vfs_lockf.c revision 1.19 1 /* $NetBSD: vfs_lockf.c,v 1.19 2002/09/04 01:32:47 matt Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Scooter Morris at Genentech Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the University of
21 * California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 * may be used to endorse or promote products derived from this software
24 * without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 * @(#)ufs_lockf.c 8.4 (Berkeley) 10/26/94
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.19 2002/09/04 01:32:47 matt Exp $");
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/file.h>
48 #include <sys/proc.h>
49 #include <sys/vnode.h>
50 #include <sys/malloc.h>
51 #include <sys/fcntl.h>
52 #include <sys/lockf.h>
53
54 /*
55 * This variable controls the maximum number of processes that will
56 * be checked in doing deadlock detection.
57 */
58 int maxlockdepth = MAXDEPTH;
59
60 #ifdef LOCKF_DEBUG
61 int lockf_debug = 0;
62 #endif
63
64 #define NOLOCKF (struct lockf *)0
65 #define SELF 0x1
66 #define OTHERS 0x2
67
68 /*
69 * XXX TODO
70 * Misc cleanups: "caddr_t id" should be visible in the API as a
71 * "struct proc *".
72 * (This requires rototilling all VFS's which support advisory locking).
73 *
74 * Use pools for lock allocation.
75 */
76
77 /*
78 * XXXSMP TODO: Using either (a) a global lock, or (b) the vnode's
79 * interlock should be sufficient; (b) requires a change to the API
80 * because the vnode isn't visible here.
81 *
82 * If there's a lot of lock contention on a single vnode, locking
83 * schemes which allow for more paralleism would be needed. Given how
84 * infrequently byte-range locks are actually used in typical BSD
85 * code, a more complex approach probably isn't worth it.
86 */
87
88 /*
89 * Do an advisory lock operation.
90 */
91 int
92 lf_advlock(ap, head, size)
93 struct vop_advlock_args *ap;
94 struct lockf **head;
95 off_t size;
96 {
97 struct flock *fl = ap->a_fl;
98 struct lockf *lock;
99 off_t start, end;
100 int error;
101
102 /*
103 * Convert the flock structure into a start and end.
104 */
105 switch (fl->l_whence) {
106 case SEEK_SET:
107 case SEEK_CUR:
108 /*
109 * Caller is responsible for adding any necessary offset
110 * when SEEK_CUR is used.
111 */
112 start = fl->l_start;
113 break;
114
115 case SEEK_END:
116 start = size + fl->l_start;
117 break;
118
119 default:
120 return (EINVAL);
121 }
122 if (start < 0)
123 return (EINVAL);
124
125 /*
126 * Avoid the common case of unlocking when inode has no locks.
127 */
128 if (*head == (struct lockf *)0) {
129 if (ap->a_op != F_SETLK) {
130 fl->l_type = F_UNLCK;
131 return (0);
132 }
133 }
134
135 if (fl->l_len == 0)
136 end = -1;
137 else
138 end = start + fl->l_len - 1;
139 /*
140 * Create the lockf structure.
141 */
142 MALLOC(lock, struct lockf *, sizeof(*lock), M_LOCKF, M_WAITOK);
143 lock->lf_start = start;
144 lock->lf_end = end;
145 lock->lf_id = ap->a_id;
146 lock->lf_head = head;
147 lock->lf_type = fl->l_type;
148 lock->lf_next = (struct lockf *)0;
149 TAILQ_INIT(&lock->lf_blkhd);
150 lock->lf_flags = ap->a_flags;
151 /*
152 * Do the requested operation.
153 */
154 switch (ap->a_op) {
155
156 case F_SETLK:
157 return (lf_setlock(lock));
158
159 case F_UNLCK:
160 error = lf_clearlock(lock);
161 FREE(lock, M_LOCKF);
162 return (error);
163
164 case F_GETLK:
165 error = lf_getlock(lock, fl);
166 FREE(lock, M_LOCKF);
167 return (error);
168
169 default:
170 FREE(lock, M_LOCKF);
171 return (EINVAL);
172 }
173 /* NOTREACHED */
174 }
175
176 /*
177 * Set a byte-range lock.
178 */
179 int
180 lf_setlock(lock)
181 struct lockf *lock;
182 {
183 struct lockf *block;
184 struct lockf **head = lock->lf_head;
185 struct lockf **prev, *overlap, *ltmp;
186 static char lockstr[] = "lockf";
187 int ovcase, priority, needtolink, error;
188
189 #ifdef LOCKF_DEBUG
190 if (lockf_debug & 1)
191 lf_print("lf_setlock", lock);
192 #endif /* LOCKF_DEBUG */
193
194 /*
195 * Set the priority
196 */
197 priority = PLOCK;
198 if (lock->lf_type == F_WRLCK)
199 priority += 4;
200 priority |= PCATCH;
201 /*
202 * Scan lock list for this file looking for locks that would block us.
203 */
204 while ((block = lf_getblock(lock)) != NULL) {
205 /*
206 * Free the structure and return if nonblocking.
207 */
208 if ((lock->lf_flags & F_WAIT) == 0) {
209 FREE(lock, M_LOCKF);
210 return (EAGAIN);
211 }
212 /*
213 * We are blocked. Since flock style locks cover
214 * the whole file, there is no chance for deadlock.
215 * For byte-range locks we must check for deadlock.
216 *
217 * Deadlock detection is done by looking through the
218 * wait channels to see if there are any cycles that
219 * involve us. MAXDEPTH is set just to make sure we
220 * do not go off into neverneverland.
221 */
222 if ((lock->lf_flags & F_POSIX) &&
223 (block->lf_flags & F_POSIX)) {
224 struct proc *wproc;
225 struct lockf *waitblock;
226 int i = 0;
227
228 /* The block is waiting on something */
229 wproc = (struct proc *)block->lf_id;
230 while (wproc->p_wchan &&
231 (wproc->p_wmesg == lockstr) &&
232 (i++ < maxlockdepth)) {
233 waitblock = (struct lockf *)wproc->p_wchan;
234 /* Get the owner of the blocking lock */
235 waitblock = waitblock->lf_next;
236 if ((waitblock->lf_flags & F_POSIX) == 0)
237 break;
238 wproc = (struct proc *)waitblock->lf_id;
239 if (wproc == (struct proc *)lock->lf_id) {
240 free(lock, M_LOCKF);
241 return (EDEADLK);
242 }
243 }
244 /*
245 * If we're still following a dependancy chain
246 * after maxlockdepth iterations, assume we're in
247 * a cycle to be safe.
248 */
249 if (i >= maxlockdepth) {
250 free(lock, M_LOCKF);
251 return (EDEADLK);
252 }
253 }
254 /*
255 * For flock type locks, we must first remove
256 * any shared locks that we hold before we sleep
257 * waiting for an exclusive lock.
258 */
259 if ((lock->lf_flags & F_FLOCK) &&
260 lock->lf_type == F_WRLCK) {
261 lock->lf_type = F_UNLCK;
262 (void) lf_clearlock(lock);
263 lock->lf_type = F_WRLCK;
264 }
265 /*
266 * Add our lock to the blocked list and sleep until we're free.
267 * Remember who blocked us (for deadlock detection).
268 */
269 lock->lf_next = block;
270 TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
271 #ifdef LOCKF_DEBUG
272 if (lockf_debug & 1) {
273 lf_print("lf_setlock: blocking on", block);
274 lf_printlist("lf_setlock", block);
275 }
276 #endif /* LOCKF_DEBUG */
277 error = tsleep((caddr_t)lock, priority, lockstr, 0);
278
279 /*
280 * We may have been awakened by a signal (in
281 * which case we must remove ourselves from the
282 * blocked list) and/or by another process
283 * releasing a lock (in which case we have already
284 * been removed from the blocked list and our
285 * lf_next field set to NOLOCKF).
286 */
287 if (lock->lf_next != NOLOCKF) {
288 TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
289 lock->lf_next = NOLOCKF;
290 }
291 if (error) {
292 free(lock, M_LOCKF);
293 return (error);
294 }
295 }
296 /*
297 * No blocks!! Add the lock. Note that we will
298 * downgrade or upgrade any overlapping locks this
299 * process already owns.
300 *
301 * Skip over locks owned by other processes.
302 * Handle any locks that overlap and are owned by ourselves.
303 */
304 prev = head;
305 block = *head;
306 needtolink = 1;
307 for (;;) {
308 ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
309 if (ovcase)
310 block = overlap->lf_next;
311 /*
312 * Six cases:
313 * 0) no overlap
314 * 1) overlap == lock
315 * 2) overlap contains lock
316 * 3) lock contains overlap
317 * 4) overlap starts before lock
318 * 5) overlap ends after lock
319 */
320 switch (ovcase) {
321 case 0: /* no overlap */
322 if (needtolink) {
323 *prev = lock;
324 lock->lf_next = overlap;
325 }
326 break;
327
328 case 1: /* overlap == lock */
329 /*
330 * If downgrading lock, others may be
331 * able to acquire it.
332 */
333 if (lock->lf_type == F_RDLCK &&
334 overlap->lf_type == F_WRLCK)
335 lf_wakelock(overlap);
336 overlap->lf_type = lock->lf_type;
337 FREE(lock, M_LOCKF);
338 lock = overlap; /* for debug output below */
339 break;
340
341 case 2: /* overlap contains lock */
342 /*
343 * Check for common starting point and different types.
344 */
345 if (overlap->lf_type == lock->lf_type) {
346 free(lock, M_LOCKF);
347 lock = overlap; /* for debug output below */
348 break;
349 }
350 if (overlap->lf_start == lock->lf_start) {
351 *prev = lock;
352 lock->lf_next = overlap;
353 overlap->lf_start = lock->lf_end + 1;
354 } else
355 lf_split(overlap, lock);
356 lf_wakelock(overlap);
357 break;
358
359 case 3: /* lock contains overlap */
360 /*
361 * If downgrading lock, others may be able to
362 * acquire it, otherwise take the list.
363 */
364 if (lock->lf_type == F_RDLCK &&
365 overlap->lf_type == F_WRLCK) {
366 lf_wakelock(overlap);
367 } else {
368 while ((ltmp = TAILQ_FIRST(&overlap->lf_blkhd))) {
369 KASSERT(ltmp->lf_next == overlap);
370 TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
371 lf_block);
372 ltmp->lf_next = lock;
373 TAILQ_INSERT_TAIL(&lock->lf_blkhd,
374 ltmp, lf_block);
375 }
376 }
377 /*
378 * Add the new lock if necessary and delete the overlap.
379 */
380 if (needtolink) {
381 *prev = lock;
382 lock->lf_next = overlap->lf_next;
383 prev = &lock->lf_next;
384 needtolink = 0;
385 } else
386 *prev = overlap->lf_next;
387 free(overlap, M_LOCKF);
388 continue;
389
390 case 4: /* overlap starts before lock */
391 /*
392 * Add lock after overlap on the list.
393 */
394 lock->lf_next = overlap->lf_next;
395 overlap->lf_next = lock;
396 overlap->lf_end = lock->lf_start - 1;
397 prev = &lock->lf_next;
398 lf_wakelock(overlap);
399 needtolink = 0;
400 continue;
401
402 case 5: /* overlap ends after lock */
403 /*
404 * Add the new lock before overlap.
405 */
406 if (needtolink) {
407 *prev = lock;
408 lock->lf_next = overlap;
409 }
410 overlap->lf_start = lock->lf_end + 1;
411 lf_wakelock(overlap);
412 break;
413 }
414 break;
415 }
416 #ifdef LOCKF_DEBUG
417 if (lockf_debug & 1) {
418 lf_print("lf_setlock: got the lock", lock);
419 lf_printlist("lf_setlock", lock);
420 }
421 #endif /* LOCKF_DEBUG */
422 return (0);
423 }
424
425 /*
426 * Remove a byte-range lock on an inode.
427 *
428 * Generally, find the lock (or an overlap to that lock)
429 * and remove it (or shrink it), then wakeup anyone we can.
430 */
431 int
432 lf_clearlock(unlock)
433 struct lockf *unlock;
434 {
435 struct lockf **head = unlock->lf_head;
436 struct lockf *lf = *head;
437 struct lockf *overlap, **prev;
438 int ovcase;
439
440 if (lf == NOLOCKF)
441 return (0);
442 #ifdef LOCKF_DEBUG
443 if (unlock->lf_type != F_UNLCK)
444 panic("lf_clearlock: bad type");
445 if (lockf_debug & 1)
446 lf_print("lf_clearlock", unlock);
447 #endif /* LOCKF_DEBUG */
448 prev = head;
449 while ((ovcase = lf_findoverlap(lf, unlock, SELF,
450 &prev, &overlap)) != 0) {
451 /*
452 * Wakeup the list of locks to be retried.
453 */
454 lf_wakelock(overlap);
455
456 switch (ovcase) {
457
458 case 1: /* overlap == lock */
459 *prev = overlap->lf_next;
460 FREE(overlap, M_LOCKF);
461 break;
462
463 case 2: /* overlap contains lock: split it */
464 if (overlap->lf_start == unlock->lf_start) {
465 overlap->lf_start = unlock->lf_end + 1;
466 break;
467 }
468 lf_split(overlap, unlock);
469 overlap->lf_next = unlock->lf_next;
470 break;
471
472 case 3: /* lock contains overlap */
473 *prev = overlap->lf_next;
474 lf = overlap->lf_next;
475 free(overlap, M_LOCKF);
476 continue;
477
478 case 4: /* overlap starts before lock */
479 overlap->lf_end = unlock->lf_start - 1;
480 prev = &overlap->lf_next;
481 lf = overlap->lf_next;
482 continue;
483
484 case 5: /* overlap ends after lock */
485 overlap->lf_start = unlock->lf_end + 1;
486 break;
487 }
488 break;
489 }
490 #ifdef LOCKF_DEBUG
491 if (lockf_debug & 1)
492 lf_printlist("lf_clearlock", unlock);
493 #endif /* LOCKF_DEBUG */
494 return (0);
495 }
496
497 /*
498 * Check whether there is a blocking lock,
499 * and if so return its process identifier.
500 */
501 int
502 lf_getlock(lock, fl)
503 struct lockf *lock;
504 struct flock *fl;
505 {
506 struct lockf *block;
507
508 #ifdef LOCKF_DEBUG
509 if (lockf_debug & 1)
510 lf_print("lf_getlock", lock);
511 #endif /* LOCKF_DEBUG */
512
513 if ((block = lf_getblock(lock)) != NULL) {
514 fl->l_type = block->lf_type;
515 fl->l_whence = SEEK_SET;
516 fl->l_start = block->lf_start;
517 if (block->lf_end == -1)
518 fl->l_len = 0;
519 else
520 fl->l_len = block->lf_end - block->lf_start + 1;
521 if (block->lf_flags & F_POSIX)
522 fl->l_pid = ((struct proc *)(block->lf_id))->p_pid;
523 else
524 fl->l_pid = -1;
525 } else {
526 fl->l_type = F_UNLCK;
527 }
528 return (0);
529 }
530
531 /*
532 * Walk the list of locks for an inode and
533 * return the first blocking lock.
534 */
535 struct lockf *
536 lf_getblock(lock)
537 struct lockf *lock;
538 {
539 struct lockf **prev, *overlap, *lf = *(lock->lf_head);
540 int ovcase;
541
542 prev = lock->lf_head;
543 while ((ovcase = lf_findoverlap(lf, lock, OTHERS,
544 &prev, &overlap)) != 0) {
545 /*
546 * We've found an overlap, see if it blocks us
547 */
548 if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
549 return (overlap);
550 /*
551 * Nope, point to the next one on the list and
552 * see if it blocks us
553 */
554 lf = overlap->lf_next;
555 }
556 return (NOLOCKF);
557 }
558
559 /*
560 * Walk the list of locks for an inode to
561 * find an overlapping lock (if any).
562 *
563 * NOTE: this returns only the FIRST overlapping lock. There
564 * may be more than one.
565 */
566 int
567 lf_findoverlap(lf, lock, type, prev, overlap)
568 struct lockf *lf;
569 struct lockf *lock;
570 int type;
571 struct lockf ***prev;
572 struct lockf **overlap;
573 {
574 off_t start, end;
575
576 *overlap = lf;
577 if (lf == NOLOCKF)
578 return (0);
579 #ifdef LOCKF_DEBUG
580 if (lockf_debug & 2)
581 lf_print("lf_findoverlap: looking for overlap in", lock);
582 #endif /* LOCKF_DEBUG */
583 start = lock->lf_start;
584 end = lock->lf_end;
585 while (lf != NOLOCKF) {
586 if (((type & SELF) && lf->lf_id != lock->lf_id) ||
587 ((type & OTHERS) && lf->lf_id == lock->lf_id)) {
588 *prev = &lf->lf_next;
589 *overlap = lf = lf->lf_next;
590 continue;
591 }
592 #ifdef LOCKF_DEBUG
593 if (lockf_debug & 2)
594 lf_print("\tchecking", lf);
595 #endif /* LOCKF_DEBUG */
596 /*
597 * OK, check for overlap
598 *
599 * Six cases:
600 * 0) no overlap
601 * 1) overlap == lock
602 * 2) overlap contains lock
603 * 3) lock contains overlap
604 * 4) overlap starts before lock
605 * 5) overlap ends after lock
606 */
607 if ((lf->lf_end != -1 && start > lf->lf_end) ||
608 (end != -1 && lf->lf_start > end)) {
609 /* Case 0 */
610 #ifdef LOCKF_DEBUG
611 if (lockf_debug & 2)
612 printf("no overlap\n");
613 #endif /* LOCKF_DEBUG */
614 if ((type & SELF) && end != -1 && lf->lf_start > end)
615 return (0);
616 *prev = &lf->lf_next;
617 *overlap = lf = lf->lf_next;
618 continue;
619 }
620 if ((lf->lf_start == start) && (lf->lf_end == end)) {
621 /* Case 1 */
622 #ifdef LOCKF_DEBUG
623 if (lockf_debug & 2)
624 printf("overlap == lock\n");
625 #endif /* LOCKF_DEBUG */
626 return (1);
627 }
628 if ((lf->lf_start <= start) &&
629 (end != -1) &&
630 ((lf->lf_end >= end) || (lf->lf_end == -1))) {
631 /* Case 2 */
632 #ifdef LOCKF_DEBUG
633 if (lockf_debug & 2)
634 printf("overlap contains lock\n");
635 #endif /* LOCKF_DEBUG */
636 return (2);
637 }
638 if (start <= lf->lf_start &&
639 (end == -1 ||
640 (lf->lf_end != -1 && end >= lf->lf_end))) {
641 /* Case 3 */
642 #ifdef LOCKF_DEBUG
643 if (lockf_debug & 2)
644 printf("lock contains overlap\n");
645 #endif /* LOCKF_DEBUG */
646 return (3);
647 }
648 if ((lf->lf_start < start) &&
649 ((lf->lf_end >= start) || (lf->lf_end == -1))) {
650 /* Case 4 */
651 #ifdef LOCKF_DEBUG
652 if (lockf_debug & 2)
653 printf("overlap starts before lock\n");
654 #endif /* LOCKF_DEBUG */
655 return (4);
656 }
657 if ((lf->lf_start > start) &&
658 (end != -1) &&
659 ((lf->lf_end > end) || (lf->lf_end == -1))) {
660 /* Case 5 */
661 #ifdef LOCKF_DEBUG
662 if (lockf_debug & 2)
663 printf("overlap ends after lock\n");
664 #endif /* LOCKF_DEBUG */
665 return (5);
666 }
667 panic("lf_findoverlap: default");
668 }
669 return (0);
670 }
671
672 /*
673 * Split a lock and a contained region into
674 * two or three locks as necessary.
675 */
676 void
677 lf_split(lock1, lock2)
678 struct lockf *lock1;
679 struct lockf *lock2;
680 {
681 struct lockf *splitlock;
682
683 #ifdef LOCKF_DEBUG
684 if (lockf_debug & 2) {
685 lf_print("lf_split", lock1);
686 lf_print("splitting from", lock2);
687 }
688 #endif /* LOCKF_DEBUG */
689 /*
690 * Check to see if spliting into only two pieces.
691 */
692 if (lock1->lf_start == lock2->lf_start) {
693 lock1->lf_start = lock2->lf_end + 1;
694 lock2->lf_next = lock1;
695 return;
696 }
697 if (lock1->lf_end == lock2->lf_end) {
698 lock1->lf_end = lock2->lf_start - 1;
699 lock2->lf_next = lock1->lf_next;
700 lock1->lf_next = lock2;
701 return;
702 }
703 /*
704 * Make a new lock consisting of the last part of
705 * the encompassing lock
706 */
707 MALLOC(splitlock, struct lockf *, sizeof(*splitlock), M_LOCKF, M_WAITOK);
708 memcpy((caddr_t)splitlock, (caddr_t)lock1, sizeof(*splitlock));
709 splitlock->lf_start = lock2->lf_end + 1;
710 TAILQ_INIT(&splitlock->lf_blkhd);
711 lock1->lf_end = lock2->lf_start - 1;
712 /*
713 * OK, now link it in
714 */
715 splitlock->lf_next = lock1->lf_next;
716 lock2->lf_next = splitlock;
717 lock1->lf_next = lock2;
718 }
719
720 /*
721 * Wakeup a blocklist
722 */
723 void
724 lf_wakelock(listhead)
725 struct lockf *listhead;
726 {
727 struct lockf *wakelock;
728
729 while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
730 KASSERT(wakelock->lf_next == listhead);
731 TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
732 wakelock->lf_next = NOLOCKF;
733 #ifdef LOCKF_DEBUG
734 if (lockf_debug & 2)
735 lf_print("lf_wakelock: awakening", wakelock);
736 #endif
737 wakeup((caddr_t)wakelock);
738 }
739 }
740
741 #ifdef LOCKF_DEBUG
742 /*
743 * Print out a lock.
744 */
745 void
746 lf_print(tag, lock)
747 char *tag;
748 struct lockf *lock;
749 {
750
751 printf("%s: lock %p for ", tag, lock);
752 if (lock->lf_flags & F_POSIX)
753 printf("proc %d", ((struct proc *)(lock->lf_id))->p_pid);
754 else
755 printf("id 0x%p", lock->lf_id);
756 printf(" %s, start %qx, end %qx",
757 lock->lf_type == F_RDLCK ? "shared" :
758 lock->lf_type == F_WRLCK ? "exclusive" :
759 lock->lf_type == F_UNLCK ? "unlock" :
760 "unknown", lock->lf_start, lock->lf_end);
761 if (TAILQ_FIRST(&lock->lf_blkhd))
762 printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
763 else
764 printf("\n");
765 }
766
767 void
768 lf_printlist(tag, lock)
769 char *tag;
770 struct lockf *lock;
771 {
772 struct lockf *lf, *blk;
773
774 printf("%s: Lock list:\n", tag);
775 for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
776 printf("\tlock %p for ", lf);
777 if (lf->lf_flags & F_POSIX)
778 printf("proc %d", ((struct proc *)(lf->lf_id))->p_pid);
779 else
780 printf("id 0x%p", lf->lf_id);
781 printf(", %s, start %qx, end %qx",
782 lf->lf_type == F_RDLCK ? "shared" :
783 lf->lf_type == F_WRLCK ? "exclusive" :
784 lf->lf_type == F_UNLCK ? "unlock" :
785 "unknown", lf->lf_start, lf->lf_end);
786 TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
787 if (blk->lf_flags & F_POSIX)
788 printf("proc %d",
789 ((struct proc *)(blk->lf_id))->p_pid);
790 else
791 printf("id 0x%p", blk->lf_id);
792 printf(", %s, start %qx, end %qx",
793 blk->lf_type == F_RDLCK ? "shared" :
794 blk->lf_type == F_WRLCK ? "exclusive" :
795 blk->lf_type == F_UNLCK ? "unlock" :
796 "unknown", blk->lf_start, blk->lf_end);
797 if (TAILQ_FIRST(&blk->lf_blkhd))
798 panic("lf_printlist: bad list");
799 }
800 printf("\n");
801 }
802 }
803 #endif /* LOCKF_DEBUG */
804