vfs_lockf.c revision 1.79 1 1.79 ad /* $NetBSD: vfs_lockf.c,v 1.79 2023/09/10 14:45:52 ad Exp $ */
2 1.5 cgd
3 1.1 ws /*
4 1.4 mycroft * Copyright (c) 1982, 1986, 1989, 1993
5 1.4 mycroft * The Regents of the University of California. All rights reserved.
6 1.1 ws *
7 1.1 ws * This code is derived from software contributed to Berkeley by
8 1.1 ws * Scooter Morris at Genentech Inc.
9 1.1 ws *
10 1.1 ws * Redistribution and use in source and binary forms, with or without
11 1.1 ws * modification, are permitted provided that the following conditions
12 1.1 ws * are met:
13 1.1 ws * 1. Redistributions of source code must retain the above copyright
14 1.1 ws * notice, this list of conditions and the following disclaimer.
15 1.1 ws * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 ws * notice, this list of conditions and the following disclaimer in the
17 1.1 ws * documentation and/or other materials provided with the distribution.
18 1.33 agc * 3. Neither the name of the University nor the names of its contributors
19 1.1 ws * may be used to endorse or promote products derived from this software
20 1.1 ws * without specific prior written permission.
21 1.1 ws *
22 1.1 ws * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 ws * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 ws * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 ws * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 ws * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 ws * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 ws * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 ws * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 ws * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 ws * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 ws * SUCH DAMAGE.
33 1.1 ws *
34 1.12 fvdl * @(#)ufs_lockf.c 8.4 (Berkeley) 10/26/94
35 1.1 ws */
36 1.18 lukem
37 1.18 lukem #include <sys/cdefs.h>
38 1.79 ad __KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.79 2023/09/10 14:45:52 ad Exp $");
39 1.1 ws
40 1.1 ws #include <sys/param.h>
41 1.1 ws #include <sys/systm.h>
42 1.1 ws #include <sys/kernel.h>
43 1.1 ws #include <sys/file.h>
44 1.1 ws #include <sys/proc.h>
45 1.1 ws #include <sys/vnode.h>
46 1.79 ad #include <sys/kmem.h>
47 1.1 ws #include <sys/fcntl.h>
48 1.1 ws #include <sys/lockf.h>
49 1.63 mrg #include <sys/atomic.h>
50 1.49 elad #include <sys/kauth.h>
51 1.69 pooka #include <sys/uidinfo.h>
52 1.22 thorpej
53 1.50 yamt /*
54 1.50 yamt * The lockf structure is a kernel structure which contains the information
55 1.50 yamt * associated with a byte range lock. The lockf structures are linked into
56 1.60 ad * the vnode structure. Locks are sorted by the starting byte of the lock for
57 1.50 yamt * efficiency.
58 1.50 yamt *
59 1.50 yamt * lf_next is used for two purposes, depending on whether the lock is
60 1.50 yamt * being held, or is in conflict with an existing lock. If this lock
61 1.50 yamt * is held, it indicates the next lock on the same vnode.
62 1.50 yamt * For pending locks, if lock->lf_next is non-NULL, then lock->lf_block
63 1.50 yamt * must be queued on the lf_blkhd TAILQ of lock->lf_next.
64 1.50 yamt */
65 1.50 yamt
66 1.50 yamt TAILQ_HEAD(locklist, lockf);
67 1.50 yamt
68 1.50 yamt struct lockf {
69 1.65 ad kcondvar_t lf_cv; /* Signalling */
70 1.50 yamt short lf_flags; /* Lock semantics: F_POSIX, F_FLOCK, F_WAIT */
71 1.50 yamt short lf_type; /* Lock type: F_RDLCK, F_WRLCK */
72 1.79 ad uid_t lf_uid; /* User ID responsible */
73 1.50 yamt off_t lf_start; /* The byte # of the start of the lock */
74 1.50 yamt off_t lf_end; /* The byte # of the end of the lock (-1=EOF)*/
75 1.50 yamt void *lf_id; /* process or file description holding lock */
76 1.50 yamt struct lockf **lf_head; /* Back pointer to the head of lockf list */
77 1.50 yamt struct lockf *lf_next; /* Next lock on this vnode, or blocking lock */
78 1.50 yamt struct locklist lf_blkhd; /* List of requests blocked on this lock */
79 1.50 yamt TAILQ_ENTRY(lockf) lf_block;/* A request waiting for a lock */
80 1.79 ad struct uidinfo *lf_uip; /* Cached pointer to uidinfo */
81 1.50 yamt };
82 1.50 yamt
83 1.50 yamt /* Maximum length of sleep chains to traverse to try and detect deadlock. */
84 1.50 yamt #define MAXDEPTH 50
85 1.50 yamt
86 1.79 ad static kmutex_t lockf_lock __cacheline_aligned;
87 1.65 ad static char lockstr[] = "lockf";
88 1.1 ws
89 1.1 ws /*
90 1.6 mycroft * This variable controls the maximum number of processes that will
91 1.6 mycroft * be checked in doing deadlock detection.
92 1.6 mycroft */
93 1.6 mycroft int maxlockdepth = MAXDEPTH;
94 1.6 mycroft
95 1.6 mycroft #ifdef LOCKF_DEBUG
96 1.6 mycroft int lockf_debug = 0;
97 1.6 mycroft #endif
98 1.6 mycroft
99 1.6 mycroft #define SELF 0x1
100 1.6 mycroft #define OTHERS 0x2
101 1.6 mycroft
102 1.6 mycroft /*
103 1.16 sommerfe * XXX TODO
104 1.58 christos * Misc cleanups: "void *id" should be visible in the API as a
105 1.16 sommerfe * "struct proc *".
106 1.16 sommerfe * (This requires rototilling all VFS's which support advisory locking).
107 1.16 sommerfe */
108 1.16 sommerfe
109 1.16 sommerfe /*
110 1.16 sommerfe * If there's a lot of lock contention on a single vnode, locking
111 1.16 sommerfe * schemes which allow for more paralleism would be needed. Given how
112 1.16 sommerfe * infrequently byte-range locks are actually used in typical BSD
113 1.16 sommerfe * code, a more complex approach probably isn't worth it.
114 1.16 sommerfe */
115 1.16 sommerfe
116 1.16 sommerfe /*
117 1.38 christos * We enforce a limit on locks by uid, so that a single user cannot
118 1.38 christos * run the kernel out of memory. For now, the limit is pretty coarse.
119 1.38 christos * There is no limit on root.
120 1.38 christos *
121 1.38 christos * Splitting a lock will always succeed, regardless of current allocations.
122 1.38 christos * If you're slightly above the limit, we still have to permit an allocation
123 1.38 christos * so that the unlock can succeed. If the unlocking causes too many splits,
124 1.38 christos * however, you're totally cutoff.
125 1.38 christos */
126 1.74 manu #define MAXLOCKSPERUID (2 * maxfiles)
127 1.38 christos
128 1.45 thorpej #ifdef LOCKF_DEBUG
129 1.45 thorpej /*
130 1.45 thorpej * Print out a lock.
131 1.45 thorpej */
132 1.45 thorpej static void
133 1.56 christos lf_print(const char *tag, struct lockf *lock)
134 1.45 thorpej {
135 1.45 thorpej
136 1.45 thorpej printf("%s: lock %p for ", tag, lock);
137 1.45 thorpej if (lock->lf_flags & F_POSIX)
138 1.45 thorpej printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
139 1.45 thorpej else
140 1.45 thorpej printf("file %p", (struct file *)lock->lf_id);
141 1.73 dholland printf(" %s, start %jd, end %jd",
142 1.45 thorpej lock->lf_type == F_RDLCK ? "shared" :
143 1.45 thorpej lock->lf_type == F_WRLCK ? "exclusive" :
144 1.45 thorpej lock->lf_type == F_UNLCK ? "unlock" :
145 1.73 dholland "unknown", (intmax_t)lock->lf_start, (intmax_t)lock->lf_end);
146 1.45 thorpej if (TAILQ_FIRST(&lock->lf_blkhd))
147 1.45 thorpej printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
148 1.45 thorpej else
149 1.45 thorpej printf("\n");
150 1.45 thorpej }
151 1.45 thorpej
152 1.45 thorpej static void
153 1.56 christos lf_printlist(const char *tag, struct lockf *lock)
154 1.45 thorpej {
155 1.45 thorpej struct lockf *lf, *blk;
156 1.45 thorpej
157 1.45 thorpej printf("%s: Lock list:\n", tag);
158 1.45 thorpej for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
159 1.45 thorpej printf("\tlock %p for ", lf);
160 1.45 thorpej if (lf->lf_flags & F_POSIX)
161 1.45 thorpej printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
162 1.45 thorpej else
163 1.45 thorpej printf("file %p", (struct file *)lf->lf_id);
164 1.73 dholland printf(", %s, start %jd, end %jd",
165 1.45 thorpej lf->lf_type == F_RDLCK ? "shared" :
166 1.45 thorpej lf->lf_type == F_WRLCK ? "exclusive" :
167 1.45 thorpej lf->lf_type == F_UNLCK ? "unlock" :
168 1.73 dholland "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
169 1.45 thorpej TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
170 1.45 thorpej if (blk->lf_flags & F_POSIX)
171 1.66 skrll printf("; proc %d",
172 1.45 thorpej ((struct proc *)blk->lf_id)->p_pid);
173 1.45 thorpej else
174 1.66 skrll printf("; file %p", (struct file *)blk->lf_id);
175 1.73 dholland printf(", %s, start %jd, end %jd",
176 1.45 thorpej blk->lf_type == F_RDLCK ? "shared" :
177 1.45 thorpej blk->lf_type == F_WRLCK ? "exclusive" :
178 1.45 thorpej blk->lf_type == F_UNLCK ? "unlock" :
179 1.73 dholland "unknown", (intmax_t)blk->lf_start, (intmax_t)blk->lf_end);
180 1.45 thorpej if (TAILQ_FIRST(&blk->lf_blkhd))
181 1.45 thorpej panic("lf_printlist: bad list");
182 1.45 thorpej }
183 1.45 thorpej printf("\n");
184 1.45 thorpej }
185 1.45 thorpej }
186 1.45 thorpej #endif /* LOCKF_DEBUG */
187 1.45 thorpej
188 1.38 christos /*
189 1.38 christos * 3 options for allowfail.
190 1.38 christos * 0 - always allocate. 1 - cutoff at limit. 2 - cutoff at double limit.
191 1.38 christos */
192 1.45 thorpej static struct lockf *
193 1.71 yamt lf_alloc(int allowfail)
194 1.38 christos {
195 1.38 christos struct uidinfo *uip;
196 1.38 christos struct lockf *lock;
197 1.62 rmind u_long lcnt;
198 1.71 yamt const uid_t uid = kauth_cred_geteuid(kauth_cred_get());
199 1.38 christos
200 1.38 christos uip = uid_find(uid);
201 1.62 rmind lcnt = atomic_inc_ulong_nv(&uip->ui_lockcnt);
202 1.62 rmind if (uid && allowfail && lcnt >
203 1.74 manu (allowfail == 1 ? MAXLOCKSPERUID : (MAXLOCKSPERUID * 2))) {
204 1.62 rmind atomic_dec_ulong(&uip->ui_lockcnt);
205 1.40 christos return NULL;
206 1.40 christos }
207 1.62 rmind
208 1.79 ad lock = kmem_alloc(sizeof(*lock), KM_SLEEP);
209 1.38 christos lock->lf_uid = uid;
210 1.79 ad lock->lf_uip = uip;
211 1.79 ad cv_init(&lock->lf_cv, lockstr);
212 1.40 christos return lock;
213 1.38 christos }
214 1.38 christos
215 1.45 thorpej static void
216 1.38 christos lf_free(struct lockf *lock)
217 1.38 christos {
218 1.38 christos
219 1.79 ad atomic_dec_ulong(&lock->lf_uip->ui_lockcnt);
220 1.61 ad cv_destroy(&lock->lf_cv);
221 1.79 ad kmem_free(lock, sizeof(*lock));
222 1.38 christos }
223 1.38 christos
224 1.38 christos /*
225 1.45 thorpej * Walk the list of locks for an inode to
226 1.45 thorpej * find an overlapping lock (if any).
227 1.45 thorpej *
228 1.45 thorpej * NOTE: this returns only the FIRST overlapping lock. There
229 1.45 thorpej * may be more than one.
230 1.1 ws */
231 1.45 thorpej static int
232 1.45 thorpej lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
233 1.45 thorpej struct lockf ***prev, struct lockf **overlap)
234 1.1 ws {
235 1.1 ws off_t start, end;
236 1.1 ws
237 1.45 thorpej *overlap = lf;
238 1.54 yamt if (lf == NULL)
239 1.45 thorpej return 0;
240 1.45 thorpej #ifdef LOCKF_DEBUG
241 1.45 thorpej if (lockf_debug & 2)
242 1.45 thorpej lf_print("lf_findoverlap: looking for overlap in", lock);
243 1.45 thorpej #endif /* LOCKF_DEBUG */
244 1.45 thorpej start = lock->lf_start;
245 1.45 thorpej end = lock->lf_end;
246 1.54 yamt while (lf != NULL) {
247 1.45 thorpej if (((type == SELF) && lf->lf_id != lock->lf_id) ||
248 1.45 thorpej ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
249 1.45 thorpej *prev = &lf->lf_next;
250 1.45 thorpej *overlap = lf = lf->lf_next;
251 1.45 thorpej continue;
252 1.45 thorpej }
253 1.45 thorpej #ifdef LOCKF_DEBUG
254 1.45 thorpej if (lockf_debug & 2)
255 1.45 thorpej lf_print("\tchecking", lf);
256 1.45 thorpej #endif /* LOCKF_DEBUG */
257 1.1 ws /*
258 1.45 thorpej * OK, check for overlap
259 1.45 thorpej *
260 1.45 thorpej * Six cases:
261 1.45 thorpej * 0) no overlap
262 1.45 thorpej * 1) overlap == lock
263 1.45 thorpej * 2) overlap contains lock
264 1.45 thorpej * 3) lock contains overlap
265 1.45 thorpej * 4) overlap starts before lock
266 1.45 thorpej * 5) overlap ends after lock
267 1.1 ws */
268 1.45 thorpej if ((lf->lf_end != -1 && start > lf->lf_end) ||
269 1.45 thorpej (end != -1 && lf->lf_start > end)) {
270 1.45 thorpej /* Case 0 */
271 1.45 thorpej #ifdef LOCKF_DEBUG
272 1.45 thorpej if (lockf_debug & 2)
273 1.45 thorpej printf("no overlap\n");
274 1.45 thorpej #endif /* LOCKF_DEBUG */
275 1.45 thorpej if ((type & SELF) && end != -1 && lf->lf_start > end)
276 1.45 thorpej return 0;
277 1.45 thorpej *prev = &lf->lf_next;
278 1.45 thorpej *overlap = lf = lf->lf_next;
279 1.45 thorpej continue;
280 1.45 thorpej }
281 1.45 thorpej if ((lf->lf_start == start) && (lf->lf_end == end)) {
282 1.45 thorpej /* Case 1 */
283 1.45 thorpej #ifdef LOCKF_DEBUG
284 1.45 thorpej if (lockf_debug & 2)
285 1.45 thorpej printf("overlap == lock\n");
286 1.45 thorpej #endif /* LOCKF_DEBUG */
287 1.45 thorpej return 1;
288 1.45 thorpej }
289 1.45 thorpej if ((lf->lf_start <= start) &&
290 1.45 thorpej (end != -1) &&
291 1.45 thorpej ((lf->lf_end >= end) || (lf->lf_end == -1))) {
292 1.45 thorpej /* Case 2 */
293 1.45 thorpej #ifdef LOCKF_DEBUG
294 1.45 thorpej if (lockf_debug & 2)
295 1.45 thorpej printf("overlap contains lock\n");
296 1.45 thorpej #endif /* LOCKF_DEBUG */
297 1.45 thorpej return 2;
298 1.45 thorpej }
299 1.45 thorpej if (start <= lf->lf_start &&
300 1.45 thorpej (end == -1 ||
301 1.45 thorpej (lf->lf_end != -1 && end >= lf->lf_end))) {
302 1.45 thorpej /* Case 3 */
303 1.45 thorpej #ifdef LOCKF_DEBUG
304 1.45 thorpej if (lockf_debug & 2)
305 1.45 thorpej printf("lock contains overlap\n");
306 1.45 thorpej #endif /* LOCKF_DEBUG */
307 1.45 thorpej return 3;
308 1.45 thorpej }
309 1.45 thorpej if ((lf->lf_start < start) &&
310 1.45 thorpej ((lf->lf_end >= start) || (lf->lf_end == -1))) {
311 1.45 thorpej /* Case 4 */
312 1.45 thorpej #ifdef LOCKF_DEBUG
313 1.45 thorpej if (lockf_debug & 2)
314 1.45 thorpej printf("overlap starts before lock\n");
315 1.45 thorpej #endif /* LOCKF_DEBUG */
316 1.45 thorpej return 4;
317 1.45 thorpej }
318 1.45 thorpej if ((lf->lf_start > start) &&
319 1.45 thorpej (end != -1) &&
320 1.45 thorpej ((lf->lf_end > end) || (lf->lf_end == -1))) {
321 1.45 thorpej /* Case 5 */
322 1.45 thorpej #ifdef LOCKF_DEBUG
323 1.45 thorpej if (lockf_debug & 2)
324 1.45 thorpej printf("overlap ends after lock\n");
325 1.45 thorpej #endif /* LOCKF_DEBUG */
326 1.45 thorpej return 5;
327 1.45 thorpej }
328 1.45 thorpej panic("lf_findoverlap: default");
329 1.45 thorpej }
330 1.45 thorpej return 0;
331 1.45 thorpej }
332 1.1 ws
333 1.45 thorpej /*
334 1.45 thorpej * Split a lock and a contained region into
335 1.45 thorpej * two or three locks as necessary.
336 1.45 thorpej */
337 1.45 thorpej static void
338 1.45 thorpej lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
339 1.45 thorpej {
340 1.45 thorpej struct lockf *splitlock;
341 1.1 ws
342 1.45 thorpej #ifdef LOCKF_DEBUG
343 1.45 thorpej if (lockf_debug & 2) {
344 1.45 thorpej lf_print("lf_split", lock1);
345 1.45 thorpej lf_print("splitting from", lock2);
346 1.1 ws }
347 1.45 thorpej #endif /* LOCKF_DEBUG */
348 1.10 kleink /*
349 1.75 andvar * Check to see if splitting into only two pieces.
350 1.27 yamt */
351 1.45 thorpej if (lock1->lf_start == lock2->lf_start) {
352 1.45 thorpej lock1->lf_start = lock2->lf_end + 1;
353 1.45 thorpej lock2->lf_next = lock1;
354 1.45 thorpej return;
355 1.27 yamt }
356 1.45 thorpej if (lock1->lf_end == lock2->lf_end) {
357 1.45 thorpej lock1->lf_end = lock2->lf_start - 1;
358 1.45 thorpej lock2->lf_next = lock1->lf_next;
359 1.45 thorpej lock1->lf_next = lock2;
360 1.45 thorpej return;
361 1.27 yamt }
362 1.27 yamt /*
363 1.45 thorpej * Make a new lock consisting of the last part of
364 1.45 thorpej * the encompassing lock
365 1.10 kleink */
366 1.45 thorpej splitlock = *sparelock;
367 1.45 thorpej *sparelock = NULL;
368 1.70 yamt cv_destroy(&splitlock->lf_cv);
369 1.45 thorpej memcpy(splitlock, lock1, sizeof(*splitlock));
370 1.67 skrll cv_init(&splitlock->lf_cv, lockstr);
371 1.67 skrll
372 1.45 thorpej splitlock->lf_start = lock2->lf_end + 1;
373 1.45 thorpej TAILQ_INIT(&splitlock->lf_blkhd);
374 1.45 thorpej lock1->lf_end = lock2->lf_start - 1;
375 1.1 ws /*
376 1.45 thorpej * OK, now link it in
377 1.21 thorpej */
378 1.45 thorpej splitlock->lf_next = lock1->lf_next;
379 1.45 thorpej lock2->lf_next = splitlock;
380 1.45 thorpej lock1->lf_next = lock2;
381 1.45 thorpej }
382 1.45 thorpej
383 1.45 thorpej /*
384 1.45 thorpej * Wakeup a blocklist
385 1.45 thorpej */
386 1.45 thorpej static void
387 1.45 thorpej lf_wakelock(struct lockf *listhead)
388 1.45 thorpej {
389 1.45 thorpej struct lockf *wakelock;
390 1.21 thorpej
391 1.45 thorpej while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
392 1.45 thorpej KASSERT(wakelock->lf_next == listhead);
393 1.45 thorpej TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
394 1.54 yamt wakelock->lf_next = NULL;
395 1.45 thorpej #ifdef LOCKF_DEBUG
396 1.45 thorpej if (lockf_debug & 2)
397 1.45 thorpej lf_print("lf_wakelock: awakening", wakelock);
398 1.45 thorpej #endif
399 1.61 ad cv_broadcast(&wakelock->lf_cv);
400 1.21 thorpej }
401 1.45 thorpej }
402 1.45 thorpej
403 1.45 thorpej /*
404 1.45 thorpej * Remove a byte-range lock on an inode.
405 1.45 thorpej *
406 1.45 thorpej * Generally, find the lock (or an overlap to that lock)
407 1.45 thorpej * and remove it (or shrink it), then wakeup anyone we can.
408 1.45 thorpej */
409 1.45 thorpej static int
410 1.45 thorpej lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
411 1.45 thorpej {
412 1.45 thorpej struct lockf **head = unlock->lf_head;
413 1.45 thorpej struct lockf *lf = *head;
414 1.45 thorpej struct lockf *overlap, **prev;
415 1.45 thorpej int ovcase;
416 1.45 thorpej
417 1.54 yamt if (lf == NULL)
418 1.45 thorpej return 0;
419 1.45 thorpej #ifdef LOCKF_DEBUG
420 1.45 thorpej if (unlock->lf_type != F_UNLCK)
421 1.45 thorpej panic("lf_clearlock: bad type");
422 1.45 thorpej if (lockf_debug & 1)
423 1.45 thorpej lf_print("lf_clearlock", unlock);
424 1.45 thorpej #endif /* LOCKF_DEBUG */
425 1.45 thorpej prev = head;
426 1.45 thorpej while ((ovcase = lf_findoverlap(lf, unlock, SELF,
427 1.61 ad &prev, &overlap)) != 0) {
428 1.45 thorpej /*
429 1.45 thorpej * Wakeup the list of locks to be retried.
430 1.45 thorpej */
431 1.45 thorpej lf_wakelock(overlap);
432 1.45 thorpej
433 1.45 thorpej switch (ovcase) {
434 1.37 perry
435 1.45 thorpej case 1: /* overlap == lock */
436 1.45 thorpej *prev = overlap->lf_next;
437 1.45 thorpej lf_free(overlap);
438 1.45 thorpej break;
439 1.4 mycroft
440 1.45 thorpej case 2: /* overlap contains lock: split it */
441 1.45 thorpej if (overlap->lf_start == unlock->lf_start) {
442 1.45 thorpej overlap->lf_start = unlock->lf_end + 1;
443 1.45 thorpej break;
444 1.45 thorpej }
445 1.45 thorpej lf_split(overlap, unlock, sparelock);
446 1.45 thorpej overlap->lf_next = unlock->lf_next;
447 1.45 thorpej break;
448 1.1 ws
449 1.45 thorpej case 3: /* lock contains overlap */
450 1.45 thorpej *prev = overlap->lf_next;
451 1.45 thorpej lf = overlap->lf_next;
452 1.45 thorpej lf_free(overlap);
453 1.45 thorpej continue;
454 1.1 ws
455 1.45 thorpej case 4: /* overlap starts before lock */
456 1.45 thorpej overlap->lf_end = unlock->lf_start - 1;
457 1.45 thorpej prev = &overlap->lf_next;
458 1.45 thorpej lf = overlap->lf_next;
459 1.45 thorpej continue;
460 1.4 mycroft
461 1.45 thorpej case 5: /* overlap ends after lock */
462 1.45 thorpej overlap->lf_start = unlock->lf_end + 1;
463 1.45 thorpej break;
464 1.45 thorpej }
465 1.31 fvdl break;
466 1.27 yamt }
467 1.45 thorpej #ifdef LOCKF_DEBUG
468 1.45 thorpej if (lockf_debug & 1)
469 1.45 thorpej lf_printlist("lf_clearlock", unlock);
470 1.45 thorpej #endif /* LOCKF_DEBUG */
471 1.45 thorpej return 0;
472 1.45 thorpej }
473 1.27 yamt
474 1.45 thorpej /*
475 1.45 thorpej * Walk the list of locks for an inode and
476 1.45 thorpej * return the first blocking lock.
477 1.45 thorpej */
478 1.45 thorpej static struct lockf *
479 1.45 thorpej lf_getblock(struct lockf *lock)
480 1.45 thorpej {
481 1.45 thorpej struct lockf **prev, *overlap, *lf = *(lock->lf_head);
482 1.27 yamt
483 1.45 thorpej prev = lock->lf_head;
484 1.45 thorpej while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
485 1.45 thorpej /*
486 1.45 thorpej * We've found an overlap, see if it blocks us
487 1.45 thorpej */
488 1.45 thorpej if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
489 1.45 thorpej return overlap;
490 1.45 thorpej /*
491 1.45 thorpej * Nope, point to the next one on the list and
492 1.45 thorpej * see if it blocks us
493 1.45 thorpej */
494 1.45 thorpej lf = overlap->lf_next;
495 1.45 thorpej }
496 1.54 yamt return NULL;
497 1.1 ws }
498 1.1 ws
499 1.1 ws /*
500 1.1 ws * Set a byte-range lock.
501 1.1 ws */
502 1.24 yamt static int
503 1.27 yamt lf_setlock(struct lockf *lock, struct lockf **sparelock,
504 1.61 ad kmutex_t *interlock)
505 1.1 ws {
506 1.15 augustss struct lockf *block;
507 1.1 ws struct lockf **head = lock->lf_head;
508 1.1 ws struct lockf **prev, *overlap, *ltmp;
509 1.61 ad int ovcase, needtolink, error;
510 1.1 ws
511 1.1 ws #ifdef LOCKF_DEBUG
512 1.1 ws if (lockf_debug & 1)
513 1.1 ws lf_print("lf_setlock", lock);
514 1.1 ws #endif /* LOCKF_DEBUG */
515 1.1 ws
516 1.1 ws /*
517 1.1 ws * Scan lock list for this file looking for locks that would block us.
518 1.1 ws */
519 1.7 christos while ((block = lf_getblock(lock)) != NULL) {
520 1.1 ws /*
521 1.1 ws * Free the structure and return if nonblocking.
522 1.1 ws */
523 1.1 ws if ((lock->lf_flags & F_WAIT) == 0) {
524 1.38 christos lf_free(lock);
525 1.29 yamt return EAGAIN;
526 1.1 ws }
527 1.1 ws /*
528 1.1 ws * We are blocked. Since flock style locks cover
529 1.1 ws * the whole file, there is no chance for deadlock.
530 1.1 ws * For byte-range locks we must check for deadlock.
531 1.1 ws *
532 1.1 ws * Deadlock detection is done by looking through the
533 1.1 ws * wait channels to see if there are any cycles that
534 1.1 ws * involve us. MAXDEPTH is set just to make sure we
535 1.16 sommerfe * do not go off into neverneverland.
536 1.1 ws */
537 1.1 ws if ((lock->lf_flags & F_POSIX) &&
538 1.1 ws (block->lf_flags & F_POSIX)) {
539 1.21 thorpej struct lwp *wlwp;
540 1.48 perry volatile const struct lockf *waitblock;
541 1.1 ws int i = 0;
542 1.52 yamt struct proc *p;
543 1.1 ws
544 1.52 yamt p = (struct proc *)block->lf_id;
545 1.52 yamt KASSERT(p != NULL);
546 1.52 yamt while (i++ < maxlockdepth) {
547 1.64 ad mutex_enter(p->p_lock);
548 1.52 yamt if (p->p_nlwps > 1) {
549 1.64 ad mutex_exit(p->p_lock);
550 1.52 yamt break;
551 1.52 yamt }
552 1.52 yamt wlwp = LIST_FIRST(&p->p_lwps);
553 1.57 ad lwp_lock(wlwp);
554 1.65 ad if (wlwp->l_wchan == NULL ||
555 1.65 ad wlwp->l_wmesg != lockstr) {
556 1.57 ad lwp_unlock(wlwp);
557 1.64 ad mutex_exit(p->p_lock);
558 1.52 yamt break;
559 1.52 yamt }
560 1.44 christos waitblock = wlwp->l_wchan;
561 1.57 ad lwp_unlock(wlwp);
562 1.64 ad mutex_exit(p->p_lock);
563 1.1 ws /* Get the owner of the blocking lock */
564 1.1 ws waitblock = waitblock->lf_next;
565 1.1 ws if ((waitblock->lf_flags & F_POSIX) == 0)
566 1.1 ws break;
567 1.52 yamt p = (struct proc *)waitblock->lf_id;
568 1.52 yamt if (p == curproc) {
569 1.38 christos lf_free(lock);
570 1.29 yamt return EDEADLK;
571 1.1 ws }
572 1.1 ws }
573 1.16 sommerfe /*
574 1.36 peter * If we're still following a dependency chain
575 1.16 sommerfe * after maxlockdepth iterations, assume we're in
576 1.16 sommerfe * a cycle to be safe.
577 1.16 sommerfe */
578 1.16 sommerfe if (i >= maxlockdepth) {
579 1.38 christos lf_free(lock);
580 1.29 yamt return EDEADLK;
581 1.16 sommerfe }
582 1.1 ws }
583 1.1 ws /*
584 1.1 ws * For flock type locks, we must first remove
585 1.1 ws * any shared locks that we hold before we sleep
586 1.1 ws * waiting for an exclusive lock.
587 1.1 ws */
588 1.1 ws if ((lock->lf_flags & F_FLOCK) &&
589 1.1 ws lock->lf_type == F_WRLCK) {
590 1.1 ws lock->lf_type = F_UNLCK;
591 1.27 yamt (void) lf_clearlock(lock, NULL);
592 1.1 ws lock->lf_type = F_WRLCK;
593 1.1 ws }
594 1.1 ws /*
595 1.1 ws * Add our lock to the blocked list and sleep until we're free.
596 1.1 ws * Remember who blocked us (for deadlock detection).
597 1.1 ws */
598 1.1 ws lock->lf_next = block;
599 1.12 fvdl TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
600 1.1 ws #ifdef LOCKF_DEBUG
601 1.1 ws if (lockf_debug & 1) {
602 1.1 ws lf_print("lf_setlock: blocking on", block);
603 1.1 ws lf_printlist("lf_setlock", block);
604 1.1 ws }
605 1.1 ws #endif /* LOCKF_DEBUG */
606 1.61 ad error = cv_wait_sig(&lock->lf_cv, interlock);
607 1.16 sommerfe
608 1.16 sommerfe /*
609 1.65 ad * We may have been awoken by a signal (in
610 1.16 sommerfe * which case we must remove ourselves from the
611 1.16 sommerfe * blocked list) and/or by another process
612 1.16 sommerfe * releasing a lock (in which case we have already
613 1.16 sommerfe * been removed from the blocked list and our
614 1.54 yamt * lf_next field set to NULL).
615 1.16 sommerfe */
616 1.54 yamt if (lock->lf_next != NULL) {
617 1.16 sommerfe TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
618 1.54 yamt lock->lf_next = NULL;
619 1.16 sommerfe }
620 1.7 christos if (error) {
621 1.38 christos lf_free(lock);
622 1.29 yamt return error;
623 1.1 ws }
624 1.1 ws }
625 1.1 ws /*
626 1.1 ws * No blocks!! Add the lock. Note that we will
627 1.1 ws * downgrade or upgrade any overlapping locks this
628 1.1 ws * process already owns.
629 1.1 ws *
630 1.1 ws * Skip over locks owned by other processes.
631 1.1 ws * Handle any locks that overlap and are owned by ourselves.
632 1.1 ws */
633 1.1 ws prev = head;
634 1.1 ws block = *head;
635 1.1 ws needtolink = 1;
636 1.1 ws for (;;) {
637 1.7 christos ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
638 1.7 christos if (ovcase)
639 1.1 ws block = overlap->lf_next;
640 1.1 ws /*
641 1.1 ws * Six cases:
642 1.1 ws * 0) no overlap
643 1.1 ws * 1) overlap == lock
644 1.1 ws * 2) overlap contains lock
645 1.1 ws * 3) lock contains overlap
646 1.1 ws * 4) overlap starts before lock
647 1.1 ws * 5) overlap ends after lock
648 1.1 ws */
649 1.1 ws switch (ovcase) {
650 1.1 ws case 0: /* no overlap */
651 1.1 ws if (needtolink) {
652 1.1 ws *prev = lock;
653 1.1 ws lock->lf_next = overlap;
654 1.1 ws }
655 1.1 ws break;
656 1.1 ws
657 1.1 ws case 1: /* overlap == lock */
658 1.1 ws /*
659 1.1 ws * If downgrading lock, others may be
660 1.1 ws * able to acquire it.
661 1.1 ws */
662 1.1 ws if (lock->lf_type == F_RDLCK &&
663 1.1 ws overlap->lf_type == F_WRLCK)
664 1.1 ws lf_wakelock(overlap);
665 1.1 ws overlap->lf_type = lock->lf_type;
666 1.38 christos lf_free(lock);
667 1.1 ws lock = overlap; /* for debug output below */
668 1.1 ws break;
669 1.1 ws
670 1.1 ws case 2: /* overlap contains lock */
671 1.1 ws /*
672 1.1 ws * Check for common starting point and different types.
673 1.1 ws */
674 1.1 ws if (overlap->lf_type == lock->lf_type) {
675 1.38 christos lf_free(lock);
676 1.1 ws lock = overlap; /* for debug output below */
677 1.1 ws break;
678 1.1 ws }
679 1.1 ws if (overlap->lf_start == lock->lf_start) {
680 1.1 ws *prev = lock;
681 1.1 ws lock->lf_next = overlap;
682 1.1 ws overlap->lf_start = lock->lf_end + 1;
683 1.1 ws } else
684 1.27 yamt lf_split(overlap, lock, sparelock);
685 1.1 ws lf_wakelock(overlap);
686 1.1 ws break;
687 1.1 ws
688 1.1 ws case 3: /* lock contains overlap */
689 1.1 ws /*
690 1.1 ws * If downgrading lock, others may be able to
691 1.1 ws * acquire it, otherwise take the list.
692 1.1 ws */
693 1.1 ws if (lock->lf_type == F_RDLCK &&
694 1.1 ws overlap->lf_type == F_WRLCK) {
695 1.1 ws lf_wakelock(overlap);
696 1.1 ws } else {
697 1.19 matt while ((ltmp = TAILQ_FIRST(&overlap->lf_blkhd))) {
698 1.16 sommerfe KASSERT(ltmp->lf_next == overlap);
699 1.12 fvdl TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
700 1.12 fvdl lf_block);
701 1.16 sommerfe ltmp->lf_next = lock;
702 1.12 fvdl TAILQ_INSERT_TAIL(&lock->lf_blkhd,
703 1.12 fvdl ltmp, lf_block);
704 1.12 fvdl }
705 1.1 ws }
706 1.1 ws /*
707 1.1 ws * Add the new lock if necessary and delete the overlap.
708 1.1 ws */
709 1.1 ws if (needtolink) {
710 1.1 ws *prev = lock;
711 1.1 ws lock->lf_next = overlap->lf_next;
712 1.1 ws prev = &lock->lf_next;
713 1.1 ws needtolink = 0;
714 1.1 ws } else
715 1.1 ws *prev = overlap->lf_next;
716 1.39 christos lf_free(overlap);
717 1.1 ws continue;
718 1.1 ws
719 1.1 ws case 4: /* overlap starts before lock */
720 1.1 ws /*
721 1.1 ws * Add lock after overlap on the list.
722 1.1 ws */
723 1.1 ws lock->lf_next = overlap->lf_next;
724 1.1 ws overlap->lf_next = lock;
725 1.1 ws overlap->lf_end = lock->lf_start - 1;
726 1.1 ws prev = &lock->lf_next;
727 1.1 ws lf_wakelock(overlap);
728 1.1 ws needtolink = 0;
729 1.1 ws continue;
730 1.1 ws
731 1.1 ws case 5: /* overlap ends after lock */
732 1.1 ws /*
733 1.1 ws * Add the new lock before overlap.
734 1.1 ws */
735 1.1 ws if (needtolink) {
736 1.1 ws *prev = lock;
737 1.1 ws lock->lf_next = overlap;
738 1.1 ws }
739 1.1 ws overlap->lf_start = lock->lf_end + 1;
740 1.1 ws lf_wakelock(overlap);
741 1.1 ws break;
742 1.1 ws }
743 1.1 ws break;
744 1.1 ws }
745 1.1 ws #ifdef LOCKF_DEBUG
746 1.1 ws if (lockf_debug & 1) {
747 1.1 ws lf_print("lf_setlock: got the lock", lock);
748 1.1 ws lf_printlist("lf_setlock", lock);
749 1.1 ws }
750 1.1 ws #endif /* LOCKF_DEBUG */
751 1.29 yamt return 0;
752 1.1 ws }
753 1.1 ws
754 1.1 ws /*
755 1.1 ws * Check whether there is a blocking lock,
756 1.1 ws * and if so return its process identifier.
757 1.1 ws */
758 1.24 yamt static int
759 1.25 yamt lf_getlock(struct lockf *lock, struct flock *fl)
760 1.1 ws {
761 1.15 augustss struct lockf *block;
762 1.1 ws
763 1.1 ws #ifdef LOCKF_DEBUG
764 1.1 ws if (lockf_debug & 1)
765 1.1 ws lf_print("lf_getlock", lock);
766 1.1 ws #endif /* LOCKF_DEBUG */
767 1.1 ws
768 1.7 christos if ((block = lf_getblock(lock)) != NULL) {
769 1.1 ws fl->l_type = block->lf_type;
770 1.1 ws fl->l_whence = SEEK_SET;
771 1.1 ws fl->l_start = block->lf_start;
772 1.1 ws if (block->lf_end == -1)
773 1.1 ws fl->l_len = 0;
774 1.1 ws else
775 1.1 ws fl->l_len = block->lf_end - block->lf_start + 1;
776 1.1 ws if (block->lf_flags & F_POSIX)
777 1.23 mycroft fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
778 1.1 ws else
779 1.1 ws fl->l_pid = -1;
780 1.1 ws } else {
781 1.1 ws fl->l_type = F_UNLCK;
782 1.1 ws }
783 1.29 yamt return 0;
784 1.1 ws }
785 1.1 ws
786 1.1 ws /*
787 1.45 thorpej * Do an advisory lock operation.
788 1.1 ws */
789 1.45 thorpej int
790 1.45 thorpej lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
791 1.1 ws {
792 1.45 thorpej struct flock *fl = ap->a_fl;
793 1.45 thorpej struct lockf *lock = NULL;
794 1.45 thorpej struct lockf *sparelock;
795 1.79 ad kmutex_t *interlock = &lockf_lock;
796 1.45 thorpej off_t start, end;
797 1.45 thorpej int error = 0;
798 1.1 ws
799 1.76 riastrad KASSERTMSG(size >= 0, "size=%jd", (intmax_t)size);
800 1.76 riastrad
801 1.45 thorpej /*
802 1.45 thorpej * Convert the flock structure into a start and end.
803 1.45 thorpej */
804 1.45 thorpej switch (fl->l_whence) {
805 1.45 thorpej case SEEK_SET:
806 1.45 thorpej case SEEK_CUR:
807 1.1 ws /*
808 1.45 thorpej * Caller is responsible for adding any necessary offset
809 1.45 thorpej * when SEEK_CUR is used.
810 1.1 ws */
811 1.45 thorpej start = fl->l_start;
812 1.45 thorpej break;
813 1.45 thorpej
814 1.45 thorpej case SEEK_END:
815 1.76 riastrad if (fl->l_start > __type_max(off_t) - size)
816 1.76 riastrad return EINVAL;
817 1.45 thorpej start = size + fl->l_start;
818 1.45 thorpej break;
819 1.45 thorpej
820 1.45 thorpej default:
821 1.45 thorpej return EINVAL;
822 1.1 ws }
823 1.72 dsl
824 1.72 dsl if (fl->l_len == 0)
825 1.72 dsl end = -1;
826 1.72 dsl else {
827 1.76 riastrad if (fl->l_len >= 0) {
828 1.77 riastrad if (start >= 0 &&
829 1.77 riastrad fl->l_len - 1 > __type_max(off_t) - start)
830 1.76 riastrad return EINVAL;
831 1.78 riastrad end = start + (fl->l_len - 1);
832 1.76 riastrad } else {
833 1.72 dsl /* lockf() allows -ve lengths */
834 1.76 riastrad if (start < 0)
835 1.76 riastrad return EINVAL;
836 1.72 dsl end = start - 1;
837 1.72 dsl start += fl->l_len;
838 1.72 dsl }
839 1.72 dsl }
840 1.45 thorpej if (start < 0)
841 1.45 thorpej return EINVAL;
842 1.1 ws
843 1.45 thorpej /*
844 1.61 ad * Allocate locks before acquiring the interlock. We need two
845 1.55 ad * locks in the worst case.
846 1.45 thorpej */
847 1.45 thorpej switch (ap->a_op) {
848 1.45 thorpej case F_SETLK:
849 1.45 thorpej case F_UNLCK:
850 1.1 ws /*
851 1.55 ad * XXX For F_UNLCK case, we can re-use the lock.
852 1.1 ws */
853 1.46 christos if ((ap->a_flags & F_FLOCK) == 0) {
854 1.45 thorpej /*
855 1.55 ad * Byte-range lock might need one more lock.
856 1.45 thorpej */
857 1.71 yamt sparelock = lf_alloc(0);
858 1.45 thorpej if (sparelock == NULL) {
859 1.45 thorpej error = ENOMEM;
860 1.45 thorpej goto quit;
861 1.45 thorpej }
862 1.45 thorpej break;
863 1.1 ws }
864 1.45 thorpej /* FALLTHROUGH */
865 1.45 thorpej
866 1.45 thorpej case F_GETLK:
867 1.45 thorpej sparelock = NULL;
868 1.45 thorpej break;
869 1.45 thorpej
870 1.45 thorpej default:
871 1.45 thorpej return EINVAL;
872 1.45 thorpej }
873 1.45 thorpej
874 1.71 yamt switch (ap->a_op) {
875 1.71 yamt case F_SETLK:
876 1.71 yamt lock = lf_alloc(1);
877 1.71 yamt break;
878 1.71 yamt case F_UNLCK:
879 1.71 yamt if (start == 0 || end == -1) {
880 1.71 yamt /* never split */
881 1.71 yamt lock = lf_alloc(0);
882 1.71 yamt } else {
883 1.71 yamt /* might split */
884 1.71 yamt lock = lf_alloc(2);
885 1.71 yamt }
886 1.71 yamt break;
887 1.71 yamt case F_GETLK:
888 1.71 yamt lock = lf_alloc(0);
889 1.71 yamt break;
890 1.71 yamt }
891 1.45 thorpej if (lock == NULL) {
892 1.45 thorpej error = ENOMEM;
893 1.45 thorpej goto quit;
894 1.1 ws }
895 1.1 ws
896 1.61 ad mutex_enter(interlock);
897 1.1 ws
898 1.1 ws /*
899 1.45 thorpej * Avoid the common case of unlocking when inode has no locks.
900 1.1 ws */
901 1.45 thorpej if (*head == (struct lockf *)0) {
902 1.45 thorpej if (ap->a_op != F_SETLK) {
903 1.45 thorpej fl->l_type = F_UNLCK;
904 1.45 thorpej error = 0;
905 1.45 thorpej goto quit_unlock;
906 1.45 thorpej }
907 1.1 ws }
908 1.45 thorpej
909 1.1 ws /*
910 1.45 thorpej * Create the lockf structure.
911 1.45 thorpej */
912 1.45 thorpej lock->lf_start = start;
913 1.45 thorpej lock->lf_end = end;
914 1.45 thorpej lock->lf_head = head;
915 1.45 thorpej lock->lf_type = fl->l_type;
916 1.45 thorpej lock->lf_next = (struct lockf *)0;
917 1.45 thorpej TAILQ_INIT(&lock->lf_blkhd);
918 1.45 thorpej lock->lf_flags = ap->a_flags;
919 1.45 thorpej if (lock->lf_flags & F_POSIX) {
920 1.45 thorpej KASSERT(curproc == (struct proc *)ap->a_id);
921 1.45 thorpej }
922 1.72 dsl lock->lf_id = ap->a_id;
923 1.45 thorpej
924 1.1 ws /*
925 1.45 thorpej * Do the requested operation.
926 1.1 ws */
927 1.45 thorpej switch (ap->a_op) {
928 1.1 ws
929 1.45 thorpej case F_SETLK:
930 1.45 thorpej error = lf_setlock(lock, &sparelock, interlock);
931 1.45 thorpej lock = NULL; /* lf_setlock freed it */
932 1.45 thorpej break;
933 1.1 ws
934 1.45 thorpej case F_UNLCK:
935 1.45 thorpej error = lf_clearlock(lock, &sparelock);
936 1.45 thorpej break;
937 1.1 ws
938 1.45 thorpej case F_GETLK:
939 1.45 thorpej error = lf_getlock(lock, fl);
940 1.45 thorpej break;
941 1.37 perry
942 1.45 thorpej default:
943 1.45 thorpej break;
944 1.45 thorpej /* NOTREACHED */
945 1.45 thorpej }
946 1.1 ws
947 1.45 thorpej quit_unlock:
948 1.61 ad mutex_exit(interlock);
949 1.45 thorpej quit:
950 1.45 thorpej if (lock)
951 1.45 thorpej lf_free(lock);
952 1.45 thorpej if (sparelock)
953 1.45 thorpej lf_free(sparelock);
954 1.1 ws
955 1.45 thorpej return error;
956 1.1 ws }
957