vfs_lockf.c revision 1.83 1 1.83 riastrad /* $NetBSD: vfs_lockf.c,v 1.83 2024/12/07 02:27:38 riastradh Exp $ */
2 1.5 cgd
3 1.1 ws /*
4 1.4 mycroft * Copyright (c) 1982, 1986, 1989, 1993
5 1.4 mycroft * The Regents of the University of California. All rights reserved.
6 1.1 ws *
7 1.1 ws * This code is derived from software contributed to Berkeley by
8 1.1 ws * Scooter Morris at Genentech Inc.
9 1.1 ws *
10 1.1 ws * Redistribution and use in source and binary forms, with or without
11 1.1 ws * modification, are permitted provided that the following conditions
12 1.1 ws * are met:
13 1.1 ws * 1. Redistributions of source code must retain the above copyright
14 1.1 ws * notice, this list of conditions and the following disclaimer.
15 1.1 ws * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 ws * notice, this list of conditions and the following disclaimer in the
17 1.1 ws * documentation and/or other materials provided with the distribution.
18 1.33 agc * 3. Neither the name of the University nor the names of its contributors
19 1.1 ws * may be used to endorse or promote products derived from this software
20 1.1 ws * without specific prior written permission.
21 1.1 ws *
22 1.1 ws * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 1.1 ws * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 1.1 ws * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 1.1 ws * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 1.1 ws * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 1.1 ws * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 1.1 ws * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 1.1 ws * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 1.1 ws * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 1.1 ws * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 1.1 ws * SUCH DAMAGE.
33 1.1 ws *
34 1.12 fvdl * @(#)ufs_lockf.c 8.4 (Berkeley) 10/26/94
35 1.1 ws */
36 1.18 lukem
37 1.18 lukem #include <sys/cdefs.h>
38 1.83 riastrad __KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.83 2024/12/07 02:27:38 riastradh Exp $");
39 1.1 ws
40 1.1 ws #include <sys/param.h>
41 1.82 riastrad #include <sys/types.h>
42 1.82 riastrad
43 1.82 riastrad #include <sys/atomic.h>
44 1.82 riastrad #include <sys/fcntl.h>
45 1.82 riastrad #include <sys/file.h>
46 1.82 riastrad #include <sys/kauth.h>
47 1.1 ws #include <sys/kernel.h>
48 1.81 ad #include <sys/kmem.h>
49 1.1 ws #include <sys/lockf.h>
50 1.82 riastrad #include <sys/proc.h>
51 1.83 riastrad #include <sys/sdt.h>
52 1.82 riastrad #include <sys/systm.h>
53 1.69 pooka #include <sys/uidinfo.h>
54 1.82 riastrad #include <sys/vnode.h>
55 1.22 thorpej
56 1.50 yamt /*
57 1.50 yamt * The lockf structure is a kernel structure which contains the information
58 1.50 yamt * associated with a byte range lock. The lockf structures are linked into
59 1.60 ad * the vnode structure. Locks are sorted by the starting byte of the lock for
60 1.50 yamt * efficiency.
61 1.50 yamt *
62 1.50 yamt * lf_next is used for two purposes, depending on whether the lock is
63 1.50 yamt * being held, or is in conflict with an existing lock. If this lock
64 1.50 yamt * is held, it indicates the next lock on the same vnode.
65 1.50 yamt * For pending locks, if lock->lf_next is non-NULL, then lock->lf_block
66 1.50 yamt * must be queued on the lf_blkhd TAILQ of lock->lf_next.
67 1.50 yamt */
68 1.50 yamt
69 1.50 yamt TAILQ_HEAD(locklist, lockf);
70 1.50 yamt
71 1.50 yamt struct lockf {
72 1.65 ad kcondvar_t lf_cv; /* Signalling */
73 1.50 yamt short lf_flags; /* Lock semantics: F_POSIX, F_FLOCK, F_WAIT */
74 1.50 yamt short lf_type; /* Lock type: F_RDLCK, F_WRLCK */
75 1.50 yamt off_t lf_start; /* The byte # of the start of the lock */
76 1.50 yamt off_t lf_end; /* The byte # of the end of the lock (-1=EOF)*/
77 1.50 yamt void *lf_id; /* process or file description holding lock */
78 1.50 yamt struct lockf **lf_head; /* Back pointer to the head of lockf list */
79 1.50 yamt struct lockf *lf_next; /* Next lock on this vnode, or blocking lock */
80 1.50 yamt struct locklist lf_blkhd; /* List of requests blocked on this lock */
81 1.50 yamt TAILQ_ENTRY(lockf) lf_block;/* A request waiting for a lock */
82 1.81 ad struct uidinfo *lf_uip; /* Cached pointer to uidinfo */
83 1.50 yamt };
84 1.50 yamt
85 1.50 yamt /* Maximum length of sleep chains to traverse to try and detect deadlock. */
86 1.50 yamt #define MAXDEPTH 50
87 1.50 yamt
88 1.81 ad static kmutex_t lockf_lock __cacheline_aligned;
89 1.65 ad static char lockstr[] = "lockf";
90 1.1 ws
91 1.1 ws /*
92 1.6 mycroft * This variable controls the maximum number of processes that will
93 1.6 mycroft * be checked in doing deadlock detection.
94 1.6 mycroft */
95 1.6 mycroft int maxlockdepth = MAXDEPTH;
96 1.6 mycroft
97 1.6 mycroft #ifdef LOCKF_DEBUG
98 1.6 mycroft int lockf_debug = 0;
99 1.6 mycroft #endif
100 1.6 mycroft
101 1.6 mycroft #define SELF 0x1
102 1.6 mycroft #define OTHERS 0x2
103 1.6 mycroft
104 1.6 mycroft /*
105 1.16 sommerfe * XXX TODO
106 1.58 christos * Misc cleanups: "void *id" should be visible in the API as a
107 1.16 sommerfe * "struct proc *".
108 1.16 sommerfe * (This requires rototilling all VFS's which support advisory locking).
109 1.16 sommerfe */
110 1.16 sommerfe
111 1.16 sommerfe /*
112 1.16 sommerfe * If there's a lot of lock contention on a single vnode, locking
113 1.16 sommerfe * schemes which allow for more paralleism would be needed. Given how
114 1.16 sommerfe * infrequently byte-range locks are actually used in typical BSD
115 1.16 sommerfe * code, a more complex approach probably isn't worth it.
116 1.16 sommerfe */
117 1.16 sommerfe
118 1.16 sommerfe /*
119 1.38 christos * We enforce a limit on locks by uid, so that a single user cannot
120 1.38 christos * run the kernel out of memory. For now, the limit is pretty coarse.
121 1.38 christos * There is no limit on root.
122 1.38 christos *
123 1.38 christos * Splitting a lock will always succeed, regardless of current allocations.
124 1.38 christos * If you're slightly above the limit, we still have to permit an allocation
125 1.38 christos * so that the unlock can succeed. If the unlocking causes too many splits,
126 1.38 christos * however, you're totally cutoff.
127 1.38 christos */
128 1.74 manu #define MAXLOCKSPERUID (2 * maxfiles)
129 1.38 christos
130 1.45 thorpej #ifdef LOCKF_DEBUG
131 1.45 thorpej /*
132 1.45 thorpej * Print out a lock.
133 1.45 thorpej */
134 1.45 thorpej static void
135 1.56 christos lf_print(const char *tag, struct lockf *lock)
136 1.45 thorpej {
137 1.45 thorpej
138 1.45 thorpej printf("%s: lock %p for ", tag, lock);
139 1.45 thorpej if (lock->lf_flags & F_POSIX)
140 1.45 thorpej printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
141 1.45 thorpej else
142 1.45 thorpej printf("file %p", (struct file *)lock->lf_id);
143 1.73 dholland printf(" %s, start %jd, end %jd",
144 1.45 thorpej lock->lf_type == F_RDLCK ? "shared" :
145 1.45 thorpej lock->lf_type == F_WRLCK ? "exclusive" :
146 1.45 thorpej lock->lf_type == F_UNLCK ? "unlock" :
147 1.73 dholland "unknown", (intmax_t)lock->lf_start, (intmax_t)lock->lf_end);
148 1.45 thorpej if (TAILQ_FIRST(&lock->lf_blkhd))
149 1.45 thorpej printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
150 1.45 thorpej else
151 1.45 thorpej printf("\n");
152 1.45 thorpej }
153 1.45 thorpej
154 1.45 thorpej static void
155 1.56 christos lf_printlist(const char *tag, struct lockf *lock)
156 1.45 thorpej {
157 1.45 thorpej struct lockf *lf, *blk;
158 1.45 thorpej
159 1.45 thorpej printf("%s: Lock list:\n", tag);
160 1.45 thorpej for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
161 1.45 thorpej printf("\tlock %p for ", lf);
162 1.45 thorpej if (lf->lf_flags & F_POSIX)
163 1.45 thorpej printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
164 1.45 thorpej else
165 1.45 thorpej printf("file %p", (struct file *)lf->lf_id);
166 1.73 dholland printf(", %s, start %jd, end %jd",
167 1.82 riastrad lf->lf_type == F_RDLCK ? "shared" :
168 1.82 riastrad lf->lf_type == F_WRLCK ? "exclusive" :
169 1.82 riastrad lf->lf_type == F_UNLCK ? "unlock" :
170 1.82 riastrad "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
171 1.45 thorpej TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
172 1.45 thorpej if (blk->lf_flags & F_POSIX)
173 1.66 skrll printf("; proc %d",
174 1.45 thorpej ((struct proc *)blk->lf_id)->p_pid);
175 1.45 thorpej else
176 1.66 skrll printf("; file %p", (struct file *)blk->lf_id);
177 1.73 dholland printf(", %s, start %jd, end %jd",
178 1.82 riastrad blk->lf_type == F_RDLCK ? "shared" :
179 1.82 riastrad blk->lf_type == F_WRLCK ? "exclusive" :
180 1.82 riastrad blk->lf_type == F_UNLCK ? "unlock" :
181 1.82 riastrad "unknown",
182 1.82 riastrad (intmax_t)blk->lf_start, (intmax_t)blk->lf_end);
183 1.45 thorpej if (TAILQ_FIRST(&blk->lf_blkhd))
184 1.45 thorpej panic("lf_printlist: bad list");
185 1.45 thorpej }
186 1.45 thorpej printf("\n");
187 1.45 thorpej }
188 1.45 thorpej }
189 1.45 thorpej #endif /* LOCKF_DEBUG */
190 1.45 thorpej
191 1.38 christos /*
192 1.38 christos * 3 options for allowfail.
193 1.38 christos * 0 - always allocate. 1 - cutoff at limit. 2 - cutoff at double limit.
194 1.38 christos */
195 1.45 thorpej static struct lockf *
196 1.71 yamt lf_alloc(int allowfail)
197 1.38 christos {
198 1.38 christos struct uidinfo *uip;
199 1.38 christos struct lockf *lock;
200 1.62 rmind u_long lcnt;
201 1.71 yamt const uid_t uid = kauth_cred_geteuid(kauth_cred_get());
202 1.38 christos
203 1.38 christos uip = uid_find(uid);
204 1.62 rmind lcnt = atomic_inc_ulong_nv(&uip->ui_lockcnt);
205 1.62 rmind if (uid && allowfail && lcnt >
206 1.74 manu (allowfail == 1 ? MAXLOCKSPERUID : (MAXLOCKSPERUID * 2))) {
207 1.62 rmind atomic_dec_ulong(&uip->ui_lockcnt);
208 1.40 christos return NULL;
209 1.40 christos }
210 1.62 rmind
211 1.81 ad lock = kmem_alloc(sizeof(*lock), KM_SLEEP);
212 1.81 ad lock->lf_uip = uip;
213 1.81 ad cv_init(&lock->lf_cv, lockstr);
214 1.40 christos return lock;
215 1.38 christos }
216 1.38 christos
217 1.45 thorpej static void
218 1.38 christos lf_free(struct lockf *lock)
219 1.38 christos {
220 1.80 ad
221 1.81 ad atomic_dec_ulong(&lock->lf_uip->ui_lockcnt);
222 1.61 ad cv_destroy(&lock->lf_cv);
223 1.81 ad kmem_free(lock, sizeof(*lock));
224 1.38 christos }
225 1.38 christos
226 1.38 christos /*
227 1.45 thorpej * Walk the list of locks for an inode to
228 1.45 thorpej * find an overlapping lock (if any).
229 1.45 thorpej *
230 1.45 thorpej * NOTE: this returns only the FIRST overlapping lock. There
231 1.45 thorpej * may be more than one.
232 1.1 ws */
233 1.45 thorpej static int
234 1.45 thorpej lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
235 1.45 thorpej struct lockf ***prev, struct lockf **overlap)
236 1.1 ws {
237 1.1 ws off_t start, end;
238 1.1 ws
239 1.45 thorpej *overlap = lf;
240 1.54 yamt if (lf == NULL)
241 1.45 thorpej return 0;
242 1.45 thorpej #ifdef LOCKF_DEBUG
243 1.45 thorpej if (lockf_debug & 2)
244 1.45 thorpej lf_print("lf_findoverlap: looking for overlap in", lock);
245 1.45 thorpej #endif /* LOCKF_DEBUG */
246 1.45 thorpej start = lock->lf_start;
247 1.45 thorpej end = lock->lf_end;
248 1.54 yamt while (lf != NULL) {
249 1.45 thorpej if (((type == SELF) && lf->lf_id != lock->lf_id) ||
250 1.45 thorpej ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
251 1.45 thorpej *prev = &lf->lf_next;
252 1.45 thorpej *overlap = lf = lf->lf_next;
253 1.45 thorpej continue;
254 1.45 thorpej }
255 1.45 thorpej #ifdef LOCKF_DEBUG
256 1.45 thorpej if (lockf_debug & 2)
257 1.45 thorpej lf_print("\tchecking", lf);
258 1.45 thorpej #endif /* LOCKF_DEBUG */
259 1.1 ws /*
260 1.45 thorpej * OK, check for overlap
261 1.45 thorpej *
262 1.45 thorpej * Six cases:
263 1.45 thorpej * 0) no overlap
264 1.45 thorpej * 1) overlap == lock
265 1.45 thorpej * 2) overlap contains lock
266 1.45 thorpej * 3) lock contains overlap
267 1.45 thorpej * 4) overlap starts before lock
268 1.45 thorpej * 5) overlap ends after lock
269 1.1 ws */
270 1.45 thorpej if ((lf->lf_end != -1 && start > lf->lf_end) ||
271 1.45 thorpej (end != -1 && lf->lf_start > end)) {
272 1.45 thorpej /* Case 0 */
273 1.45 thorpej #ifdef LOCKF_DEBUG
274 1.45 thorpej if (lockf_debug & 2)
275 1.45 thorpej printf("no overlap\n");
276 1.45 thorpej #endif /* LOCKF_DEBUG */
277 1.45 thorpej if ((type & SELF) && end != -1 && lf->lf_start > end)
278 1.45 thorpej return 0;
279 1.45 thorpej *prev = &lf->lf_next;
280 1.45 thorpej *overlap = lf = lf->lf_next;
281 1.45 thorpej continue;
282 1.45 thorpej }
283 1.45 thorpej if ((lf->lf_start == start) && (lf->lf_end == end)) {
284 1.45 thorpej /* Case 1 */
285 1.45 thorpej #ifdef LOCKF_DEBUG
286 1.45 thorpej if (lockf_debug & 2)
287 1.45 thorpej printf("overlap == lock\n");
288 1.45 thorpej #endif /* LOCKF_DEBUG */
289 1.45 thorpej return 1;
290 1.45 thorpej }
291 1.45 thorpej if ((lf->lf_start <= start) &&
292 1.45 thorpej (end != -1) &&
293 1.45 thorpej ((lf->lf_end >= end) || (lf->lf_end == -1))) {
294 1.45 thorpej /* Case 2 */
295 1.45 thorpej #ifdef LOCKF_DEBUG
296 1.45 thorpej if (lockf_debug & 2)
297 1.45 thorpej printf("overlap contains lock\n");
298 1.45 thorpej #endif /* LOCKF_DEBUG */
299 1.45 thorpej return 2;
300 1.45 thorpej }
301 1.45 thorpej if (start <= lf->lf_start &&
302 1.45 thorpej (end == -1 ||
303 1.45 thorpej (lf->lf_end != -1 && end >= lf->lf_end))) {
304 1.45 thorpej /* Case 3 */
305 1.45 thorpej #ifdef LOCKF_DEBUG
306 1.45 thorpej if (lockf_debug & 2)
307 1.45 thorpej printf("lock contains overlap\n");
308 1.45 thorpej #endif /* LOCKF_DEBUG */
309 1.45 thorpej return 3;
310 1.45 thorpej }
311 1.45 thorpej if ((lf->lf_start < start) &&
312 1.45 thorpej ((lf->lf_end >= start) || (lf->lf_end == -1))) {
313 1.45 thorpej /* Case 4 */
314 1.45 thorpej #ifdef LOCKF_DEBUG
315 1.45 thorpej if (lockf_debug & 2)
316 1.45 thorpej printf("overlap starts before lock\n");
317 1.45 thorpej #endif /* LOCKF_DEBUG */
318 1.45 thorpej return 4;
319 1.45 thorpej }
320 1.45 thorpej if ((lf->lf_start > start) &&
321 1.45 thorpej (end != -1) &&
322 1.45 thorpej ((lf->lf_end > end) || (lf->lf_end == -1))) {
323 1.45 thorpej /* Case 5 */
324 1.45 thorpej #ifdef LOCKF_DEBUG
325 1.45 thorpej if (lockf_debug & 2)
326 1.45 thorpej printf("overlap ends after lock\n");
327 1.45 thorpej #endif /* LOCKF_DEBUG */
328 1.45 thorpej return 5;
329 1.45 thorpej }
330 1.45 thorpej panic("lf_findoverlap: default");
331 1.45 thorpej }
332 1.45 thorpej return 0;
333 1.45 thorpej }
334 1.1 ws
335 1.45 thorpej /*
336 1.45 thorpej * Split a lock and a contained region into
337 1.45 thorpej * two or three locks as necessary.
338 1.45 thorpej */
339 1.45 thorpej static void
340 1.45 thorpej lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
341 1.45 thorpej {
342 1.45 thorpej struct lockf *splitlock;
343 1.1 ws
344 1.45 thorpej #ifdef LOCKF_DEBUG
345 1.45 thorpej if (lockf_debug & 2) {
346 1.45 thorpej lf_print("lf_split", lock1);
347 1.45 thorpej lf_print("splitting from", lock2);
348 1.1 ws }
349 1.45 thorpej #endif /* LOCKF_DEBUG */
350 1.10 kleink /*
351 1.75 andvar * Check to see if splitting into only two pieces.
352 1.27 yamt */
353 1.45 thorpej if (lock1->lf_start == lock2->lf_start) {
354 1.45 thorpej lock1->lf_start = lock2->lf_end + 1;
355 1.45 thorpej lock2->lf_next = lock1;
356 1.45 thorpej return;
357 1.27 yamt }
358 1.45 thorpej if (lock1->lf_end == lock2->lf_end) {
359 1.45 thorpej lock1->lf_end = lock2->lf_start - 1;
360 1.45 thorpej lock2->lf_next = lock1->lf_next;
361 1.45 thorpej lock1->lf_next = lock2;
362 1.45 thorpej return;
363 1.27 yamt }
364 1.27 yamt /*
365 1.45 thorpej * Make a new lock consisting of the last part of
366 1.45 thorpej * the encompassing lock
367 1.10 kleink */
368 1.45 thorpej splitlock = *sparelock;
369 1.45 thorpej *sparelock = NULL;
370 1.70 yamt cv_destroy(&splitlock->lf_cv);
371 1.45 thorpej memcpy(splitlock, lock1, sizeof(*splitlock));
372 1.67 skrll cv_init(&splitlock->lf_cv, lockstr);
373 1.67 skrll
374 1.45 thorpej splitlock->lf_start = lock2->lf_end + 1;
375 1.45 thorpej TAILQ_INIT(&splitlock->lf_blkhd);
376 1.45 thorpej lock1->lf_end = lock2->lf_start - 1;
377 1.1 ws /*
378 1.45 thorpej * OK, now link it in
379 1.21 thorpej */
380 1.45 thorpej splitlock->lf_next = lock1->lf_next;
381 1.45 thorpej lock2->lf_next = splitlock;
382 1.45 thorpej lock1->lf_next = lock2;
383 1.45 thorpej }
384 1.45 thorpej
385 1.45 thorpej /*
386 1.45 thorpej * Wakeup a blocklist
387 1.45 thorpej */
388 1.45 thorpej static void
389 1.45 thorpej lf_wakelock(struct lockf *listhead)
390 1.45 thorpej {
391 1.45 thorpej struct lockf *wakelock;
392 1.21 thorpej
393 1.45 thorpej while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
394 1.45 thorpej KASSERT(wakelock->lf_next == listhead);
395 1.45 thorpej TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
396 1.54 yamt wakelock->lf_next = NULL;
397 1.45 thorpej #ifdef LOCKF_DEBUG
398 1.45 thorpej if (lockf_debug & 2)
399 1.45 thorpej lf_print("lf_wakelock: awakening", wakelock);
400 1.45 thorpej #endif
401 1.61 ad cv_broadcast(&wakelock->lf_cv);
402 1.21 thorpej }
403 1.45 thorpej }
404 1.45 thorpej
405 1.45 thorpej /*
406 1.45 thorpej * Remove a byte-range lock on an inode.
407 1.45 thorpej *
408 1.45 thorpej * Generally, find the lock (or an overlap to that lock)
409 1.45 thorpej * and remove it (or shrink it), then wakeup anyone we can.
410 1.45 thorpej */
411 1.45 thorpej static int
412 1.45 thorpej lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
413 1.45 thorpej {
414 1.45 thorpej struct lockf **head = unlock->lf_head;
415 1.45 thorpej struct lockf *lf = *head;
416 1.45 thorpej struct lockf *overlap, **prev;
417 1.45 thorpej int ovcase;
418 1.45 thorpej
419 1.54 yamt if (lf == NULL)
420 1.45 thorpej return 0;
421 1.45 thorpej #ifdef LOCKF_DEBUG
422 1.45 thorpej if (unlock->lf_type != F_UNLCK)
423 1.45 thorpej panic("lf_clearlock: bad type");
424 1.45 thorpej if (lockf_debug & 1)
425 1.45 thorpej lf_print("lf_clearlock", unlock);
426 1.45 thorpej #endif /* LOCKF_DEBUG */
427 1.45 thorpej prev = head;
428 1.45 thorpej while ((ovcase = lf_findoverlap(lf, unlock, SELF,
429 1.61 ad &prev, &overlap)) != 0) {
430 1.45 thorpej /*
431 1.45 thorpej * Wakeup the list of locks to be retried.
432 1.45 thorpej */
433 1.45 thorpej lf_wakelock(overlap);
434 1.45 thorpej
435 1.45 thorpej switch (ovcase) {
436 1.37 perry
437 1.45 thorpej case 1: /* overlap == lock */
438 1.45 thorpej *prev = overlap->lf_next;
439 1.45 thorpej lf_free(overlap);
440 1.45 thorpej break;
441 1.4 mycroft
442 1.45 thorpej case 2: /* overlap contains lock: split it */
443 1.45 thorpej if (overlap->lf_start == unlock->lf_start) {
444 1.45 thorpej overlap->lf_start = unlock->lf_end + 1;
445 1.45 thorpej break;
446 1.45 thorpej }
447 1.45 thorpej lf_split(overlap, unlock, sparelock);
448 1.45 thorpej overlap->lf_next = unlock->lf_next;
449 1.45 thorpej break;
450 1.1 ws
451 1.45 thorpej case 3: /* lock contains overlap */
452 1.45 thorpej *prev = overlap->lf_next;
453 1.45 thorpej lf = overlap->lf_next;
454 1.45 thorpej lf_free(overlap);
455 1.45 thorpej continue;
456 1.1 ws
457 1.45 thorpej case 4: /* overlap starts before lock */
458 1.45 thorpej overlap->lf_end = unlock->lf_start - 1;
459 1.45 thorpej prev = &overlap->lf_next;
460 1.45 thorpej lf = overlap->lf_next;
461 1.45 thorpej continue;
462 1.4 mycroft
463 1.45 thorpej case 5: /* overlap ends after lock */
464 1.45 thorpej overlap->lf_start = unlock->lf_end + 1;
465 1.45 thorpej break;
466 1.45 thorpej }
467 1.31 fvdl break;
468 1.27 yamt }
469 1.45 thorpej #ifdef LOCKF_DEBUG
470 1.45 thorpej if (lockf_debug & 1)
471 1.45 thorpej lf_printlist("lf_clearlock", unlock);
472 1.45 thorpej #endif /* LOCKF_DEBUG */
473 1.45 thorpej return 0;
474 1.45 thorpej }
475 1.27 yamt
476 1.45 thorpej /*
477 1.45 thorpej * Walk the list of locks for an inode and
478 1.45 thorpej * return the first blocking lock.
479 1.45 thorpej */
480 1.45 thorpej static struct lockf *
481 1.45 thorpej lf_getblock(struct lockf *lock)
482 1.45 thorpej {
483 1.45 thorpej struct lockf **prev, *overlap, *lf = *(lock->lf_head);
484 1.27 yamt
485 1.45 thorpej prev = lock->lf_head;
486 1.45 thorpej while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
487 1.45 thorpej /*
488 1.45 thorpej * We've found an overlap, see if it blocks us
489 1.45 thorpej */
490 1.45 thorpej if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
491 1.45 thorpej return overlap;
492 1.45 thorpej /*
493 1.45 thorpej * Nope, point to the next one on the list and
494 1.45 thorpej * see if it blocks us
495 1.45 thorpej */
496 1.45 thorpej lf = overlap->lf_next;
497 1.45 thorpej }
498 1.54 yamt return NULL;
499 1.1 ws }
500 1.1 ws
501 1.1 ws /*
502 1.1 ws * Set a byte-range lock.
503 1.1 ws */
504 1.24 yamt static int
505 1.27 yamt lf_setlock(struct lockf *lock, struct lockf **sparelock,
506 1.61 ad kmutex_t *interlock)
507 1.1 ws {
508 1.15 augustss struct lockf *block;
509 1.1 ws struct lockf **head = lock->lf_head;
510 1.1 ws struct lockf **prev, *overlap, *ltmp;
511 1.61 ad int ovcase, needtolink, error;
512 1.1 ws
513 1.1 ws #ifdef LOCKF_DEBUG
514 1.1 ws if (lockf_debug & 1)
515 1.1 ws lf_print("lf_setlock", lock);
516 1.1 ws #endif /* LOCKF_DEBUG */
517 1.1 ws
518 1.1 ws /*
519 1.1 ws * Scan lock list for this file looking for locks that would block us.
520 1.1 ws */
521 1.7 christos while ((block = lf_getblock(lock)) != NULL) {
522 1.1 ws /*
523 1.1 ws * Free the structure and return if nonblocking.
524 1.1 ws */
525 1.1 ws if ((lock->lf_flags & F_WAIT) == 0) {
526 1.38 christos lf_free(lock);
527 1.83 riastrad return SET_ERROR(EAGAIN);
528 1.1 ws }
529 1.1 ws /*
530 1.1 ws * We are blocked. Since flock style locks cover
531 1.1 ws * the whole file, there is no chance for deadlock.
532 1.1 ws * For byte-range locks we must check for deadlock.
533 1.1 ws *
534 1.1 ws * Deadlock detection is done by looking through the
535 1.1 ws * wait channels to see if there are any cycles that
536 1.1 ws * involve us. MAXDEPTH is set just to make sure we
537 1.16 sommerfe * do not go off into neverneverland.
538 1.1 ws */
539 1.1 ws if ((lock->lf_flags & F_POSIX) &&
540 1.1 ws (block->lf_flags & F_POSIX)) {
541 1.21 thorpej struct lwp *wlwp;
542 1.48 perry volatile const struct lockf *waitblock;
543 1.1 ws int i = 0;
544 1.52 yamt struct proc *p;
545 1.1 ws
546 1.52 yamt p = (struct proc *)block->lf_id;
547 1.52 yamt KASSERT(p != NULL);
548 1.52 yamt while (i++ < maxlockdepth) {
549 1.64 ad mutex_enter(p->p_lock);
550 1.52 yamt if (p->p_nlwps > 1) {
551 1.64 ad mutex_exit(p->p_lock);
552 1.52 yamt break;
553 1.52 yamt }
554 1.52 yamt wlwp = LIST_FIRST(&p->p_lwps);
555 1.57 ad lwp_lock(wlwp);
556 1.65 ad if (wlwp->l_wchan == NULL ||
557 1.65 ad wlwp->l_wmesg != lockstr) {
558 1.57 ad lwp_unlock(wlwp);
559 1.64 ad mutex_exit(p->p_lock);
560 1.52 yamt break;
561 1.52 yamt }
562 1.44 christos waitblock = wlwp->l_wchan;
563 1.57 ad lwp_unlock(wlwp);
564 1.64 ad mutex_exit(p->p_lock);
565 1.1 ws /* Get the owner of the blocking lock */
566 1.1 ws waitblock = waitblock->lf_next;
567 1.1 ws if ((waitblock->lf_flags & F_POSIX) == 0)
568 1.1 ws break;
569 1.52 yamt p = (struct proc *)waitblock->lf_id;
570 1.52 yamt if (p == curproc) {
571 1.38 christos lf_free(lock);
572 1.83 riastrad return SET_ERROR(EDEADLK);
573 1.1 ws }
574 1.1 ws }
575 1.16 sommerfe /*
576 1.36 peter * If we're still following a dependency chain
577 1.16 sommerfe * after maxlockdepth iterations, assume we're in
578 1.16 sommerfe * a cycle to be safe.
579 1.16 sommerfe */
580 1.16 sommerfe if (i >= maxlockdepth) {
581 1.38 christos lf_free(lock);
582 1.83 riastrad return SET_ERROR(EDEADLK);
583 1.16 sommerfe }
584 1.1 ws }
585 1.1 ws /*
586 1.1 ws * For flock type locks, we must first remove
587 1.1 ws * any shared locks that we hold before we sleep
588 1.1 ws * waiting for an exclusive lock.
589 1.1 ws */
590 1.1 ws if ((lock->lf_flags & F_FLOCK) &&
591 1.1 ws lock->lf_type == F_WRLCK) {
592 1.1 ws lock->lf_type = F_UNLCK;
593 1.27 yamt (void) lf_clearlock(lock, NULL);
594 1.1 ws lock->lf_type = F_WRLCK;
595 1.1 ws }
596 1.1 ws /*
597 1.1 ws * Add our lock to the blocked list and sleep until we're free.
598 1.1 ws * Remember who blocked us (for deadlock detection).
599 1.1 ws */
600 1.1 ws lock->lf_next = block;
601 1.12 fvdl TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
602 1.1 ws #ifdef LOCKF_DEBUG
603 1.1 ws if (lockf_debug & 1) {
604 1.1 ws lf_print("lf_setlock: blocking on", block);
605 1.1 ws lf_printlist("lf_setlock", block);
606 1.1 ws }
607 1.1 ws #endif /* LOCKF_DEBUG */
608 1.61 ad error = cv_wait_sig(&lock->lf_cv, interlock);
609 1.16 sommerfe
610 1.16 sommerfe /*
611 1.65 ad * We may have been awoken by a signal (in
612 1.16 sommerfe * which case we must remove ourselves from the
613 1.16 sommerfe * blocked list) and/or by another process
614 1.16 sommerfe * releasing a lock (in which case we have already
615 1.16 sommerfe * been removed from the blocked list and our
616 1.54 yamt * lf_next field set to NULL).
617 1.16 sommerfe */
618 1.54 yamt if (lock->lf_next != NULL) {
619 1.16 sommerfe TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
620 1.54 yamt lock->lf_next = NULL;
621 1.16 sommerfe }
622 1.7 christos if (error) {
623 1.38 christos lf_free(lock);
624 1.29 yamt return error;
625 1.1 ws }
626 1.1 ws }
627 1.1 ws /*
628 1.1 ws * No blocks!! Add the lock. Note that we will
629 1.1 ws * downgrade or upgrade any overlapping locks this
630 1.1 ws * process already owns.
631 1.1 ws *
632 1.1 ws * Skip over locks owned by other processes.
633 1.1 ws * Handle any locks that overlap and are owned by ourselves.
634 1.1 ws */
635 1.1 ws prev = head;
636 1.1 ws block = *head;
637 1.1 ws needtolink = 1;
638 1.1 ws for (;;) {
639 1.7 christos ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
640 1.7 christos if (ovcase)
641 1.1 ws block = overlap->lf_next;
642 1.1 ws /*
643 1.1 ws * Six cases:
644 1.1 ws * 0) no overlap
645 1.1 ws * 1) overlap == lock
646 1.1 ws * 2) overlap contains lock
647 1.1 ws * 3) lock contains overlap
648 1.1 ws * 4) overlap starts before lock
649 1.1 ws * 5) overlap ends after lock
650 1.1 ws */
651 1.1 ws switch (ovcase) {
652 1.1 ws case 0: /* no overlap */
653 1.1 ws if (needtolink) {
654 1.1 ws *prev = lock;
655 1.1 ws lock->lf_next = overlap;
656 1.1 ws }
657 1.1 ws break;
658 1.1 ws
659 1.1 ws case 1: /* overlap == lock */
660 1.1 ws /*
661 1.1 ws * If downgrading lock, others may be
662 1.1 ws * able to acquire it.
663 1.1 ws */
664 1.1 ws if (lock->lf_type == F_RDLCK &&
665 1.1 ws overlap->lf_type == F_WRLCK)
666 1.1 ws lf_wakelock(overlap);
667 1.1 ws overlap->lf_type = lock->lf_type;
668 1.38 christos lf_free(lock);
669 1.1 ws lock = overlap; /* for debug output below */
670 1.1 ws break;
671 1.1 ws
672 1.1 ws case 2: /* overlap contains lock */
673 1.1 ws /*
674 1.1 ws * Check for common starting point and different types.
675 1.1 ws */
676 1.1 ws if (overlap->lf_type == lock->lf_type) {
677 1.38 christos lf_free(lock);
678 1.1 ws lock = overlap; /* for debug output below */
679 1.1 ws break;
680 1.1 ws }
681 1.1 ws if (overlap->lf_start == lock->lf_start) {
682 1.1 ws *prev = lock;
683 1.1 ws lock->lf_next = overlap;
684 1.1 ws overlap->lf_start = lock->lf_end + 1;
685 1.1 ws } else
686 1.27 yamt lf_split(overlap, lock, sparelock);
687 1.1 ws lf_wakelock(overlap);
688 1.1 ws break;
689 1.1 ws
690 1.1 ws case 3: /* lock contains overlap */
691 1.1 ws /*
692 1.1 ws * If downgrading lock, others may be able to
693 1.1 ws * acquire it, otherwise take the list.
694 1.1 ws */
695 1.1 ws if (lock->lf_type == F_RDLCK &&
696 1.1 ws overlap->lf_type == F_WRLCK) {
697 1.1 ws lf_wakelock(overlap);
698 1.1 ws } else {
699 1.82 riastrad while ((ltmp =
700 1.82 riastrad TAILQ_FIRST(&overlap->lf_blkhd))
701 1.82 riastrad != NULL) {
702 1.16 sommerfe KASSERT(ltmp->lf_next == overlap);
703 1.12 fvdl TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
704 1.12 fvdl lf_block);
705 1.16 sommerfe ltmp->lf_next = lock;
706 1.12 fvdl TAILQ_INSERT_TAIL(&lock->lf_blkhd,
707 1.12 fvdl ltmp, lf_block);
708 1.12 fvdl }
709 1.1 ws }
710 1.1 ws /*
711 1.82 riastrad * Add the new lock if necessary and delete the
712 1.82 riastrad * overlap.
713 1.1 ws */
714 1.1 ws if (needtolink) {
715 1.1 ws *prev = lock;
716 1.1 ws lock->lf_next = overlap->lf_next;
717 1.1 ws prev = &lock->lf_next;
718 1.1 ws needtolink = 0;
719 1.1 ws } else
720 1.1 ws *prev = overlap->lf_next;
721 1.39 christos lf_free(overlap);
722 1.1 ws continue;
723 1.1 ws
724 1.1 ws case 4: /* overlap starts before lock */
725 1.1 ws /*
726 1.1 ws * Add lock after overlap on the list.
727 1.1 ws */
728 1.1 ws lock->lf_next = overlap->lf_next;
729 1.1 ws overlap->lf_next = lock;
730 1.1 ws overlap->lf_end = lock->lf_start - 1;
731 1.1 ws prev = &lock->lf_next;
732 1.1 ws lf_wakelock(overlap);
733 1.1 ws needtolink = 0;
734 1.1 ws continue;
735 1.1 ws
736 1.1 ws case 5: /* overlap ends after lock */
737 1.1 ws /*
738 1.1 ws * Add the new lock before overlap.
739 1.1 ws */
740 1.1 ws if (needtolink) {
741 1.1 ws *prev = lock;
742 1.1 ws lock->lf_next = overlap;
743 1.1 ws }
744 1.1 ws overlap->lf_start = lock->lf_end + 1;
745 1.1 ws lf_wakelock(overlap);
746 1.1 ws break;
747 1.1 ws }
748 1.1 ws break;
749 1.1 ws }
750 1.1 ws #ifdef LOCKF_DEBUG
751 1.1 ws if (lockf_debug & 1) {
752 1.1 ws lf_print("lf_setlock: got the lock", lock);
753 1.1 ws lf_printlist("lf_setlock", lock);
754 1.1 ws }
755 1.1 ws #endif /* LOCKF_DEBUG */
756 1.29 yamt return 0;
757 1.1 ws }
758 1.1 ws
759 1.1 ws /*
760 1.1 ws * Check whether there is a blocking lock,
761 1.1 ws * and if so return its process identifier.
762 1.1 ws */
763 1.24 yamt static int
764 1.25 yamt lf_getlock(struct lockf *lock, struct flock *fl)
765 1.1 ws {
766 1.15 augustss struct lockf *block;
767 1.1 ws
768 1.1 ws #ifdef LOCKF_DEBUG
769 1.1 ws if (lockf_debug & 1)
770 1.1 ws lf_print("lf_getlock", lock);
771 1.1 ws #endif /* LOCKF_DEBUG */
772 1.1 ws
773 1.7 christos if ((block = lf_getblock(lock)) != NULL) {
774 1.1 ws fl->l_type = block->lf_type;
775 1.1 ws fl->l_whence = SEEK_SET;
776 1.1 ws fl->l_start = block->lf_start;
777 1.1 ws if (block->lf_end == -1)
778 1.1 ws fl->l_len = 0;
779 1.1 ws else
780 1.1 ws fl->l_len = block->lf_end - block->lf_start + 1;
781 1.1 ws if (block->lf_flags & F_POSIX)
782 1.23 mycroft fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
783 1.1 ws else
784 1.1 ws fl->l_pid = -1;
785 1.1 ws } else {
786 1.1 ws fl->l_type = F_UNLCK;
787 1.1 ws }
788 1.29 yamt return 0;
789 1.1 ws }
790 1.1 ws
791 1.1 ws /*
792 1.45 thorpej * Do an advisory lock operation.
793 1.1 ws */
794 1.45 thorpej int
795 1.45 thorpej lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
796 1.1 ws {
797 1.45 thorpej struct flock *fl = ap->a_fl;
798 1.45 thorpej struct lockf *lock = NULL;
799 1.45 thorpej struct lockf *sparelock;
800 1.81 ad kmutex_t *interlock = &lockf_lock;
801 1.45 thorpej off_t start, end;
802 1.45 thorpej int error = 0;
803 1.1 ws
804 1.76 riastrad KASSERTMSG(size >= 0, "size=%jd", (intmax_t)size);
805 1.76 riastrad
806 1.45 thorpej /*
807 1.45 thorpej * Convert the flock structure into a start and end.
808 1.45 thorpej */
809 1.45 thorpej switch (fl->l_whence) {
810 1.45 thorpej case SEEK_SET:
811 1.45 thorpej case SEEK_CUR:
812 1.1 ws /*
813 1.45 thorpej * Caller is responsible for adding any necessary offset
814 1.45 thorpej * when SEEK_CUR is used.
815 1.1 ws */
816 1.45 thorpej start = fl->l_start;
817 1.45 thorpej break;
818 1.45 thorpej
819 1.45 thorpej case SEEK_END:
820 1.76 riastrad if (fl->l_start > __type_max(off_t) - size)
821 1.83 riastrad return SET_ERROR(EINVAL);
822 1.45 thorpej start = size + fl->l_start;
823 1.45 thorpej break;
824 1.45 thorpej
825 1.45 thorpej default:
826 1.83 riastrad return SET_ERROR(EINVAL);
827 1.1 ws }
828 1.72 dsl
829 1.72 dsl if (fl->l_len == 0)
830 1.72 dsl end = -1;
831 1.72 dsl else {
832 1.76 riastrad if (fl->l_len >= 0) {
833 1.77 riastrad if (start >= 0 &&
834 1.77 riastrad fl->l_len - 1 > __type_max(off_t) - start)
835 1.83 riastrad return SET_ERROR(EINVAL);
836 1.78 riastrad end = start + (fl->l_len - 1);
837 1.76 riastrad } else {
838 1.72 dsl /* lockf() allows -ve lengths */
839 1.76 riastrad if (start < 0)
840 1.83 riastrad return SET_ERROR(EINVAL);
841 1.72 dsl end = start - 1;
842 1.72 dsl start += fl->l_len;
843 1.72 dsl }
844 1.72 dsl }
845 1.45 thorpej if (start < 0)
846 1.83 riastrad return SET_ERROR(EINVAL);
847 1.1 ws
848 1.45 thorpej /*
849 1.61 ad * Allocate locks before acquiring the interlock. We need two
850 1.55 ad * locks in the worst case.
851 1.45 thorpej */
852 1.45 thorpej switch (ap->a_op) {
853 1.45 thorpej case F_SETLK:
854 1.45 thorpej case F_UNLCK:
855 1.1 ws /*
856 1.55 ad * XXX For F_UNLCK case, we can re-use the lock.
857 1.1 ws */
858 1.46 christos if ((ap->a_flags & F_FLOCK) == 0) {
859 1.45 thorpej /*
860 1.55 ad * Byte-range lock might need one more lock.
861 1.45 thorpej */
862 1.71 yamt sparelock = lf_alloc(0);
863 1.45 thorpej if (sparelock == NULL) {
864 1.83 riastrad error = SET_ERROR(ENOMEM);
865 1.45 thorpej goto quit;
866 1.45 thorpej }
867 1.45 thorpej break;
868 1.1 ws }
869 1.45 thorpej /* FALLTHROUGH */
870 1.45 thorpej
871 1.45 thorpej case F_GETLK:
872 1.45 thorpej sparelock = NULL;
873 1.45 thorpej break;
874 1.45 thorpej
875 1.45 thorpej default:
876 1.83 riastrad return SET_ERROR(EINVAL);
877 1.45 thorpej }
878 1.45 thorpej
879 1.71 yamt switch (ap->a_op) {
880 1.71 yamt case F_SETLK:
881 1.71 yamt lock = lf_alloc(1);
882 1.71 yamt break;
883 1.71 yamt case F_UNLCK:
884 1.71 yamt if (start == 0 || end == -1) {
885 1.71 yamt /* never split */
886 1.71 yamt lock = lf_alloc(0);
887 1.71 yamt } else {
888 1.71 yamt /* might split */
889 1.71 yamt lock = lf_alloc(2);
890 1.71 yamt }
891 1.71 yamt break;
892 1.71 yamt case F_GETLK:
893 1.71 yamt lock = lf_alloc(0);
894 1.71 yamt break;
895 1.71 yamt }
896 1.45 thorpej if (lock == NULL) {
897 1.83 riastrad error = SET_ERROR(ENOMEM);
898 1.45 thorpej goto quit;
899 1.1 ws }
900 1.1 ws
901 1.61 ad mutex_enter(interlock);
902 1.1 ws
903 1.1 ws /*
904 1.45 thorpej * Avoid the common case of unlocking when inode has no locks.
905 1.1 ws */
906 1.45 thorpej if (*head == (struct lockf *)0) {
907 1.45 thorpej if (ap->a_op != F_SETLK) {
908 1.45 thorpej fl->l_type = F_UNLCK;
909 1.45 thorpej error = 0;
910 1.45 thorpej goto quit_unlock;
911 1.45 thorpej }
912 1.1 ws }
913 1.45 thorpej
914 1.1 ws /*
915 1.45 thorpej * Create the lockf structure.
916 1.45 thorpej */
917 1.45 thorpej lock->lf_start = start;
918 1.45 thorpej lock->lf_end = end;
919 1.45 thorpej lock->lf_head = head;
920 1.45 thorpej lock->lf_type = fl->l_type;
921 1.45 thorpej lock->lf_next = (struct lockf *)0;
922 1.45 thorpej TAILQ_INIT(&lock->lf_blkhd);
923 1.45 thorpej lock->lf_flags = ap->a_flags;
924 1.45 thorpej if (lock->lf_flags & F_POSIX) {
925 1.45 thorpej KASSERT(curproc == (struct proc *)ap->a_id);
926 1.45 thorpej }
927 1.72 dsl lock->lf_id = ap->a_id;
928 1.45 thorpej
929 1.1 ws /*
930 1.45 thorpej * Do the requested operation.
931 1.1 ws */
932 1.45 thorpej switch (ap->a_op) {
933 1.1 ws
934 1.45 thorpej case F_SETLK:
935 1.45 thorpej error = lf_setlock(lock, &sparelock, interlock);
936 1.45 thorpej lock = NULL; /* lf_setlock freed it */
937 1.45 thorpej break;
938 1.1 ws
939 1.45 thorpej case F_UNLCK:
940 1.45 thorpej error = lf_clearlock(lock, &sparelock);
941 1.45 thorpej break;
942 1.1 ws
943 1.45 thorpej case F_GETLK:
944 1.45 thorpej error = lf_getlock(lock, fl);
945 1.45 thorpej break;
946 1.37 perry
947 1.45 thorpej default:
948 1.45 thorpej break;
949 1.45 thorpej /* NOTREACHED */
950 1.45 thorpej }
951 1.1 ws
952 1.45 thorpej quit_unlock:
953 1.61 ad mutex_exit(interlock);
954 1.45 thorpej quit:
955 1.45 thorpej if (lock)
956 1.45 thorpej lf_free(lock);
957 1.45 thorpej if (sparelock)
958 1.45 thorpej lf_free(sparelock);
959 1.1 ws
960 1.45 thorpej return error;
961 1.1 ws }
962 1.80 ad
963 1.80 ad /*
964 1.82 riastrad * Initialize subsystem.
965 1.82 riastrad *
966 1.82 riastrad * XXX We use a global lock. This could be the vnode interlock, but
967 1.82 riastrad * the deadlock detection code may need to inspect locks belonging to
968 1.82 riastrad * other files.
969 1.80 ad */
970 1.80 ad void
971 1.80 ad lf_init(void)
972 1.80 ad {
973 1.80 ad
974 1.81 ad mutex_init(&lockf_lock, MUTEX_DEFAULT, IPL_NONE);
975 1.80 ad }
976