Home | History | Annotate | Line # | Download | only in kern
vfs_lockf.c revision 1.79
      1  1.79        ad /*	$NetBSD: vfs_lockf.c,v 1.79 2023/09/10 14:45:52 ad Exp $	*/
      2   1.5       cgd 
      3   1.1        ws /*
      4   1.4   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
      5   1.4   mycroft  *	The Regents of the University of California.  All rights reserved.
      6   1.1        ws  *
      7   1.1        ws  * This code is derived from software contributed to Berkeley by
      8   1.1        ws  * Scooter Morris at Genentech Inc.
      9   1.1        ws  *
     10   1.1        ws  * Redistribution and use in source and binary forms, with or without
     11   1.1        ws  * modification, are permitted provided that the following conditions
     12   1.1        ws  * are met:
     13   1.1        ws  * 1. Redistributions of source code must retain the above copyright
     14   1.1        ws  *    notice, this list of conditions and the following disclaimer.
     15   1.1        ws  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1        ws  *    notice, this list of conditions and the following disclaimer in the
     17   1.1        ws  *    documentation and/or other materials provided with the distribution.
     18  1.33       agc  * 3. Neither the name of the University nor the names of its contributors
     19   1.1        ws  *    may be used to endorse or promote products derived from this software
     20   1.1        ws  *    without specific prior written permission.
     21   1.1        ws  *
     22   1.1        ws  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23   1.1        ws  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24   1.1        ws  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25   1.1        ws  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26   1.1        ws  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27   1.1        ws  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28   1.1        ws  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29   1.1        ws  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30   1.1        ws  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31   1.1        ws  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32   1.1        ws  * SUCH DAMAGE.
     33   1.1        ws  *
     34  1.12      fvdl  *	@(#)ufs_lockf.c	8.4 (Berkeley) 10/26/94
     35   1.1        ws  */
     36  1.18     lukem 
     37  1.18     lukem #include <sys/cdefs.h>
     38  1.79        ad __KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.79 2023/09/10 14:45:52 ad Exp $");
     39   1.1        ws 
     40   1.1        ws #include <sys/param.h>
     41   1.1        ws #include <sys/systm.h>
     42   1.1        ws #include <sys/kernel.h>
     43   1.1        ws #include <sys/file.h>
     44   1.1        ws #include <sys/proc.h>
     45   1.1        ws #include <sys/vnode.h>
     46  1.79        ad #include <sys/kmem.h>
     47   1.1        ws #include <sys/fcntl.h>
     48   1.1        ws #include <sys/lockf.h>
     49  1.63       mrg #include <sys/atomic.h>
     50  1.49      elad #include <sys/kauth.h>
     51  1.69     pooka #include <sys/uidinfo.h>
     52  1.22   thorpej 
     53  1.50      yamt /*
     54  1.50      yamt  * The lockf structure is a kernel structure which contains the information
     55  1.50      yamt  * associated with a byte range lock.  The lockf structures are linked into
     56  1.60        ad  * the vnode structure.  Locks are sorted by the starting byte of the lock for
     57  1.50      yamt  * efficiency.
     58  1.50      yamt  *
     59  1.50      yamt  * lf_next is used for two purposes, depending on whether the lock is
     60  1.50      yamt  * being held, or is in conflict with an existing lock.  If this lock
     61  1.50      yamt  * is held, it indicates the next lock on the same vnode.
     62  1.50      yamt  * For pending locks, if lock->lf_next is non-NULL, then lock->lf_block
     63  1.50      yamt  * must be queued on the lf_blkhd TAILQ of lock->lf_next.
     64  1.50      yamt  */
     65  1.50      yamt 
     66  1.50      yamt TAILQ_HEAD(locklist, lockf);
     67  1.50      yamt 
     68  1.50      yamt struct lockf {
     69  1.65        ad 	kcondvar_t lf_cv;	 /* Signalling */
     70  1.50      yamt 	short	lf_flags;	 /* Lock semantics: F_POSIX, F_FLOCK, F_WAIT */
     71  1.50      yamt 	short	lf_type;	 /* Lock type: F_RDLCK, F_WRLCK */
     72  1.79        ad 	uid_t	lf_uid;		 /* User ID responsible */
     73  1.50      yamt 	off_t	lf_start;	 /* The byte # of the start of the lock */
     74  1.50      yamt 	off_t	lf_end;		 /* The byte # of the end of the lock (-1=EOF)*/
     75  1.50      yamt 	void	*lf_id;		 /* process or file description holding lock */
     76  1.50      yamt 	struct	lockf **lf_head; /* Back pointer to the head of lockf list */
     77  1.50      yamt 	struct	lockf *lf_next;	 /* Next lock on this vnode, or blocking lock */
     78  1.50      yamt 	struct  locklist lf_blkhd; /* List of requests blocked on this lock */
     79  1.50      yamt 	TAILQ_ENTRY(lockf) lf_block;/* A request waiting for a lock */
     80  1.79        ad 	struct	uidinfo *lf_uip; /* Cached pointer to uidinfo */
     81  1.50      yamt };
     82  1.50      yamt 
     83  1.50      yamt /* Maximum length of sleep chains to traverse to try and detect deadlock. */
     84  1.50      yamt #define MAXDEPTH 50
     85  1.50      yamt 
     86  1.79        ad static kmutex_t lockf_lock __cacheline_aligned;
     87  1.65        ad static char lockstr[] = "lockf";
     88   1.1        ws 
     89   1.1        ws /*
     90   1.6   mycroft  * This variable controls the maximum number of processes that will
     91   1.6   mycroft  * be checked in doing deadlock detection.
     92   1.6   mycroft  */
     93   1.6   mycroft int maxlockdepth = MAXDEPTH;
     94   1.6   mycroft 
     95   1.6   mycroft #ifdef LOCKF_DEBUG
     96   1.6   mycroft int	lockf_debug = 0;
     97   1.6   mycroft #endif
     98   1.6   mycroft 
     99   1.6   mycroft #define SELF	0x1
    100   1.6   mycroft #define OTHERS	0x2
    101   1.6   mycroft 
    102   1.6   mycroft /*
    103  1.16  sommerfe  * XXX TODO
    104  1.58  christos  * Misc cleanups: "void *id" should be visible in the API as a
    105  1.16  sommerfe  * "struct proc *".
    106  1.16  sommerfe  * (This requires rototilling all VFS's which support advisory locking).
    107  1.16  sommerfe  */
    108  1.16  sommerfe 
    109  1.16  sommerfe /*
    110  1.16  sommerfe  * If there's a lot of lock contention on a single vnode, locking
    111  1.16  sommerfe  * schemes which allow for more paralleism would be needed.  Given how
    112  1.16  sommerfe  * infrequently byte-range locks are actually used in typical BSD
    113  1.16  sommerfe  * code, a more complex approach probably isn't worth it.
    114  1.16  sommerfe  */
    115  1.16  sommerfe 
    116  1.16  sommerfe /*
    117  1.38  christos  * We enforce a limit on locks by uid, so that a single user cannot
    118  1.38  christos  * run the kernel out of memory.  For now, the limit is pretty coarse.
    119  1.38  christos  * There is no limit on root.
    120  1.38  christos  *
    121  1.38  christos  * Splitting a lock will always succeed, regardless of current allocations.
    122  1.38  christos  * If you're slightly above the limit, we still have to permit an allocation
    123  1.38  christos  * so that the unlock can succeed.  If the unlocking causes too many splits,
    124  1.38  christos  * however, you're totally cutoff.
    125  1.38  christos  */
    126  1.74      manu #define MAXLOCKSPERUID (2 * maxfiles)
    127  1.38  christos 
    128  1.45   thorpej #ifdef LOCKF_DEBUG
    129  1.45   thorpej /*
    130  1.45   thorpej  * Print out a lock.
    131  1.45   thorpej  */
    132  1.45   thorpej static void
    133  1.56  christos lf_print(const char *tag, struct lockf *lock)
    134  1.45   thorpej {
    135  1.45   thorpej 
    136  1.45   thorpej 	printf("%s: lock %p for ", tag, lock);
    137  1.45   thorpej 	if (lock->lf_flags & F_POSIX)
    138  1.45   thorpej 		printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
    139  1.45   thorpej 	else
    140  1.45   thorpej 		printf("file %p", (struct file *)lock->lf_id);
    141  1.73  dholland 	printf(" %s, start %jd, end %jd",
    142  1.45   thorpej 		lock->lf_type == F_RDLCK ? "shared" :
    143  1.45   thorpej 		lock->lf_type == F_WRLCK ? "exclusive" :
    144  1.45   thorpej 		lock->lf_type == F_UNLCK ? "unlock" :
    145  1.73  dholland 		"unknown", (intmax_t)lock->lf_start, (intmax_t)lock->lf_end);
    146  1.45   thorpej 	if (TAILQ_FIRST(&lock->lf_blkhd))
    147  1.45   thorpej 		printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
    148  1.45   thorpej 	else
    149  1.45   thorpej 		printf("\n");
    150  1.45   thorpej }
    151  1.45   thorpej 
    152  1.45   thorpej static void
    153  1.56  christos lf_printlist(const char *tag, struct lockf *lock)
    154  1.45   thorpej {
    155  1.45   thorpej 	struct lockf *lf, *blk;
    156  1.45   thorpej 
    157  1.45   thorpej 	printf("%s: Lock list:\n", tag);
    158  1.45   thorpej 	for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
    159  1.45   thorpej 		printf("\tlock %p for ", lf);
    160  1.45   thorpej 		if (lf->lf_flags & F_POSIX)
    161  1.45   thorpej 			printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
    162  1.45   thorpej 		else
    163  1.45   thorpej 			printf("file %p", (struct file *)lf->lf_id);
    164  1.73  dholland 		printf(", %s, start %jd, end %jd",
    165  1.45   thorpej 			lf->lf_type == F_RDLCK ? "shared" :
    166  1.45   thorpej 			lf->lf_type == F_WRLCK ? "exclusive" :
    167  1.45   thorpej 			lf->lf_type == F_UNLCK ? "unlock" :
    168  1.73  dholland 			"unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
    169  1.45   thorpej 		TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
    170  1.45   thorpej 			if (blk->lf_flags & F_POSIX)
    171  1.66     skrll 				printf("; proc %d",
    172  1.45   thorpej 				    ((struct proc *)blk->lf_id)->p_pid);
    173  1.45   thorpej 			else
    174  1.66     skrll 				printf("; file %p", (struct file *)blk->lf_id);
    175  1.73  dholland 			printf(", %s, start %jd, end %jd",
    176  1.45   thorpej 				blk->lf_type == F_RDLCK ? "shared" :
    177  1.45   thorpej 				blk->lf_type == F_WRLCK ? "exclusive" :
    178  1.45   thorpej 				blk->lf_type == F_UNLCK ? "unlock" :
    179  1.73  dholland 				"unknown", (intmax_t)blk->lf_start, (intmax_t)blk->lf_end);
    180  1.45   thorpej 			if (TAILQ_FIRST(&blk->lf_blkhd))
    181  1.45   thorpej 				 panic("lf_printlist: bad list");
    182  1.45   thorpej 		}
    183  1.45   thorpej 		printf("\n");
    184  1.45   thorpej 	}
    185  1.45   thorpej }
    186  1.45   thorpej #endif /* LOCKF_DEBUG */
    187  1.45   thorpej 
    188  1.38  christos /*
    189  1.38  christos  * 3 options for allowfail.
    190  1.38  christos  * 0 - always allocate.  1 - cutoff at limit.  2 - cutoff at double limit.
    191  1.38  christos  */
    192  1.45   thorpej static struct lockf *
    193  1.71      yamt lf_alloc(int allowfail)
    194  1.38  christos {
    195  1.38  christos 	struct uidinfo *uip;
    196  1.38  christos 	struct lockf *lock;
    197  1.62     rmind 	u_long lcnt;
    198  1.71      yamt 	const uid_t uid = kauth_cred_geteuid(kauth_cred_get());
    199  1.38  christos 
    200  1.38  christos 	uip = uid_find(uid);
    201  1.62     rmind 	lcnt = atomic_inc_ulong_nv(&uip->ui_lockcnt);
    202  1.62     rmind 	if (uid && allowfail && lcnt >
    203  1.74      manu 	    (allowfail == 1 ? MAXLOCKSPERUID : (MAXLOCKSPERUID * 2))) {
    204  1.62     rmind 		atomic_dec_ulong(&uip->ui_lockcnt);
    205  1.40  christos 		return NULL;
    206  1.40  christos 	}
    207  1.62     rmind 
    208  1.79        ad 	lock = kmem_alloc(sizeof(*lock), KM_SLEEP);
    209  1.38  christos 	lock->lf_uid = uid;
    210  1.79        ad 	lock->lf_uip = uip;
    211  1.79        ad 	cv_init(&lock->lf_cv, lockstr);
    212  1.40  christos 	return lock;
    213  1.38  christos }
    214  1.38  christos 
    215  1.45   thorpej static void
    216  1.38  christos lf_free(struct lockf *lock)
    217  1.38  christos {
    218  1.38  christos 
    219  1.79        ad 	atomic_dec_ulong(&lock->lf_uip->ui_lockcnt);
    220  1.61        ad 	cv_destroy(&lock->lf_cv);
    221  1.79        ad 	kmem_free(lock, sizeof(*lock));
    222  1.38  christos }
    223  1.38  christos 
    224  1.38  christos /*
    225  1.45   thorpej  * Walk the list of locks for an inode to
    226  1.45   thorpej  * find an overlapping lock (if any).
    227  1.45   thorpej  *
    228  1.45   thorpej  * NOTE: this returns only the FIRST overlapping lock.  There
    229  1.45   thorpej  *	 may be more than one.
    230   1.1        ws  */
    231  1.45   thorpej static int
    232  1.45   thorpej lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
    233  1.45   thorpej     struct lockf ***prev, struct lockf **overlap)
    234   1.1        ws {
    235   1.1        ws 	off_t start, end;
    236   1.1        ws 
    237  1.45   thorpej 	*overlap = lf;
    238  1.54      yamt 	if (lf == NULL)
    239  1.45   thorpej 		return 0;
    240  1.45   thorpej #ifdef LOCKF_DEBUG
    241  1.45   thorpej 	if (lockf_debug & 2)
    242  1.45   thorpej 		lf_print("lf_findoverlap: looking for overlap in", lock);
    243  1.45   thorpej #endif /* LOCKF_DEBUG */
    244  1.45   thorpej 	start = lock->lf_start;
    245  1.45   thorpej 	end = lock->lf_end;
    246  1.54      yamt 	while (lf != NULL) {
    247  1.45   thorpej 		if (((type == SELF) && lf->lf_id != lock->lf_id) ||
    248  1.45   thorpej 		    ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
    249  1.45   thorpej 			*prev = &lf->lf_next;
    250  1.45   thorpej 			*overlap = lf = lf->lf_next;
    251  1.45   thorpej 			continue;
    252  1.45   thorpej 		}
    253  1.45   thorpej #ifdef LOCKF_DEBUG
    254  1.45   thorpej 		if (lockf_debug & 2)
    255  1.45   thorpej 			lf_print("\tchecking", lf);
    256  1.45   thorpej #endif /* LOCKF_DEBUG */
    257   1.1        ws 		/*
    258  1.45   thorpej 		 * OK, check for overlap
    259  1.45   thorpej 		 *
    260  1.45   thorpej 		 * Six cases:
    261  1.45   thorpej 		 *	0) no overlap
    262  1.45   thorpej 		 *	1) overlap == lock
    263  1.45   thorpej 		 *	2) overlap contains lock
    264  1.45   thorpej 		 *	3) lock contains overlap
    265  1.45   thorpej 		 *	4) overlap starts before lock
    266  1.45   thorpej 		 *	5) overlap ends after lock
    267   1.1        ws 		 */
    268  1.45   thorpej 		if ((lf->lf_end != -1 && start > lf->lf_end) ||
    269  1.45   thorpej 		    (end != -1 && lf->lf_start > end)) {
    270  1.45   thorpej 			/* Case 0 */
    271  1.45   thorpej #ifdef LOCKF_DEBUG
    272  1.45   thorpej 			if (lockf_debug & 2)
    273  1.45   thorpej 				printf("no overlap\n");
    274  1.45   thorpej #endif /* LOCKF_DEBUG */
    275  1.45   thorpej 			if ((type & SELF) && end != -1 && lf->lf_start > end)
    276  1.45   thorpej 				return 0;
    277  1.45   thorpej 			*prev = &lf->lf_next;
    278  1.45   thorpej 			*overlap = lf = lf->lf_next;
    279  1.45   thorpej 			continue;
    280  1.45   thorpej 		}
    281  1.45   thorpej 		if ((lf->lf_start == start) && (lf->lf_end == end)) {
    282  1.45   thorpej 			/* Case 1 */
    283  1.45   thorpej #ifdef LOCKF_DEBUG
    284  1.45   thorpej 			if (lockf_debug & 2)
    285  1.45   thorpej 				printf("overlap == lock\n");
    286  1.45   thorpej #endif /* LOCKF_DEBUG */
    287  1.45   thorpej 			return 1;
    288  1.45   thorpej 		}
    289  1.45   thorpej 		if ((lf->lf_start <= start) &&
    290  1.45   thorpej 		    (end != -1) &&
    291  1.45   thorpej 		    ((lf->lf_end >= end) || (lf->lf_end == -1))) {
    292  1.45   thorpej 			/* Case 2 */
    293  1.45   thorpej #ifdef LOCKF_DEBUG
    294  1.45   thorpej 			if (lockf_debug & 2)
    295  1.45   thorpej 				printf("overlap contains lock\n");
    296  1.45   thorpej #endif /* LOCKF_DEBUG */
    297  1.45   thorpej 			return 2;
    298  1.45   thorpej 		}
    299  1.45   thorpej 		if (start <= lf->lf_start &&
    300  1.45   thorpej 		           (end == -1 ||
    301  1.45   thorpej 			   (lf->lf_end != -1 && end >= lf->lf_end))) {
    302  1.45   thorpej 			/* Case 3 */
    303  1.45   thorpej #ifdef LOCKF_DEBUG
    304  1.45   thorpej 			if (lockf_debug & 2)
    305  1.45   thorpej 				printf("lock contains overlap\n");
    306  1.45   thorpej #endif /* LOCKF_DEBUG */
    307  1.45   thorpej 			return 3;
    308  1.45   thorpej 		}
    309  1.45   thorpej 		if ((lf->lf_start < start) &&
    310  1.45   thorpej 			((lf->lf_end >= start) || (lf->lf_end == -1))) {
    311  1.45   thorpej 			/* Case 4 */
    312  1.45   thorpej #ifdef LOCKF_DEBUG
    313  1.45   thorpej 			if (lockf_debug & 2)
    314  1.45   thorpej 				printf("overlap starts before lock\n");
    315  1.45   thorpej #endif /* LOCKF_DEBUG */
    316  1.45   thorpej 			return 4;
    317  1.45   thorpej 		}
    318  1.45   thorpej 		if ((lf->lf_start > start) &&
    319  1.45   thorpej 			(end != -1) &&
    320  1.45   thorpej 			((lf->lf_end > end) || (lf->lf_end == -1))) {
    321  1.45   thorpej 			/* Case 5 */
    322  1.45   thorpej #ifdef LOCKF_DEBUG
    323  1.45   thorpej 			if (lockf_debug & 2)
    324  1.45   thorpej 				printf("overlap ends after lock\n");
    325  1.45   thorpej #endif /* LOCKF_DEBUG */
    326  1.45   thorpej 			return 5;
    327  1.45   thorpej 		}
    328  1.45   thorpej 		panic("lf_findoverlap: default");
    329  1.45   thorpej 	}
    330  1.45   thorpej 	return 0;
    331  1.45   thorpej }
    332   1.1        ws 
    333  1.45   thorpej /*
    334  1.45   thorpej  * Split a lock and a contained region into
    335  1.45   thorpej  * two or three locks as necessary.
    336  1.45   thorpej  */
    337  1.45   thorpej static void
    338  1.45   thorpej lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
    339  1.45   thorpej {
    340  1.45   thorpej 	struct lockf *splitlock;
    341   1.1        ws 
    342  1.45   thorpej #ifdef LOCKF_DEBUG
    343  1.45   thorpej 	if (lockf_debug & 2) {
    344  1.45   thorpej 		lf_print("lf_split", lock1);
    345  1.45   thorpej 		lf_print("splitting from", lock2);
    346   1.1        ws 	}
    347  1.45   thorpej #endif /* LOCKF_DEBUG */
    348  1.10    kleink 	/*
    349  1.75    andvar 	 * Check to see if splitting into only two pieces.
    350  1.27      yamt 	 */
    351  1.45   thorpej 	if (lock1->lf_start == lock2->lf_start) {
    352  1.45   thorpej 		lock1->lf_start = lock2->lf_end + 1;
    353  1.45   thorpej 		lock2->lf_next = lock1;
    354  1.45   thorpej 		return;
    355  1.27      yamt 	}
    356  1.45   thorpej 	if (lock1->lf_end == lock2->lf_end) {
    357  1.45   thorpej 		lock1->lf_end = lock2->lf_start - 1;
    358  1.45   thorpej 		lock2->lf_next = lock1->lf_next;
    359  1.45   thorpej 		lock1->lf_next = lock2;
    360  1.45   thorpej 		return;
    361  1.27      yamt 	}
    362  1.27      yamt 	/*
    363  1.45   thorpej 	 * Make a new lock consisting of the last part of
    364  1.45   thorpej 	 * the encompassing lock
    365  1.10    kleink 	 */
    366  1.45   thorpej 	splitlock = *sparelock;
    367  1.45   thorpej 	*sparelock = NULL;
    368  1.70      yamt 	cv_destroy(&splitlock->lf_cv);
    369  1.45   thorpej 	memcpy(splitlock, lock1, sizeof(*splitlock));
    370  1.67     skrll 	cv_init(&splitlock->lf_cv, lockstr);
    371  1.67     skrll 
    372  1.45   thorpej 	splitlock->lf_start = lock2->lf_end + 1;
    373  1.45   thorpej 	TAILQ_INIT(&splitlock->lf_blkhd);
    374  1.45   thorpej 	lock1->lf_end = lock2->lf_start - 1;
    375   1.1        ws 	/*
    376  1.45   thorpej 	 * OK, now link it in
    377  1.21   thorpej 	 */
    378  1.45   thorpej 	splitlock->lf_next = lock1->lf_next;
    379  1.45   thorpej 	lock2->lf_next = splitlock;
    380  1.45   thorpej 	lock1->lf_next = lock2;
    381  1.45   thorpej }
    382  1.45   thorpej 
    383  1.45   thorpej /*
    384  1.45   thorpej  * Wakeup a blocklist
    385  1.45   thorpej  */
    386  1.45   thorpej static void
    387  1.45   thorpej lf_wakelock(struct lockf *listhead)
    388  1.45   thorpej {
    389  1.45   thorpej 	struct lockf *wakelock;
    390  1.21   thorpej 
    391  1.45   thorpej 	while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
    392  1.45   thorpej 		KASSERT(wakelock->lf_next == listhead);
    393  1.45   thorpej 		TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
    394  1.54      yamt 		wakelock->lf_next = NULL;
    395  1.45   thorpej #ifdef LOCKF_DEBUG
    396  1.45   thorpej 		if (lockf_debug & 2)
    397  1.45   thorpej 			lf_print("lf_wakelock: awakening", wakelock);
    398  1.45   thorpej #endif
    399  1.61        ad 		cv_broadcast(&wakelock->lf_cv);
    400  1.21   thorpej 	}
    401  1.45   thorpej }
    402  1.45   thorpej 
    403  1.45   thorpej /*
    404  1.45   thorpej  * Remove a byte-range lock on an inode.
    405  1.45   thorpej  *
    406  1.45   thorpej  * Generally, find the lock (or an overlap to that lock)
    407  1.45   thorpej  * and remove it (or shrink it), then wakeup anyone we can.
    408  1.45   thorpej  */
    409  1.45   thorpej static int
    410  1.45   thorpej lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
    411  1.45   thorpej {
    412  1.45   thorpej 	struct lockf **head = unlock->lf_head;
    413  1.45   thorpej 	struct lockf *lf = *head;
    414  1.45   thorpej 	struct lockf *overlap, **prev;
    415  1.45   thorpej 	int ovcase;
    416  1.45   thorpej 
    417  1.54      yamt 	if (lf == NULL)
    418  1.45   thorpej 		return 0;
    419  1.45   thorpej #ifdef LOCKF_DEBUG
    420  1.45   thorpej 	if (unlock->lf_type != F_UNLCK)
    421  1.45   thorpej 		panic("lf_clearlock: bad type");
    422  1.45   thorpej 	if (lockf_debug & 1)
    423  1.45   thorpej 		lf_print("lf_clearlock", unlock);
    424  1.45   thorpej #endif /* LOCKF_DEBUG */
    425  1.45   thorpej 	prev = head;
    426  1.45   thorpej 	while ((ovcase = lf_findoverlap(lf, unlock, SELF,
    427  1.61        ad 	    &prev, &overlap)) != 0) {
    428  1.45   thorpej 		/*
    429  1.45   thorpej 		 * Wakeup the list of locks to be retried.
    430  1.45   thorpej 		 */
    431  1.45   thorpej 		lf_wakelock(overlap);
    432  1.45   thorpej 
    433  1.45   thorpej 		switch (ovcase) {
    434  1.37     perry 
    435  1.45   thorpej 		case 1: /* overlap == lock */
    436  1.45   thorpej 			*prev = overlap->lf_next;
    437  1.45   thorpej 			lf_free(overlap);
    438  1.45   thorpej 			break;
    439   1.4   mycroft 
    440  1.45   thorpej 		case 2: /* overlap contains lock: split it */
    441  1.45   thorpej 			if (overlap->lf_start == unlock->lf_start) {
    442  1.45   thorpej 				overlap->lf_start = unlock->lf_end + 1;
    443  1.45   thorpej 				break;
    444  1.45   thorpej 			}
    445  1.45   thorpej 			lf_split(overlap, unlock, sparelock);
    446  1.45   thorpej 			overlap->lf_next = unlock->lf_next;
    447  1.45   thorpej 			break;
    448   1.1        ws 
    449  1.45   thorpej 		case 3: /* lock contains overlap */
    450  1.45   thorpej 			*prev = overlap->lf_next;
    451  1.45   thorpej 			lf = overlap->lf_next;
    452  1.45   thorpej 			lf_free(overlap);
    453  1.45   thorpej 			continue;
    454   1.1        ws 
    455  1.45   thorpej 		case 4: /* overlap starts before lock */
    456  1.45   thorpej 			overlap->lf_end = unlock->lf_start - 1;
    457  1.45   thorpej 			prev = &overlap->lf_next;
    458  1.45   thorpej 			lf = overlap->lf_next;
    459  1.45   thorpej 			continue;
    460   1.4   mycroft 
    461  1.45   thorpej 		case 5: /* overlap ends after lock */
    462  1.45   thorpej 			overlap->lf_start = unlock->lf_end + 1;
    463  1.45   thorpej 			break;
    464  1.45   thorpej 		}
    465  1.31      fvdl 		break;
    466  1.27      yamt 	}
    467  1.45   thorpej #ifdef LOCKF_DEBUG
    468  1.45   thorpej 	if (lockf_debug & 1)
    469  1.45   thorpej 		lf_printlist("lf_clearlock", unlock);
    470  1.45   thorpej #endif /* LOCKF_DEBUG */
    471  1.45   thorpej 	return 0;
    472  1.45   thorpej }
    473  1.27      yamt 
    474  1.45   thorpej /*
    475  1.45   thorpej  * Walk the list of locks for an inode and
    476  1.45   thorpej  * return the first blocking lock.
    477  1.45   thorpej  */
    478  1.45   thorpej static struct lockf *
    479  1.45   thorpej lf_getblock(struct lockf *lock)
    480  1.45   thorpej {
    481  1.45   thorpej 	struct lockf **prev, *overlap, *lf = *(lock->lf_head);
    482  1.27      yamt 
    483  1.45   thorpej 	prev = lock->lf_head;
    484  1.45   thorpej 	while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
    485  1.45   thorpej 		/*
    486  1.45   thorpej 		 * We've found an overlap, see if it blocks us
    487  1.45   thorpej 		 */
    488  1.45   thorpej 		if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
    489  1.45   thorpej 			return overlap;
    490  1.45   thorpej 		/*
    491  1.45   thorpej 		 * Nope, point to the next one on the list and
    492  1.45   thorpej 		 * see if it blocks us
    493  1.45   thorpej 		 */
    494  1.45   thorpej 		lf = overlap->lf_next;
    495  1.45   thorpej 	}
    496  1.54      yamt 	return NULL;
    497   1.1        ws }
    498   1.1        ws 
    499   1.1        ws /*
    500   1.1        ws  * Set a byte-range lock.
    501   1.1        ws  */
    502  1.24      yamt static int
    503  1.27      yamt lf_setlock(struct lockf *lock, struct lockf **sparelock,
    504  1.61        ad     kmutex_t *interlock)
    505   1.1        ws {
    506  1.15  augustss 	struct lockf *block;
    507   1.1        ws 	struct lockf **head = lock->lf_head;
    508   1.1        ws 	struct lockf **prev, *overlap, *ltmp;
    509  1.61        ad 	int ovcase, needtolink, error;
    510   1.1        ws 
    511   1.1        ws #ifdef LOCKF_DEBUG
    512   1.1        ws 	if (lockf_debug & 1)
    513   1.1        ws 		lf_print("lf_setlock", lock);
    514   1.1        ws #endif /* LOCKF_DEBUG */
    515   1.1        ws 
    516   1.1        ws 	/*
    517   1.1        ws 	 * Scan lock list for this file looking for locks that would block us.
    518   1.1        ws 	 */
    519   1.7  christos 	while ((block = lf_getblock(lock)) != NULL) {
    520   1.1        ws 		/*
    521   1.1        ws 		 * Free the structure and return if nonblocking.
    522   1.1        ws 		 */
    523   1.1        ws 		if ((lock->lf_flags & F_WAIT) == 0) {
    524  1.38  christos 			lf_free(lock);
    525  1.29      yamt 			return EAGAIN;
    526   1.1        ws 		}
    527   1.1        ws 		/*
    528   1.1        ws 		 * We are blocked. Since flock style locks cover
    529   1.1        ws 		 * the whole file, there is no chance for deadlock.
    530   1.1        ws 		 * For byte-range locks we must check for deadlock.
    531   1.1        ws 		 *
    532   1.1        ws 		 * Deadlock detection is done by looking through the
    533   1.1        ws 		 * wait channels to see if there are any cycles that
    534   1.1        ws 		 * involve us. MAXDEPTH is set just to make sure we
    535  1.16  sommerfe 		 * do not go off into neverneverland.
    536   1.1        ws 		 */
    537   1.1        ws 		if ((lock->lf_flags & F_POSIX) &&
    538   1.1        ws 		    (block->lf_flags & F_POSIX)) {
    539  1.21   thorpej 			struct lwp *wlwp;
    540  1.48     perry 			volatile const struct lockf *waitblock;
    541   1.1        ws 			int i = 0;
    542  1.52      yamt 			struct proc *p;
    543   1.1        ws 
    544  1.52      yamt 			p = (struct proc *)block->lf_id;
    545  1.52      yamt 			KASSERT(p != NULL);
    546  1.52      yamt 			while (i++ < maxlockdepth) {
    547  1.64        ad 				mutex_enter(p->p_lock);
    548  1.52      yamt 				if (p->p_nlwps > 1) {
    549  1.64        ad 					mutex_exit(p->p_lock);
    550  1.52      yamt 					break;
    551  1.52      yamt 				}
    552  1.52      yamt 				wlwp = LIST_FIRST(&p->p_lwps);
    553  1.57        ad 				lwp_lock(wlwp);
    554  1.65        ad 				if (wlwp->l_wchan == NULL ||
    555  1.65        ad 				    wlwp->l_wmesg != lockstr) {
    556  1.57        ad 					lwp_unlock(wlwp);
    557  1.64        ad 					mutex_exit(p->p_lock);
    558  1.52      yamt 					break;
    559  1.52      yamt 				}
    560  1.44  christos 				waitblock = wlwp->l_wchan;
    561  1.57        ad 				lwp_unlock(wlwp);
    562  1.64        ad 				mutex_exit(p->p_lock);
    563   1.1        ws 				/* Get the owner of the blocking lock */
    564   1.1        ws 				waitblock = waitblock->lf_next;
    565   1.1        ws 				if ((waitblock->lf_flags & F_POSIX) == 0)
    566   1.1        ws 					break;
    567  1.52      yamt 				p = (struct proc *)waitblock->lf_id;
    568  1.52      yamt 				if (p == curproc) {
    569  1.38  christos 					lf_free(lock);
    570  1.29      yamt 					return EDEADLK;
    571   1.1        ws 				}
    572   1.1        ws 			}
    573  1.16  sommerfe 			/*
    574  1.36     peter 			 * If we're still following a dependency chain
    575  1.16  sommerfe 			 * after maxlockdepth iterations, assume we're in
    576  1.16  sommerfe 			 * a cycle to be safe.
    577  1.16  sommerfe 			 */
    578  1.16  sommerfe 			if (i >= maxlockdepth) {
    579  1.38  christos 				lf_free(lock);
    580  1.29      yamt 				return EDEADLK;
    581  1.16  sommerfe 			}
    582   1.1        ws 		}
    583   1.1        ws 		/*
    584   1.1        ws 		 * For flock type locks, we must first remove
    585   1.1        ws 		 * any shared locks that we hold before we sleep
    586   1.1        ws 		 * waiting for an exclusive lock.
    587   1.1        ws 		 */
    588   1.1        ws 		if ((lock->lf_flags & F_FLOCK) &&
    589   1.1        ws 		    lock->lf_type == F_WRLCK) {
    590   1.1        ws 			lock->lf_type = F_UNLCK;
    591  1.27      yamt 			(void) lf_clearlock(lock, NULL);
    592   1.1        ws 			lock->lf_type = F_WRLCK;
    593   1.1        ws 		}
    594   1.1        ws 		/*
    595   1.1        ws 		 * Add our lock to the blocked list and sleep until we're free.
    596   1.1        ws 		 * Remember who blocked us (for deadlock detection).
    597   1.1        ws 		 */
    598   1.1        ws 		lock->lf_next = block;
    599  1.12      fvdl 		TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
    600   1.1        ws #ifdef LOCKF_DEBUG
    601   1.1        ws 		if (lockf_debug & 1) {
    602   1.1        ws 			lf_print("lf_setlock: blocking on", block);
    603   1.1        ws 			lf_printlist("lf_setlock", block);
    604   1.1        ws 		}
    605   1.1        ws #endif /* LOCKF_DEBUG */
    606  1.61        ad 		error = cv_wait_sig(&lock->lf_cv, interlock);
    607  1.16  sommerfe 
    608  1.16  sommerfe 		/*
    609  1.65        ad 		 * We may have been awoken by a signal (in
    610  1.16  sommerfe 		 * which case we must remove ourselves from the
    611  1.16  sommerfe 		 * blocked list) and/or by another process
    612  1.16  sommerfe 		 * releasing a lock (in which case we have already
    613  1.16  sommerfe 		 * been removed from the blocked list and our
    614  1.54      yamt 		 * lf_next field set to NULL).
    615  1.16  sommerfe 		 */
    616  1.54      yamt 		if (lock->lf_next != NULL) {
    617  1.16  sommerfe 			TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
    618  1.54      yamt 			lock->lf_next = NULL;
    619  1.16  sommerfe 		}
    620   1.7  christos 		if (error) {
    621  1.38  christos 			lf_free(lock);
    622  1.29      yamt 			return error;
    623   1.1        ws 		}
    624   1.1        ws 	}
    625   1.1        ws 	/*
    626   1.1        ws 	 * No blocks!!  Add the lock.  Note that we will
    627   1.1        ws 	 * downgrade or upgrade any overlapping locks this
    628   1.1        ws 	 * process already owns.
    629   1.1        ws 	 *
    630   1.1        ws 	 * Skip over locks owned by other processes.
    631   1.1        ws 	 * Handle any locks that overlap and are owned by ourselves.
    632   1.1        ws 	 */
    633   1.1        ws 	prev = head;
    634   1.1        ws 	block = *head;
    635   1.1        ws 	needtolink = 1;
    636   1.1        ws 	for (;;) {
    637   1.7  christos 		ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
    638   1.7  christos 		if (ovcase)
    639   1.1        ws 			block = overlap->lf_next;
    640   1.1        ws 		/*
    641   1.1        ws 		 * Six cases:
    642   1.1        ws 		 *	0) no overlap
    643   1.1        ws 		 *	1) overlap == lock
    644   1.1        ws 		 *	2) overlap contains lock
    645   1.1        ws 		 *	3) lock contains overlap
    646   1.1        ws 		 *	4) overlap starts before lock
    647   1.1        ws 		 *	5) overlap ends after lock
    648   1.1        ws 		 */
    649   1.1        ws 		switch (ovcase) {
    650   1.1        ws 		case 0: /* no overlap */
    651   1.1        ws 			if (needtolink) {
    652   1.1        ws 				*prev = lock;
    653   1.1        ws 				lock->lf_next = overlap;
    654   1.1        ws 			}
    655   1.1        ws 			break;
    656   1.1        ws 
    657   1.1        ws 		case 1: /* overlap == lock */
    658   1.1        ws 			/*
    659   1.1        ws 			 * If downgrading lock, others may be
    660   1.1        ws 			 * able to acquire it.
    661   1.1        ws 			 */
    662   1.1        ws 			if (lock->lf_type == F_RDLCK &&
    663   1.1        ws 			    overlap->lf_type == F_WRLCK)
    664   1.1        ws 				lf_wakelock(overlap);
    665   1.1        ws 			overlap->lf_type = lock->lf_type;
    666  1.38  christos 			lf_free(lock);
    667   1.1        ws 			lock = overlap; /* for debug output below */
    668   1.1        ws 			break;
    669   1.1        ws 
    670   1.1        ws 		case 2: /* overlap contains lock */
    671   1.1        ws 			/*
    672   1.1        ws 			 * Check for common starting point and different types.
    673   1.1        ws 			 */
    674   1.1        ws 			if (overlap->lf_type == lock->lf_type) {
    675  1.38  christos 				lf_free(lock);
    676   1.1        ws 				lock = overlap; /* for debug output below */
    677   1.1        ws 				break;
    678   1.1        ws 			}
    679   1.1        ws 			if (overlap->lf_start == lock->lf_start) {
    680   1.1        ws 				*prev = lock;
    681   1.1        ws 				lock->lf_next = overlap;
    682   1.1        ws 				overlap->lf_start = lock->lf_end + 1;
    683   1.1        ws 			} else
    684  1.27      yamt 				lf_split(overlap, lock, sparelock);
    685   1.1        ws 			lf_wakelock(overlap);
    686   1.1        ws 			break;
    687   1.1        ws 
    688   1.1        ws 		case 3: /* lock contains overlap */
    689   1.1        ws 			/*
    690   1.1        ws 			 * If downgrading lock, others may be able to
    691   1.1        ws 			 * acquire it, otherwise take the list.
    692   1.1        ws 			 */
    693   1.1        ws 			if (lock->lf_type == F_RDLCK &&
    694   1.1        ws 			    overlap->lf_type == F_WRLCK) {
    695   1.1        ws 				lf_wakelock(overlap);
    696   1.1        ws 			} else {
    697  1.19      matt 				while ((ltmp = TAILQ_FIRST(&overlap->lf_blkhd))) {
    698  1.16  sommerfe 					KASSERT(ltmp->lf_next == overlap);
    699  1.12      fvdl 					TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
    700  1.12      fvdl 					    lf_block);
    701  1.16  sommerfe 					ltmp->lf_next = lock;
    702  1.12      fvdl 					TAILQ_INSERT_TAIL(&lock->lf_blkhd,
    703  1.12      fvdl 					    ltmp, lf_block);
    704  1.12      fvdl 				}
    705   1.1        ws 			}
    706   1.1        ws 			/*
    707   1.1        ws 			 * Add the new lock if necessary and delete the overlap.
    708   1.1        ws 			 */
    709   1.1        ws 			if (needtolink) {
    710   1.1        ws 				*prev = lock;
    711   1.1        ws 				lock->lf_next = overlap->lf_next;
    712   1.1        ws 				prev = &lock->lf_next;
    713   1.1        ws 				needtolink = 0;
    714   1.1        ws 			} else
    715   1.1        ws 				*prev = overlap->lf_next;
    716  1.39  christos 			lf_free(overlap);
    717   1.1        ws 			continue;
    718   1.1        ws 
    719   1.1        ws 		case 4: /* overlap starts before lock */
    720   1.1        ws 			/*
    721   1.1        ws 			 * Add lock after overlap on the list.
    722   1.1        ws 			 */
    723   1.1        ws 			lock->lf_next = overlap->lf_next;
    724   1.1        ws 			overlap->lf_next = lock;
    725   1.1        ws 			overlap->lf_end = lock->lf_start - 1;
    726   1.1        ws 			prev = &lock->lf_next;
    727   1.1        ws 			lf_wakelock(overlap);
    728   1.1        ws 			needtolink = 0;
    729   1.1        ws 			continue;
    730   1.1        ws 
    731   1.1        ws 		case 5: /* overlap ends after lock */
    732   1.1        ws 			/*
    733   1.1        ws 			 * Add the new lock before overlap.
    734   1.1        ws 			 */
    735   1.1        ws 			if (needtolink) {
    736   1.1        ws 				*prev = lock;
    737   1.1        ws 				lock->lf_next = overlap;
    738   1.1        ws 			}
    739   1.1        ws 			overlap->lf_start = lock->lf_end + 1;
    740   1.1        ws 			lf_wakelock(overlap);
    741   1.1        ws 			break;
    742   1.1        ws 		}
    743   1.1        ws 		break;
    744   1.1        ws 	}
    745   1.1        ws #ifdef LOCKF_DEBUG
    746   1.1        ws 	if (lockf_debug & 1) {
    747   1.1        ws 		lf_print("lf_setlock: got the lock", lock);
    748   1.1        ws 		lf_printlist("lf_setlock", lock);
    749   1.1        ws 	}
    750   1.1        ws #endif /* LOCKF_DEBUG */
    751  1.29      yamt 	return 0;
    752   1.1        ws }
    753   1.1        ws 
    754   1.1        ws /*
    755   1.1        ws  * Check whether there is a blocking lock,
    756   1.1        ws  * and if so return its process identifier.
    757   1.1        ws  */
    758  1.24      yamt static int
    759  1.25      yamt lf_getlock(struct lockf *lock, struct flock *fl)
    760   1.1        ws {
    761  1.15  augustss 	struct lockf *block;
    762   1.1        ws 
    763   1.1        ws #ifdef LOCKF_DEBUG
    764   1.1        ws 	if (lockf_debug & 1)
    765   1.1        ws 		lf_print("lf_getlock", lock);
    766   1.1        ws #endif /* LOCKF_DEBUG */
    767   1.1        ws 
    768   1.7  christos 	if ((block = lf_getblock(lock)) != NULL) {
    769   1.1        ws 		fl->l_type = block->lf_type;
    770   1.1        ws 		fl->l_whence = SEEK_SET;
    771   1.1        ws 		fl->l_start = block->lf_start;
    772   1.1        ws 		if (block->lf_end == -1)
    773   1.1        ws 			fl->l_len = 0;
    774   1.1        ws 		else
    775   1.1        ws 			fl->l_len = block->lf_end - block->lf_start + 1;
    776   1.1        ws 		if (block->lf_flags & F_POSIX)
    777  1.23   mycroft 			fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
    778   1.1        ws 		else
    779   1.1        ws 			fl->l_pid = -1;
    780   1.1        ws 	} else {
    781   1.1        ws 		fl->l_type = F_UNLCK;
    782   1.1        ws 	}
    783  1.29      yamt 	return 0;
    784   1.1        ws }
    785   1.1        ws 
    786   1.1        ws /*
    787  1.45   thorpej  * Do an advisory lock operation.
    788   1.1        ws  */
    789  1.45   thorpej int
    790  1.45   thorpej lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
    791   1.1        ws {
    792  1.45   thorpej 	struct flock *fl = ap->a_fl;
    793  1.45   thorpej 	struct lockf *lock = NULL;
    794  1.45   thorpej 	struct lockf *sparelock;
    795  1.79        ad 	kmutex_t *interlock = &lockf_lock;
    796  1.45   thorpej 	off_t start, end;
    797  1.45   thorpej 	int error = 0;
    798   1.1        ws 
    799  1.76  riastrad 	KASSERTMSG(size >= 0, "size=%jd", (intmax_t)size);
    800  1.76  riastrad 
    801  1.45   thorpej 	/*
    802  1.45   thorpej 	 * Convert the flock structure into a start and end.
    803  1.45   thorpej 	 */
    804  1.45   thorpej 	switch (fl->l_whence) {
    805  1.45   thorpej 	case SEEK_SET:
    806  1.45   thorpej 	case SEEK_CUR:
    807   1.1        ws 		/*
    808  1.45   thorpej 		 * Caller is responsible for adding any necessary offset
    809  1.45   thorpej 		 * when SEEK_CUR is used.
    810   1.1        ws 		 */
    811  1.45   thorpej 		start = fl->l_start;
    812  1.45   thorpej 		break;
    813  1.45   thorpej 
    814  1.45   thorpej 	case SEEK_END:
    815  1.76  riastrad 		if (fl->l_start > __type_max(off_t) - size)
    816  1.76  riastrad 			return EINVAL;
    817  1.45   thorpej 		start = size + fl->l_start;
    818  1.45   thorpej 		break;
    819  1.45   thorpej 
    820  1.45   thorpej 	default:
    821  1.45   thorpej 		return EINVAL;
    822   1.1        ws 	}
    823  1.72       dsl 
    824  1.72       dsl 	if (fl->l_len == 0)
    825  1.72       dsl 		end = -1;
    826  1.72       dsl 	else {
    827  1.76  riastrad 		if (fl->l_len >= 0) {
    828  1.77  riastrad 			if (start >= 0 &&
    829  1.77  riastrad 			    fl->l_len - 1 > __type_max(off_t) - start)
    830  1.76  riastrad 				return EINVAL;
    831  1.78  riastrad 			end = start + (fl->l_len - 1);
    832  1.76  riastrad 		} else {
    833  1.72       dsl 			/* lockf() allows -ve lengths */
    834  1.76  riastrad 			if (start < 0)
    835  1.76  riastrad 				return EINVAL;
    836  1.72       dsl 			end = start - 1;
    837  1.72       dsl 			start += fl->l_len;
    838  1.72       dsl 		}
    839  1.72       dsl 	}
    840  1.45   thorpej 	if (start < 0)
    841  1.45   thorpej 		return EINVAL;
    842   1.1        ws 
    843  1.45   thorpej 	/*
    844  1.61        ad 	 * Allocate locks before acquiring the interlock.  We need two
    845  1.55        ad 	 * locks in the worst case.
    846  1.45   thorpej 	 */
    847  1.45   thorpej 	switch (ap->a_op) {
    848  1.45   thorpej 	case F_SETLK:
    849  1.45   thorpej 	case F_UNLCK:
    850   1.1        ws 		/*
    851  1.55        ad 		 * XXX For F_UNLCK case, we can re-use the lock.
    852   1.1        ws 		 */
    853  1.46  christos 		if ((ap->a_flags & F_FLOCK) == 0) {
    854  1.45   thorpej 			/*
    855  1.55        ad 			 * Byte-range lock might need one more lock.
    856  1.45   thorpej 			 */
    857  1.71      yamt 			sparelock = lf_alloc(0);
    858  1.45   thorpej 			if (sparelock == NULL) {
    859  1.45   thorpej 				error = ENOMEM;
    860  1.45   thorpej 				goto quit;
    861  1.45   thorpej 			}
    862  1.45   thorpej 			break;
    863   1.1        ws 		}
    864  1.45   thorpej 		/* FALLTHROUGH */
    865  1.45   thorpej 
    866  1.45   thorpej 	case F_GETLK:
    867  1.45   thorpej 		sparelock = NULL;
    868  1.45   thorpej 		break;
    869  1.45   thorpej 
    870  1.45   thorpej 	default:
    871  1.45   thorpej 		return EINVAL;
    872  1.45   thorpej 	}
    873  1.45   thorpej 
    874  1.71      yamt 	switch (ap->a_op) {
    875  1.71      yamt 	case F_SETLK:
    876  1.71      yamt 		lock = lf_alloc(1);
    877  1.71      yamt 		break;
    878  1.71      yamt 	case F_UNLCK:
    879  1.71      yamt 		if (start == 0 || end == -1) {
    880  1.71      yamt 			/* never split */
    881  1.71      yamt 			lock = lf_alloc(0);
    882  1.71      yamt 		} else {
    883  1.71      yamt 			/* might split */
    884  1.71      yamt 			lock = lf_alloc(2);
    885  1.71      yamt 		}
    886  1.71      yamt 		break;
    887  1.71      yamt 	case F_GETLK:
    888  1.71      yamt 		lock = lf_alloc(0);
    889  1.71      yamt 		break;
    890  1.71      yamt 	}
    891  1.45   thorpej 	if (lock == NULL) {
    892  1.45   thorpej 		error = ENOMEM;
    893  1.45   thorpej 		goto quit;
    894   1.1        ws 	}
    895   1.1        ws 
    896  1.61        ad 	mutex_enter(interlock);
    897   1.1        ws 
    898   1.1        ws 	/*
    899  1.45   thorpej 	 * Avoid the common case of unlocking when inode has no locks.
    900   1.1        ws 	 */
    901  1.45   thorpej 	if (*head == (struct lockf *)0) {
    902  1.45   thorpej 		if (ap->a_op != F_SETLK) {
    903  1.45   thorpej 			fl->l_type = F_UNLCK;
    904  1.45   thorpej 			error = 0;
    905  1.45   thorpej 			goto quit_unlock;
    906  1.45   thorpej 		}
    907   1.1        ws 	}
    908  1.45   thorpej 
    909   1.1        ws 	/*
    910  1.45   thorpej 	 * Create the lockf structure.
    911  1.45   thorpej 	 */
    912  1.45   thorpej 	lock->lf_start = start;
    913  1.45   thorpej 	lock->lf_end = end;
    914  1.45   thorpej 	lock->lf_head = head;
    915  1.45   thorpej 	lock->lf_type = fl->l_type;
    916  1.45   thorpej 	lock->lf_next = (struct lockf *)0;
    917  1.45   thorpej 	TAILQ_INIT(&lock->lf_blkhd);
    918  1.45   thorpej 	lock->lf_flags = ap->a_flags;
    919  1.45   thorpej 	if (lock->lf_flags & F_POSIX) {
    920  1.45   thorpej 		KASSERT(curproc == (struct proc *)ap->a_id);
    921  1.45   thorpej 	}
    922  1.72       dsl 	lock->lf_id = ap->a_id;
    923  1.45   thorpej 
    924   1.1        ws 	/*
    925  1.45   thorpej 	 * Do the requested operation.
    926   1.1        ws 	 */
    927  1.45   thorpej 	switch (ap->a_op) {
    928   1.1        ws 
    929  1.45   thorpej 	case F_SETLK:
    930  1.45   thorpej 		error = lf_setlock(lock, &sparelock, interlock);
    931  1.45   thorpej 		lock = NULL; /* lf_setlock freed it */
    932  1.45   thorpej 		break;
    933   1.1        ws 
    934  1.45   thorpej 	case F_UNLCK:
    935  1.45   thorpej 		error = lf_clearlock(lock, &sparelock);
    936  1.45   thorpej 		break;
    937   1.1        ws 
    938  1.45   thorpej 	case F_GETLK:
    939  1.45   thorpej 		error = lf_getlock(lock, fl);
    940  1.45   thorpej 		break;
    941  1.37     perry 
    942  1.45   thorpej 	default:
    943  1.45   thorpej 		break;
    944  1.45   thorpej 		/* NOTREACHED */
    945  1.45   thorpej 	}
    946   1.1        ws 
    947  1.45   thorpej quit_unlock:
    948  1.61        ad 	mutex_exit(interlock);
    949  1.45   thorpej quit:
    950  1.45   thorpej 	if (lock)
    951  1.45   thorpej 		lf_free(lock);
    952  1.45   thorpej 	if (sparelock)
    953  1.45   thorpej 		lf_free(sparelock);
    954   1.1        ws 
    955  1.45   thorpej 	return error;
    956   1.1        ws }
    957