Home | History | Annotate | Line # | Download | only in kern
vfs_lockf.c revision 1.81.6.1
      1  1.81.6.1  perseant /*	$NetBSD: vfs_lockf.c,v 1.81.6.1 2025/08/02 05:57:44 perseant Exp $	*/
      2       1.5       cgd 
      3       1.1        ws /*
      4       1.4   mycroft  * Copyright (c) 1982, 1986, 1989, 1993
      5       1.4   mycroft  *	The Regents of the University of California.  All rights reserved.
      6       1.1        ws  *
      7       1.1        ws  * This code is derived from software contributed to Berkeley by
      8       1.1        ws  * Scooter Morris at Genentech Inc.
      9       1.1        ws  *
     10       1.1        ws  * Redistribution and use in source and binary forms, with or without
     11       1.1        ws  * modification, are permitted provided that the following conditions
     12       1.1        ws  * are met:
     13       1.1        ws  * 1. Redistributions of source code must retain the above copyright
     14       1.1        ws  *    notice, this list of conditions and the following disclaimer.
     15       1.1        ws  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.1        ws  *    notice, this list of conditions and the following disclaimer in the
     17       1.1        ws  *    documentation and/or other materials provided with the distribution.
     18      1.33       agc  * 3. Neither the name of the University nor the names of its contributors
     19       1.1        ws  *    may be used to endorse or promote products derived from this software
     20       1.1        ws  *    without specific prior written permission.
     21       1.1        ws  *
     22       1.1        ws  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23       1.1        ws  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24       1.1        ws  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25       1.1        ws  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26       1.1        ws  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27       1.1        ws  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28       1.1        ws  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29       1.1        ws  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30       1.1        ws  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31       1.1        ws  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32       1.1        ws  * SUCH DAMAGE.
     33       1.1        ws  *
     34      1.12      fvdl  *	@(#)ufs_lockf.c	8.4 (Berkeley) 10/26/94
     35       1.1        ws  */
     36      1.18     lukem 
     37      1.18     lukem #include <sys/cdefs.h>
     38  1.81.6.1  perseant __KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.81.6.1 2025/08/02 05:57:44 perseant Exp $");
     39       1.1        ws 
     40       1.1        ws #include <sys/param.h>
     41  1.81.6.1  perseant #include <sys/types.h>
     42  1.81.6.1  perseant 
     43  1.81.6.1  perseant #include <sys/atomic.h>
     44  1.81.6.1  perseant #include <sys/fcntl.h>
     45       1.1        ws #include <sys/file.h>
     46  1.81.6.1  perseant #include <sys/kauth.h>
     47  1.81.6.1  perseant #include <sys/kernel.h>
     48      1.81        ad #include <sys/kmem.h>
     49       1.1        ws #include <sys/lockf.h>
     50  1.81.6.1  perseant #include <sys/proc.h>
     51  1.81.6.1  perseant #include <sys/sdt.h>
     52  1.81.6.1  perseant #include <sys/systm.h>
     53      1.69     pooka #include <sys/uidinfo.h>
     54  1.81.6.1  perseant #include <sys/vnode.h>
     55      1.22   thorpej 
     56      1.50      yamt /*
     57      1.50      yamt  * The lockf structure is a kernel structure which contains the information
     58      1.50      yamt  * associated with a byte range lock.  The lockf structures are linked into
     59      1.60        ad  * the vnode structure.  Locks are sorted by the starting byte of the lock for
     60      1.50      yamt  * efficiency.
     61      1.50      yamt  *
     62      1.50      yamt  * lf_next is used for two purposes, depending on whether the lock is
     63      1.50      yamt  * being held, or is in conflict with an existing lock.  If this lock
     64      1.50      yamt  * is held, it indicates the next lock on the same vnode.
     65      1.50      yamt  * For pending locks, if lock->lf_next is non-NULL, then lock->lf_block
     66      1.50      yamt  * must be queued on the lf_blkhd TAILQ of lock->lf_next.
     67      1.50      yamt  */
     68      1.50      yamt 
     69      1.50      yamt TAILQ_HEAD(locklist, lockf);
     70      1.50      yamt 
     71      1.50      yamt struct lockf {
     72      1.65        ad 	kcondvar_t lf_cv;	 /* Signalling */
     73      1.50      yamt 	short	lf_flags;	 /* Lock semantics: F_POSIX, F_FLOCK, F_WAIT */
     74      1.50      yamt 	short	lf_type;	 /* Lock type: F_RDLCK, F_WRLCK */
     75      1.50      yamt 	off_t	lf_start;	 /* The byte # of the start of the lock */
     76      1.50      yamt 	off_t	lf_end;		 /* The byte # of the end of the lock (-1=EOF)*/
     77      1.50      yamt 	void	*lf_id;		 /* process or file description holding lock */
     78      1.50      yamt 	struct	lockf **lf_head; /* Back pointer to the head of lockf list */
     79      1.50      yamt 	struct	lockf *lf_next;	 /* Next lock on this vnode, or blocking lock */
     80      1.50      yamt 	struct  locklist lf_blkhd; /* List of requests blocked on this lock */
     81      1.50      yamt 	TAILQ_ENTRY(lockf) lf_block;/* A request waiting for a lock */
     82      1.81        ad 	struct	uidinfo *lf_uip; /* Cached pointer to uidinfo */
     83      1.50      yamt };
     84      1.50      yamt 
     85      1.50      yamt /* Maximum length of sleep chains to traverse to try and detect deadlock. */
     86      1.50      yamt #define MAXDEPTH 50
     87      1.50      yamt 
     88      1.81        ad static kmutex_t lockf_lock __cacheline_aligned;
     89      1.65        ad static char lockstr[] = "lockf";
     90       1.1        ws 
     91       1.1        ws /*
     92       1.6   mycroft  * This variable controls the maximum number of processes that will
     93       1.6   mycroft  * be checked in doing deadlock detection.
     94       1.6   mycroft  */
     95       1.6   mycroft int maxlockdepth = MAXDEPTH;
     96       1.6   mycroft 
     97       1.6   mycroft #ifdef LOCKF_DEBUG
     98       1.6   mycroft int	lockf_debug = 0;
     99       1.6   mycroft #endif
    100       1.6   mycroft 
    101       1.6   mycroft #define SELF	0x1
    102       1.6   mycroft #define OTHERS	0x2
    103       1.6   mycroft 
    104       1.6   mycroft /*
    105      1.16  sommerfe  * XXX TODO
    106      1.58  christos  * Misc cleanups: "void *id" should be visible in the API as a
    107      1.16  sommerfe  * "struct proc *".
    108      1.16  sommerfe  * (This requires rototilling all VFS's which support advisory locking).
    109      1.16  sommerfe  */
    110      1.16  sommerfe 
    111      1.16  sommerfe /*
    112      1.16  sommerfe  * If there's a lot of lock contention on a single vnode, locking
    113      1.16  sommerfe  * schemes which allow for more paralleism would be needed.  Given how
    114      1.16  sommerfe  * infrequently byte-range locks are actually used in typical BSD
    115      1.16  sommerfe  * code, a more complex approach probably isn't worth it.
    116      1.16  sommerfe  */
    117      1.16  sommerfe 
    118      1.16  sommerfe /*
    119      1.38  christos  * We enforce a limit on locks by uid, so that a single user cannot
    120      1.38  christos  * run the kernel out of memory.  For now, the limit is pretty coarse.
    121      1.38  christos  * There is no limit on root.
    122      1.38  christos  *
    123      1.38  christos  * Splitting a lock will always succeed, regardless of current allocations.
    124      1.38  christos  * If you're slightly above the limit, we still have to permit an allocation
    125      1.38  christos  * so that the unlock can succeed.  If the unlocking causes too many splits,
    126      1.38  christos  * however, you're totally cutoff.
    127      1.38  christos  */
    128      1.74      manu #define MAXLOCKSPERUID (2 * maxfiles)
    129      1.38  christos 
    130      1.45   thorpej #ifdef LOCKF_DEBUG
    131      1.45   thorpej /*
    132      1.45   thorpej  * Print out a lock.
    133      1.45   thorpej  */
    134      1.45   thorpej static void
    135      1.56  christos lf_print(const char *tag, struct lockf *lock)
    136      1.45   thorpej {
    137      1.45   thorpej 
    138      1.45   thorpej 	printf("%s: lock %p for ", tag, lock);
    139      1.45   thorpej 	if (lock->lf_flags & F_POSIX)
    140      1.45   thorpej 		printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
    141      1.45   thorpej 	else
    142      1.45   thorpej 		printf("file %p", (struct file *)lock->lf_id);
    143      1.73  dholland 	printf(" %s, start %jd, end %jd",
    144      1.45   thorpej 		lock->lf_type == F_RDLCK ? "shared" :
    145      1.45   thorpej 		lock->lf_type == F_WRLCK ? "exclusive" :
    146      1.45   thorpej 		lock->lf_type == F_UNLCK ? "unlock" :
    147      1.73  dholland 		"unknown", (intmax_t)lock->lf_start, (intmax_t)lock->lf_end);
    148      1.45   thorpej 	if (TAILQ_FIRST(&lock->lf_blkhd))
    149      1.45   thorpej 		printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
    150      1.45   thorpej 	else
    151      1.45   thorpej 		printf("\n");
    152      1.45   thorpej }
    153      1.45   thorpej 
    154      1.45   thorpej static void
    155      1.56  christos lf_printlist(const char *tag, struct lockf *lock)
    156      1.45   thorpej {
    157      1.45   thorpej 	struct lockf *lf, *blk;
    158      1.45   thorpej 
    159      1.45   thorpej 	printf("%s: Lock list:\n", tag);
    160      1.45   thorpej 	for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
    161      1.45   thorpej 		printf("\tlock %p for ", lf);
    162      1.45   thorpej 		if (lf->lf_flags & F_POSIX)
    163      1.45   thorpej 			printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
    164      1.45   thorpej 		else
    165      1.45   thorpej 			printf("file %p", (struct file *)lf->lf_id);
    166      1.73  dholland 		printf(", %s, start %jd, end %jd",
    167  1.81.6.1  perseant 		    lf->lf_type == F_RDLCK ? "shared" :
    168  1.81.6.1  perseant 		    lf->lf_type == F_WRLCK ? "exclusive" :
    169  1.81.6.1  perseant 		    lf->lf_type == F_UNLCK ? "unlock" :
    170  1.81.6.1  perseant 		    "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
    171      1.45   thorpej 		TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
    172      1.45   thorpej 			if (blk->lf_flags & F_POSIX)
    173      1.66     skrll 				printf("; proc %d",
    174      1.45   thorpej 				    ((struct proc *)blk->lf_id)->p_pid);
    175      1.45   thorpej 			else
    176      1.66     skrll 				printf("; file %p", (struct file *)blk->lf_id);
    177      1.73  dholland 			printf(", %s, start %jd, end %jd",
    178  1.81.6.1  perseant 			    blk->lf_type == F_RDLCK ? "shared" :
    179  1.81.6.1  perseant 			    blk->lf_type == F_WRLCK ? "exclusive" :
    180  1.81.6.1  perseant 			    blk->lf_type == F_UNLCK ? "unlock" :
    181  1.81.6.1  perseant 			    "unknown",
    182  1.81.6.1  perseant 			    (intmax_t)blk->lf_start, (intmax_t)blk->lf_end);
    183      1.45   thorpej 			if (TAILQ_FIRST(&blk->lf_blkhd))
    184      1.45   thorpej 				 panic("lf_printlist: bad list");
    185      1.45   thorpej 		}
    186      1.45   thorpej 		printf("\n");
    187      1.45   thorpej 	}
    188      1.45   thorpej }
    189      1.45   thorpej #endif /* LOCKF_DEBUG */
    190      1.45   thorpej 
    191      1.38  christos /*
    192      1.38  christos  * 3 options for allowfail.
    193      1.38  christos  * 0 - always allocate.  1 - cutoff at limit.  2 - cutoff at double limit.
    194      1.38  christos  */
    195      1.45   thorpej static struct lockf *
    196      1.71      yamt lf_alloc(int allowfail)
    197      1.38  christos {
    198      1.38  christos 	struct uidinfo *uip;
    199      1.38  christos 	struct lockf *lock;
    200      1.62     rmind 	u_long lcnt;
    201      1.71      yamt 	const uid_t uid = kauth_cred_geteuid(kauth_cred_get());
    202      1.38  christos 
    203      1.38  christos 	uip = uid_find(uid);
    204      1.62     rmind 	lcnt = atomic_inc_ulong_nv(&uip->ui_lockcnt);
    205      1.62     rmind 	if (uid && allowfail && lcnt >
    206      1.74      manu 	    (allowfail == 1 ? MAXLOCKSPERUID : (MAXLOCKSPERUID * 2))) {
    207      1.62     rmind 		atomic_dec_ulong(&uip->ui_lockcnt);
    208      1.40  christos 		return NULL;
    209      1.40  christos 	}
    210      1.62     rmind 
    211      1.81        ad 	lock = kmem_alloc(sizeof(*lock), KM_SLEEP);
    212      1.81        ad 	lock->lf_uip = uip;
    213      1.81        ad 	cv_init(&lock->lf_cv, lockstr);
    214      1.40  christos 	return lock;
    215      1.38  christos }
    216      1.38  christos 
    217      1.45   thorpej static void
    218      1.38  christos lf_free(struct lockf *lock)
    219      1.38  christos {
    220      1.80        ad 
    221      1.81        ad 	atomic_dec_ulong(&lock->lf_uip->ui_lockcnt);
    222      1.61        ad 	cv_destroy(&lock->lf_cv);
    223      1.81        ad 	kmem_free(lock, sizeof(*lock));
    224      1.38  christos }
    225      1.38  christos 
    226      1.38  christos /*
    227      1.45   thorpej  * Walk the list of locks for an inode to
    228      1.45   thorpej  * find an overlapping lock (if any).
    229      1.45   thorpej  *
    230      1.45   thorpej  * NOTE: this returns only the FIRST overlapping lock.  There
    231      1.45   thorpej  *	 may be more than one.
    232       1.1        ws  */
    233      1.45   thorpej static int
    234      1.45   thorpej lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
    235      1.45   thorpej     struct lockf ***prev, struct lockf **overlap)
    236       1.1        ws {
    237       1.1        ws 	off_t start, end;
    238       1.1        ws 
    239      1.45   thorpej 	*overlap = lf;
    240      1.54      yamt 	if (lf == NULL)
    241      1.45   thorpej 		return 0;
    242      1.45   thorpej #ifdef LOCKF_DEBUG
    243      1.45   thorpej 	if (lockf_debug & 2)
    244      1.45   thorpej 		lf_print("lf_findoverlap: looking for overlap in", lock);
    245      1.45   thorpej #endif /* LOCKF_DEBUG */
    246      1.45   thorpej 	start = lock->lf_start;
    247      1.45   thorpej 	end = lock->lf_end;
    248      1.54      yamt 	while (lf != NULL) {
    249      1.45   thorpej 		if (((type == SELF) && lf->lf_id != lock->lf_id) ||
    250      1.45   thorpej 		    ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
    251      1.45   thorpej 			*prev = &lf->lf_next;
    252      1.45   thorpej 			*overlap = lf = lf->lf_next;
    253      1.45   thorpej 			continue;
    254      1.45   thorpej 		}
    255      1.45   thorpej #ifdef LOCKF_DEBUG
    256      1.45   thorpej 		if (lockf_debug & 2)
    257      1.45   thorpej 			lf_print("\tchecking", lf);
    258      1.45   thorpej #endif /* LOCKF_DEBUG */
    259       1.1        ws 		/*
    260      1.45   thorpej 		 * OK, check for overlap
    261      1.45   thorpej 		 *
    262      1.45   thorpej 		 * Six cases:
    263      1.45   thorpej 		 *	0) no overlap
    264      1.45   thorpej 		 *	1) overlap == lock
    265      1.45   thorpej 		 *	2) overlap contains lock
    266      1.45   thorpej 		 *	3) lock contains overlap
    267      1.45   thorpej 		 *	4) overlap starts before lock
    268      1.45   thorpej 		 *	5) overlap ends after lock
    269       1.1        ws 		 */
    270      1.45   thorpej 		if ((lf->lf_end != -1 && start > lf->lf_end) ||
    271      1.45   thorpej 		    (end != -1 && lf->lf_start > end)) {
    272      1.45   thorpej 			/* Case 0 */
    273      1.45   thorpej #ifdef LOCKF_DEBUG
    274      1.45   thorpej 			if (lockf_debug & 2)
    275      1.45   thorpej 				printf("no overlap\n");
    276      1.45   thorpej #endif /* LOCKF_DEBUG */
    277      1.45   thorpej 			if ((type & SELF) && end != -1 && lf->lf_start > end)
    278      1.45   thorpej 				return 0;
    279      1.45   thorpej 			*prev = &lf->lf_next;
    280      1.45   thorpej 			*overlap = lf = lf->lf_next;
    281      1.45   thorpej 			continue;
    282      1.45   thorpej 		}
    283      1.45   thorpej 		if ((lf->lf_start == start) && (lf->lf_end == end)) {
    284      1.45   thorpej 			/* Case 1 */
    285      1.45   thorpej #ifdef LOCKF_DEBUG
    286      1.45   thorpej 			if (lockf_debug & 2)
    287      1.45   thorpej 				printf("overlap == lock\n");
    288      1.45   thorpej #endif /* LOCKF_DEBUG */
    289      1.45   thorpej 			return 1;
    290      1.45   thorpej 		}
    291      1.45   thorpej 		if ((lf->lf_start <= start) &&
    292      1.45   thorpej 		    (end != -1) &&
    293      1.45   thorpej 		    ((lf->lf_end >= end) || (lf->lf_end == -1))) {
    294      1.45   thorpej 			/* Case 2 */
    295      1.45   thorpej #ifdef LOCKF_DEBUG
    296      1.45   thorpej 			if (lockf_debug & 2)
    297      1.45   thorpej 				printf("overlap contains lock\n");
    298      1.45   thorpej #endif /* LOCKF_DEBUG */
    299      1.45   thorpej 			return 2;
    300      1.45   thorpej 		}
    301      1.45   thorpej 		if (start <= lf->lf_start &&
    302      1.45   thorpej 		           (end == -1 ||
    303      1.45   thorpej 			   (lf->lf_end != -1 && end >= lf->lf_end))) {
    304      1.45   thorpej 			/* Case 3 */
    305      1.45   thorpej #ifdef LOCKF_DEBUG
    306      1.45   thorpej 			if (lockf_debug & 2)
    307      1.45   thorpej 				printf("lock contains overlap\n");
    308      1.45   thorpej #endif /* LOCKF_DEBUG */
    309      1.45   thorpej 			return 3;
    310      1.45   thorpej 		}
    311      1.45   thorpej 		if ((lf->lf_start < start) &&
    312      1.45   thorpej 			((lf->lf_end >= start) || (lf->lf_end == -1))) {
    313      1.45   thorpej 			/* Case 4 */
    314      1.45   thorpej #ifdef LOCKF_DEBUG
    315      1.45   thorpej 			if (lockf_debug & 2)
    316      1.45   thorpej 				printf("overlap starts before lock\n");
    317      1.45   thorpej #endif /* LOCKF_DEBUG */
    318      1.45   thorpej 			return 4;
    319      1.45   thorpej 		}
    320      1.45   thorpej 		if ((lf->lf_start > start) &&
    321      1.45   thorpej 			(end != -1) &&
    322      1.45   thorpej 			((lf->lf_end > end) || (lf->lf_end == -1))) {
    323      1.45   thorpej 			/* Case 5 */
    324      1.45   thorpej #ifdef LOCKF_DEBUG
    325      1.45   thorpej 			if (lockf_debug & 2)
    326      1.45   thorpej 				printf("overlap ends after lock\n");
    327      1.45   thorpej #endif /* LOCKF_DEBUG */
    328      1.45   thorpej 			return 5;
    329      1.45   thorpej 		}
    330      1.45   thorpej 		panic("lf_findoverlap: default");
    331      1.45   thorpej 	}
    332      1.45   thorpej 	return 0;
    333      1.45   thorpej }
    334       1.1        ws 
    335      1.45   thorpej /*
    336      1.45   thorpej  * Split a lock and a contained region into
    337      1.45   thorpej  * two or three locks as necessary.
    338      1.45   thorpej  */
    339      1.45   thorpej static void
    340      1.45   thorpej lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
    341      1.45   thorpej {
    342      1.45   thorpej 	struct lockf *splitlock;
    343       1.1        ws 
    344      1.45   thorpej #ifdef LOCKF_DEBUG
    345      1.45   thorpej 	if (lockf_debug & 2) {
    346      1.45   thorpej 		lf_print("lf_split", lock1);
    347      1.45   thorpej 		lf_print("splitting from", lock2);
    348       1.1        ws 	}
    349      1.45   thorpej #endif /* LOCKF_DEBUG */
    350      1.10    kleink 	/*
    351      1.75    andvar 	 * Check to see if splitting into only two pieces.
    352      1.27      yamt 	 */
    353      1.45   thorpej 	if (lock1->lf_start == lock2->lf_start) {
    354      1.45   thorpej 		lock1->lf_start = lock2->lf_end + 1;
    355      1.45   thorpej 		lock2->lf_next = lock1;
    356      1.45   thorpej 		return;
    357      1.27      yamt 	}
    358      1.45   thorpej 	if (lock1->lf_end == lock2->lf_end) {
    359      1.45   thorpej 		lock1->lf_end = lock2->lf_start - 1;
    360      1.45   thorpej 		lock2->lf_next = lock1->lf_next;
    361      1.45   thorpej 		lock1->lf_next = lock2;
    362      1.45   thorpej 		return;
    363      1.27      yamt 	}
    364      1.27      yamt 	/*
    365      1.45   thorpej 	 * Make a new lock consisting of the last part of
    366      1.45   thorpej 	 * the encompassing lock
    367      1.10    kleink 	 */
    368      1.45   thorpej 	splitlock = *sparelock;
    369      1.45   thorpej 	*sparelock = NULL;
    370      1.70      yamt 	cv_destroy(&splitlock->lf_cv);
    371      1.45   thorpej 	memcpy(splitlock, lock1, sizeof(*splitlock));
    372      1.67     skrll 	cv_init(&splitlock->lf_cv, lockstr);
    373      1.67     skrll 
    374      1.45   thorpej 	splitlock->lf_start = lock2->lf_end + 1;
    375      1.45   thorpej 	TAILQ_INIT(&splitlock->lf_blkhd);
    376      1.45   thorpej 	lock1->lf_end = lock2->lf_start - 1;
    377       1.1        ws 	/*
    378      1.45   thorpej 	 * OK, now link it in
    379      1.21   thorpej 	 */
    380      1.45   thorpej 	splitlock->lf_next = lock1->lf_next;
    381      1.45   thorpej 	lock2->lf_next = splitlock;
    382      1.45   thorpej 	lock1->lf_next = lock2;
    383      1.45   thorpej }
    384      1.45   thorpej 
    385      1.45   thorpej /*
    386      1.45   thorpej  * Wakeup a blocklist
    387      1.45   thorpej  */
    388      1.45   thorpej static void
    389      1.45   thorpej lf_wakelock(struct lockf *listhead)
    390      1.45   thorpej {
    391      1.45   thorpej 	struct lockf *wakelock;
    392      1.21   thorpej 
    393      1.45   thorpej 	while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
    394      1.45   thorpej 		KASSERT(wakelock->lf_next == listhead);
    395      1.45   thorpej 		TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
    396      1.54      yamt 		wakelock->lf_next = NULL;
    397      1.45   thorpej #ifdef LOCKF_DEBUG
    398      1.45   thorpej 		if (lockf_debug & 2)
    399      1.45   thorpej 			lf_print("lf_wakelock: awakening", wakelock);
    400      1.45   thorpej #endif
    401      1.61        ad 		cv_broadcast(&wakelock->lf_cv);
    402      1.21   thorpej 	}
    403      1.45   thorpej }
    404      1.45   thorpej 
    405      1.45   thorpej /*
    406      1.45   thorpej  * Remove a byte-range lock on an inode.
    407      1.45   thorpej  *
    408      1.45   thorpej  * Generally, find the lock (or an overlap to that lock)
    409      1.45   thorpej  * and remove it (or shrink it), then wakeup anyone we can.
    410      1.45   thorpej  */
    411      1.45   thorpej static int
    412      1.45   thorpej lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
    413      1.45   thorpej {
    414      1.45   thorpej 	struct lockf **head = unlock->lf_head;
    415      1.45   thorpej 	struct lockf *lf = *head;
    416      1.45   thorpej 	struct lockf *overlap, **prev;
    417      1.45   thorpej 	int ovcase;
    418      1.45   thorpej 
    419      1.54      yamt 	if (lf == NULL)
    420      1.45   thorpej 		return 0;
    421      1.45   thorpej #ifdef LOCKF_DEBUG
    422      1.45   thorpej 	if (unlock->lf_type != F_UNLCK)
    423      1.45   thorpej 		panic("lf_clearlock: bad type");
    424      1.45   thorpej 	if (lockf_debug & 1)
    425      1.45   thorpej 		lf_print("lf_clearlock", unlock);
    426      1.45   thorpej #endif /* LOCKF_DEBUG */
    427      1.45   thorpej 	prev = head;
    428      1.45   thorpej 	while ((ovcase = lf_findoverlap(lf, unlock, SELF,
    429      1.61        ad 	    &prev, &overlap)) != 0) {
    430      1.45   thorpej 		/*
    431      1.45   thorpej 		 * Wakeup the list of locks to be retried.
    432      1.45   thorpej 		 */
    433      1.45   thorpej 		lf_wakelock(overlap);
    434      1.45   thorpej 
    435      1.45   thorpej 		switch (ovcase) {
    436      1.37     perry 
    437      1.45   thorpej 		case 1: /* overlap == lock */
    438      1.45   thorpej 			*prev = overlap->lf_next;
    439      1.45   thorpej 			lf_free(overlap);
    440      1.45   thorpej 			break;
    441       1.4   mycroft 
    442      1.45   thorpej 		case 2: /* overlap contains lock: split it */
    443      1.45   thorpej 			if (overlap->lf_start == unlock->lf_start) {
    444      1.45   thorpej 				overlap->lf_start = unlock->lf_end + 1;
    445      1.45   thorpej 				break;
    446      1.45   thorpej 			}
    447      1.45   thorpej 			lf_split(overlap, unlock, sparelock);
    448      1.45   thorpej 			overlap->lf_next = unlock->lf_next;
    449      1.45   thorpej 			break;
    450       1.1        ws 
    451      1.45   thorpej 		case 3: /* lock contains overlap */
    452      1.45   thorpej 			*prev = overlap->lf_next;
    453      1.45   thorpej 			lf = overlap->lf_next;
    454      1.45   thorpej 			lf_free(overlap);
    455      1.45   thorpej 			continue;
    456       1.1        ws 
    457      1.45   thorpej 		case 4: /* overlap starts before lock */
    458      1.45   thorpej 			overlap->lf_end = unlock->lf_start - 1;
    459      1.45   thorpej 			prev = &overlap->lf_next;
    460      1.45   thorpej 			lf = overlap->lf_next;
    461      1.45   thorpej 			continue;
    462       1.4   mycroft 
    463      1.45   thorpej 		case 5: /* overlap ends after lock */
    464      1.45   thorpej 			overlap->lf_start = unlock->lf_end + 1;
    465      1.45   thorpej 			break;
    466      1.45   thorpej 		}
    467      1.31      fvdl 		break;
    468      1.27      yamt 	}
    469      1.45   thorpej #ifdef LOCKF_DEBUG
    470      1.45   thorpej 	if (lockf_debug & 1)
    471      1.45   thorpej 		lf_printlist("lf_clearlock", unlock);
    472      1.45   thorpej #endif /* LOCKF_DEBUG */
    473      1.45   thorpej 	return 0;
    474      1.45   thorpej }
    475      1.27      yamt 
    476      1.45   thorpej /*
    477      1.45   thorpej  * Walk the list of locks for an inode and
    478      1.45   thorpej  * return the first blocking lock.
    479      1.45   thorpej  */
    480      1.45   thorpej static struct lockf *
    481      1.45   thorpej lf_getblock(struct lockf *lock)
    482      1.45   thorpej {
    483      1.45   thorpej 	struct lockf **prev, *overlap, *lf = *(lock->lf_head);
    484      1.27      yamt 
    485      1.45   thorpej 	prev = lock->lf_head;
    486      1.45   thorpej 	while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
    487      1.45   thorpej 		/*
    488      1.45   thorpej 		 * We've found an overlap, see if it blocks us
    489      1.45   thorpej 		 */
    490      1.45   thorpej 		if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
    491      1.45   thorpej 			return overlap;
    492      1.45   thorpej 		/*
    493      1.45   thorpej 		 * Nope, point to the next one on the list and
    494      1.45   thorpej 		 * see if it blocks us
    495      1.45   thorpej 		 */
    496      1.45   thorpej 		lf = overlap->lf_next;
    497      1.45   thorpej 	}
    498      1.54      yamt 	return NULL;
    499       1.1        ws }
    500       1.1        ws 
    501       1.1        ws /*
    502       1.1        ws  * Set a byte-range lock.
    503       1.1        ws  */
    504      1.24      yamt static int
    505      1.27      yamt lf_setlock(struct lockf *lock, struct lockf **sparelock,
    506      1.61        ad     kmutex_t *interlock)
    507       1.1        ws {
    508      1.15  augustss 	struct lockf *block;
    509       1.1        ws 	struct lockf **head = lock->lf_head;
    510       1.1        ws 	struct lockf **prev, *overlap, *ltmp;
    511      1.61        ad 	int ovcase, needtolink, error;
    512       1.1        ws 
    513       1.1        ws #ifdef LOCKF_DEBUG
    514       1.1        ws 	if (lockf_debug & 1)
    515       1.1        ws 		lf_print("lf_setlock", lock);
    516       1.1        ws #endif /* LOCKF_DEBUG */
    517       1.1        ws 
    518       1.1        ws 	/*
    519       1.1        ws 	 * Scan lock list for this file looking for locks that would block us.
    520       1.1        ws 	 */
    521       1.7  christos 	while ((block = lf_getblock(lock)) != NULL) {
    522       1.1        ws 		/*
    523       1.1        ws 		 * Free the structure and return if nonblocking.
    524       1.1        ws 		 */
    525       1.1        ws 		if ((lock->lf_flags & F_WAIT) == 0) {
    526      1.38  christos 			lf_free(lock);
    527  1.81.6.1  perseant 			return SET_ERROR(EAGAIN);
    528       1.1        ws 		}
    529       1.1        ws 		/*
    530       1.1        ws 		 * We are blocked. Since flock style locks cover
    531       1.1        ws 		 * the whole file, there is no chance for deadlock.
    532       1.1        ws 		 * For byte-range locks we must check for deadlock.
    533       1.1        ws 		 *
    534       1.1        ws 		 * Deadlock detection is done by looking through the
    535       1.1        ws 		 * wait channels to see if there are any cycles that
    536       1.1        ws 		 * involve us. MAXDEPTH is set just to make sure we
    537      1.16  sommerfe 		 * do not go off into neverneverland.
    538       1.1        ws 		 */
    539       1.1        ws 		if ((lock->lf_flags & F_POSIX) &&
    540       1.1        ws 		    (block->lf_flags & F_POSIX)) {
    541      1.21   thorpej 			struct lwp *wlwp;
    542      1.48     perry 			volatile const struct lockf *waitblock;
    543       1.1        ws 			int i = 0;
    544      1.52      yamt 			struct proc *p;
    545       1.1        ws 
    546      1.52      yamt 			p = (struct proc *)block->lf_id;
    547      1.52      yamt 			KASSERT(p != NULL);
    548      1.52      yamt 			while (i++ < maxlockdepth) {
    549      1.64        ad 				mutex_enter(p->p_lock);
    550      1.52      yamt 				if (p->p_nlwps > 1) {
    551      1.64        ad 					mutex_exit(p->p_lock);
    552      1.52      yamt 					break;
    553      1.52      yamt 				}
    554      1.52      yamt 				wlwp = LIST_FIRST(&p->p_lwps);
    555      1.57        ad 				lwp_lock(wlwp);
    556      1.65        ad 				if (wlwp->l_wchan == NULL ||
    557      1.65        ad 				    wlwp->l_wmesg != lockstr) {
    558      1.57        ad 					lwp_unlock(wlwp);
    559      1.64        ad 					mutex_exit(p->p_lock);
    560      1.52      yamt 					break;
    561      1.52      yamt 				}
    562      1.44  christos 				waitblock = wlwp->l_wchan;
    563      1.57        ad 				lwp_unlock(wlwp);
    564      1.64        ad 				mutex_exit(p->p_lock);
    565       1.1        ws 				/* Get the owner of the blocking lock */
    566       1.1        ws 				waitblock = waitblock->lf_next;
    567       1.1        ws 				if ((waitblock->lf_flags & F_POSIX) == 0)
    568       1.1        ws 					break;
    569      1.52      yamt 				p = (struct proc *)waitblock->lf_id;
    570      1.52      yamt 				if (p == curproc) {
    571      1.38  christos 					lf_free(lock);
    572  1.81.6.1  perseant 					return SET_ERROR(EDEADLK);
    573       1.1        ws 				}
    574       1.1        ws 			}
    575      1.16  sommerfe 			/*
    576      1.36     peter 			 * If we're still following a dependency chain
    577      1.16  sommerfe 			 * after maxlockdepth iterations, assume we're in
    578      1.16  sommerfe 			 * a cycle to be safe.
    579      1.16  sommerfe 			 */
    580      1.16  sommerfe 			if (i >= maxlockdepth) {
    581      1.38  christos 				lf_free(lock);
    582  1.81.6.1  perseant 				return SET_ERROR(EDEADLK);
    583      1.16  sommerfe 			}
    584       1.1        ws 		}
    585       1.1        ws 		/*
    586       1.1        ws 		 * For flock type locks, we must first remove
    587       1.1        ws 		 * any shared locks that we hold before we sleep
    588       1.1        ws 		 * waiting for an exclusive lock.
    589       1.1        ws 		 */
    590       1.1        ws 		if ((lock->lf_flags & F_FLOCK) &&
    591       1.1        ws 		    lock->lf_type == F_WRLCK) {
    592       1.1        ws 			lock->lf_type = F_UNLCK;
    593      1.27      yamt 			(void) lf_clearlock(lock, NULL);
    594       1.1        ws 			lock->lf_type = F_WRLCK;
    595       1.1        ws 		}
    596       1.1        ws 		/*
    597       1.1        ws 		 * Add our lock to the blocked list and sleep until we're free.
    598       1.1        ws 		 * Remember who blocked us (for deadlock detection).
    599       1.1        ws 		 */
    600       1.1        ws 		lock->lf_next = block;
    601      1.12      fvdl 		TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
    602       1.1        ws #ifdef LOCKF_DEBUG
    603       1.1        ws 		if (lockf_debug & 1) {
    604       1.1        ws 			lf_print("lf_setlock: blocking on", block);
    605       1.1        ws 			lf_printlist("lf_setlock", block);
    606       1.1        ws 		}
    607       1.1        ws #endif /* LOCKF_DEBUG */
    608      1.61        ad 		error = cv_wait_sig(&lock->lf_cv, interlock);
    609      1.16  sommerfe 
    610      1.16  sommerfe 		/*
    611      1.65        ad 		 * We may have been awoken by a signal (in
    612      1.16  sommerfe 		 * which case we must remove ourselves from the
    613      1.16  sommerfe 		 * blocked list) and/or by another process
    614      1.16  sommerfe 		 * releasing a lock (in which case we have already
    615      1.16  sommerfe 		 * been removed from the blocked list and our
    616      1.54      yamt 		 * lf_next field set to NULL).
    617      1.16  sommerfe 		 */
    618      1.54      yamt 		if (lock->lf_next != NULL) {
    619      1.16  sommerfe 			TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
    620      1.54      yamt 			lock->lf_next = NULL;
    621      1.16  sommerfe 		}
    622       1.7  christos 		if (error) {
    623      1.38  christos 			lf_free(lock);
    624      1.29      yamt 			return error;
    625       1.1        ws 		}
    626       1.1        ws 	}
    627       1.1        ws 	/*
    628       1.1        ws 	 * No blocks!!  Add the lock.  Note that we will
    629       1.1        ws 	 * downgrade or upgrade any overlapping locks this
    630       1.1        ws 	 * process already owns.
    631       1.1        ws 	 *
    632       1.1        ws 	 * Skip over locks owned by other processes.
    633       1.1        ws 	 * Handle any locks that overlap and are owned by ourselves.
    634       1.1        ws 	 */
    635       1.1        ws 	prev = head;
    636       1.1        ws 	block = *head;
    637       1.1        ws 	needtolink = 1;
    638       1.1        ws 	for (;;) {
    639       1.7  christos 		ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
    640       1.7  christos 		if (ovcase)
    641       1.1        ws 			block = overlap->lf_next;
    642       1.1        ws 		/*
    643       1.1        ws 		 * Six cases:
    644       1.1        ws 		 *	0) no overlap
    645       1.1        ws 		 *	1) overlap == lock
    646       1.1        ws 		 *	2) overlap contains lock
    647       1.1        ws 		 *	3) lock contains overlap
    648       1.1        ws 		 *	4) overlap starts before lock
    649       1.1        ws 		 *	5) overlap ends after lock
    650       1.1        ws 		 */
    651       1.1        ws 		switch (ovcase) {
    652       1.1        ws 		case 0: /* no overlap */
    653       1.1        ws 			if (needtolink) {
    654       1.1        ws 				*prev = lock;
    655       1.1        ws 				lock->lf_next = overlap;
    656       1.1        ws 			}
    657       1.1        ws 			break;
    658       1.1        ws 
    659       1.1        ws 		case 1: /* overlap == lock */
    660       1.1        ws 			/*
    661       1.1        ws 			 * If downgrading lock, others may be
    662       1.1        ws 			 * able to acquire it.
    663       1.1        ws 			 */
    664       1.1        ws 			if (lock->lf_type == F_RDLCK &&
    665       1.1        ws 			    overlap->lf_type == F_WRLCK)
    666       1.1        ws 				lf_wakelock(overlap);
    667       1.1        ws 			overlap->lf_type = lock->lf_type;
    668      1.38  christos 			lf_free(lock);
    669       1.1        ws 			lock = overlap; /* for debug output below */
    670       1.1        ws 			break;
    671       1.1        ws 
    672       1.1        ws 		case 2: /* overlap contains lock */
    673       1.1        ws 			/*
    674       1.1        ws 			 * Check for common starting point and different types.
    675       1.1        ws 			 */
    676       1.1        ws 			if (overlap->lf_type == lock->lf_type) {
    677      1.38  christos 				lf_free(lock);
    678       1.1        ws 				lock = overlap; /* for debug output below */
    679       1.1        ws 				break;
    680       1.1        ws 			}
    681       1.1        ws 			if (overlap->lf_start == lock->lf_start) {
    682       1.1        ws 				*prev = lock;
    683       1.1        ws 				lock->lf_next = overlap;
    684       1.1        ws 				overlap->lf_start = lock->lf_end + 1;
    685       1.1        ws 			} else
    686      1.27      yamt 				lf_split(overlap, lock, sparelock);
    687       1.1        ws 			lf_wakelock(overlap);
    688       1.1        ws 			break;
    689       1.1        ws 
    690       1.1        ws 		case 3: /* lock contains overlap */
    691       1.1        ws 			/*
    692       1.1        ws 			 * If downgrading lock, others may be able to
    693       1.1        ws 			 * acquire it, otherwise take the list.
    694       1.1        ws 			 */
    695       1.1        ws 			if (lock->lf_type == F_RDLCK &&
    696       1.1        ws 			    overlap->lf_type == F_WRLCK) {
    697       1.1        ws 				lf_wakelock(overlap);
    698       1.1        ws 			} else {
    699  1.81.6.1  perseant 				while ((ltmp =
    700  1.81.6.1  perseant 					TAILQ_FIRST(&overlap->lf_blkhd))
    701  1.81.6.1  perseant 				    != NULL) {
    702      1.16  sommerfe 					KASSERT(ltmp->lf_next == overlap);
    703      1.12      fvdl 					TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
    704      1.12      fvdl 					    lf_block);
    705      1.16  sommerfe 					ltmp->lf_next = lock;
    706      1.12      fvdl 					TAILQ_INSERT_TAIL(&lock->lf_blkhd,
    707      1.12      fvdl 					    ltmp, lf_block);
    708      1.12      fvdl 				}
    709       1.1        ws 			}
    710       1.1        ws 			/*
    711  1.81.6.1  perseant 			 * Add the new lock if necessary and delete the
    712  1.81.6.1  perseant 			 * overlap.
    713       1.1        ws 			 */
    714       1.1        ws 			if (needtolink) {
    715       1.1        ws 				*prev = lock;
    716       1.1        ws 				lock->lf_next = overlap->lf_next;
    717       1.1        ws 				prev = &lock->lf_next;
    718       1.1        ws 				needtolink = 0;
    719       1.1        ws 			} else
    720       1.1        ws 				*prev = overlap->lf_next;
    721      1.39  christos 			lf_free(overlap);
    722       1.1        ws 			continue;
    723       1.1        ws 
    724       1.1        ws 		case 4: /* overlap starts before lock */
    725       1.1        ws 			/*
    726       1.1        ws 			 * Add lock after overlap on the list.
    727       1.1        ws 			 */
    728       1.1        ws 			lock->lf_next = overlap->lf_next;
    729       1.1        ws 			overlap->lf_next = lock;
    730       1.1        ws 			overlap->lf_end = lock->lf_start - 1;
    731       1.1        ws 			prev = &lock->lf_next;
    732       1.1        ws 			lf_wakelock(overlap);
    733       1.1        ws 			needtolink = 0;
    734       1.1        ws 			continue;
    735       1.1        ws 
    736       1.1        ws 		case 5: /* overlap ends after lock */
    737       1.1        ws 			/*
    738       1.1        ws 			 * Add the new lock before overlap.
    739       1.1        ws 			 */
    740       1.1        ws 			if (needtolink) {
    741       1.1        ws 				*prev = lock;
    742       1.1        ws 				lock->lf_next = overlap;
    743       1.1        ws 			}
    744       1.1        ws 			overlap->lf_start = lock->lf_end + 1;
    745       1.1        ws 			lf_wakelock(overlap);
    746       1.1        ws 			break;
    747       1.1        ws 		}
    748       1.1        ws 		break;
    749       1.1        ws 	}
    750       1.1        ws #ifdef LOCKF_DEBUG
    751       1.1        ws 	if (lockf_debug & 1) {
    752       1.1        ws 		lf_print("lf_setlock: got the lock", lock);
    753       1.1        ws 		lf_printlist("lf_setlock", lock);
    754       1.1        ws 	}
    755       1.1        ws #endif /* LOCKF_DEBUG */
    756      1.29      yamt 	return 0;
    757       1.1        ws }
    758       1.1        ws 
    759       1.1        ws /*
    760       1.1        ws  * Check whether there is a blocking lock,
    761       1.1        ws  * and if so return its process identifier.
    762       1.1        ws  */
    763      1.24      yamt static int
    764      1.25      yamt lf_getlock(struct lockf *lock, struct flock *fl)
    765       1.1        ws {
    766      1.15  augustss 	struct lockf *block;
    767       1.1        ws 
    768       1.1        ws #ifdef LOCKF_DEBUG
    769       1.1        ws 	if (lockf_debug & 1)
    770       1.1        ws 		lf_print("lf_getlock", lock);
    771       1.1        ws #endif /* LOCKF_DEBUG */
    772       1.1        ws 
    773       1.7  christos 	if ((block = lf_getblock(lock)) != NULL) {
    774       1.1        ws 		fl->l_type = block->lf_type;
    775       1.1        ws 		fl->l_whence = SEEK_SET;
    776       1.1        ws 		fl->l_start = block->lf_start;
    777       1.1        ws 		if (block->lf_end == -1)
    778       1.1        ws 			fl->l_len = 0;
    779       1.1        ws 		else
    780       1.1        ws 			fl->l_len = block->lf_end - block->lf_start + 1;
    781       1.1        ws 		if (block->lf_flags & F_POSIX)
    782      1.23   mycroft 			fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
    783       1.1        ws 		else
    784       1.1        ws 			fl->l_pid = -1;
    785       1.1        ws 	} else {
    786       1.1        ws 		fl->l_type = F_UNLCK;
    787       1.1        ws 	}
    788      1.29      yamt 	return 0;
    789       1.1        ws }
    790       1.1        ws 
    791       1.1        ws /*
    792      1.45   thorpej  * Do an advisory lock operation.
    793       1.1        ws  */
    794      1.45   thorpej int
    795      1.45   thorpej lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
    796       1.1        ws {
    797      1.45   thorpej 	struct flock *fl = ap->a_fl;
    798      1.45   thorpej 	struct lockf *lock = NULL;
    799      1.45   thorpej 	struct lockf *sparelock;
    800      1.81        ad 	kmutex_t *interlock = &lockf_lock;
    801      1.45   thorpej 	off_t start, end;
    802      1.45   thorpej 	int error = 0;
    803       1.1        ws 
    804      1.76  riastrad 	KASSERTMSG(size >= 0, "size=%jd", (intmax_t)size);
    805      1.76  riastrad 
    806      1.45   thorpej 	/*
    807      1.45   thorpej 	 * Convert the flock structure into a start and end.
    808      1.45   thorpej 	 */
    809      1.45   thorpej 	switch (fl->l_whence) {
    810      1.45   thorpej 	case SEEK_SET:
    811      1.45   thorpej 	case SEEK_CUR:
    812       1.1        ws 		/*
    813      1.45   thorpej 		 * Caller is responsible for adding any necessary offset
    814      1.45   thorpej 		 * when SEEK_CUR is used.
    815       1.1        ws 		 */
    816      1.45   thorpej 		start = fl->l_start;
    817      1.45   thorpej 		break;
    818      1.45   thorpej 
    819      1.45   thorpej 	case SEEK_END:
    820      1.76  riastrad 		if (fl->l_start > __type_max(off_t) - size)
    821  1.81.6.1  perseant 			return SET_ERROR(EINVAL);
    822      1.45   thorpej 		start = size + fl->l_start;
    823      1.45   thorpej 		break;
    824      1.45   thorpej 
    825      1.45   thorpej 	default:
    826  1.81.6.1  perseant 		return SET_ERROR(EINVAL);
    827       1.1        ws 	}
    828      1.72       dsl 
    829      1.72       dsl 	if (fl->l_len == 0)
    830      1.72       dsl 		end = -1;
    831      1.72       dsl 	else {
    832      1.76  riastrad 		if (fl->l_len >= 0) {
    833      1.77  riastrad 			if (start >= 0 &&
    834      1.77  riastrad 			    fl->l_len - 1 > __type_max(off_t) - start)
    835  1.81.6.1  perseant 				return SET_ERROR(EINVAL);
    836      1.78  riastrad 			end = start + (fl->l_len - 1);
    837      1.76  riastrad 		} else {
    838      1.72       dsl 			/* lockf() allows -ve lengths */
    839      1.76  riastrad 			if (start < 0)
    840  1.81.6.1  perseant 				return SET_ERROR(EINVAL);
    841      1.72       dsl 			end = start - 1;
    842      1.72       dsl 			start += fl->l_len;
    843      1.72       dsl 		}
    844      1.72       dsl 	}
    845      1.45   thorpej 	if (start < 0)
    846  1.81.6.1  perseant 		return SET_ERROR(EINVAL);
    847       1.1        ws 
    848      1.45   thorpej 	/*
    849      1.61        ad 	 * Allocate locks before acquiring the interlock.  We need two
    850      1.55        ad 	 * locks in the worst case.
    851      1.45   thorpej 	 */
    852      1.45   thorpej 	switch (ap->a_op) {
    853      1.45   thorpej 	case F_SETLK:
    854      1.45   thorpej 	case F_UNLCK:
    855       1.1        ws 		/*
    856      1.55        ad 		 * XXX For F_UNLCK case, we can re-use the lock.
    857       1.1        ws 		 */
    858      1.46  christos 		if ((ap->a_flags & F_FLOCK) == 0) {
    859      1.45   thorpej 			/*
    860      1.55        ad 			 * Byte-range lock might need one more lock.
    861      1.45   thorpej 			 */
    862      1.71      yamt 			sparelock = lf_alloc(0);
    863      1.45   thorpej 			if (sparelock == NULL) {
    864  1.81.6.1  perseant 				error = SET_ERROR(ENOMEM);
    865      1.45   thorpej 				goto quit;
    866      1.45   thorpej 			}
    867      1.45   thorpej 			break;
    868       1.1        ws 		}
    869      1.45   thorpej 		/* FALLTHROUGH */
    870      1.45   thorpej 
    871      1.45   thorpej 	case F_GETLK:
    872      1.45   thorpej 		sparelock = NULL;
    873      1.45   thorpej 		break;
    874      1.45   thorpej 
    875      1.45   thorpej 	default:
    876  1.81.6.1  perseant 		return SET_ERROR(EINVAL);
    877      1.45   thorpej 	}
    878      1.45   thorpej 
    879      1.71      yamt 	switch (ap->a_op) {
    880      1.71      yamt 	case F_SETLK:
    881      1.71      yamt 		lock = lf_alloc(1);
    882      1.71      yamt 		break;
    883      1.71      yamt 	case F_UNLCK:
    884      1.71      yamt 		if (start == 0 || end == -1) {
    885      1.71      yamt 			/* never split */
    886      1.71      yamt 			lock = lf_alloc(0);
    887      1.71      yamt 		} else {
    888      1.71      yamt 			/* might split */
    889      1.71      yamt 			lock = lf_alloc(2);
    890      1.71      yamt 		}
    891      1.71      yamt 		break;
    892      1.71      yamt 	case F_GETLK:
    893      1.71      yamt 		lock = lf_alloc(0);
    894      1.71      yamt 		break;
    895      1.71      yamt 	}
    896      1.45   thorpej 	if (lock == NULL) {
    897  1.81.6.1  perseant 		error = SET_ERROR(ENOMEM);
    898      1.45   thorpej 		goto quit;
    899       1.1        ws 	}
    900       1.1        ws 
    901      1.61        ad 	mutex_enter(interlock);
    902       1.1        ws 
    903       1.1        ws 	/*
    904      1.45   thorpej 	 * Avoid the common case of unlocking when inode has no locks.
    905       1.1        ws 	 */
    906      1.45   thorpej 	if (*head == (struct lockf *)0) {
    907      1.45   thorpej 		if (ap->a_op != F_SETLK) {
    908      1.45   thorpej 			fl->l_type = F_UNLCK;
    909      1.45   thorpej 			error = 0;
    910      1.45   thorpej 			goto quit_unlock;
    911      1.45   thorpej 		}
    912       1.1        ws 	}
    913      1.45   thorpej 
    914       1.1        ws 	/*
    915      1.45   thorpej 	 * Create the lockf structure.
    916      1.45   thorpej 	 */
    917      1.45   thorpej 	lock->lf_start = start;
    918      1.45   thorpej 	lock->lf_end = end;
    919      1.45   thorpej 	lock->lf_head = head;
    920      1.45   thorpej 	lock->lf_type = fl->l_type;
    921      1.45   thorpej 	lock->lf_next = (struct lockf *)0;
    922      1.45   thorpej 	TAILQ_INIT(&lock->lf_blkhd);
    923      1.45   thorpej 	lock->lf_flags = ap->a_flags;
    924      1.45   thorpej 	if (lock->lf_flags & F_POSIX) {
    925      1.45   thorpej 		KASSERT(curproc == (struct proc *)ap->a_id);
    926      1.45   thorpej 	}
    927      1.72       dsl 	lock->lf_id = ap->a_id;
    928      1.45   thorpej 
    929       1.1        ws 	/*
    930      1.45   thorpej 	 * Do the requested operation.
    931       1.1        ws 	 */
    932      1.45   thorpej 	switch (ap->a_op) {
    933       1.1        ws 
    934      1.45   thorpej 	case F_SETLK:
    935      1.45   thorpej 		error = lf_setlock(lock, &sparelock, interlock);
    936      1.45   thorpej 		lock = NULL; /* lf_setlock freed it */
    937      1.45   thorpej 		break;
    938       1.1        ws 
    939      1.45   thorpej 	case F_UNLCK:
    940      1.45   thorpej 		error = lf_clearlock(lock, &sparelock);
    941      1.45   thorpej 		break;
    942       1.1        ws 
    943      1.45   thorpej 	case F_GETLK:
    944      1.45   thorpej 		error = lf_getlock(lock, fl);
    945      1.45   thorpej 		break;
    946      1.37     perry 
    947      1.45   thorpej 	default:
    948      1.45   thorpej 		break;
    949      1.45   thorpej 		/* NOTREACHED */
    950      1.45   thorpej 	}
    951       1.1        ws 
    952      1.45   thorpej quit_unlock:
    953      1.61        ad 	mutex_exit(interlock);
    954      1.45   thorpej quit:
    955      1.45   thorpej 	if (lock)
    956      1.45   thorpej 		lf_free(lock);
    957      1.45   thorpej 	if (sparelock)
    958      1.45   thorpej 		lf_free(sparelock);
    959       1.1        ws 
    960      1.45   thorpej 	return error;
    961       1.1        ws }
    962      1.80        ad 
    963      1.80        ad /*
    964  1.81.6.1  perseant  * Initialize subsystem.
    965  1.81.6.1  perseant  *
    966  1.81.6.1  perseant  * XXX We use a global lock.  This could be the vnode interlock, but
    967  1.81.6.1  perseant  * the deadlock detection code may need to inspect locks belonging to
    968  1.81.6.1  perseant  * other files.
    969      1.80        ad  */
    970      1.80        ad void
    971      1.80        ad lf_init(void)
    972      1.80        ad {
    973      1.80        ad 
    974      1.81        ad 	mutex_init(&lockf_lock, MUTEX_DEFAULT, IPL_NONE);
    975      1.80        ad }
    976