vfs_lockf.c revision 1.81 1 1.81 ad /* $NetBSD: vfs_lockf.c,v 1.81 2023/09/23 18:21:11 ad Exp $ */
2 1.5 cgd
3 1.1 ws /*
4 1.4 mycroft * Copyright (c) 1982, 1986, 1989, 1993
5 1.4 mycroft * The Regents of the University of California. All rights reserved.
6 1.1 ws *
7 1.1 ws * This code is derived from software contributed to Berkeley by
8 1.1 ws * Scooter Morris at Genentech Inc.
9 1.1 ws *
10 1.1 ws * Redistribution and use in source and binary forms, with or without
11 1.1 ws * modification, are permitted provided that the following conditions
12 1.1 ws * are met:
13 1.1 ws * 1. Redistributions of source code must retain the above copyright
14 1.1 ws * notice, this list of conditions and the following disclaimer.
15 1.1 ws * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 ws * notice, this list of conditions and the following disclaimer in the
17 1.1 ws * documentation and/or other materials provided with the distribution.
18 1.33 agc * 3. Neither the name of the University nor the names of its contributors
19 1.1 ws * may be used to endorse or promote products derived from this software
20 1.1 ws * without specific prior written permission.
21 1.1 ws *
22 1.1 ws * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 ws * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 ws * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 ws * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 ws * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 ws * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 ws * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 ws * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 ws * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 ws * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 ws * SUCH DAMAGE.
33 1.1 ws *
34 1.12 fvdl * @(#)ufs_lockf.c 8.4 (Berkeley) 10/26/94
35 1.1 ws */
36 1.18 lukem
37 1.18 lukem #include <sys/cdefs.h>
38 1.81 ad __KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.81 2023/09/23 18:21:11 ad Exp $");
39 1.1 ws
40 1.1 ws #include <sys/param.h>
41 1.1 ws #include <sys/systm.h>
42 1.1 ws #include <sys/kernel.h>
43 1.1 ws #include <sys/file.h>
44 1.1 ws #include <sys/proc.h>
45 1.1 ws #include <sys/vnode.h>
46 1.81 ad #include <sys/kmem.h>
47 1.1 ws #include <sys/fcntl.h>
48 1.1 ws #include <sys/lockf.h>
49 1.63 mrg #include <sys/atomic.h>
50 1.49 elad #include <sys/kauth.h>
51 1.69 pooka #include <sys/uidinfo.h>
52 1.22 thorpej
53 1.50 yamt /*
54 1.50 yamt * The lockf structure is a kernel structure which contains the information
55 1.50 yamt * associated with a byte range lock. The lockf structures are linked into
56 1.60 ad * the vnode structure. Locks are sorted by the starting byte of the lock for
57 1.50 yamt * efficiency.
58 1.50 yamt *
59 1.50 yamt * lf_next is used for two purposes, depending on whether the lock is
60 1.50 yamt * being held, or is in conflict with an existing lock. If this lock
61 1.50 yamt * is held, it indicates the next lock on the same vnode.
62 1.50 yamt * For pending locks, if lock->lf_next is non-NULL, then lock->lf_block
63 1.50 yamt * must be queued on the lf_blkhd TAILQ of lock->lf_next.
64 1.50 yamt */
65 1.50 yamt
66 1.50 yamt TAILQ_HEAD(locklist, lockf);
67 1.50 yamt
68 1.50 yamt struct lockf {
69 1.65 ad kcondvar_t lf_cv; /* Signalling */
70 1.50 yamt short lf_flags; /* Lock semantics: F_POSIX, F_FLOCK, F_WAIT */
71 1.50 yamt short lf_type; /* Lock type: F_RDLCK, F_WRLCK */
72 1.50 yamt off_t lf_start; /* The byte # of the start of the lock */
73 1.50 yamt off_t lf_end; /* The byte # of the end of the lock (-1=EOF)*/
74 1.50 yamt void *lf_id; /* process or file description holding lock */
75 1.50 yamt struct lockf **lf_head; /* Back pointer to the head of lockf list */
76 1.50 yamt struct lockf *lf_next; /* Next lock on this vnode, or blocking lock */
77 1.50 yamt struct locklist lf_blkhd; /* List of requests blocked on this lock */
78 1.50 yamt TAILQ_ENTRY(lockf) lf_block;/* A request waiting for a lock */
79 1.81 ad struct uidinfo *lf_uip; /* Cached pointer to uidinfo */
80 1.50 yamt };
81 1.50 yamt
82 1.50 yamt /* Maximum length of sleep chains to traverse to try and detect deadlock. */
83 1.50 yamt #define MAXDEPTH 50
84 1.50 yamt
85 1.81 ad static kmutex_t lockf_lock __cacheline_aligned;
86 1.65 ad static char lockstr[] = "lockf";
87 1.1 ws
88 1.1 ws /*
89 1.6 mycroft * This variable controls the maximum number of processes that will
90 1.6 mycroft * be checked in doing deadlock detection.
91 1.6 mycroft */
92 1.6 mycroft int maxlockdepth = MAXDEPTH;
93 1.6 mycroft
94 1.6 mycroft #ifdef LOCKF_DEBUG
95 1.6 mycroft int lockf_debug = 0;
96 1.6 mycroft #endif
97 1.6 mycroft
98 1.6 mycroft #define SELF 0x1
99 1.6 mycroft #define OTHERS 0x2
100 1.6 mycroft
101 1.6 mycroft /*
102 1.16 sommerfe * XXX TODO
103 1.58 christos * Misc cleanups: "void *id" should be visible in the API as a
104 1.16 sommerfe * "struct proc *".
105 1.16 sommerfe * (This requires rototilling all VFS's which support advisory locking).
106 1.16 sommerfe */
107 1.16 sommerfe
108 1.16 sommerfe /*
109 1.16 sommerfe * If there's a lot of lock contention on a single vnode, locking
110 1.16 sommerfe * schemes which allow for more paralleism would be needed. Given how
111 1.16 sommerfe * infrequently byte-range locks are actually used in typical BSD
112 1.16 sommerfe * code, a more complex approach probably isn't worth it.
113 1.16 sommerfe */
114 1.16 sommerfe
115 1.16 sommerfe /*
116 1.38 christos * We enforce a limit on locks by uid, so that a single user cannot
117 1.38 christos * run the kernel out of memory. For now, the limit is pretty coarse.
118 1.38 christos * There is no limit on root.
119 1.38 christos *
120 1.38 christos * Splitting a lock will always succeed, regardless of current allocations.
121 1.38 christos * If you're slightly above the limit, we still have to permit an allocation
122 1.38 christos * so that the unlock can succeed. If the unlocking causes too many splits,
123 1.38 christos * however, you're totally cutoff.
124 1.38 christos */
125 1.74 manu #define MAXLOCKSPERUID (2 * maxfiles)
126 1.38 christos
127 1.45 thorpej #ifdef LOCKF_DEBUG
128 1.45 thorpej /*
129 1.45 thorpej * Print out a lock.
130 1.45 thorpej */
131 1.45 thorpej static void
132 1.56 christos lf_print(const char *tag, struct lockf *lock)
133 1.45 thorpej {
134 1.45 thorpej
135 1.45 thorpej printf("%s: lock %p for ", tag, lock);
136 1.45 thorpej if (lock->lf_flags & F_POSIX)
137 1.45 thorpej printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
138 1.45 thorpej else
139 1.45 thorpej printf("file %p", (struct file *)lock->lf_id);
140 1.73 dholland printf(" %s, start %jd, end %jd",
141 1.45 thorpej lock->lf_type == F_RDLCK ? "shared" :
142 1.45 thorpej lock->lf_type == F_WRLCK ? "exclusive" :
143 1.45 thorpej lock->lf_type == F_UNLCK ? "unlock" :
144 1.73 dholland "unknown", (intmax_t)lock->lf_start, (intmax_t)lock->lf_end);
145 1.45 thorpej if (TAILQ_FIRST(&lock->lf_blkhd))
146 1.45 thorpej printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
147 1.45 thorpej else
148 1.45 thorpej printf("\n");
149 1.45 thorpej }
150 1.45 thorpej
151 1.45 thorpej static void
152 1.56 christos lf_printlist(const char *tag, struct lockf *lock)
153 1.45 thorpej {
154 1.45 thorpej struct lockf *lf, *blk;
155 1.45 thorpej
156 1.45 thorpej printf("%s: Lock list:\n", tag);
157 1.45 thorpej for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
158 1.45 thorpej printf("\tlock %p for ", lf);
159 1.45 thorpej if (lf->lf_flags & F_POSIX)
160 1.45 thorpej printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
161 1.45 thorpej else
162 1.45 thorpej printf("file %p", (struct file *)lf->lf_id);
163 1.73 dholland printf(", %s, start %jd, end %jd",
164 1.45 thorpej lf->lf_type == F_RDLCK ? "shared" :
165 1.45 thorpej lf->lf_type == F_WRLCK ? "exclusive" :
166 1.45 thorpej lf->lf_type == F_UNLCK ? "unlock" :
167 1.73 dholland "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
168 1.45 thorpej TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
169 1.45 thorpej if (blk->lf_flags & F_POSIX)
170 1.66 skrll printf("; proc %d",
171 1.45 thorpej ((struct proc *)blk->lf_id)->p_pid);
172 1.45 thorpej else
173 1.66 skrll printf("; file %p", (struct file *)blk->lf_id);
174 1.73 dholland printf(", %s, start %jd, end %jd",
175 1.45 thorpej blk->lf_type == F_RDLCK ? "shared" :
176 1.45 thorpej blk->lf_type == F_WRLCK ? "exclusive" :
177 1.45 thorpej blk->lf_type == F_UNLCK ? "unlock" :
178 1.73 dholland "unknown", (intmax_t)blk->lf_start, (intmax_t)blk->lf_end);
179 1.45 thorpej if (TAILQ_FIRST(&blk->lf_blkhd))
180 1.45 thorpej panic("lf_printlist: bad list");
181 1.45 thorpej }
182 1.45 thorpej printf("\n");
183 1.45 thorpej }
184 1.45 thorpej }
185 1.45 thorpej #endif /* LOCKF_DEBUG */
186 1.45 thorpej
187 1.38 christos /*
188 1.38 christos * 3 options for allowfail.
189 1.38 christos * 0 - always allocate. 1 - cutoff at limit. 2 - cutoff at double limit.
190 1.38 christos */
191 1.45 thorpej static struct lockf *
192 1.71 yamt lf_alloc(int allowfail)
193 1.38 christos {
194 1.38 christos struct uidinfo *uip;
195 1.38 christos struct lockf *lock;
196 1.62 rmind u_long lcnt;
197 1.71 yamt const uid_t uid = kauth_cred_geteuid(kauth_cred_get());
198 1.38 christos
199 1.38 christos uip = uid_find(uid);
200 1.62 rmind lcnt = atomic_inc_ulong_nv(&uip->ui_lockcnt);
201 1.62 rmind if (uid && allowfail && lcnt >
202 1.74 manu (allowfail == 1 ? MAXLOCKSPERUID : (MAXLOCKSPERUID * 2))) {
203 1.62 rmind atomic_dec_ulong(&uip->ui_lockcnt);
204 1.40 christos return NULL;
205 1.40 christos }
206 1.62 rmind
207 1.81 ad lock = kmem_alloc(sizeof(*lock), KM_SLEEP);
208 1.81 ad lock->lf_uip = uip;
209 1.81 ad cv_init(&lock->lf_cv, lockstr);
210 1.40 christos return lock;
211 1.38 christos }
212 1.38 christos
213 1.45 thorpej static void
214 1.38 christos lf_free(struct lockf *lock)
215 1.38 christos {
216 1.80 ad
217 1.81 ad atomic_dec_ulong(&lock->lf_uip->ui_lockcnt);
218 1.61 ad cv_destroy(&lock->lf_cv);
219 1.81 ad kmem_free(lock, sizeof(*lock));
220 1.38 christos }
221 1.38 christos
222 1.38 christos /*
223 1.45 thorpej * Walk the list of locks for an inode to
224 1.45 thorpej * find an overlapping lock (if any).
225 1.45 thorpej *
226 1.45 thorpej * NOTE: this returns only the FIRST overlapping lock. There
227 1.45 thorpej * may be more than one.
228 1.1 ws */
229 1.45 thorpej static int
230 1.45 thorpej lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
231 1.45 thorpej struct lockf ***prev, struct lockf **overlap)
232 1.1 ws {
233 1.1 ws off_t start, end;
234 1.1 ws
235 1.45 thorpej *overlap = lf;
236 1.54 yamt if (lf == NULL)
237 1.45 thorpej return 0;
238 1.45 thorpej #ifdef LOCKF_DEBUG
239 1.45 thorpej if (lockf_debug & 2)
240 1.45 thorpej lf_print("lf_findoverlap: looking for overlap in", lock);
241 1.45 thorpej #endif /* LOCKF_DEBUG */
242 1.45 thorpej start = lock->lf_start;
243 1.45 thorpej end = lock->lf_end;
244 1.54 yamt while (lf != NULL) {
245 1.45 thorpej if (((type == SELF) && lf->lf_id != lock->lf_id) ||
246 1.45 thorpej ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
247 1.45 thorpej *prev = &lf->lf_next;
248 1.45 thorpej *overlap = lf = lf->lf_next;
249 1.45 thorpej continue;
250 1.45 thorpej }
251 1.45 thorpej #ifdef LOCKF_DEBUG
252 1.45 thorpej if (lockf_debug & 2)
253 1.45 thorpej lf_print("\tchecking", lf);
254 1.45 thorpej #endif /* LOCKF_DEBUG */
255 1.1 ws /*
256 1.45 thorpej * OK, check for overlap
257 1.45 thorpej *
258 1.45 thorpej * Six cases:
259 1.45 thorpej * 0) no overlap
260 1.45 thorpej * 1) overlap == lock
261 1.45 thorpej * 2) overlap contains lock
262 1.45 thorpej * 3) lock contains overlap
263 1.45 thorpej * 4) overlap starts before lock
264 1.45 thorpej * 5) overlap ends after lock
265 1.1 ws */
266 1.45 thorpej if ((lf->lf_end != -1 && start > lf->lf_end) ||
267 1.45 thorpej (end != -1 && lf->lf_start > end)) {
268 1.45 thorpej /* Case 0 */
269 1.45 thorpej #ifdef LOCKF_DEBUG
270 1.45 thorpej if (lockf_debug & 2)
271 1.45 thorpej printf("no overlap\n");
272 1.45 thorpej #endif /* LOCKF_DEBUG */
273 1.45 thorpej if ((type & SELF) && end != -1 && lf->lf_start > end)
274 1.45 thorpej return 0;
275 1.45 thorpej *prev = &lf->lf_next;
276 1.45 thorpej *overlap = lf = lf->lf_next;
277 1.45 thorpej continue;
278 1.45 thorpej }
279 1.45 thorpej if ((lf->lf_start == start) && (lf->lf_end == end)) {
280 1.45 thorpej /* Case 1 */
281 1.45 thorpej #ifdef LOCKF_DEBUG
282 1.45 thorpej if (lockf_debug & 2)
283 1.45 thorpej printf("overlap == lock\n");
284 1.45 thorpej #endif /* LOCKF_DEBUG */
285 1.45 thorpej return 1;
286 1.45 thorpej }
287 1.45 thorpej if ((lf->lf_start <= start) &&
288 1.45 thorpej (end != -1) &&
289 1.45 thorpej ((lf->lf_end >= end) || (lf->lf_end == -1))) {
290 1.45 thorpej /* Case 2 */
291 1.45 thorpej #ifdef LOCKF_DEBUG
292 1.45 thorpej if (lockf_debug & 2)
293 1.45 thorpej printf("overlap contains lock\n");
294 1.45 thorpej #endif /* LOCKF_DEBUG */
295 1.45 thorpej return 2;
296 1.45 thorpej }
297 1.45 thorpej if (start <= lf->lf_start &&
298 1.45 thorpej (end == -1 ||
299 1.45 thorpej (lf->lf_end != -1 && end >= lf->lf_end))) {
300 1.45 thorpej /* Case 3 */
301 1.45 thorpej #ifdef LOCKF_DEBUG
302 1.45 thorpej if (lockf_debug & 2)
303 1.45 thorpej printf("lock contains overlap\n");
304 1.45 thorpej #endif /* LOCKF_DEBUG */
305 1.45 thorpej return 3;
306 1.45 thorpej }
307 1.45 thorpej if ((lf->lf_start < start) &&
308 1.45 thorpej ((lf->lf_end >= start) || (lf->lf_end == -1))) {
309 1.45 thorpej /* Case 4 */
310 1.45 thorpej #ifdef LOCKF_DEBUG
311 1.45 thorpej if (lockf_debug & 2)
312 1.45 thorpej printf("overlap starts before lock\n");
313 1.45 thorpej #endif /* LOCKF_DEBUG */
314 1.45 thorpej return 4;
315 1.45 thorpej }
316 1.45 thorpej if ((lf->lf_start > start) &&
317 1.45 thorpej (end != -1) &&
318 1.45 thorpej ((lf->lf_end > end) || (lf->lf_end == -1))) {
319 1.45 thorpej /* Case 5 */
320 1.45 thorpej #ifdef LOCKF_DEBUG
321 1.45 thorpej if (lockf_debug & 2)
322 1.45 thorpej printf("overlap ends after lock\n");
323 1.45 thorpej #endif /* LOCKF_DEBUG */
324 1.45 thorpej return 5;
325 1.45 thorpej }
326 1.45 thorpej panic("lf_findoverlap: default");
327 1.45 thorpej }
328 1.45 thorpej return 0;
329 1.45 thorpej }
330 1.1 ws
331 1.45 thorpej /*
332 1.45 thorpej * Split a lock and a contained region into
333 1.45 thorpej * two or three locks as necessary.
334 1.45 thorpej */
335 1.45 thorpej static void
336 1.45 thorpej lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
337 1.45 thorpej {
338 1.45 thorpej struct lockf *splitlock;
339 1.1 ws
340 1.45 thorpej #ifdef LOCKF_DEBUG
341 1.45 thorpej if (lockf_debug & 2) {
342 1.45 thorpej lf_print("lf_split", lock1);
343 1.45 thorpej lf_print("splitting from", lock2);
344 1.1 ws }
345 1.45 thorpej #endif /* LOCKF_DEBUG */
346 1.10 kleink /*
347 1.75 andvar * Check to see if splitting into only two pieces.
348 1.27 yamt */
349 1.45 thorpej if (lock1->lf_start == lock2->lf_start) {
350 1.45 thorpej lock1->lf_start = lock2->lf_end + 1;
351 1.45 thorpej lock2->lf_next = lock1;
352 1.45 thorpej return;
353 1.27 yamt }
354 1.45 thorpej if (lock1->lf_end == lock2->lf_end) {
355 1.45 thorpej lock1->lf_end = lock2->lf_start - 1;
356 1.45 thorpej lock2->lf_next = lock1->lf_next;
357 1.45 thorpej lock1->lf_next = lock2;
358 1.45 thorpej return;
359 1.27 yamt }
360 1.27 yamt /*
361 1.45 thorpej * Make a new lock consisting of the last part of
362 1.45 thorpej * the encompassing lock
363 1.10 kleink */
364 1.45 thorpej splitlock = *sparelock;
365 1.45 thorpej *sparelock = NULL;
366 1.70 yamt cv_destroy(&splitlock->lf_cv);
367 1.45 thorpej memcpy(splitlock, lock1, sizeof(*splitlock));
368 1.67 skrll cv_init(&splitlock->lf_cv, lockstr);
369 1.67 skrll
370 1.45 thorpej splitlock->lf_start = lock2->lf_end + 1;
371 1.45 thorpej TAILQ_INIT(&splitlock->lf_blkhd);
372 1.45 thorpej lock1->lf_end = lock2->lf_start - 1;
373 1.1 ws /*
374 1.45 thorpej * OK, now link it in
375 1.21 thorpej */
376 1.45 thorpej splitlock->lf_next = lock1->lf_next;
377 1.45 thorpej lock2->lf_next = splitlock;
378 1.45 thorpej lock1->lf_next = lock2;
379 1.45 thorpej }
380 1.45 thorpej
381 1.45 thorpej /*
382 1.45 thorpej * Wakeup a blocklist
383 1.45 thorpej */
384 1.45 thorpej static void
385 1.45 thorpej lf_wakelock(struct lockf *listhead)
386 1.45 thorpej {
387 1.45 thorpej struct lockf *wakelock;
388 1.21 thorpej
389 1.45 thorpej while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
390 1.45 thorpej KASSERT(wakelock->lf_next == listhead);
391 1.45 thorpej TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
392 1.54 yamt wakelock->lf_next = NULL;
393 1.45 thorpej #ifdef LOCKF_DEBUG
394 1.45 thorpej if (lockf_debug & 2)
395 1.45 thorpej lf_print("lf_wakelock: awakening", wakelock);
396 1.45 thorpej #endif
397 1.61 ad cv_broadcast(&wakelock->lf_cv);
398 1.21 thorpej }
399 1.45 thorpej }
400 1.45 thorpej
401 1.45 thorpej /*
402 1.45 thorpej * Remove a byte-range lock on an inode.
403 1.45 thorpej *
404 1.45 thorpej * Generally, find the lock (or an overlap to that lock)
405 1.45 thorpej * and remove it (or shrink it), then wakeup anyone we can.
406 1.45 thorpej */
407 1.45 thorpej static int
408 1.45 thorpej lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
409 1.45 thorpej {
410 1.45 thorpej struct lockf **head = unlock->lf_head;
411 1.45 thorpej struct lockf *lf = *head;
412 1.45 thorpej struct lockf *overlap, **prev;
413 1.45 thorpej int ovcase;
414 1.45 thorpej
415 1.54 yamt if (lf == NULL)
416 1.45 thorpej return 0;
417 1.45 thorpej #ifdef LOCKF_DEBUG
418 1.45 thorpej if (unlock->lf_type != F_UNLCK)
419 1.45 thorpej panic("lf_clearlock: bad type");
420 1.45 thorpej if (lockf_debug & 1)
421 1.45 thorpej lf_print("lf_clearlock", unlock);
422 1.45 thorpej #endif /* LOCKF_DEBUG */
423 1.45 thorpej prev = head;
424 1.45 thorpej while ((ovcase = lf_findoverlap(lf, unlock, SELF,
425 1.61 ad &prev, &overlap)) != 0) {
426 1.45 thorpej /*
427 1.45 thorpej * Wakeup the list of locks to be retried.
428 1.45 thorpej */
429 1.45 thorpej lf_wakelock(overlap);
430 1.45 thorpej
431 1.45 thorpej switch (ovcase) {
432 1.37 perry
433 1.45 thorpej case 1: /* overlap == lock */
434 1.45 thorpej *prev = overlap->lf_next;
435 1.45 thorpej lf_free(overlap);
436 1.45 thorpej break;
437 1.4 mycroft
438 1.45 thorpej case 2: /* overlap contains lock: split it */
439 1.45 thorpej if (overlap->lf_start == unlock->lf_start) {
440 1.45 thorpej overlap->lf_start = unlock->lf_end + 1;
441 1.45 thorpej break;
442 1.45 thorpej }
443 1.45 thorpej lf_split(overlap, unlock, sparelock);
444 1.45 thorpej overlap->lf_next = unlock->lf_next;
445 1.45 thorpej break;
446 1.1 ws
447 1.45 thorpej case 3: /* lock contains overlap */
448 1.45 thorpej *prev = overlap->lf_next;
449 1.45 thorpej lf = overlap->lf_next;
450 1.45 thorpej lf_free(overlap);
451 1.45 thorpej continue;
452 1.1 ws
453 1.45 thorpej case 4: /* overlap starts before lock */
454 1.45 thorpej overlap->lf_end = unlock->lf_start - 1;
455 1.45 thorpej prev = &overlap->lf_next;
456 1.45 thorpej lf = overlap->lf_next;
457 1.45 thorpej continue;
458 1.4 mycroft
459 1.45 thorpej case 5: /* overlap ends after lock */
460 1.45 thorpej overlap->lf_start = unlock->lf_end + 1;
461 1.45 thorpej break;
462 1.45 thorpej }
463 1.31 fvdl break;
464 1.27 yamt }
465 1.45 thorpej #ifdef LOCKF_DEBUG
466 1.45 thorpej if (lockf_debug & 1)
467 1.45 thorpej lf_printlist("lf_clearlock", unlock);
468 1.45 thorpej #endif /* LOCKF_DEBUG */
469 1.45 thorpej return 0;
470 1.45 thorpej }
471 1.27 yamt
472 1.45 thorpej /*
473 1.45 thorpej * Walk the list of locks for an inode and
474 1.45 thorpej * return the first blocking lock.
475 1.45 thorpej */
476 1.45 thorpej static struct lockf *
477 1.45 thorpej lf_getblock(struct lockf *lock)
478 1.45 thorpej {
479 1.45 thorpej struct lockf **prev, *overlap, *lf = *(lock->lf_head);
480 1.27 yamt
481 1.45 thorpej prev = lock->lf_head;
482 1.45 thorpej while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
483 1.45 thorpej /*
484 1.45 thorpej * We've found an overlap, see if it blocks us
485 1.45 thorpej */
486 1.45 thorpej if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
487 1.45 thorpej return overlap;
488 1.45 thorpej /*
489 1.45 thorpej * Nope, point to the next one on the list and
490 1.45 thorpej * see if it blocks us
491 1.45 thorpej */
492 1.45 thorpej lf = overlap->lf_next;
493 1.45 thorpej }
494 1.54 yamt return NULL;
495 1.1 ws }
496 1.1 ws
497 1.1 ws /*
498 1.1 ws * Set a byte-range lock.
499 1.1 ws */
500 1.24 yamt static int
501 1.27 yamt lf_setlock(struct lockf *lock, struct lockf **sparelock,
502 1.61 ad kmutex_t *interlock)
503 1.1 ws {
504 1.15 augustss struct lockf *block;
505 1.1 ws struct lockf **head = lock->lf_head;
506 1.1 ws struct lockf **prev, *overlap, *ltmp;
507 1.61 ad int ovcase, needtolink, error;
508 1.1 ws
509 1.1 ws #ifdef LOCKF_DEBUG
510 1.1 ws if (lockf_debug & 1)
511 1.1 ws lf_print("lf_setlock", lock);
512 1.1 ws #endif /* LOCKF_DEBUG */
513 1.1 ws
514 1.1 ws /*
515 1.1 ws * Scan lock list for this file looking for locks that would block us.
516 1.1 ws */
517 1.7 christos while ((block = lf_getblock(lock)) != NULL) {
518 1.1 ws /*
519 1.1 ws * Free the structure and return if nonblocking.
520 1.1 ws */
521 1.1 ws if ((lock->lf_flags & F_WAIT) == 0) {
522 1.38 christos lf_free(lock);
523 1.29 yamt return EAGAIN;
524 1.1 ws }
525 1.1 ws /*
526 1.1 ws * We are blocked. Since flock style locks cover
527 1.1 ws * the whole file, there is no chance for deadlock.
528 1.1 ws * For byte-range locks we must check for deadlock.
529 1.1 ws *
530 1.1 ws * Deadlock detection is done by looking through the
531 1.1 ws * wait channels to see if there are any cycles that
532 1.1 ws * involve us. MAXDEPTH is set just to make sure we
533 1.16 sommerfe * do not go off into neverneverland.
534 1.1 ws */
535 1.1 ws if ((lock->lf_flags & F_POSIX) &&
536 1.1 ws (block->lf_flags & F_POSIX)) {
537 1.21 thorpej struct lwp *wlwp;
538 1.48 perry volatile const struct lockf *waitblock;
539 1.1 ws int i = 0;
540 1.52 yamt struct proc *p;
541 1.1 ws
542 1.52 yamt p = (struct proc *)block->lf_id;
543 1.52 yamt KASSERT(p != NULL);
544 1.52 yamt while (i++ < maxlockdepth) {
545 1.64 ad mutex_enter(p->p_lock);
546 1.52 yamt if (p->p_nlwps > 1) {
547 1.64 ad mutex_exit(p->p_lock);
548 1.52 yamt break;
549 1.52 yamt }
550 1.52 yamt wlwp = LIST_FIRST(&p->p_lwps);
551 1.57 ad lwp_lock(wlwp);
552 1.65 ad if (wlwp->l_wchan == NULL ||
553 1.65 ad wlwp->l_wmesg != lockstr) {
554 1.57 ad lwp_unlock(wlwp);
555 1.64 ad mutex_exit(p->p_lock);
556 1.52 yamt break;
557 1.52 yamt }
558 1.44 christos waitblock = wlwp->l_wchan;
559 1.57 ad lwp_unlock(wlwp);
560 1.64 ad mutex_exit(p->p_lock);
561 1.1 ws /* Get the owner of the blocking lock */
562 1.1 ws waitblock = waitblock->lf_next;
563 1.1 ws if ((waitblock->lf_flags & F_POSIX) == 0)
564 1.1 ws break;
565 1.52 yamt p = (struct proc *)waitblock->lf_id;
566 1.52 yamt if (p == curproc) {
567 1.38 christos lf_free(lock);
568 1.29 yamt return EDEADLK;
569 1.1 ws }
570 1.1 ws }
571 1.16 sommerfe /*
572 1.36 peter * If we're still following a dependency chain
573 1.16 sommerfe * after maxlockdepth iterations, assume we're in
574 1.16 sommerfe * a cycle to be safe.
575 1.16 sommerfe */
576 1.16 sommerfe if (i >= maxlockdepth) {
577 1.38 christos lf_free(lock);
578 1.29 yamt return EDEADLK;
579 1.16 sommerfe }
580 1.1 ws }
581 1.1 ws /*
582 1.1 ws * For flock type locks, we must first remove
583 1.1 ws * any shared locks that we hold before we sleep
584 1.1 ws * waiting for an exclusive lock.
585 1.1 ws */
586 1.1 ws if ((lock->lf_flags & F_FLOCK) &&
587 1.1 ws lock->lf_type == F_WRLCK) {
588 1.1 ws lock->lf_type = F_UNLCK;
589 1.27 yamt (void) lf_clearlock(lock, NULL);
590 1.1 ws lock->lf_type = F_WRLCK;
591 1.1 ws }
592 1.1 ws /*
593 1.1 ws * Add our lock to the blocked list and sleep until we're free.
594 1.1 ws * Remember who blocked us (for deadlock detection).
595 1.1 ws */
596 1.1 ws lock->lf_next = block;
597 1.12 fvdl TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
598 1.1 ws #ifdef LOCKF_DEBUG
599 1.1 ws if (lockf_debug & 1) {
600 1.1 ws lf_print("lf_setlock: blocking on", block);
601 1.1 ws lf_printlist("lf_setlock", block);
602 1.1 ws }
603 1.1 ws #endif /* LOCKF_DEBUG */
604 1.61 ad error = cv_wait_sig(&lock->lf_cv, interlock);
605 1.16 sommerfe
606 1.16 sommerfe /*
607 1.65 ad * We may have been awoken by a signal (in
608 1.16 sommerfe * which case we must remove ourselves from the
609 1.16 sommerfe * blocked list) and/or by another process
610 1.16 sommerfe * releasing a lock (in which case we have already
611 1.16 sommerfe * been removed from the blocked list and our
612 1.54 yamt * lf_next field set to NULL).
613 1.16 sommerfe */
614 1.54 yamt if (lock->lf_next != NULL) {
615 1.16 sommerfe TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
616 1.54 yamt lock->lf_next = NULL;
617 1.16 sommerfe }
618 1.7 christos if (error) {
619 1.38 christos lf_free(lock);
620 1.29 yamt return error;
621 1.1 ws }
622 1.1 ws }
623 1.1 ws /*
624 1.1 ws * No blocks!! Add the lock. Note that we will
625 1.1 ws * downgrade or upgrade any overlapping locks this
626 1.1 ws * process already owns.
627 1.1 ws *
628 1.1 ws * Skip over locks owned by other processes.
629 1.1 ws * Handle any locks that overlap and are owned by ourselves.
630 1.1 ws */
631 1.1 ws prev = head;
632 1.1 ws block = *head;
633 1.1 ws needtolink = 1;
634 1.1 ws for (;;) {
635 1.7 christos ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
636 1.7 christos if (ovcase)
637 1.1 ws block = overlap->lf_next;
638 1.1 ws /*
639 1.1 ws * Six cases:
640 1.1 ws * 0) no overlap
641 1.1 ws * 1) overlap == lock
642 1.1 ws * 2) overlap contains lock
643 1.1 ws * 3) lock contains overlap
644 1.1 ws * 4) overlap starts before lock
645 1.1 ws * 5) overlap ends after lock
646 1.1 ws */
647 1.1 ws switch (ovcase) {
648 1.1 ws case 0: /* no overlap */
649 1.1 ws if (needtolink) {
650 1.1 ws *prev = lock;
651 1.1 ws lock->lf_next = overlap;
652 1.1 ws }
653 1.1 ws break;
654 1.1 ws
655 1.1 ws case 1: /* overlap == lock */
656 1.1 ws /*
657 1.1 ws * If downgrading lock, others may be
658 1.1 ws * able to acquire it.
659 1.1 ws */
660 1.1 ws if (lock->lf_type == F_RDLCK &&
661 1.1 ws overlap->lf_type == F_WRLCK)
662 1.1 ws lf_wakelock(overlap);
663 1.1 ws overlap->lf_type = lock->lf_type;
664 1.38 christos lf_free(lock);
665 1.1 ws lock = overlap; /* for debug output below */
666 1.1 ws break;
667 1.1 ws
668 1.1 ws case 2: /* overlap contains lock */
669 1.1 ws /*
670 1.1 ws * Check for common starting point and different types.
671 1.1 ws */
672 1.1 ws if (overlap->lf_type == lock->lf_type) {
673 1.38 christos lf_free(lock);
674 1.1 ws lock = overlap; /* for debug output below */
675 1.1 ws break;
676 1.1 ws }
677 1.1 ws if (overlap->lf_start == lock->lf_start) {
678 1.1 ws *prev = lock;
679 1.1 ws lock->lf_next = overlap;
680 1.1 ws overlap->lf_start = lock->lf_end + 1;
681 1.1 ws } else
682 1.27 yamt lf_split(overlap, lock, sparelock);
683 1.1 ws lf_wakelock(overlap);
684 1.1 ws break;
685 1.1 ws
686 1.1 ws case 3: /* lock contains overlap */
687 1.1 ws /*
688 1.1 ws * If downgrading lock, others may be able to
689 1.1 ws * acquire it, otherwise take the list.
690 1.1 ws */
691 1.1 ws if (lock->lf_type == F_RDLCK &&
692 1.1 ws overlap->lf_type == F_WRLCK) {
693 1.1 ws lf_wakelock(overlap);
694 1.1 ws } else {
695 1.19 matt while ((ltmp = TAILQ_FIRST(&overlap->lf_blkhd))) {
696 1.16 sommerfe KASSERT(ltmp->lf_next == overlap);
697 1.12 fvdl TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
698 1.12 fvdl lf_block);
699 1.16 sommerfe ltmp->lf_next = lock;
700 1.12 fvdl TAILQ_INSERT_TAIL(&lock->lf_blkhd,
701 1.12 fvdl ltmp, lf_block);
702 1.12 fvdl }
703 1.1 ws }
704 1.1 ws /*
705 1.1 ws * Add the new lock if necessary and delete the overlap.
706 1.1 ws */
707 1.1 ws if (needtolink) {
708 1.1 ws *prev = lock;
709 1.1 ws lock->lf_next = overlap->lf_next;
710 1.1 ws prev = &lock->lf_next;
711 1.1 ws needtolink = 0;
712 1.1 ws } else
713 1.1 ws *prev = overlap->lf_next;
714 1.39 christos lf_free(overlap);
715 1.1 ws continue;
716 1.1 ws
717 1.1 ws case 4: /* overlap starts before lock */
718 1.1 ws /*
719 1.1 ws * Add lock after overlap on the list.
720 1.1 ws */
721 1.1 ws lock->lf_next = overlap->lf_next;
722 1.1 ws overlap->lf_next = lock;
723 1.1 ws overlap->lf_end = lock->lf_start - 1;
724 1.1 ws prev = &lock->lf_next;
725 1.1 ws lf_wakelock(overlap);
726 1.1 ws needtolink = 0;
727 1.1 ws continue;
728 1.1 ws
729 1.1 ws case 5: /* overlap ends after lock */
730 1.1 ws /*
731 1.1 ws * Add the new lock before overlap.
732 1.1 ws */
733 1.1 ws if (needtolink) {
734 1.1 ws *prev = lock;
735 1.1 ws lock->lf_next = overlap;
736 1.1 ws }
737 1.1 ws overlap->lf_start = lock->lf_end + 1;
738 1.1 ws lf_wakelock(overlap);
739 1.1 ws break;
740 1.1 ws }
741 1.1 ws break;
742 1.1 ws }
743 1.1 ws #ifdef LOCKF_DEBUG
744 1.1 ws if (lockf_debug & 1) {
745 1.1 ws lf_print("lf_setlock: got the lock", lock);
746 1.1 ws lf_printlist("lf_setlock", lock);
747 1.1 ws }
748 1.1 ws #endif /* LOCKF_DEBUG */
749 1.29 yamt return 0;
750 1.1 ws }
751 1.1 ws
752 1.1 ws /*
753 1.1 ws * Check whether there is a blocking lock,
754 1.1 ws * and if so return its process identifier.
755 1.1 ws */
756 1.24 yamt static int
757 1.25 yamt lf_getlock(struct lockf *lock, struct flock *fl)
758 1.1 ws {
759 1.15 augustss struct lockf *block;
760 1.1 ws
761 1.1 ws #ifdef LOCKF_DEBUG
762 1.1 ws if (lockf_debug & 1)
763 1.1 ws lf_print("lf_getlock", lock);
764 1.1 ws #endif /* LOCKF_DEBUG */
765 1.1 ws
766 1.7 christos if ((block = lf_getblock(lock)) != NULL) {
767 1.1 ws fl->l_type = block->lf_type;
768 1.1 ws fl->l_whence = SEEK_SET;
769 1.1 ws fl->l_start = block->lf_start;
770 1.1 ws if (block->lf_end == -1)
771 1.1 ws fl->l_len = 0;
772 1.1 ws else
773 1.1 ws fl->l_len = block->lf_end - block->lf_start + 1;
774 1.1 ws if (block->lf_flags & F_POSIX)
775 1.23 mycroft fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
776 1.1 ws else
777 1.1 ws fl->l_pid = -1;
778 1.1 ws } else {
779 1.1 ws fl->l_type = F_UNLCK;
780 1.1 ws }
781 1.29 yamt return 0;
782 1.1 ws }
783 1.1 ws
784 1.1 ws /*
785 1.45 thorpej * Do an advisory lock operation.
786 1.1 ws */
787 1.45 thorpej int
788 1.45 thorpej lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
789 1.1 ws {
790 1.45 thorpej struct flock *fl = ap->a_fl;
791 1.45 thorpej struct lockf *lock = NULL;
792 1.45 thorpej struct lockf *sparelock;
793 1.81 ad kmutex_t *interlock = &lockf_lock;
794 1.45 thorpej off_t start, end;
795 1.45 thorpej int error = 0;
796 1.1 ws
797 1.76 riastrad KASSERTMSG(size >= 0, "size=%jd", (intmax_t)size);
798 1.76 riastrad
799 1.45 thorpej /*
800 1.45 thorpej * Convert the flock structure into a start and end.
801 1.45 thorpej */
802 1.45 thorpej switch (fl->l_whence) {
803 1.45 thorpej case SEEK_SET:
804 1.45 thorpej case SEEK_CUR:
805 1.1 ws /*
806 1.45 thorpej * Caller is responsible for adding any necessary offset
807 1.45 thorpej * when SEEK_CUR is used.
808 1.1 ws */
809 1.45 thorpej start = fl->l_start;
810 1.45 thorpej break;
811 1.45 thorpej
812 1.45 thorpej case SEEK_END:
813 1.76 riastrad if (fl->l_start > __type_max(off_t) - size)
814 1.76 riastrad return EINVAL;
815 1.45 thorpej start = size + fl->l_start;
816 1.45 thorpej break;
817 1.45 thorpej
818 1.45 thorpej default:
819 1.45 thorpej return EINVAL;
820 1.1 ws }
821 1.72 dsl
822 1.72 dsl if (fl->l_len == 0)
823 1.72 dsl end = -1;
824 1.72 dsl else {
825 1.76 riastrad if (fl->l_len >= 0) {
826 1.77 riastrad if (start >= 0 &&
827 1.77 riastrad fl->l_len - 1 > __type_max(off_t) - start)
828 1.76 riastrad return EINVAL;
829 1.78 riastrad end = start + (fl->l_len - 1);
830 1.76 riastrad } else {
831 1.72 dsl /* lockf() allows -ve lengths */
832 1.76 riastrad if (start < 0)
833 1.76 riastrad return EINVAL;
834 1.72 dsl end = start - 1;
835 1.72 dsl start += fl->l_len;
836 1.72 dsl }
837 1.72 dsl }
838 1.45 thorpej if (start < 0)
839 1.45 thorpej return EINVAL;
840 1.1 ws
841 1.45 thorpej /*
842 1.61 ad * Allocate locks before acquiring the interlock. We need two
843 1.55 ad * locks in the worst case.
844 1.45 thorpej */
845 1.45 thorpej switch (ap->a_op) {
846 1.45 thorpej case F_SETLK:
847 1.45 thorpej case F_UNLCK:
848 1.1 ws /*
849 1.55 ad * XXX For F_UNLCK case, we can re-use the lock.
850 1.1 ws */
851 1.46 christos if ((ap->a_flags & F_FLOCK) == 0) {
852 1.45 thorpej /*
853 1.55 ad * Byte-range lock might need one more lock.
854 1.45 thorpej */
855 1.71 yamt sparelock = lf_alloc(0);
856 1.45 thorpej if (sparelock == NULL) {
857 1.45 thorpej error = ENOMEM;
858 1.45 thorpej goto quit;
859 1.45 thorpej }
860 1.45 thorpej break;
861 1.1 ws }
862 1.45 thorpej /* FALLTHROUGH */
863 1.45 thorpej
864 1.45 thorpej case F_GETLK:
865 1.45 thorpej sparelock = NULL;
866 1.45 thorpej break;
867 1.45 thorpej
868 1.45 thorpej default:
869 1.45 thorpej return EINVAL;
870 1.45 thorpej }
871 1.45 thorpej
872 1.71 yamt switch (ap->a_op) {
873 1.71 yamt case F_SETLK:
874 1.71 yamt lock = lf_alloc(1);
875 1.71 yamt break;
876 1.71 yamt case F_UNLCK:
877 1.71 yamt if (start == 0 || end == -1) {
878 1.71 yamt /* never split */
879 1.71 yamt lock = lf_alloc(0);
880 1.71 yamt } else {
881 1.71 yamt /* might split */
882 1.71 yamt lock = lf_alloc(2);
883 1.71 yamt }
884 1.71 yamt break;
885 1.71 yamt case F_GETLK:
886 1.71 yamt lock = lf_alloc(0);
887 1.71 yamt break;
888 1.71 yamt }
889 1.45 thorpej if (lock == NULL) {
890 1.45 thorpej error = ENOMEM;
891 1.45 thorpej goto quit;
892 1.1 ws }
893 1.1 ws
894 1.61 ad mutex_enter(interlock);
895 1.1 ws
896 1.1 ws /*
897 1.45 thorpej * Avoid the common case of unlocking when inode has no locks.
898 1.1 ws */
899 1.45 thorpej if (*head == (struct lockf *)0) {
900 1.45 thorpej if (ap->a_op != F_SETLK) {
901 1.45 thorpej fl->l_type = F_UNLCK;
902 1.45 thorpej error = 0;
903 1.45 thorpej goto quit_unlock;
904 1.45 thorpej }
905 1.1 ws }
906 1.45 thorpej
907 1.1 ws /*
908 1.45 thorpej * Create the lockf structure.
909 1.45 thorpej */
910 1.45 thorpej lock->lf_start = start;
911 1.45 thorpej lock->lf_end = end;
912 1.45 thorpej lock->lf_head = head;
913 1.45 thorpej lock->lf_type = fl->l_type;
914 1.45 thorpej lock->lf_next = (struct lockf *)0;
915 1.45 thorpej TAILQ_INIT(&lock->lf_blkhd);
916 1.45 thorpej lock->lf_flags = ap->a_flags;
917 1.45 thorpej if (lock->lf_flags & F_POSIX) {
918 1.45 thorpej KASSERT(curproc == (struct proc *)ap->a_id);
919 1.45 thorpej }
920 1.72 dsl lock->lf_id = ap->a_id;
921 1.45 thorpej
922 1.1 ws /*
923 1.45 thorpej * Do the requested operation.
924 1.1 ws */
925 1.45 thorpej switch (ap->a_op) {
926 1.1 ws
927 1.45 thorpej case F_SETLK:
928 1.45 thorpej error = lf_setlock(lock, &sparelock, interlock);
929 1.45 thorpej lock = NULL; /* lf_setlock freed it */
930 1.45 thorpej break;
931 1.1 ws
932 1.45 thorpej case F_UNLCK:
933 1.45 thorpej error = lf_clearlock(lock, &sparelock);
934 1.45 thorpej break;
935 1.1 ws
936 1.45 thorpej case F_GETLK:
937 1.45 thorpej error = lf_getlock(lock, fl);
938 1.45 thorpej break;
939 1.37 perry
940 1.45 thorpej default:
941 1.45 thorpej break;
942 1.45 thorpej /* NOTREACHED */
943 1.45 thorpej }
944 1.1 ws
945 1.45 thorpej quit_unlock:
946 1.61 ad mutex_exit(interlock);
947 1.45 thorpej quit:
948 1.45 thorpej if (lock)
949 1.45 thorpej lf_free(lock);
950 1.45 thorpej if (sparelock)
951 1.45 thorpej lf_free(sparelock);
952 1.1 ws
953 1.45 thorpej return error;
954 1.1 ws }
955 1.80 ad
956 1.80 ad /*
957 1.80 ad * Initialize subsystem. XXX We use a global lock. This could be the
958 1.80 ad * vnode interlock, but the deadlock detection code may need to inspect
959 1.80 ad * locks belonging to other files.
960 1.80 ad */
961 1.80 ad void
962 1.80 ad lf_init(void)
963 1.80 ad {
964 1.80 ad
965 1.81 ad mutex_init(&lockf_lock, MUTEX_DEFAULT, IPL_NONE);
966 1.80 ad }
967