX We use a global lock. This could be the
970 1.65 ad * vnode interlock, but the deadlock detection code may need to inspect
971 1.65 ad * locks belonging to other files.
972 1.65 ad */
973 1.65 ad void
974 1.65 ad lf_init(void)
975 1.65 ad {
976 1.65 ad
977 1.65 ad lockf_cache = pool_cache_init(sizeof(struct lockf), 0, 0, 0, "lockf",
978 1.65 ad NULL, IPL_NONE, lf_ctor, lf_dtor, NULL);
979 1.65 ad lockf_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
980 1.65 ad }
981