Home | History | Annotate | Line # | Download | only in kern
vfs_lockf.c revision 1.81
      1  1.81        ad /*	$NetBSD: vfs_lockf.c,v 1.81 2023/09/23 18:21:11 ad Exp $	*/
      2   1.5       cgd 
      3   1.1        ws /*
      4   1.4   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
      5   1.4   mycroft  *	The Regents of the University of California.  All rights reserved.
      6   1.1        ws  *
      7   1.1        ws  * This code is derived from software contributed to Berkeley by
      8   1.1        ws  * Scooter Morris at Genentech Inc.
      9   1.1        ws  *
     10   1.1        ws  * Redistribution and use in source and binary forms, with or without
     11   1.1        ws  * modification, are permitted provided that the following conditions
     12   1.1        ws  * are met:
     13   1.1        ws  * 1. Redistributions of source code must retain the above copyright
     14   1.1        ws  *    notice, this list of conditions and the following disclaimer.
     15   1.1        ws  * 2. Redistributions in binary form must reproduce the above copyright
     16   1.1        ws  *    notice, this list of conditions and the following disclaimer in the
     17   1.1        ws  *    documentation and/or other materials provided with the distribution.
     18  1.33       agc  * 3. Neither the name of the University nor the names of its contributors
     19   1.1        ws  *    may be used to endorse or promote products derived from this software
     20   1.1        ws  *    without specific prior written permission.
     21   1.1        ws  *
     22   1.1        ws  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23   1.1        ws  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24   1.1        ws  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25   1.1        ws  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26   1.1        ws  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27   1.1        ws  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28   1.1        ws  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29   1.1        ws  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30   1.1        ws  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31   1.1        ws  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32   1.1        ws  * SUCH DAMAGE.
     33   1.1        ws  *
     34  1.12      fvdl  *	@(#)ufs_lockf.c	8.4 (Berkeley) 10/26/94
     35   1.1        ws  */
     36  1.18     lukem 
     37  1.18     lukem #include <sys/cdefs.h>
     38  1.81        ad __KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.81 2023/09/23 18:21:11 ad Exp $");
     39   1.1        ws 
     40   1.1        ws #include <sys/param.h>
     41   1.1        ws #include <sys/systm.h>
     42   1.1        ws #include <sys/kernel.h>
     43   1.1        ws #include <sys/file.h>
     44   1.1        ws #include <sys/proc.h>
     45   1.1        ws #include <sys/vnode.h>
     46  1.81        ad #include <sys/kmem.h>
     47   1.1        ws #include <sys/fcntl.h>
     48   1.1        ws #include <sys/lockf.h>
     49  1.63       mrg #include <sys/atomic.h>
     50  1.49      elad #include <sys/kauth.h>
     51  1.69     pooka #include <sys/uidinfo.h>
     52  1.22   thorpej 
     53  1.50      yamt /*
     54  1.50      yamt  * The lockf structure is a kernel structure which contains the information
     55  1.50      yamt  * associated with a byte range lock.  The lockf structures are linked into
     56  1.60        ad  * the vnode structure.  Locks are sorted by the starting byte of the lock for
     57  1.50      yamt  * efficiency.
     58  1.50      yamt  *
     59  1.50      yamt  * lf_next is used for two purposes, depending on whether the lock is
     60  1.50      yamt  * being held, or is in conflict with an existing lock.  If this lock
     61  1.50      yamt  * is held, it indicates the next lock on the same vnode.
     62  1.50      yamt  * For pending locks, if lock->lf_next is non-NULL, then lock->lf_block
     63  1.50      yamt  * must be queued on the lf_blkhd TAILQ of lock->lf_next.
     64  1.50      yamt  */
     65  1.50      yamt 
     66  1.50      yamt TAILQ_HEAD(locklist, lockf);
     67  1.50      yamt 
     68  1.50      yamt struct lockf {
     69  1.65        ad 	kcondvar_t lf_cv;	 /* Signalling */
     70  1.50      yamt 	short	lf_flags;	 /* Lock semantics: F_POSIX, F_FLOCK, F_WAIT */
     71  1.50      yamt 	short	lf_type;	 /* Lock type: F_RDLCK, F_WRLCK */
     72  1.50      yamt 	off_t	lf_start;	 /* The byte # of the start of the lock */
     73  1.50      yamt 	off_t	lf_end;		 /* The byte # of the end of the lock (-1=EOF)*/
     74  1.50      yamt 	void	*lf_id;		 /* process or file description holding lock */
     75  1.50      yamt 	struct	lockf **lf_head; /* Back pointer to the head of lockf list */
     76  1.50      yamt 	struct	lockf *lf_next;	 /* Next lock on this vnode, or blocking lock */
     77  1.50      yamt 	struct  locklist lf_blkhd; /* List of requests blocked on this lock */
     78  1.50      yamt 	TAILQ_ENTRY(lockf) lf_block;/* A request waiting for a lock */
     79  1.81        ad 	struct	uidinfo *lf_uip; /* Cached pointer to uidinfo */
     80  1.50      yamt };
     81  1.50      yamt 
     82  1.50      yamt /* Maximum length of sleep chains to traverse to try and detect deadlock. */
     83  1.50      yamt #define MAXDEPTH 50
     84  1.50      yamt 
     85  1.81        ad static kmutex_t lockf_lock __cacheline_aligned;
     86  1.65        ad static char lockstr[] = "lockf";
     87   1.1        ws 
     88   1.1        ws /*
     89   1.6   mycroft  * This variable controls the maximum number of processes that will
     90   1.6   mycroft  * be checked in doing deadlock detection.
     91   1.6   mycroft  */
     92   1.6   mycroft int maxlockdepth = MAXDEPTH;
     93   1.6   mycroft 
     94   1.6   mycroft #ifdef LOCKF_DEBUG
     95   1.6   mycroft int	lockf_debug = 0;
     96   1.6   mycroft #endif
     97   1.6   mycroft 
     98   1.6   mycroft #define SELF	0x1
     99   1.6   mycroft #define OTHERS	0x2
    100   1.6   mycroft 
    101   1.6   mycroft /*
    102  1.16  sommerfe  * XXX TODO
    103  1.58  christos  * Misc cleanups: "void *id" should be visible in the API as a
    104  1.16  sommerfe  * "struct proc *".
    105  1.16  sommerfe  * (This requires rototilling all VFS's which support advisory locking).
    106  1.16  sommerfe  */
    107  1.16  sommerfe 
    108  1.16  sommerfe /*
    109  1.16  sommerfe  * If there's a lot of lock contention on a single vnode, locking
    110  1.16  sommerfe  * schemes which allow for more paralleism would be needed.  Given how
    111  1.16  sommerfe  * infrequently byte-range locks are actually used in typical BSD
    112  1.16  sommerfe  * code, a more complex approach probably isn't worth it.
    113  1.16  sommerfe  */
    114  1.16  sommerfe 
    115  1.16  sommerfe /*
    116  1.38  christos  * We enforce a limit on locks by uid, so that a single user cannot
    117  1.38  christos  * run the kernel out of memory.  For now, the limit is pretty coarse.
    118  1.38  christos  * There is no limit on root.
    119  1.38  christos  *
    120  1.38  christos  * Splitting a lock will always succeed, regardless of current allocations.
    121  1.38  christos  * If you're slightly above the limit, we still have to permit an allocation
    122  1.38  christos  * so that the unlock can succeed.  If the unlocking causes too many splits,
    123  1.38  christos  * however, you're totally cutoff.
    124  1.38  christos  */
    125  1.74      manu #define MAXLOCKSPERUID (2 * maxfiles)
    126  1.38  christos 
    127  1.45   thorpej #ifdef LOCKF_DEBUG
    128  1.45   thorpej /*
    129  1.45   thorpej  * Print out a lock.
    130  1.45   thorpej  */
    131  1.45   thorpej static void
    132  1.56  christos lf_print(const char *tag, struct lockf *lock)
    133  1.45   thorpej {
    134  1.45   thorpej 
    135  1.45   thorpej 	printf("%s: lock %p for ", tag, lock);
    136  1.45   thorpej 	if (lock->lf_flags & F_POSIX)
    137  1.45   thorpej 		printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
    138  1.45   thorpej 	else
    139  1.45   thorpej 		printf("file %p", (struct file *)lock->lf_id);
    140  1.73  dholland 	printf(" %s, start %jd, end %jd",
    141  1.45   thorpej 		lock->lf_type == F_RDLCK ? "shared" :
    142  1.45   thorpej 		lock->lf_type == F_WRLCK ? "exclusive" :
    143  1.45   thorpej 		lock->lf_type == F_UNLCK ? "unlock" :
    144  1.73  dholland 		"unknown", (intmax_t)lock->lf_start, (intmax_t)lock->lf_end);
    145  1.45   thorpej 	if (TAILQ_FIRST(&lock->lf_blkhd))
    146  1.45   thorpej 		printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
    147  1.45   thorpej 	else
    148  1.45   thorpej 		printf("\n");
    149  1.45   thorpej }
    150  1.45   thorpej 
    151  1.45   thorpej static void
    152  1.56  christos lf_printlist(const char *tag, struct lockf *lock)
    153  1.45   thorpej {
    154  1.45   thorpej 	struct lockf *lf, *blk;
    155  1.45   thorpej 
    156  1.45   thorpej 	printf("%s: Lock list:\n", tag);
    157  1.45   thorpej 	for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
    158  1.45   thorpej 		printf("\tlock %p for ", lf);
    159  1.45   thorpej 		if (lf->lf_flags & F_POSIX)
    160  1.45   thorpej 			printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
    161  1.45   thorpej 		else
    162  1.45   thorpej 			printf("file %p", (struct file *)lf->lf_id);
    163  1.73  dholland 		printf(", %s, start %jd, end %jd",
    164  1.45   thorpej 			lf->lf_type == F_RDLCK ? "shared" :
    165  1.45   thorpej 			lf->lf_type == F_WRLCK ? "exclusive" :
    166  1.45   thorpej 			lf->lf_type == F_UNLCK ? "unlock" :
    167  1.73  dholland 			"unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
    168  1.45   thorpej 		TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
    169  1.45   thorpej 			if (blk->lf_flags & F_POSIX)
    170  1.66     skrll 				printf("; proc %d",
    171  1.45   thorpej 				    ((struct proc *)blk->lf_id)->p_pid);
    172  1.45   thorpej 			else
    173  1.66     skrll 				printf("; file %p", (struct file *)blk->lf_id);
    174  1.73  dholland 			printf(", %s, start %jd, end %jd",
    175  1.45   thorpej 				blk->lf_type == F_RDLCK ? "shared" :
    176  1.45   thorpej 				blk->lf_type == F_WRLCK ? "exclusive" :
    177  1.45   thorpej 				blk->lf_type == F_UNLCK ? "unlock" :
    178  1.73  dholland 				"unknown", (intmax_t)blk->lf_start, (intmax_t)blk->lf_end);
    179  1.45   thorpej 			if (TAILQ_FIRST(&blk->lf_blkhd))
    180  1.45   thorpej 				 panic("lf_printlist: bad list");
    181  1.45   thorpej 		}
    182  1.45   thorpej 		printf("\n");
    183  1.45   thorpej 	}
    184  1.45   thorpej }
    185  1.45   thorpej #endif /* LOCKF_DEBUG */
    186  1.45   thorpej 
    187  1.38  christos /*
    188  1.38  christos  * 3 options for allowfail.
    189  1.38  christos  * 0 - always allocate.  1 - cutoff at limit.  2 - cutoff at double limit.
    190  1.38  christos  */
    191  1.45   thorpej static struct lockf *
    192  1.71      yamt lf_alloc(int allowfail)
    193  1.38  christos {
    194  1.38  christos 	struct uidinfo *uip;
    195  1.38  christos 	struct lockf *lock;
    196  1.62     rmind 	u_long lcnt;
    197  1.71      yamt 	const uid_t uid = kauth_cred_geteuid(kauth_cred_get());
    198  1.38  christos 
    199  1.38  christos 	uip = uid_find(uid);
    200  1.62     rmind 	lcnt = atomic_inc_ulong_nv(&uip->ui_lockcnt);
    201  1.62     rmind 	if (uid && allowfail && lcnt >
    202  1.74      manu 	    (allowfail == 1 ? MAXLOCKSPERUID : (MAXLOCKSPERUID * 2))) {
    203  1.62     rmind 		atomic_dec_ulong(&uip->ui_lockcnt);
    204  1.40  christos 		return NULL;
    205  1.40  christos 	}
    206  1.62     rmind 
    207  1.81        ad 	lock = kmem_alloc(sizeof(*lock), KM_SLEEP);
    208  1.81        ad 	lock->lf_uip = uip;
    209  1.81        ad 	cv_init(&lock->lf_cv, lockstr);
    210  1.40  christos 	return lock;
    211  1.38  christos }
    212  1.38  christos 
    213  1.45   thorpej static void
    214  1.38  christos lf_free(struct lockf *lock)
    215  1.38  christos {
    216  1.80        ad 
    217  1.81        ad 	atomic_dec_ulong(&lock->lf_uip->ui_lockcnt);
    218  1.61        ad 	cv_destroy(&lock->lf_cv);
    219  1.81        ad 	kmem_free(lock, sizeof(*lock));
    220  1.38  christos }
    221  1.38  christos 
    222  1.38  christos /*
    223  1.45   thorpej  * Walk the list of locks for an inode to
    224  1.45   thorpej  * find an overlapping lock (if any).
    225  1.45   thorpej  *
    226  1.45   thorpej  * NOTE: this returns only the FIRST overlapping lock.  There
    227  1.45   thorpej  *	 may be more than one.
    228   1.1        ws  */
    229  1.45   thorpej static int
    230  1.45   thorpej lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
    231  1.45   thorpej     struct lockf ***prev, struct lockf **overlap)
    232   1.1        ws {
    233   1.1        ws 	off_t start, end;
    234   1.1        ws 
    235  1.45   thorpej 	*overlap = lf;
    236  1.54      yamt 	if (lf == NULL)
    237  1.45   thorpej 		return 0;
    238  1.45   thorpej #ifdef LOCKF_DEBUG
    239  1.45   thorpej 	if (lockf_debug & 2)
    240  1.45   thorpej 		lf_print("lf_findoverlap: looking for overlap in", lock);
    241  1.45   thorpej #endif /* LOCKF_DEBUG */
    242  1.45   thorpej 	start = lock->lf_start;
    243  1.45   thorpej 	end = lock->lf_end;
    244  1.54      yamt 	while (lf != NULL) {
    245  1.45   thorpej 		if (((type == SELF) && lf->lf_id != lock->lf_id) ||
    246  1.45   thorpej 		    ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
    247  1.45   thorpej 			*prev = &lf->lf_next;
    248  1.45   thorpej 			*overlap = lf = lf->lf_next;
    249  1.45   thorpej 			continue;
    250  1.45   thorpej 		}
    251  1.45   thorpej #ifdef LOCKF_DEBUG
    252  1.45   thorpej 		if (lockf_debug & 2)
    253  1.45   thorpej 			lf_print("\tchecking", lf);
    254  1.45   thorpej #endif /* LOCKF_DEBUG */
    255   1.1        ws 		/*
    256  1.45   thorpej 		 * OK, check for overlap
    257  1.45   thorpej 		 *
    258  1.45   thorpej 		 * Six cases:
    259  1.45   thorpej 		 *	0) no overlap
    260  1.45   thorpej 		 *	1) overlap == lock
    261  1.45   thorpej 		 *	2) overlap contains lock
    262  1.45   thorpej 		 *	3) lock contains overlap
    263  1.45   thorpej 		 *	4) overlap starts before lock
    264  1.45   thorpej 		 *	5) overlap ends after lock
    265   1.1        ws 		 */
    266  1.45   thorpej 		if ((lf->lf_end != -1 && start > lf->lf_end) ||
    267  1.45   thorpej 		    (end != -1 && lf->lf_start > end)) {
    268  1.45   thorpej 			/* Case 0 */
    269  1.45   thorpej #ifdef LOCKF_DEBUG
    270  1.45   thorpej 			if (lockf_debug & 2)
    271  1.45   thorpej 				printf("no overlap\n");
    272  1.45   thorpej #endif /* LOCKF_DEBUG */
    273  1.45   thorpej 			if ((type & SELF) && end != -1 && lf->lf_start > end)
    274  1.45   thorpej 				return 0;
    275  1.45   thorpej 			*prev = &lf->lf_next;
    276  1.45   thorpej 			*overlap = lf = lf->lf_next;
    277  1.45   thorpej 			continue;
    278  1.45   thorpej 		}
    279  1.45   thorpej 		if ((lf->lf_start == start) && (lf->lf_end == end)) {
    280  1.45   thorpej 			/* Case 1 */
    281  1.45   thorpej #ifdef LOCKF_DEBUG
    282  1.45   thorpej 			if (lockf_debug & 2)
    283  1.45   thorpej 				printf("overlap == lock\n");
    284  1.45   thorpej #endif /* LOCKF_DEBUG */
    285  1.45   thorpej 			return 1;
    286  1.45   thorpej 		}
    287  1.45   thorpej 		if ((lf->lf_start <= start) &&
    288  1.45   thorpej 		    (end != -1) &&
    289  1.45   thorpej 		    ((lf->lf_end >= end) || (lf->lf_end == -1))) {
    290  1.45   thorpej 			/* Case 2 */
    291  1.45   thorpej #ifdef LOCKF_DEBUG
    292  1.45   thorpej 			if (lockf_debug & 2)
    293  1.45   thorpej 				printf("overlap contains lock\n");
    294  1.45   thorpej #endif /* LOCKF_DEBUG */
    295  1.45   thorpej 			return 2;
    296  1.45   thorpej 		}
    297  1.45   thorpej 		if (start <= lf->lf_start &&
    298  1.45   thorpej 		           (end == -1 ||
    299  1.45   thorpej 			   (lf->lf_end != -1 && end >= lf->lf_end))) {
    300  1.45   thorpej 			/* Case 3 */
    301  1.45   thorpej #ifdef LOCKF_DEBUG
    302  1.45   thorpej 			if (lockf_debug & 2)
    303  1.45   thorpej 				printf("lock contains overlap\n");
    304  1.45   thorpej #endif /* LOCKF_DEBUG */
    305  1.45   thorpej 			return 3;
    306  1.45   thorpej 		}
    307  1.45   thorpej 		if ((lf->lf_start < start) &&
    308  1.45   thorpej 			((lf->lf_end >= start) || (lf->lf_end == -1))) {
    309  1.45   thorpej 			/* Case 4 */
    310  1.45   thorpej #ifdef LOCKF_DEBUG
    311  1.45   thorpej 			if (lockf_debug & 2)
    312  1.45   thorpej 				printf("overlap starts before lock\n");
    313  1.45   thorpej #endif /* LOCKF_DEBUG */
    314  1.45   thorpej 			return 4;
    315  1.45   thorpej 		}
    316  1.45   thorpej 		if ((lf->lf_start > start) &&
    317  1.45   thorpej 			(end != -1) &&
    318  1.45   thorpej 			((lf->lf_end > end) || (lf->lf_end == -1))) {
    319  1.45   thorpej 			/* Case 5 */
    320  1.45   thorpej #ifdef LOCKF_DEBUG
    321  1.45   thorpej 			if (lockf_debug & 2)
    322  1.45   thorpej 				printf("overlap ends after lock\n");
    323  1.45   thorpej #endif /* LOCKF_DEBUG */
    324  1.45   thorpej 			return 5;
    325  1.45   thorpej 		}
    326  1.45   thorpej 		panic("lf_findoverlap: default");
    327  1.45   thorpej 	}
    328  1.45   thorpej 	return 0;
    329  1.45   thorpej }
    330   1.1        ws 
    331  1.45   thorpej /*
    332  1.45   thorpej  * Split a lock and a contained region into
    333  1.45   thorpej  * two or three locks as necessary.
    334  1.45   thorpej  */
    335  1.45   thorpej static void
    336  1.45   thorpej lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
    337  1.45   thorpej {
    338  1.45   thorpej 	struct lockf *splitlock;
    339   1.1        ws 
    340  1.45   thorpej #ifdef LOCKF_DEBUG
    341  1.45   thorpej 	if (lockf_debug & 2) {
    342  1.45   thorpej 		lf_print("lf_split", lock1);
    343  1.45   thorpej 		lf_print("splitting from", lock2);
    344   1.1        ws 	}
    345  1.45   thorpej #endif /* LOCKF_DEBUG */
    346  1.10    kleink 	/*
    347  1.75    andvar 	 * Check to see if splitting into only two pieces.
    348  1.27      yamt 	 */
    349  1.45   thorpej 	if (lock1->lf_start == lock2->lf_start) {
    350  1.45   thorpej 		lock1->lf_start = lock2->lf_end + 1;
    351  1.45   thorpej 		lock2->lf_next = lock1;
    352  1.45   thorpej 		return;
    353  1.27      yamt 	}
    354  1.45   thorpej 	if (lock1->lf_end == lock2->lf_end) {
    355  1.45   thorpej 		lock1->lf_end = lock2->lf_start - 1;
    356  1.45   thorpej 		lock2->lf_next = lock1->lf_next;
    357  1.45   thorpej 		lock1->lf_next = lock2;
    358  1.45   thorpej 		return;
    359  1.27      yamt 	}
    360  1.27      yamt 	/*
    361  1.45   thorpej 	 * Make a new lock consisting of the last part of
    362  1.45   thorpej 	 * the encompassing lock
    363  1.10    kleink 	 */
    364  1.45   thorpej 	splitlock = *sparelock;
    365  1.45   thorpej 	*sparelock = NULL;
    366  1.70      yamt 	cv_destroy(&splitlock->lf_cv);
    367  1.45   thorpej 	memcpy(splitlock, lock1, sizeof(*splitlock));
    368  1.67     skrll 	cv_init(&splitlock->lf_cv, lockstr);
    369  1.67     skrll 
    370  1.45   thorpej 	splitlock->lf_start = lock2->lf_end + 1;
    371  1.45   thorpej 	TAILQ_INIT(&splitlock->lf_blkhd);
    372  1.45   thorpej 	lock1->lf_end = lock2->lf_start - 1;
    373   1.1        ws 	/*
    374  1.45   thorpej 	 * OK, now link it in
    375  1.21   thorpej 	 */
    376  1.45   thorpej 	splitlock->lf_next = lock1->lf_next;
    377  1.45   thorpej 	lock2->lf_next = splitlock;
    378  1.45   thorpej 	lock1->lf_next = lock2;
    379  1.45   thorpej }
    380  1.45   thorpej 
    381  1.45   thorpej /*
    382  1.45   thorpej  * Wakeup a blocklist
    383  1.45   thorpej  */
    384  1.45   thorpej static void
    385  1.45   thorpej lf_wakelock(struct lockf *listhead)
    386  1.45   thorpej {
    387  1.45   thorpej 	struct lockf *wakelock;
    388  1.21   thorpej 
    389  1.45   thorpej 	while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
    390  1.45   thorpej 		KASSERT(wakelock->lf_next == listhead);
    391  1.45   thorpej 		TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
    392  1.54      yamt 		wakelock->lf_next = NULL;
    393  1.45   thorpej #ifdef LOCKF_DEBUG
    394  1.45   thorpej 		if (lockf_debug & 2)
    395  1.45   thorpej 			lf_print("lf_wakelock: awakening", wakelock);
    396  1.45   thorpej #endif
    397  1.61        ad 		cv_broadcast(&wakelock->lf_cv);
    398  1.21   thorpej 	}
    399  1.45   thorpej }
    400  1.45   thorpej 
    401  1.45   thorpej /*
    402  1.45   thorpej  * Remove a byte-range lock on an inode.
    403  1.45   thorpej  *
    404  1.45   thorpej  * Generally, find the lock (or an overlap to that lock)
    405  1.45   thorpej  * and remove it (or shrink it), then wakeup anyone we can.
    406  1.45   thorpej  */
    407  1.45   thorpej static int
    408  1.45   thorpej lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
    409  1.45   thorpej {
    410  1.45   thorpej 	struct lockf **head = unlock->lf_head;
    411  1.45   thorpej 	struct lockf *lf = *head;
    412  1.45   thorpej 	struct lockf *overlap, **prev;
    413  1.45   thorpej 	int ovcase;
    414  1.45   thorpej 
    415  1.54      yamt 	if (lf == NULL)
    416  1.45   thorpej 		return 0;
    417  1.45   thorpej #ifdef LOCKF_DEBUG
    418  1.45   thorpej 	if (unlock->lf_type != F_UNLCK)
    419  1.45   thorpej 		panic("lf_clearlock: bad type");
    420  1.45   thorpej 	if (lockf_debug & 1)
    421  1.45   thorpej 		lf_print("lf_clearlock", unlock);
    422  1.45   thorpej #endif /* LOCKF_DEBUG */
    423  1.45   thorpej 	prev = head;
    424  1.45   thorpej 	while ((ovcase = lf_findoverlap(lf, unlock, SELF,
    425  1.61        ad 	    &prev, &overlap)) != 0) {
    426  1.45   thorpej 		/*
    427  1.45   thorpej 		 * Wakeup the list of locks to be retried.
    428  1.45   thorpej 		 */
    429  1.45   thorpej 		lf_wakelock(overlap);
    430  1.45   thorpej 
    431  1.45   thorpej 		switch (ovcase) {
    432  1.37     perry 
    433  1.45   thorpej 		case 1: /* overlap == lock */
    434  1.45   thorpej 			*prev = overlap->lf_next;
    435  1.45   thorpej 			lf_free(overlap);
    436  1.45   thorpej 			break;
    437   1.4   mycroft 
    438  1.45   thorpej 		case 2: /* overlap contains lock: split it */
    439  1.45   thorpej 			if (overlap->lf_start == unlock->lf_start) {
    440  1.45   thorpej 				overlap->lf_start = unlock->lf_end + 1;
    441  1.45   thorpej 				break;
    442  1.45   thorpej 			}
    443  1.45   thorpej 			lf_split(overlap, unlock, sparelock);
    444  1.45   thorpej 			overlap->lf_next = unlock->lf_next;
    445  1.45   thorpej 			break;
    446   1.1        ws 
    447  1.45   thorpej 		case 3: /* lock contains overlap */
    448  1.45   thorpej 			*prev = overlap->lf_next;
    449  1.45   thorpej 			lf = overlap->lf_next;
    450  1.45   thorpej 			lf_free(overlap);
    451  1.45   thorpej 			continue;
    452   1.1        ws 
    453  1.45   thorpej 		case 4: /* overlap starts before lock */
    454  1.45   thorpej 			overlap->lf_end = unlock->lf_start - 1;
    455  1.45   thorpej 			prev = &overlap->lf_next;
    456  1.45   thorpej 			lf = overlap->lf_next;
    457  1.45   thorpej 			continue;
    458   1.4   mycroft 
    459  1.45   thorpej 		case 5: /* overlap ends after lock */
    460  1.45   thorpej 			overlap->lf_start = unlock->lf_end + 1;
    461  1.45   thorpej 			break;
    462  1.45   thorpej 		}
    463  1.31      fvdl 		break;
    464  1.27      yamt 	}
    465  1.45   thorpej #ifdef LOCKF_DEBUG
    466  1.45   thorpej 	if (lockf_debug & 1)
    467  1.45   thorpej 		lf_printlist("lf_clearlock", unlock);
    468  1.45   thorpej #endif /* LOCKF_DEBUG */
    469  1.45   thorpej 	return 0;
    470  1.45   thorpej }
    471  1.27      yamt 
    472  1.45   thorpej /*
    473  1.45   thorpej  * Walk the list of locks for an inode and
    474  1.45   thorpej  * return the first blocking lock.
    475  1.45   thorpej  */
    476  1.45   thorpej static struct lockf *
    477  1.45   thorpej lf_getblock(struct lockf *lock)
    478  1.45   thorpej {
    479  1.45   thorpej 	struct lockf **prev, *overlap, *lf = *(lock->lf_head);
    480  1.27      yamt 
    481  1.45   thorpej 	prev = lock->lf_head;
    482  1.45   thorpej 	while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
    483  1.45   thorpej 		/*
    484  1.45   thorpej 		 * We've found an overlap, see if it blocks us
    485  1.45   thorpej 		 */
    486  1.45   thorpej 		if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
    487  1.45   thorpej 			return overlap;
    488  1.45   thorpej 		/*
    489  1.45   thorpej 		 * Nope, point to the next one on the list and
    490  1.45   thorpej 		 * see if it blocks us
    491  1.45   thorpej 		 */
    492  1.45   thorpej 		lf = overlap->lf_next;
    493  1.45   thorpej 	}
    494  1.54      yamt 	return NULL;
    495   1.1        ws }
    496   1.1        ws 
    497   1.1        ws /*
    498   1.1        ws  * Set a byte-range lock.
    499   1.1        ws  */
    500  1.24      yamt static int
    501  1.27      yamt lf_setlock(struct lockf *lock, struct lockf **sparelock,
    502  1.61        ad     kmutex_t *interlock)
    503   1.1        ws {
    504  1.15  augustss 	struct lockf *block;
    505   1.1        ws 	struct lockf **head = lock->lf_head;
    506   1.1        ws 	struct lockf **prev, *overlap, *ltmp;
    507  1.61        ad 	int ovcase, needtolink, error;
    508   1.1        ws 
    509   1.1        ws #ifdef LOCKF_DEBUG
    510   1.1        ws 	if (lockf_debug & 1)
    511   1.1        ws 		lf_print("lf_setlock", lock);
    512   1.1        ws #endif /* LOCKF_DEBUG */
    513   1.1        ws 
    514   1.1        ws 	/*
    515   1.1        ws 	 * Scan lock list for this file looking for locks that would block us.
    516   1.1        ws 	 */
    517   1.7  christos 	while ((block = lf_getblock(lock)) != NULL) {
    518   1.1        ws 		/*
    519   1.1        ws 		 * Free the structure and return if nonblocking.
    520   1.1        ws 		 */
    521   1.1        ws 		if ((lock->lf_flags & F_WAIT) == 0) {
    522  1.38  christos 			lf_free(lock);
    523  1.29      yamt 			return EAGAIN;
    524   1.1        ws 		}
    525   1.1        ws 		/*
    526   1.1        ws 		 * We are blocked. Since flock style locks cover
    527   1.1        ws 		 * the whole file, there is no chance for deadlock.
    528   1.1        ws 		 * For byte-range locks we must check for deadlock.
    529   1.1        ws 		 *
    530   1.1        ws 		 * Deadlock detection is done by looking through the
    531   1.1        ws 		 * wait channels to see if there are any cycles that
    532   1.1        ws 		 * involve us. MAXDEPTH is set just to make sure we
    533  1.16  sommerfe 		 * do not go off into neverneverland.
    534   1.1        ws 		 */
    535   1.1        ws 		if ((lock->lf_flags & F_POSIX) &&
    536   1.1        ws 		    (block->lf_flags & F_POSIX)) {
    537  1.21   thorpej 			struct lwp *wlwp;
    538  1.48     perry 			volatile const struct lockf *waitblock;
    539   1.1        ws 			int i = 0;
    540  1.52      yamt 			struct proc *p;
    541   1.1        ws 
    542  1.52      yamt 			p = (struct proc *)block->lf_id;
    543  1.52      yamt 			KASSERT(p != NULL);
    544  1.52      yamt 			while (i++ < maxlockdepth) {
    545  1.64        ad 				mutex_enter(p->p_lock);
    546  1.52      yamt 				if (p->p_nlwps > 1) {
    547  1.64        ad 					mutex_exit(p->p_lock);
    548  1.52      yamt 					break;
    549  1.52      yamt 				}
    550  1.52      yamt 				wlwp = LIST_FIRST(&p->p_lwps);
    551  1.57        ad 				lwp_lock(wlwp);
    552  1.65        ad 				if (wlwp->l_wchan == NULL ||
    553  1.65        ad 				    wlwp->l_wmesg != lockstr) {
    554  1.57        ad 					lwp_unlock(wlwp);
    555  1.64        ad 					mutex_exit(p->p_lock);
    556  1.52      yamt 					break;
    557  1.52      yamt 				}
    558  1.44  christos 				waitblock = wlwp->l_wchan;
    559  1.57        ad 				lwp_unlock(wlwp);
    560  1.64        ad 				mutex_exit(p->p_lock);
    561   1.1        ws 				/* Get the owner of the blocking lock */
    562   1.1        ws 				waitblock = waitblock->lf_next;
    563   1.1        ws 				if ((waitblock->lf_flags & F_POSIX) == 0)
    564   1.1        ws 					break;
    565  1.52      yamt 				p = (struct proc *)waitblock->lf_id;
    566  1.52      yamt 				if (p == curproc) {
    567  1.38  christos 					lf_free(lock);
    568  1.29      yamt 					return EDEADLK;
    569   1.1        ws 				}
    570   1.1        ws 			}
    571  1.16  sommerfe 			/*
    572  1.36     peter 			 * If we're still following a dependency chain
    573  1.16  sommerfe 			 * after maxlockdepth iterations, assume we're in
    574  1.16  sommerfe 			 * a cycle to be safe.
    575  1.16  sommerfe 			 */
    576  1.16  sommerfe 			if (i >= maxlockdepth) {
    577  1.38  christos 				lf_free(lock);
    578  1.29      yamt 				return EDEADLK;
    579  1.16  sommerfe 			}
    580   1.1        ws 		}
    581   1.1        ws 		/*
    582   1.1        ws 		 * For flock type locks, we must first remove
    583   1.1        ws 		 * any shared locks that we hold before we sleep
    584   1.1        ws 		 * waiting for an exclusive lock.
    585   1.1        ws 		 */
    586   1.1        ws 		if ((lock->lf_flags & F_FLOCK) &&
    587   1.1        ws 		    lock->lf_type == F_WRLCK) {
    588   1.1        ws 			lock->lf_type = F_UNLCK;
    589  1.27      yamt 			(void) lf_clearlock(lock, NULL);
    590   1.1        ws 			lock->lf_type = F_WRLCK;
    591   1.1        ws 		}
    592   1.1        ws 		/*
    593   1.1        ws 		 * Add our lock to the blocked list and sleep until we're free.
    594   1.1        ws 		 * Remember who blocked us (for deadlock detection).
    595   1.1        ws 		 */
    596   1.1        ws 		lock->lf_next = block;
    597  1.12      fvdl 		TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
    598   1.1        ws #ifdef LOCKF_DEBUG
    599   1.1        ws 		if (lockf_debug & 1) {
    600   1.1        ws 			lf_print("lf_setlock: blocking on", block);
    601   1.1        ws 			lf_printlist("lf_setlock", block);
    602   1.1        ws 		}
    603   1.1        ws #endif /* LOCKF_DEBUG */
    604  1.61        ad 		error = cv_wait_sig(&lock->lf_cv, interlock);
    605  1.16  sommerfe 
    606  1.16  sommerfe 		/*
    607  1.65        ad 		 * We may have been awoken by a signal (in
    608  1.16  sommerfe 		 * which case we must remove ourselves from the
    609  1.16  sommerfe 		 * blocked list) and/or by another process
    610  1.16  sommerfe 		 * releasing a lock (in which case we have already
    611  1.16  sommerfe 		 * been removed from the blocked list and our
    612  1.54      yamt 		 * lf_next field set to NULL).
    613  1.16  sommerfe 		 */
    614  1.54      yamt 		if (lock->lf_next != NULL) {
    615  1.16  sommerfe 			TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
    616  1.54      yamt 			lock->lf_next = NULL;
    617  1.16  sommerfe 		}
    618   1.7  christos 		if (error) {
    619  1.38  christos 			lf_free(lock);
    620  1.29      yamt 			return error;
    621   1.1        ws 		}
    622   1.1        ws 	}
    623   1.1        ws 	/*
    624   1.1        ws 	 * No blocks!!  Add the lock.  Note that we will
    625   1.1        ws 	 * downgrade or upgrade any overlapping locks this
    626   1.1        ws 	 * process already owns.
    627   1.1        ws 	 *
    628   1.1        ws 	 * Skip over locks owned by other processes.
    629   1.1        ws 	 * Handle any locks that overlap and are owned by ourselves.
    630   1.1        ws 	 */
    631   1.1        ws 	prev = head;
    632   1.1        ws 	block = *head;
    633   1.1        ws 	needtolink = 1;
    634   1.1        ws 	for (;;) {
    635   1.7  christos 		ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
    636   1.7  christos 		if (ovcase)
    637   1.1        ws 			block = overlap->lf_next;
    638   1.1        ws 		/*
    639   1.1        ws 		 * Six cases:
    640   1.1        ws 		 *	0) no overlap
    641   1.1        ws 		 *	1) overlap == lock
    642   1.1        ws 		 *	2) overlap contains lock
    643   1.1        ws 		 *	3) lock contains overlap
    644   1.1        ws 		 *	4) overlap starts before lock
    645   1.1        ws 		 *	5) overlap ends after lock
    646   1.1        ws 		 */
    647   1.1        ws 		switch (ovcase) {
    648   1.1        ws 		case 0: /* no overlap */
    649   1.1        ws 			if (needtolink) {
    650   1.1        ws 				*prev = lock;
    651   1.1        ws 				lock->lf_next = overlap;
    652   1.1        ws 			}
    653   1.1        ws 			break;
    654   1.1        ws 
    655   1.1        ws 		case 1: /* overlap == lock */
    656   1.1        ws 			/*
    657   1.1        ws 			 * If downgrading lock, others may be
    658   1.1        ws 			 * able to acquire it.
    659   1.1        ws 			 */
    660   1.1        ws 			if (lock->lf_type == F_RDLCK &&
    661   1.1        ws 			    overlap->lf_type == F_WRLCK)
    662   1.1        ws 				lf_wakelock(overlap);
    663   1.1        ws 			overlap->lf_type = lock->lf_type;
    664  1.38  christos 			lf_free(lock);
    665   1.1        ws 			lock = overlap; /* for debug output below */
    666   1.1        ws 			break;
    667   1.1        ws 
    668   1.1        ws 		case 2: /* overlap contains lock */
    669   1.1        ws 			/*
    670   1.1        ws 			 * Check for common starting point and different types.
    671   1.1        ws 			 */
    672   1.1        ws 			if (overlap->lf_type == lock->lf_type) {
    673  1.38  christos 				lf_free(lock);
    674   1.1        ws 				lock = overlap; /* for debug output below */
    675   1.1        ws 				break;
    676   1.1        ws 			}
    677   1.1        ws 			if (overlap->lf_start == lock->lf_start) {
    678   1.1        ws 				*prev = lock;
    679   1.1        ws 				lock->lf_next = overlap;
    680   1.1        ws 				overlap->lf_start = lock->lf_end + 1;
    681   1.1        ws 			} else
    682  1.27      yamt 				lf_split(overlap, lock, sparelock);
    683   1.1        ws 			lf_wakelock(overlap);
    684   1.1        ws 			break;
    685   1.1        ws 
    686   1.1        ws 		case 3: /* lock contains overlap */
    687   1.1        ws 			/*
    688   1.1        ws 			 * If downgrading lock, others may be able to
    689   1.1        ws 			 * acquire it, otherwise take the list.
    690   1.1        ws 			 */
    691   1.1        ws 			if (lock->lf_type == F_RDLCK &&
    692   1.1        ws 			    overlap->lf_type == F_WRLCK) {
    693   1.1        ws 				lf_wakelock(overlap);
    694   1.1        ws 			} else {
    695  1.19      matt 				while ((ltmp = TAILQ_FIRST(&overlap->lf_blkhd))) {
    696  1.16  sommerfe 					KASSERT(ltmp->lf_next == overlap);
    697  1.12      fvdl 					TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
    698  1.12      fvdl 					    lf_block);
    699  1.16  sommerfe 					ltmp->lf_next = lock;
    700  1.12      fvdl 					TAILQ_INSERT_TAIL(&lock->lf_blkhd,
    701  1.12      fvdl 					    ltmp, lf_block);
    702  1.12      fvdl 				}
    703   1.1        ws 			}
    704   1.1        ws 			/*
    705   1.1        ws 			 * Add the new lock if necessary and delete the overlap.
    706   1.1        ws 			 */
    707   1.1        ws 			if (needtolink) {
    708   1.1        ws 				*prev = lock;
    709   1.1        ws 				lock->lf_next = overlap->lf_next;
    710   1.1        ws 				prev = &lock->lf_next;
    711   1.1        ws 				needtolink = 0;
    712   1.1        ws 			} else
    713   1.1        ws 				*prev = overlap->lf_next;
    714  1.39  christos 			lf_free(overlap);
    715   1.1        ws 			continue;
    716   1.1        ws 
    717   1.1        ws 		case 4: /* overlap starts before lock */
    718   1.1        ws 			/*
    719   1.1        ws 			 * Add lock after overlap on the list.
    720   1.1        ws 			 */
    721   1.1        ws 			lock->lf_next = overlap->lf_next;
    722   1.1        ws 			overlap->lf_next = lock;
    723   1.1        ws 			overlap->lf_end = lock->lf_start - 1;
    724   1.1        ws 			prev = &lock->lf_next;
    725   1.1        ws 			lf_wakelock(overlap);
    726   1.1        ws 			needtolink = 0;
    727   1.1        ws 			continue;
    728   1.1        ws 
    729   1.1        ws 		case 5: /* overlap ends after lock */
    730   1.1        ws 			/*
    731   1.1        ws 			 * Add the new lock before overlap.
    732   1.1        ws 			 */
    733   1.1        ws 			if (needtolink) {
    734   1.1        ws 				*prev = lock;
    735   1.1        ws 				lock->lf_next = overlap;
    736   1.1        ws 			}
    737   1.1        ws 			overlap->lf_start = lock->lf_end + 1;
    738   1.1        ws 			lf_wakelock(overlap);
    739   1.1        ws 			break;
    740   1.1        ws 		}
    741   1.1        ws 		break;
    742   1.1        ws 	}
    743   1.1        ws #ifdef LOCKF_DEBUG
    744   1.1        ws 	if (lockf_debug & 1) {
    745   1.1        ws 		lf_print("lf_setlock: got the lock", lock);
    746   1.1        ws 		lf_printlist("lf_setlock", lock);
    747   1.1        ws 	}
    748   1.1        ws #endif /* LOCKF_DEBUG */
    749  1.29      yamt 	return 0;
    750   1.1        ws }
    751   1.1        ws 
    752   1.1        ws /*
    753   1.1        ws  * Check whether there is a blocking lock,
    754   1.1        ws  * and if so return its process identifier.
    755   1.1        ws  */
    756  1.24      yamt static int
    757  1.25      yamt lf_getlock(struct lockf *lock, struct flock *fl)
    758   1.1        ws {
    759  1.15  augustss 	struct lockf *block;
    760   1.1        ws 
    761   1.1        ws #ifdef LOCKF_DEBUG
    762   1.1        ws 	if (lockf_debug & 1)
    763   1.1        ws 		lf_print("lf_getlock", lock);
    764   1.1        ws #endif /* LOCKF_DEBUG */
    765   1.1        ws 
    766   1.7  christos 	if ((block = lf_getblock(lock)) != NULL) {
    767   1.1        ws 		fl->l_type = block->lf_type;
    768   1.1        ws 		fl->l_whence = SEEK_SET;
    769   1.1        ws 		fl->l_start = block->lf_start;
    770   1.1        ws 		if (block->lf_end == -1)
    771   1.1        ws 			fl->l_len = 0;
    772   1.1        ws 		else
    773   1.1        ws 			fl->l_len = block->lf_end - block->lf_start + 1;
    774   1.1        ws 		if (block->lf_flags & F_POSIX)
    775  1.23   mycroft 			fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
    776   1.1        ws 		else
    777   1.1        ws 			fl->l_pid = -1;
    778   1.1        ws 	} else {
    779   1.1        ws 		fl->l_type = F_UNLCK;
    780   1.1        ws 	}
    781  1.29      yamt 	return 0;
    782   1.1        ws }
    783   1.1        ws 
    784   1.1        ws /*
    785  1.45   thorpej  * Do an advisory lock operation.
    786   1.1        ws  */
    787  1.45   thorpej int
    788  1.45   thorpej lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
    789   1.1        ws {
    790  1.45   thorpej 	struct flock *fl = ap->a_fl;
    791  1.45   thorpej 	struct lockf *lock = NULL;
    792  1.45   thorpej 	struct lockf *sparelock;
    793  1.81        ad 	kmutex_t *interlock = &lockf_lock;
    794  1.45   thorpej 	off_t start, end;
    795  1.45   thorpej 	int error = 0;
    796   1.1        ws 
    797  1.76  riastrad 	KASSERTMSG(size >= 0, "size=%jd", (intmax_t)size);
    798  1.76  riastrad 
    799  1.45   thorpej 	/*
    800  1.45   thorpej 	 * Convert the flock structure into a start and end.
    801  1.45   thorpej 	 */
    802  1.45   thorpej 	switch (fl->l_whence) {
    803  1.45   thorpej 	case SEEK_SET:
    804  1.45   thorpej 	case SEEK_CUR:
    805   1.1        ws 		/*
    806  1.45   thorpej 		 * Caller is responsible for adding any necessary offset
    807  1.45   thorpej 		 * when SEEK_CUR is used.
    808   1.1        ws 		 */
    809  1.45   thorpej 		start = fl->l_start;
    810  1.45   thorpej 		break;
    811  1.45   thorpej 
    812  1.45   thorpej 	case SEEK_END:
    813  1.76  riastrad 		if (fl->l_start > __type_max(off_t) - size)
    814  1.76  riastrad 			return EINVAL;
    815  1.45   thorpej 		start = size + fl->l_start;
    816  1.45   thorpej 		break;
    817  1.45   thorpej 
    818  1.45   thorpej 	default:
    819  1.45   thorpej 		return EINVAL;
    820   1.1        ws 	}
    821  1.72       dsl 
    822  1.72       dsl 	if (fl->l_len == 0)
    823  1.72       dsl 		end = -1;
    824  1.72       dsl 	else {
    825  1.76  riastrad 		if (fl->l_len >= 0) {
    826  1.77  riastrad 			if (start >= 0 &&
    827  1.77  riastrad 			    fl->l_len - 1 > __type_max(off_t) - start)
    828  1.76  riastrad 				return EINVAL;
    829  1.78  riastrad 			end = start + (fl->l_len - 1);
    830  1.76  riastrad 		} else {
    831  1.72       dsl 			/* lockf() allows -ve lengths */
    832  1.76  riastrad 			if (start < 0)
    833  1.76  riastrad 				return EINVAL;
    834  1.72       dsl 			end = start - 1;
    835  1.72       dsl 			start += fl->l_len;
    836  1.72       dsl 		}
    837  1.72       dsl 	}
    838  1.45   thorpej 	if (start < 0)
    839  1.45   thorpej 		return EINVAL;
    840   1.1        ws 
    841  1.45   thorpej 	/*
    842  1.61        ad 	 * Allocate locks before acquiring the interlock.  We need two
    843  1.55        ad 	 * locks in the worst case.
    844  1.45   thorpej 	 */
    845  1.45   thorpej 	switch (ap->a_op) {
    846  1.45   thorpej 	case F_SETLK:
    847  1.45   thorpej 	case F_UNLCK:
    848   1.1        ws 		/*
    849  1.55        ad 		 * XXX For F_UNLCK case, we can re-use the lock.
    850   1.1        ws 		 */
    851  1.46  christos 		if ((ap->a_flags & F_FLOCK) == 0) {
    852  1.45   thorpej 			/*
    853  1.55        ad 			 * Byte-range lock might need one more lock.
    854  1.45   thorpej 			 */
    855  1.71      yamt 			sparelock = lf_alloc(0);
    856  1.45   thorpej 			if (sparelock == NULL) {
    857  1.45   thorpej 				error = ENOMEM;
    858  1.45   thorpej 				goto quit;
    859  1.45   thorpej 			}
    860  1.45   thorpej 			break;
    861   1.1        ws 		}
    862  1.45   thorpej 		/* FALLTHROUGH */
    863  1.45   thorpej 
    864  1.45   thorpej 	case F_GETLK:
    865  1.45   thorpej 		sparelock = NULL;
    866  1.45   thorpej 		break;
    867  1.45   thorpej 
    868  1.45   thorpej 	default:
    869  1.45   thorpej 		return EINVAL;
    870  1.45   thorpej 	}
    871  1.45   thorpej 
    872  1.71      yamt 	switch (ap->a_op) {
    873  1.71      yamt 	case F_SETLK:
    874  1.71      yamt 		lock = lf_alloc(1);
    875  1.71      yamt 		break;
    876  1.71      yamt 	case F_UNLCK:
    877  1.71      yamt 		if (start == 0 || end == -1) {
    878  1.71      yamt 			/* never split */
    879  1.71      yamt 			lock = lf_alloc(0);
    880  1.71      yamt 		} else {
    881  1.71      yamt 			/* might split */
    882  1.71      yamt 			lock = lf_alloc(2);
    883  1.71      yamt 		}
    884  1.71      yamt 		break;
    885  1.71      yamt 	case F_GETLK:
    886  1.71      yamt 		lock = lf_alloc(0);
    887  1.71      yamt 		break;
    888  1.71      yamt 	}
    889  1.45   thorpej 	if (lock == NULL) {
    890  1.45   thorpej 		error = ENOMEM;
    891  1.45   thorpej 		goto quit;
    892   1.1        ws 	}
    893   1.1        ws 
    894  1.61        ad 	mutex_enter(interlock);
    895   1.1        ws 
    896   1.1        ws 	/*
    897  1.45   thorpej 	 * Avoid the common case of unlocking when inode has no locks.
    898   1.1        ws 	 */
    899  1.45   thorpej 	if (*head == (struct lockf *)0) {
    900  1.45   thorpej 		if (ap->a_op != F_SETLK) {
    901  1.45   thorpej 			fl->l_type = F_UNLCK;
    902  1.45   thorpej 			error = 0;
    903  1.45   thorpej 			goto quit_unlock;
    904  1.45   thorpej 		}
    905   1.1        ws 	}
    906  1.45   thorpej 
    907   1.1        ws 	/*
    908  1.45   thorpej 	 * Create the lockf structure.
    909  1.45   thorpej 	 */
    910  1.45   thorpej 	lock->lf_start = start;
    911  1.45   thorpej 	lock->lf_end = end;
    912  1.45   thorpej 	lock->lf_head = head;
    913  1.45   thorpej 	lock->lf_type = fl->l_type;
    914  1.45   thorpej 	lock->lf_next = (struct lockf *)0;
    915  1.45   thorpej 	TAILQ_INIT(&lock->lf_blkhd);
    916  1.45   thorpej 	lock->lf_flags = ap->a_flags;
    917  1.45   thorpej 	if (lock->lf_flags & F_POSIX) {
    918  1.45   thorpej 		KASSERT(curproc == (struct proc *)ap->a_id);
    919  1.45   thorpej 	}
    920  1.72       dsl 	lock->lf_id = ap->a_id;
    921  1.45   thorpej 
    922   1.1        ws 	/*
    923  1.45   thorpej 	 * Do the requested operation.
    924   1.1        ws 	 */
    925  1.45   thorpej 	switch (ap->a_op) {
    926   1.1        ws 
    927  1.45   thorpej 	case F_SETLK:
    928  1.45   thorpej 		error = lf_setlock(lock, &sparelock, interlock);
    929  1.45   thorpej 		lock = NULL; /* lf_setlock freed it */
    930  1.45   thorpej 		break;
    931   1.1        ws 
    932  1.45   thorpej 	case F_UNLCK:
    933  1.45   thorpej 		error = lf_clearlock(lock, &sparelock);
    934  1.45   thorpej 		break;
    935   1.1        ws 
    936  1.45   thorpej 	case F_GETLK:
    937  1.45   thorpej 		error = lf_getlock(lock, fl);
    938  1.45   thorpej 		break;
    939  1.37     perry 
    940  1.45   thorpej 	default:
    941  1.45   thorpej 		break;
    942  1.45   thorpej 		/* NOTREACHED */
    943  1.45   thorpej 	}
    944   1.1        ws 
    945  1.45   thorpej quit_unlock:
    946  1.61        ad 	mutex_exit(interlock);
    947  1.45   thorpej quit:
    948  1.45   thorpej 	if (lock)
    949  1.45   thorpej 		lf_free(lock);
    950  1.45   thorpej 	if (sparelock)
    951  1.45   thorpej 		lf_free(sparelock);
    952   1.1        ws 
    953  1.45   thorpej 	return error;
    954   1.1        ws }
    955  1.80        ad 
    956  1.80        ad /*
    957  1.80        ad  * Initialize subsystem.   XXX We use a global lock.  This could be the
    958  1.80        ad  * vnode interlock, but the deadlock detection code may need to inspect
    959  1.80        ad  * locks belonging to other files.
    960  1.80        ad  */
    961  1.80        ad void
    962  1.80        ad lf_init(void)
    963  1.80        ad {
    964  1.80        ad 
    965  1.81        ad 	mutex_init(&lockf_lock, MUTEX_DEFAULT, IPL_NONE);
    966  1.80        ad }
    967