Home | History | Annotate | Line # | Download | only in kern
vfs_lockf.c revision 1.40
      1 /*	$NetBSD: vfs_lockf.c,v 1.40 2005/05/07 17:42:09 christos Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Scooter Morris at Genentech Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  *
     34  *	@(#)ufs_lockf.c	8.4 (Berkeley) 10/26/94
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.40 2005/05/07 17:42:09 christos Exp $");
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/kernel.h>
     43 #include <sys/file.h>
     44 #include <sys/proc.h>
     45 #include <sys/vnode.h>
     46 #include <sys/pool.h>
     47 #include <sys/fcntl.h>
     48 #include <sys/lockf.h>
     49 
     50 POOL_INIT(lockfpool, sizeof(struct lockf), 0, 0, 0, "lockfpl",
     51     &pool_allocator_nointr);
     52 
     53 /*
     54  * This variable controls the maximum number of processes that will
     55  * be checked in doing deadlock detection.
     56  */
     57 int maxlockdepth = MAXDEPTH;
     58 
     59 #ifdef LOCKF_DEBUG
     60 int	lockf_debug = 0;
     61 #endif
     62 
     63 #define NOLOCKF (struct lockf *)0
     64 #define SELF	0x1
     65 #define OTHERS	0x2
     66 
     67 static int lf_clearlock(struct lockf *, struct lockf **);
     68 static int lf_findoverlap(struct lockf *,
     69 	    struct lockf *, int, struct lockf ***, struct lockf **);
     70 static struct lockf *lf_getblock(struct lockf *);
     71 static int lf_getlock(struct lockf *, struct flock *);
     72 static int lf_setlock(struct lockf *, struct lockf **, struct simplelock *);
     73 static void lf_split(struct lockf *, struct lockf *, struct lockf **);
     74 static void lf_wakelock(struct lockf *);
     75 static struct lockf *lf_alloc(uid_t, int);
     76 static void lf_free(struct lockf *);
     77 
     78 
     79 #ifdef LOCKF_DEBUG
     80 static void lf_print(char *, struct lockf *);
     81 static void lf_printlist(char *, struct lockf *);
     82 #endif
     83 
     84 /*
     85  * XXX TODO
     86  * Misc cleanups: "caddr_t id" should be visible in the API as a
     87  * "struct proc *".
     88  * (This requires rototilling all VFS's which support advisory locking).
     89  */
     90 
     91 /*
     92  * If there's a lot of lock contention on a single vnode, locking
     93  * schemes which allow for more paralleism would be needed.  Given how
     94  * infrequently byte-range locks are actually used in typical BSD
     95  * code, a more complex approach probably isn't worth it.
     96  */
     97 
     98 /*
     99  * We enforce a limit on locks by uid, so that a single user cannot
    100  * run the kernel out of memory.  For now, the limit is pretty coarse.
    101  * There is no limit on root.
    102  *
    103  * Splitting a lock will always succeed, regardless of current allocations.
    104  * If you're slightly above the limit, we still have to permit an allocation
    105  * so that the unlock can succeed.  If the unlocking causes too many splits,
    106  * however, you're totally cutoff.
    107  */
    108 int maxlocksperuid = 1024;
    109 
    110 /*
    111  * 3 options for allowfail.
    112  * 0 - always allocate.  1 - cutoff at limit.  2 - cutoff at double limit.
    113  */
    114 struct lockf *
    115 lf_alloc(uid_t uid, int allowfail)
    116 {
    117 	struct uidinfo *uip;
    118 	struct lockf *lock;
    119 
    120 	uip = uid_find(uid);
    121 	simple_lock(&uip->ui_slock);
    122 	if (uid && allowfail && uip->ui_lockcnt >
    123 	    (allowfail == 1 ? maxlocksperuid : (maxlocksperuid * 2))) {
    124 		simple_unlock(&uip->ui_slock);
    125 		return NULL;
    126 	}
    127 	uip->ui_lockcnt++;
    128 	simple_unlock(&uip->ui_slock);
    129 	lock = pool_get(&lockfpool, PR_WAITOK);
    130 	lock->lf_uid = uid;
    131 	return lock;
    132 }
    133 
    134 void
    135 lf_free(struct lockf *lock)
    136 {
    137 	struct uidinfo *uip;
    138 
    139 	uip = uid_find(lock->lf_uid);
    140 	simple_lock(&uip->ui_slock);
    141 	uip->ui_lockcnt--;
    142 	simple_unlock(&uip->ui_slock);
    143 	pool_put(&lockfpool, lock);
    144 }
    145 
    146 /*
    147  * Do an advisory lock operation.
    148  */
    149 int
    150 lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
    151 {
    152 	struct proc *p = curproc;
    153 	struct flock *fl = ap->a_fl;
    154 	struct lockf *lock = NULL;
    155 	struct lockf *sparelock;
    156 	struct simplelock *interlock = &ap->a_vp->v_interlock;
    157 	off_t start, end;
    158 	int error = 0;
    159 
    160 	/*
    161 	 * Convert the flock structure into a start and end.
    162 	 */
    163 	switch (fl->l_whence) {
    164 	case SEEK_SET:
    165 	case SEEK_CUR:
    166 		/*
    167 		 * Caller is responsible for adding any necessary offset
    168 		 * when SEEK_CUR is used.
    169 		 */
    170 		start = fl->l_start;
    171 		break;
    172 
    173 	case SEEK_END:
    174 		start = size + fl->l_start;
    175 		break;
    176 
    177 	default:
    178 		return EINVAL;
    179 	}
    180 	if (start < 0)
    181 		return EINVAL;
    182 
    183 	/*
    184 	 * allocate locks before acquire simple lock.
    185 	 * we need two locks in the worst case.
    186 	 */
    187 	switch (ap->a_op) {
    188 	case F_SETLK:
    189 	case F_UNLCK:
    190 		/*
    191 		 * XXX for F_UNLCK case, we can re-use lock.
    192 		 */
    193 		if ((fl->l_type & F_FLOCK) == 0) {
    194 			/*
    195 			 * byte-range lock might need one more lock.
    196 			 */
    197 			sparelock = lf_alloc(p->p_ucred->cr_uid, 0);
    198 			if (sparelock == NULL) {
    199 				error = ENOMEM;
    200 				goto quit;
    201 			}
    202 			break;
    203 		}
    204 		/* FALLTHROUGH */
    205 
    206 	case F_GETLK:
    207 		sparelock = NULL;
    208 		break;
    209 
    210 	default:
    211 		return EINVAL;
    212 	}
    213 
    214 	lock = lf_alloc(p->p_ucred->cr_uid, ap->a_op != F_UNLCK ? 1 : 2);
    215 	if (lock == NULL) {
    216 		error = ENOMEM;
    217 		goto quit;
    218 	}
    219 
    220 	simple_lock(interlock);
    221 
    222 	/*
    223 	 * Avoid the common case of unlocking when inode has no locks.
    224 	 */
    225 	if (*head == (struct lockf *)0) {
    226 		if (ap->a_op != F_SETLK) {
    227 			fl->l_type = F_UNLCK;
    228 			error = 0;
    229 			goto quit_unlock;
    230 		}
    231 	}
    232 
    233 	if (fl->l_len == 0)
    234 		end = -1;
    235 	else
    236 		end = start + fl->l_len - 1;
    237 	/*
    238 	 * Create the lockf structure.
    239 	 */
    240 	lock->lf_start = start;
    241 	lock->lf_end = end;
    242 	/* XXX NJWLWP
    243 	 * I don't want to make the entire VFS universe use LWPs, because
    244 	 * they don't need them, for the most part. This is an exception,
    245 	 * and a kluge.
    246 	 */
    247 
    248 	lock->lf_head = head;
    249 	lock->lf_type = fl->l_type;
    250 	lock->lf_next = (struct lockf *)0;
    251 	TAILQ_INIT(&lock->lf_blkhd);
    252 	lock->lf_flags = ap->a_flags;
    253 	if (lock->lf_flags & F_POSIX) {
    254 		KASSERT(curproc == (struct proc *)ap->a_id);
    255 	}
    256 	lock->lf_id = (struct proc *)ap->a_id;
    257 	lock->lf_lwp = curlwp;
    258 
    259 	/*
    260 	 * Do the requested operation.
    261 	 */
    262 	switch (ap->a_op) {
    263 
    264 	case F_SETLK:
    265 		error = lf_setlock(lock, &sparelock, interlock);
    266 		lock = NULL; /* lf_setlock freed it */
    267 		break;
    268 
    269 	case F_UNLCK:
    270 		error = lf_clearlock(lock, &sparelock);
    271 		break;
    272 
    273 	case F_GETLK:
    274 		error = lf_getlock(lock, fl);
    275 		break;
    276 
    277 	default:
    278 		break;
    279 		/* NOTREACHED */
    280 	}
    281 
    282 quit_unlock:
    283 	simple_unlock(interlock);
    284 quit:
    285 	if (lock)
    286 		lf_free(lock);
    287 	if (sparelock)
    288 		lf_free(sparelock);
    289 
    290 	return error;
    291 }
    292 
    293 /*
    294  * Set a byte-range lock.
    295  */
    296 static int
    297 lf_setlock(struct lockf *lock, struct lockf **sparelock,
    298     struct simplelock *interlock)
    299 {
    300 	struct lockf *block;
    301 	struct lockf **head = lock->lf_head;
    302 	struct lockf **prev, *overlap, *ltmp;
    303 	static char lockstr[] = "lockf";
    304 	int ovcase, priority, needtolink, error;
    305 
    306 #ifdef LOCKF_DEBUG
    307 	if (lockf_debug & 1)
    308 		lf_print("lf_setlock", lock);
    309 #endif /* LOCKF_DEBUG */
    310 
    311 	/*
    312 	 * Set the priority
    313 	 */
    314 	priority = PLOCK;
    315 	if (lock->lf_type == F_WRLCK)
    316 		priority += 4;
    317 	priority |= PCATCH;
    318 	/*
    319 	 * Scan lock list for this file looking for locks that would block us.
    320 	 */
    321 	while ((block = lf_getblock(lock)) != NULL) {
    322 		/*
    323 		 * Free the structure and return if nonblocking.
    324 		 */
    325 		if ((lock->lf_flags & F_WAIT) == 0) {
    326 			lf_free(lock);
    327 			return EAGAIN;
    328 		}
    329 		/*
    330 		 * We are blocked. Since flock style locks cover
    331 		 * the whole file, there is no chance for deadlock.
    332 		 * For byte-range locks we must check for deadlock.
    333 		 *
    334 		 * Deadlock detection is done by looking through the
    335 		 * wait channels to see if there are any cycles that
    336 		 * involve us. MAXDEPTH is set just to make sure we
    337 		 * do not go off into neverneverland.
    338 		 */
    339 		if ((lock->lf_flags & F_POSIX) &&
    340 		    (block->lf_flags & F_POSIX)) {
    341 			struct lwp *wlwp;
    342 			struct lockf *waitblock;
    343 			int i = 0;
    344 
    345 			/*
    346 			 * The block is waiting on something.  if_lwp will be
    347 			 * 0 once the lock is granted, so we terminate the
    348 			 * loop if we find this.
    349 			 */
    350 			wlwp = block->lf_lwp;
    351 			while (wlwp && (i++ < maxlockdepth)) {
    352 				waitblock = (struct lockf *)wlwp->l_wchan;
    353 				/* Get the owner of the blocking lock */
    354 				waitblock = waitblock->lf_next;
    355 				if ((waitblock->lf_flags & F_POSIX) == 0)
    356 					break;
    357 				wlwp = waitblock->lf_lwp;
    358 				if (wlwp == lock->lf_lwp) {
    359 					lf_free(lock);
    360 					return EDEADLK;
    361 				}
    362 			}
    363 			/*
    364 			 * If we're still following a dependency chain
    365 			 * after maxlockdepth iterations, assume we're in
    366 			 * a cycle to be safe.
    367 			 */
    368 			if (i >= maxlockdepth) {
    369 				lf_free(lock);
    370 				return EDEADLK;
    371 			}
    372 		}
    373 		/*
    374 		 * For flock type locks, we must first remove
    375 		 * any shared locks that we hold before we sleep
    376 		 * waiting for an exclusive lock.
    377 		 */
    378 		if ((lock->lf_flags & F_FLOCK) &&
    379 		    lock->lf_type == F_WRLCK) {
    380 			lock->lf_type = F_UNLCK;
    381 			(void) lf_clearlock(lock, NULL);
    382 			lock->lf_type = F_WRLCK;
    383 		}
    384 		/*
    385 		 * Add our lock to the blocked list and sleep until we're free.
    386 		 * Remember who blocked us (for deadlock detection).
    387 		 */
    388 		lock->lf_next = block;
    389 		TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
    390 #ifdef LOCKF_DEBUG
    391 		if (lockf_debug & 1) {
    392 			lf_print("lf_setlock: blocking on", block);
    393 			lf_printlist("lf_setlock", block);
    394 		}
    395 #endif /* LOCKF_DEBUG */
    396 		error = ltsleep(lock, priority, lockstr, 0, interlock);
    397 
    398 		/*
    399 		 * We may have been awakened by a signal (in
    400 		 * which case we must remove ourselves from the
    401 		 * blocked list) and/or by another process
    402 		 * releasing a lock (in which case we have already
    403 		 * been removed from the blocked list and our
    404 		 * lf_next field set to NOLOCKF).
    405 		 */
    406 		if (lock->lf_next != NOLOCKF) {
    407 			TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
    408 			lock->lf_next = NOLOCKF;
    409 		}
    410 		if (error) {
    411 			lf_free(lock);
    412 			return error;
    413 		}
    414 	}
    415 	/*
    416 	 * No blocks!!  Add the lock.  Note that we will
    417 	 * downgrade or upgrade any overlapping locks this
    418 	 * process already owns.
    419 	 *
    420 	 * Skip over locks owned by other processes.
    421 	 * Handle any locks that overlap and are owned by ourselves.
    422 	 */
    423 	lock->lf_lwp = 0;
    424 	prev = head;
    425 	block = *head;
    426 	needtolink = 1;
    427 	for (;;) {
    428 		ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
    429 		if (ovcase)
    430 			block = overlap->lf_next;
    431 		/*
    432 		 * Six cases:
    433 		 *	0) no overlap
    434 		 *	1) overlap == lock
    435 		 *	2) overlap contains lock
    436 		 *	3) lock contains overlap
    437 		 *	4) overlap starts before lock
    438 		 *	5) overlap ends after lock
    439 		 */
    440 		switch (ovcase) {
    441 		case 0: /* no overlap */
    442 			if (needtolink) {
    443 				*prev = lock;
    444 				lock->lf_next = overlap;
    445 			}
    446 			break;
    447 
    448 		case 1: /* overlap == lock */
    449 			/*
    450 			 * If downgrading lock, others may be
    451 			 * able to acquire it.
    452 			 */
    453 			if (lock->lf_type == F_RDLCK &&
    454 			    overlap->lf_type == F_WRLCK)
    455 				lf_wakelock(overlap);
    456 			overlap->lf_type = lock->lf_type;
    457 			lf_free(lock);
    458 			lock = overlap; /* for debug output below */
    459 			break;
    460 
    461 		case 2: /* overlap contains lock */
    462 			/*
    463 			 * Check for common starting point and different types.
    464 			 */
    465 			if (overlap->lf_type == lock->lf_type) {
    466 				lf_free(lock);
    467 				lock = overlap; /* for debug output below */
    468 				break;
    469 			}
    470 			if (overlap->lf_start == lock->lf_start) {
    471 				*prev = lock;
    472 				lock->lf_next = overlap;
    473 				overlap->lf_start = lock->lf_end + 1;
    474 			} else
    475 				lf_split(overlap, lock, sparelock);
    476 			lf_wakelock(overlap);
    477 			break;
    478 
    479 		case 3: /* lock contains overlap */
    480 			/*
    481 			 * If downgrading lock, others may be able to
    482 			 * acquire it, otherwise take the list.
    483 			 */
    484 			if (lock->lf_type == F_RDLCK &&
    485 			    overlap->lf_type == F_WRLCK) {
    486 				lf_wakelock(overlap);
    487 			} else {
    488 				while ((ltmp = TAILQ_FIRST(&overlap->lf_blkhd))) {
    489 					KASSERT(ltmp->lf_next == overlap);
    490 					TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
    491 					    lf_block);
    492 					ltmp->lf_next = lock;
    493 					TAILQ_INSERT_TAIL(&lock->lf_blkhd,
    494 					    ltmp, lf_block);
    495 				}
    496 			}
    497 			/*
    498 			 * Add the new lock if necessary and delete the overlap.
    499 			 */
    500 			if (needtolink) {
    501 				*prev = lock;
    502 				lock->lf_next = overlap->lf_next;
    503 				prev = &lock->lf_next;
    504 				needtolink = 0;
    505 			} else
    506 				*prev = overlap->lf_next;
    507 			lf_free(overlap);
    508 			continue;
    509 
    510 		case 4: /* overlap starts before lock */
    511 			/*
    512 			 * Add lock after overlap on the list.
    513 			 */
    514 			lock->lf_next = overlap->lf_next;
    515 			overlap->lf_next = lock;
    516 			overlap->lf_end = lock->lf_start - 1;
    517 			prev = &lock->lf_next;
    518 			lf_wakelock(overlap);
    519 			needtolink = 0;
    520 			continue;
    521 
    522 		case 5: /* overlap ends after lock */
    523 			/*
    524 			 * Add the new lock before overlap.
    525 			 */
    526 			if (needtolink) {
    527 				*prev = lock;
    528 				lock->lf_next = overlap;
    529 			}
    530 			overlap->lf_start = lock->lf_end + 1;
    531 			lf_wakelock(overlap);
    532 			break;
    533 		}
    534 		break;
    535 	}
    536 #ifdef LOCKF_DEBUG
    537 	if (lockf_debug & 1) {
    538 		lf_print("lf_setlock: got the lock", lock);
    539 		lf_printlist("lf_setlock", lock);
    540 	}
    541 #endif /* LOCKF_DEBUG */
    542 	return 0;
    543 }
    544 
    545 /*
    546  * Remove a byte-range lock on an inode.
    547  *
    548  * Generally, find the lock (or an overlap to that lock)
    549  * and remove it (or shrink it), then wakeup anyone we can.
    550  */
    551 static int
    552 lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
    553 {
    554 	struct lockf **head = unlock->lf_head;
    555 	struct lockf *lf = *head;
    556 	struct lockf *overlap, **prev;
    557 	int ovcase;
    558 
    559 	if (lf == NOLOCKF)
    560 		return 0;
    561 #ifdef LOCKF_DEBUG
    562 	if (unlock->lf_type != F_UNLCK)
    563 		panic("lf_clearlock: bad type");
    564 	if (lockf_debug & 1)
    565 		lf_print("lf_clearlock", unlock);
    566 #endif /* LOCKF_DEBUG */
    567 	prev = head;
    568 	while ((ovcase = lf_findoverlap(lf, unlock, SELF,
    569 					&prev, &overlap)) != 0) {
    570 		/*
    571 		 * Wakeup the list of locks to be retried.
    572 		 */
    573 		lf_wakelock(overlap);
    574 
    575 		switch (ovcase) {
    576 
    577 		case 1: /* overlap == lock */
    578 			*prev = overlap->lf_next;
    579 			lf_free(overlap);
    580 			break;
    581 
    582 		case 2: /* overlap contains lock: split it */
    583 			if (overlap->lf_start == unlock->lf_start) {
    584 				overlap->lf_start = unlock->lf_end + 1;
    585 				break;
    586 			}
    587 			lf_split(overlap, unlock, sparelock);
    588 			overlap->lf_next = unlock->lf_next;
    589 			break;
    590 
    591 		case 3: /* lock contains overlap */
    592 			*prev = overlap->lf_next;
    593 			lf = overlap->lf_next;
    594 			lf_free(overlap);
    595 			continue;
    596 
    597 		case 4: /* overlap starts before lock */
    598 			overlap->lf_end = unlock->lf_start - 1;
    599 			prev = &overlap->lf_next;
    600 			lf = overlap->lf_next;
    601 			continue;
    602 
    603 		case 5: /* overlap ends after lock */
    604 			overlap->lf_start = unlock->lf_end + 1;
    605 			break;
    606 		}
    607 		break;
    608 	}
    609 #ifdef LOCKF_DEBUG
    610 	if (lockf_debug & 1)
    611 		lf_printlist("lf_clearlock", unlock);
    612 #endif /* LOCKF_DEBUG */
    613 	return 0;
    614 }
    615 
    616 /*
    617  * Check whether there is a blocking lock,
    618  * and if so return its process identifier.
    619  */
    620 static int
    621 lf_getlock(struct lockf *lock, struct flock *fl)
    622 {
    623 	struct lockf *block;
    624 
    625 #ifdef LOCKF_DEBUG
    626 	if (lockf_debug & 1)
    627 		lf_print("lf_getlock", lock);
    628 #endif /* LOCKF_DEBUG */
    629 
    630 	if ((block = lf_getblock(lock)) != NULL) {
    631 		fl->l_type = block->lf_type;
    632 		fl->l_whence = SEEK_SET;
    633 		fl->l_start = block->lf_start;
    634 		if (block->lf_end == -1)
    635 			fl->l_len = 0;
    636 		else
    637 			fl->l_len = block->lf_end - block->lf_start + 1;
    638 		if (block->lf_flags & F_POSIX)
    639 			fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
    640 		else
    641 			fl->l_pid = -1;
    642 	} else {
    643 		fl->l_type = F_UNLCK;
    644 	}
    645 	return 0;
    646 }
    647 
    648 /*
    649  * Walk the list of locks for an inode and
    650  * return the first blocking lock.
    651  */
    652 static struct lockf *
    653 lf_getblock(struct lockf *lock)
    654 {
    655 	struct lockf **prev, *overlap, *lf = *(lock->lf_head);
    656 
    657 	prev = lock->lf_head;
    658 	while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
    659 		/*
    660 		 * We've found an overlap, see if it blocks us
    661 		 */
    662 		if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
    663 			return overlap;
    664 		/*
    665 		 * Nope, point to the next one on the list and
    666 		 * see if it blocks us
    667 		 */
    668 		lf = overlap->lf_next;
    669 	}
    670 	return NOLOCKF;
    671 }
    672 
    673 /*
    674  * Walk the list of locks for an inode to
    675  * find an overlapping lock (if any).
    676  *
    677  * NOTE: this returns only the FIRST overlapping lock.  There
    678  *	 may be more than one.
    679  */
    680 static int
    681 lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
    682     struct lockf ***prev, struct lockf **overlap)
    683 {
    684 	off_t start, end;
    685 
    686 	*overlap = lf;
    687 	if (lf == NOLOCKF)
    688 		return 0;
    689 #ifdef LOCKF_DEBUG
    690 	if (lockf_debug & 2)
    691 		lf_print("lf_findoverlap: looking for overlap in", lock);
    692 #endif /* LOCKF_DEBUG */
    693 	start = lock->lf_start;
    694 	end = lock->lf_end;
    695 	while (lf != NOLOCKF) {
    696 		if (((type == SELF) && lf->lf_id != lock->lf_id) ||
    697 		    ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
    698 			*prev = &lf->lf_next;
    699 			*overlap = lf = lf->lf_next;
    700 			continue;
    701 		}
    702 #ifdef LOCKF_DEBUG
    703 		if (lockf_debug & 2)
    704 			lf_print("\tchecking", lf);
    705 #endif /* LOCKF_DEBUG */
    706 		/*
    707 		 * OK, check for overlap
    708 		 *
    709 		 * Six cases:
    710 		 *	0) no overlap
    711 		 *	1) overlap == lock
    712 		 *	2) overlap contains lock
    713 		 *	3) lock contains overlap
    714 		 *	4) overlap starts before lock
    715 		 *	5) overlap ends after lock
    716 		 */
    717 		if ((lf->lf_end != -1 && start > lf->lf_end) ||
    718 		    (end != -1 && lf->lf_start > end)) {
    719 			/* Case 0 */
    720 #ifdef LOCKF_DEBUG
    721 			if (lockf_debug & 2)
    722 				printf("no overlap\n");
    723 #endif /* LOCKF_DEBUG */
    724 			if ((type & SELF) && end != -1 && lf->lf_start > end)
    725 				return 0;
    726 			*prev = &lf->lf_next;
    727 			*overlap = lf = lf->lf_next;
    728 			continue;
    729 		}
    730 		if ((lf->lf_start == start) && (lf->lf_end == end)) {
    731 			/* Case 1 */
    732 #ifdef LOCKF_DEBUG
    733 			if (lockf_debug & 2)
    734 				printf("overlap == lock\n");
    735 #endif /* LOCKF_DEBUG */
    736 			return 1;
    737 		}
    738 		if ((lf->lf_start <= start) &&
    739 		    (end != -1) &&
    740 		    ((lf->lf_end >= end) || (lf->lf_end == -1))) {
    741 			/* Case 2 */
    742 #ifdef LOCKF_DEBUG
    743 			if (lockf_debug & 2)
    744 				printf("overlap contains lock\n");
    745 #endif /* LOCKF_DEBUG */
    746 			return 2;
    747 		}
    748 		if (start <= lf->lf_start &&
    749 		           (end == -1 ||
    750 			   (lf->lf_end != -1 && end >= lf->lf_end))) {
    751 			/* Case 3 */
    752 #ifdef LOCKF_DEBUG
    753 			if (lockf_debug & 2)
    754 				printf("lock contains overlap\n");
    755 #endif /* LOCKF_DEBUG */
    756 			return 3;
    757 		}
    758 		if ((lf->lf_start < start) &&
    759 			((lf->lf_end >= start) || (lf->lf_end == -1))) {
    760 			/* Case 4 */
    761 #ifdef LOCKF_DEBUG
    762 			if (lockf_debug & 2)
    763 				printf("overlap starts before lock\n");
    764 #endif /* LOCKF_DEBUG */
    765 			return 4;
    766 		}
    767 		if ((lf->lf_start > start) &&
    768 			(end != -1) &&
    769 			((lf->lf_end > end) || (lf->lf_end == -1))) {
    770 			/* Case 5 */
    771 #ifdef LOCKF_DEBUG
    772 			if (lockf_debug & 2)
    773 				printf("overlap ends after lock\n");
    774 #endif /* LOCKF_DEBUG */
    775 			return 5;
    776 		}
    777 		panic("lf_findoverlap: default");
    778 	}
    779 	return 0;
    780 }
    781 
    782 /*
    783  * Split a lock and a contained region into
    784  * two or three locks as necessary.
    785  */
    786 static void
    787 lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
    788 {
    789 	struct lockf *splitlock;
    790 
    791 #ifdef LOCKF_DEBUG
    792 	if (lockf_debug & 2) {
    793 		lf_print("lf_split", lock1);
    794 		lf_print("splitting from", lock2);
    795 	}
    796 #endif /* LOCKF_DEBUG */
    797 	/*
    798 	 * Check to see if spliting into only two pieces.
    799 	 */
    800 	if (lock1->lf_start == lock2->lf_start) {
    801 		lock1->lf_start = lock2->lf_end + 1;
    802 		lock2->lf_next = lock1;
    803 		return;
    804 	}
    805 	if (lock1->lf_end == lock2->lf_end) {
    806 		lock1->lf_end = lock2->lf_start - 1;
    807 		lock2->lf_next = lock1->lf_next;
    808 		lock1->lf_next = lock2;
    809 		return;
    810 	}
    811 	/*
    812 	 * Make a new lock consisting of the last part of
    813 	 * the encompassing lock
    814 	 */
    815 	splitlock = *sparelock;
    816 	*sparelock = NULL;
    817 	memcpy(splitlock, lock1, sizeof(*splitlock));
    818 	splitlock->lf_start = lock2->lf_end + 1;
    819 	TAILQ_INIT(&splitlock->lf_blkhd);
    820 	lock1->lf_end = lock2->lf_start - 1;
    821 	/*
    822 	 * OK, now link it in
    823 	 */
    824 	splitlock->lf_next = lock1->lf_next;
    825 	lock2->lf_next = splitlock;
    826 	lock1->lf_next = lock2;
    827 }
    828 
    829 /*
    830  * Wakeup a blocklist
    831  */
    832 static void
    833 lf_wakelock(struct lockf *listhead)
    834 {
    835 	struct lockf *wakelock;
    836 
    837 	while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
    838 		KASSERT(wakelock->lf_next == listhead);
    839 		TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
    840 		wakelock->lf_next = NOLOCKF;
    841 #ifdef LOCKF_DEBUG
    842 		if (lockf_debug & 2)
    843 			lf_print("lf_wakelock: awakening", wakelock);
    844 #endif
    845 		wakeup(wakelock);
    846 	}
    847 }
    848 
    849 #ifdef LOCKF_DEBUG
    850 /*
    851  * Print out a lock.
    852  */
    853 static void
    854 lf_print(char *tag, struct lockf *lock)
    855 {
    856 
    857 	printf("%s: lock %p for ", tag, lock);
    858 	if (lock->lf_flags & F_POSIX)
    859 		printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
    860 	else
    861 		printf("file 0x%p", (struct file *)lock->lf_id);
    862 	printf(" %s, start %qx, end %qx",
    863 		lock->lf_type == F_RDLCK ? "shared" :
    864 		lock->lf_type == F_WRLCK ? "exclusive" :
    865 		lock->lf_type == F_UNLCK ? "unlock" :
    866 		"unknown", lock->lf_start, lock->lf_end);
    867 	if (TAILQ_FIRST(&lock->lf_blkhd))
    868 		printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
    869 	else
    870 		printf("\n");
    871 }
    872 
    873 static void
    874 lf_printlist(char *tag, struct lockf *lock)
    875 {
    876 	struct lockf *lf, *blk;
    877 
    878 	printf("%s: Lock list:\n", tag);
    879 	for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
    880 		printf("\tlock %p for ", lf);
    881 		if (lf->lf_flags & F_POSIX)
    882 			printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
    883 		else
    884 			printf("file 0x%p", (struct file *)lf->lf_id);
    885 		printf(", %s, start %qx, end %qx",
    886 			lf->lf_type == F_RDLCK ? "shared" :
    887 			lf->lf_type == F_WRLCK ? "exclusive" :
    888 			lf->lf_type == F_UNLCK ? "unlock" :
    889 			"unknown", lf->lf_start, lf->lf_end);
    890 		TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
    891 			if (blk->lf_flags & F_POSIX)
    892 				printf("proc %d",
    893 				    ((struct proc *)blk->lf_id)->p_pid);
    894 			else
    895 				printf("file 0x%p", (struct file *)blk->lf_id);
    896 			printf(", %s, start %qx, end %qx",
    897 				blk->lf_type == F_RDLCK ? "shared" :
    898 				blk->lf_type == F_WRLCK ? "exclusive" :
    899 				blk->lf_type == F_UNLCK ? "unlock" :
    900 				"unknown", blk->lf_start, blk->lf_end);
    901 			if (TAILQ_FIRST(&blk->lf_blkhd))
    902 				 panic("lf_printlist: bad list");
    903 		}
    904 		printf("\n");
    905 	}
    906 }
    907 #endif /* LOCKF_DEBUG */
    908