vfs_lockf.c revision 1.41 1 /* $NetBSD: vfs_lockf.c,v 1.41 2005/05/09 11:10:07 christos Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Scooter Morris at Genentech Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)ufs_lockf.c 8.4 (Berkeley) 10/26/94
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.41 2005/05/09 11:10:07 christos Exp $");
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/file.h>
44 #include <sys/proc.h>
45 #include <sys/vnode.h>
46 #include <sys/pool.h>
47 #include <sys/fcntl.h>
48 #include <sys/lockf.h>
49
50 POOL_INIT(lockfpool, sizeof(struct lockf), 0, 0, 0, "lockfpl",
51 &pool_allocator_nointr);
52
53 /*
54 * This variable controls the maximum number of processes that will
55 * be checked in doing deadlock detection.
56 */
57 int maxlockdepth = MAXDEPTH;
58
59 #ifdef LOCKF_DEBUG
60 int lockf_debug = 0;
61 #endif
62
63 #define NOLOCKF (struct lockf *)0
64 #define SELF 0x1
65 #define OTHERS 0x2
66
67 static int lf_clearlock(struct lockf *, struct lockf **);
68 static int lf_findoverlap(struct lockf *,
69 struct lockf *, int, struct lockf ***, struct lockf **);
70 static struct lockf *lf_getblock(struct lockf *);
71 static int lf_getlock(struct lockf *, struct flock *);
72 static int lf_setlock(struct lockf *, struct lockf **, struct simplelock *);
73 static void lf_split(struct lockf *, struct lockf *, struct lockf **);
74 static void lf_wakelock(struct lockf *);
75 static struct lockf *lf_alloc(uid_t, int);
76 static void lf_free(struct lockf *);
77
78
79 #ifdef LOCKF_DEBUG
80 static void lf_print(char *, struct lockf *);
81 static void lf_printlist(char *, struct lockf *);
82 #endif
83
84 /*
85 * XXX TODO
86 * Misc cleanups: "caddr_t id" should be visible in the API as a
87 * "struct proc *".
88 * (This requires rototilling all VFS's which support advisory locking).
89 */
90
91 /*
92 * If there's a lot of lock contention on a single vnode, locking
93 * schemes which allow for more paralleism would be needed. Given how
94 * infrequently byte-range locks are actually used in typical BSD
95 * code, a more complex approach probably isn't worth it.
96 */
97
98 /*
99 * We enforce a limit on locks by uid, so that a single user cannot
100 * run the kernel out of memory. For now, the limit is pretty coarse.
101 * There is no limit on root.
102 *
103 * Splitting a lock will always succeed, regardless of current allocations.
104 * If you're slightly above the limit, we still have to permit an allocation
105 * so that the unlock can succeed. If the unlocking causes too many splits,
106 * however, you're totally cutoff.
107 */
108 int maxlocksperuid = 1024;
109
110 /*
111 * 3 options for allowfail.
112 * 0 - always allocate. 1 - cutoff at limit. 2 - cutoff at double limit.
113 */
114 struct lockf *
115 lf_alloc(uid_t uid, int allowfail)
116 {
117 struct uidinfo *uip;
118 struct lockf *lock;
119 int s;
120
121 uip = uid_find(uid);
122 UILOCK(uip, s);
123 if (uid && allowfail && uip->ui_lockcnt >
124 (allowfail == 1 ? maxlocksperuid : (maxlocksperuid * 2))) {
125 UIUNLOCK(uip, s);
126 return NULL;
127 }
128 uip->ui_lockcnt++;
129 UIUNLOCK(uip, s);
130 lock = pool_get(&lockfpool, PR_WAITOK);
131 lock->lf_uid = uid;
132 return lock;
133 }
134
135 void
136 lf_free(struct lockf *lock)
137 {
138 struct uidinfo *uip;
139 int s;
140
141 uip = uid_find(lock->lf_uid);
142 UILOCK(uip, s);
143 uip->ui_lockcnt--;
144 simple_unlock(&uip->ui_slock);
145 UIUNLOCK(uip, s);
146 pool_put(&lockfpool, lock);
147 }
148
149 /*
150 * Do an advisory lock operation.
151 */
152 int
153 lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
154 {
155 struct proc *p = curproc;
156 struct flock *fl = ap->a_fl;
157 struct lockf *lock = NULL;
158 struct lockf *sparelock;
159 struct simplelock *interlock = &ap->a_vp->v_interlock;
160 off_t start, end;
161 int error = 0;
162
163 /*
164 * Convert the flock structure into a start and end.
165 */
166 switch (fl->l_whence) {
167 case SEEK_SET:
168 case SEEK_CUR:
169 /*
170 * Caller is responsible for adding any necessary offset
171 * when SEEK_CUR is used.
172 */
173 start = fl->l_start;
174 break;
175
176 case SEEK_END:
177 start = size + fl->l_start;
178 break;
179
180 default:
181 return EINVAL;
182 }
183 if (start < 0)
184 return EINVAL;
185
186 /*
187 * allocate locks before acquire simple lock.
188 * we need two locks in the worst case.
189 */
190 switch (ap->a_op) {
191 case F_SETLK:
192 case F_UNLCK:
193 /*
194 * XXX for F_UNLCK case, we can re-use lock.
195 */
196 if ((fl->l_type & F_FLOCK) == 0) {
197 /*
198 * byte-range lock might need one more lock.
199 */
200 sparelock = lf_alloc(p->p_ucred->cr_uid, 0);
201 if (sparelock == NULL) {
202 error = ENOMEM;
203 goto quit;
204 }
205 break;
206 }
207 /* FALLTHROUGH */
208
209 case F_GETLK:
210 sparelock = NULL;
211 break;
212
213 default:
214 return EINVAL;
215 }
216
217 lock = lf_alloc(p->p_ucred->cr_uid, ap->a_op != F_UNLCK ? 1 : 2);
218 if (lock == NULL) {
219 error = ENOMEM;
220 goto quit;
221 }
222
223 simple_lock(interlock);
224
225 /*
226 * Avoid the common case of unlocking when inode has no locks.
227 */
228 if (*head == (struct lockf *)0) {
229 if (ap->a_op != F_SETLK) {
230 fl->l_type = F_UNLCK;
231 error = 0;
232 goto quit_unlock;
233 }
234 }
235
236 if (fl->l_len == 0)
237 end = -1;
238 else
239 end = start + fl->l_len - 1;
240 /*
241 * Create the lockf structure.
242 */
243 lock->lf_start = start;
244 lock->lf_end = end;
245 /* XXX NJWLWP
246 * I don't want to make the entire VFS universe use LWPs, because
247 * they don't need them, for the most part. This is an exception,
248 * and a kluge.
249 */
250
251 lock->lf_head = head;
252 lock->lf_type = fl->l_type;
253 lock->lf_next = (struct lockf *)0;
254 TAILQ_INIT(&lock->lf_blkhd);
255 lock->lf_flags = ap->a_flags;
256 if (lock->lf_flags & F_POSIX) {
257 KASSERT(curproc == (struct proc *)ap->a_id);
258 }
259 lock->lf_id = (struct proc *)ap->a_id;
260 lock->lf_lwp = curlwp;
261
262 /*
263 * Do the requested operation.
264 */
265 switch (ap->a_op) {
266
267 case F_SETLK:
268 error = lf_setlock(lock, &sparelock, interlock);
269 lock = NULL; /* lf_setlock freed it */
270 break;
271
272 case F_UNLCK:
273 error = lf_clearlock(lock, &sparelock);
274 break;
275
276 case F_GETLK:
277 error = lf_getlock(lock, fl);
278 break;
279
280 default:
281 break;
282 /* NOTREACHED */
283 }
284
285 quit_unlock:
286 simple_unlock(interlock);
287 quit:
288 if (lock)
289 lf_free(lock);
290 if (sparelock)
291 lf_free(sparelock);
292
293 return error;
294 }
295
296 /*
297 * Set a byte-range lock.
298 */
299 static int
300 lf_setlock(struct lockf *lock, struct lockf **sparelock,
301 struct simplelock *interlock)
302 {
303 struct lockf *block;
304 struct lockf **head = lock->lf_head;
305 struct lockf **prev, *overlap, *ltmp;
306 static char lockstr[] = "lockf";
307 int ovcase, priority, needtolink, error;
308
309 #ifdef LOCKF_DEBUG
310 if (lockf_debug & 1)
311 lf_print("lf_setlock", lock);
312 #endif /* LOCKF_DEBUG */
313
314 /*
315 * Set the priority
316 */
317 priority = PLOCK;
318 if (lock->lf_type == F_WRLCK)
319 priority += 4;
320 priority |= PCATCH;
321 /*
322 * Scan lock list for this file looking for locks that would block us.
323 */
324 while ((block = lf_getblock(lock)) != NULL) {
325 /*
326 * Free the structure and return if nonblocking.
327 */
328 if ((lock->lf_flags & F_WAIT) == 0) {
329 lf_free(lock);
330 return EAGAIN;
331 }
332 /*
333 * We are blocked. Since flock style locks cover
334 * the whole file, there is no chance for deadlock.
335 * For byte-range locks we must check for deadlock.
336 *
337 * Deadlock detection is done by looking through the
338 * wait channels to see if there are any cycles that
339 * involve us. MAXDEPTH is set just to make sure we
340 * do not go off into neverneverland.
341 */
342 if ((lock->lf_flags & F_POSIX) &&
343 (block->lf_flags & F_POSIX)) {
344 struct lwp *wlwp;
345 struct lockf *waitblock;
346 int i = 0;
347
348 /*
349 * The block is waiting on something. if_lwp will be
350 * 0 once the lock is granted, so we terminate the
351 * loop if we find this.
352 */
353 wlwp = block->lf_lwp;
354 while (wlwp && (i++ < maxlockdepth)) {
355 waitblock = (struct lockf *)wlwp->l_wchan;
356 /* Get the owner of the blocking lock */
357 waitblock = waitblock->lf_next;
358 if ((waitblock->lf_flags & F_POSIX) == 0)
359 break;
360 wlwp = waitblock->lf_lwp;
361 if (wlwp == lock->lf_lwp) {
362 lf_free(lock);
363 return EDEADLK;
364 }
365 }
366 /*
367 * If we're still following a dependency chain
368 * after maxlockdepth iterations, assume we're in
369 * a cycle to be safe.
370 */
371 if (i >= maxlockdepth) {
372 lf_free(lock);
373 return EDEADLK;
374 }
375 }
376 /*
377 * For flock type locks, we must first remove
378 * any shared locks that we hold before we sleep
379 * waiting for an exclusive lock.
380 */
381 if ((lock->lf_flags & F_FLOCK) &&
382 lock->lf_type == F_WRLCK) {
383 lock->lf_type = F_UNLCK;
384 (void) lf_clearlock(lock, NULL);
385 lock->lf_type = F_WRLCK;
386 }
387 /*
388 * Add our lock to the blocked list and sleep until we're free.
389 * Remember who blocked us (for deadlock detection).
390 */
391 lock->lf_next = block;
392 TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
393 #ifdef LOCKF_DEBUG
394 if (lockf_debug & 1) {
395 lf_print("lf_setlock: blocking on", block);
396 lf_printlist("lf_setlock", block);
397 }
398 #endif /* LOCKF_DEBUG */
399 error = ltsleep(lock, priority, lockstr, 0, interlock);
400
401 /*
402 * We may have been awakened by a signal (in
403 * which case we must remove ourselves from the
404 * blocked list) and/or by another process
405 * releasing a lock (in which case we have already
406 * been removed from the blocked list and our
407 * lf_next field set to NOLOCKF).
408 */
409 if (lock->lf_next != NOLOCKF) {
410 TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
411 lock->lf_next = NOLOCKF;
412 }
413 if (error) {
414 lf_free(lock);
415 return error;
416 }
417 }
418 /*
419 * No blocks!! Add the lock. Note that we will
420 * downgrade or upgrade any overlapping locks this
421 * process already owns.
422 *
423 * Skip over locks owned by other processes.
424 * Handle any locks that overlap and are owned by ourselves.
425 */
426 lock->lf_lwp = 0;
427 prev = head;
428 block = *head;
429 needtolink = 1;
430 for (;;) {
431 ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
432 if (ovcase)
433 block = overlap->lf_next;
434 /*
435 * Six cases:
436 * 0) no overlap
437 * 1) overlap == lock
438 * 2) overlap contains lock
439 * 3) lock contains overlap
440 * 4) overlap starts before lock
441 * 5) overlap ends after lock
442 */
443 switch (ovcase) {
444 case 0: /* no overlap */
445 if (needtolink) {
446 *prev = lock;
447 lock->lf_next = overlap;
448 }
449 break;
450
451 case 1: /* overlap == lock */
452 /*
453 * If downgrading lock, others may be
454 * able to acquire it.
455 */
456 if (lock->lf_type == F_RDLCK &&
457 overlap->lf_type == F_WRLCK)
458 lf_wakelock(overlap);
459 overlap->lf_type = lock->lf_type;
460 lf_free(lock);
461 lock = overlap; /* for debug output below */
462 break;
463
464 case 2: /* overlap contains lock */
465 /*
466 * Check for common starting point and different types.
467 */
468 if (overlap->lf_type == lock->lf_type) {
469 lf_free(lock);
470 lock = overlap; /* for debug output below */
471 break;
472 }
473 if (overlap->lf_start == lock->lf_start) {
474 *prev = lock;
475 lock->lf_next = overlap;
476 overlap->lf_start = lock->lf_end + 1;
477 } else
478 lf_split(overlap, lock, sparelock);
479 lf_wakelock(overlap);
480 break;
481
482 case 3: /* lock contains overlap */
483 /*
484 * If downgrading lock, others may be able to
485 * acquire it, otherwise take the list.
486 */
487 if (lock->lf_type == F_RDLCK &&
488 overlap->lf_type == F_WRLCK) {
489 lf_wakelock(overlap);
490 } else {
491 while ((ltmp = TAILQ_FIRST(&overlap->lf_blkhd))) {
492 KASSERT(ltmp->lf_next == overlap);
493 TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
494 lf_block);
495 ltmp->lf_next = lock;
496 TAILQ_INSERT_TAIL(&lock->lf_blkhd,
497 ltmp, lf_block);
498 }
499 }
500 /*
501 * Add the new lock if necessary and delete the overlap.
502 */
503 if (needtolink) {
504 *prev = lock;
505 lock->lf_next = overlap->lf_next;
506 prev = &lock->lf_next;
507 needtolink = 0;
508 } else
509 *prev = overlap->lf_next;
510 lf_free(overlap);
511 continue;
512
513 case 4: /* overlap starts before lock */
514 /*
515 * Add lock after overlap on the list.
516 */
517 lock->lf_next = overlap->lf_next;
518 overlap->lf_next = lock;
519 overlap->lf_end = lock->lf_start - 1;
520 prev = &lock->lf_next;
521 lf_wakelock(overlap);
522 needtolink = 0;
523 continue;
524
525 case 5: /* overlap ends after lock */
526 /*
527 * Add the new lock before overlap.
528 */
529 if (needtolink) {
530 *prev = lock;
531 lock->lf_next = overlap;
532 }
533 overlap->lf_start = lock->lf_end + 1;
534 lf_wakelock(overlap);
535 break;
536 }
537 break;
538 }
539 #ifdef LOCKF_DEBUG
540 if (lockf_debug & 1) {
541 lf_print("lf_setlock: got the lock", lock);
542 lf_printlist("lf_setlock", lock);
543 }
544 #endif /* LOCKF_DEBUG */
545 return 0;
546 }
547
548 /*
549 * Remove a byte-range lock on an inode.
550 *
551 * Generally, find the lock (or an overlap to that lock)
552 * and remove it (or shrink it), then wakeup anyone we can.
553 */
554 static int
555 lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
556 {
557 struct lockf **head = unlock->lf_head;
558 struct lockf *lf = *head;
559 struct lockf *overlap, **prev;
560 int ovcase;
561
562 if (lf == NOLOCKF)
563 return 0;
564 #ifdef LOCKF_DEBUG
565 if (unlock->lf_type != F_UNLCK)
566 panic("lf_clearlock: bad type");
567 if (lockf_debug & 1)
568 lf_print("lf_clearlock", unlock);
569 #endif /* LOCKF_DEBUG */
570 prev = head;
571 while ((ovcase = lf_findoverlap(lf, unlock, SELF,
572 &prev, &overlap)) != 0) {
573 /*
574 * Wakeup the list of locks to be retried.
575 */
576 lf_wakelock(overlap);
577
578 switch (ovcase) {
579
580 case 1: /* overlap == lock */
581 *prev = overlap->lf_next;
582 lf_free(overlap);
583 break;
584
585 case 2: /* overlap contains lock: split it */
586 if (overlap->lf_start == unlock->lf_start) {
587 overlap->lf_start = unlock->lf_end + 1;
588 break;
589 }
590 lf_split(overlap, unlock, sparelock);
591 overlap->lf_next = unlock->lf_next;
592 break;
593
594 case 3: /* lock contains overlap */
595 *prev = overlap->lf_next;
596 lf = overlap->lf_next;
597 lf_free(overlap);
598 continue;
599
600 case 4: /* overlap starts before lock */
601 overlap->lf_end = unlock->lf_start - 1;
602 prev = &overlap->lf_next;
603 lf = overlap->lf_next;
604 continue;
605
606 case 5: /* overlap ends after lock */
607 overlap->lf_start = unlock->lf_end + 1;
608 break;
609 }
610 break;
611 }
612 #ifdef LOCKF_DEBUG
613 if (lockf_debug & 1)
614 lf_printlist("lf_clearlock", unlock);
615 #endif /* LOCKF_DEBUG */
616 return 0;
617 }
618
619 /*
620 * Check whether there is a blocking lock,
621 * and if so return its process identifier.
622 */
623 static int
624 lf_getlock(struct lockf *lock, struct flock *fl)
625 {
626 struct lockf *block;
627
628 #ifdef LOCKF_DEBUG
629 if (lockf_debug & 1)
630 lf_print("lf_getlock", lock);
631 #endif /* LOCKF_DEBUG */
632
633 if ((block = lf_getblock(lock)) != NULL) {
634 fl->l_type = block->lf_type;
635 fl->l_whence = SEEK_SET;
636 fl->l_start = block->lf_start;
637 if (block->lf_end == -1)
638 fl->l_len = 0;
639 else
640 fl->l_len = block->lf_end - block->lf_start + 1;
641 if (block->lf_flags & F_POSIX)
642 fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
643 else
644 fl->l_pid = -1;
645 } else {
646 fl->l_type = F_UNLCK;
647 }
648 return 0;
649 }
650
651 /*
652 * Walk the list of locks for an inode and
653 * return the first blocking lock.
654 */
655 static struct lockf *
656 lf_getblock(struct lockf *lock)
657 {
658 struct lockf **prev, *overlap, *lf = *(lock->lf_head);
659
660 prev = lock->lf_head;
661 while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
662 /*
663 * We've found an overlap, see if it blocks us
664 */
665 if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
666 return overlap;
667 /*
668 * Nope, point to the next one on the list and
669 * see if it blocks us
670 */
671 lf = overlap->lf_next;
672 }
673 return NOLOCKF;
674 }
675
676 /*
677 * Walk the list of locks for an inode to
678 * find an overlapping lock (if any).
679 *
680 * NOTE: this returns only the FIRST overlapping lock. There
681 * may be more than one.
682 */
683 static int
684 lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
685 struct lockf ***prev, struct lockf **overlap)
686 {
687 off_t start, end;
688
689 *overlap = lf;
690 if (lf == NOLOCKF)
691 return 0;
692 #ifdef LOCKF_DEBUG
693 if (lockf_debug & 2)
694 lf_print("lf_findoverlap: looking for overlap in", lock);
695 #endif /* LOCKF_DEBUG */
696 start = lock->lf_start;
697 end = lock->lf_end;
698 while (lf != NOLOCKF) {
699 if (((type == SELF) && lf->lf_id != lock->lf_id) ||
700 ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
701 *prev = &lf->lf_next;
702 *overlap = lf = lf->lf_next;
703 continue;
704 }
705 #ifdef LOCKF_DEBUG
706 if (lockf_debug & 2)
707 lf_print("\tchecking", lf);
708 #endif /* LOCKF_DEBUG */
709 /*
710 * OK, check for overlap
711 *
712 * Six cases:
713 * 0) no overlap
714 * 1) overlap == lock
715 * 2) overlap contains lock
716 * 3) lock contains overlap
717 * 4) overlap starts before lock
718 * 5) overlap ends after lock
719 */
720 if ((lf->lf_end != -1 && start > lf->lf_end) ||
721 (end != -1 && lf->lf_start > end)) {
722 /* Case 0 */
723 #ifdef LOCKF_DEBUG
724 if (lockf_debug & 2)
725 printf("no overlap\n");
726 #endif /* LOCKF_DEBUG */
727 if ((type & SELF) && end != -1 && lf->lf_start > end)
728 return 0;
729 *prev = &lf->lf_next;
730 *overlap = lf = lf->lf_next;
731 continue;
732 }
733 if ((lf->lf_start == start) && (lf->lf_end == end)) {
734 /* Case 1 */
735 #ifdef LOCKF_DEBUG
736 if (lockf_debug & 2)
737 printf("overlap == lock\n");
738 #endif /* LOCKF_DEBUG */
739 return 1;
740 }
741 if ((lf->lf_start <= start) &&
742 (end != -1) &&
743 ((lf->lf_end >= end) || (lf->lf_end == -1))) {
744 /* Case 2 */
745 #ifdef LOCKF_DEBUG
746 if (lockf_debug & 2)
747 printf("overlap contains lock\n");
748 #endif /* LOCKF_DEBUG */
749 return 2;
750 }
751 if (start <= lf->lf_start &&
752 (end == -1 ||
753 (lf->lf_end != -1 && end >= lf->lf_end))) {
754 /* Case 3 */
755 #ifdef LOCKF_DEBUG
756 if (lockf_debug & 2)
757 printf("lock contains overlap\n");
758 #endif /* LOCKF_DEBUG */
759 return 3;
760 }
761 if ((lf->lf_start < start) &&
762 ((lf->lf_end >= start) || (lf->lf_end == -1))) {
763 /* Case 4 */
764 #ifdef LOCKF_DEBUG
765 if (lockf_debug & 2)
766 printf("overlap starts before lock\n");
767 #endif /* LOCKF_DEBUG */
768 return 4;
769 }
770 if ((lf->lf_start > start) &&
771 (end != -1) &&
772 ((lf->lf_end > end) || (lf->lf_end == -1))) {
773 /* Case 5 */
774 #ifdef LOCKF_DEBUG
775 if (lockf_debug & 2)
776 printf("overlap ends after lock\n");
777 #endif /* LOCKF_DEBUG */
778 return 5;
779 }
780 panic("lf_findoverlap: default");
781 }
782 return 0;
783 }
784
785 /*
786 * Split a lock and a contained region into
787 * two or three locks as necessary.
788 */
789 static void
790 lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
791 {
792 struct lockf *splitlock;
793
794 #ifdef LOCKF_DEBUG
795 if (lockf_debug & 2) {
796 lf_print("lf_split", lock1);
797 lf_print("splitting from", lock2);
798 }
799 #endif /* LOCKF_DEBUG */
800 /*
801 * Check to see if spliting into only two pieces.
802 */
803 if (lock1->lf_start == lock2->lf_start) {
804 lock1->lf_start = lock2->lf_end + 1;
805 lock2->lf_next = lock1;
806 return;
807 }
808 if (lock1->lf_end == lock2->lf_end) {
809 lock1->lf_end = lock2->lf_start - 1;
810 lock2->lf_next = lock1->lf_next;
811 lock1->lf_next = lock2;
812 return;
813 }
814 /*
815 * Make a new lock consisting of the last part of
816 * the encompassing lock
817 */
818 splitlock = *sparelock;
819 *sparelock = NULL;
820 memcpy(splitlock, lock1, sizeof(*splitlock));
821 splitlock->lf_start = lock2->lf_end + 1;
822 TAILQ_INIT(&splitlock->lf_blkhd);
823 lock1->lf_end = lock2->lf_start - 1;
824 /*
825 * OK, now link it in
826 */
827 splitlock->lf_next = lock1->lf_next;
828 lock2->lf_next = splitlock;
829 lock1->lf_next = lock2;
830 }
831
832 /*
833 * Wakeup a blocklist
834 */
835 static void
836 lf_wakelock(struct lockf *listhead)
837 {
838 struct lockf *wakelock;
839
840 while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
841 KASSERT(wakelock->lf_next == listhead);
842 TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
843 wakelock->lf_next = NOLOCKF;
844 #ifdef LOCKF_DEBUG
845 if (lockf_debug & 2)
846 lf_print("lf_wakelock: awakening", wakelock);
847 #endif
848 wakeup(wakelock);
849 }
850 }
851
852 #ifdef LOCKF_DEBUG
853 /*
854 * Print out a lock.
855 */
856 static void
857 lf_print(char *tag, struct lockf *lock)
858 {
859
860 printf("%s: lock %p for ", tag, lock);
861 if (lock->lf_flags & F_POSIX)
862 printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
863 else
864 printf("file 0x%p", (struct file *)lock->lf_id);
865 printf(" %s, start %qx, end %qx",
866 lock->lf_type == F_RDLCK ? "shared" :
867 lock->lf_type == F_WRLCK ? "exclusive" :
868 lock->lf_type == F_UNLCK ? "unlock" :
869 "unknown", lock->lf_start, lock->lf_end);
870 if (TAILQ_FIRST(&lock->lf_blkhd))
871 printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
872 else
873 printf("\n");
874 }
875
876 static void
877 lf_printlist(char *tag, struct lockf *lock)
878 {
879 struct lockf *lf, *blk;
880
881 printf("%s: Lock list:\n", tag);
882 for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
883 printf("\tlock %p for ", lf);
884 if (lf->lf_flags & F_POSIX)
885 printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
886 else
887 printf("file 0x%p", (struct file *)lf->lf_id);
888 printf(", %s, start %qx, end %qx",
889 lf->lf_type == F_RDLCK ? "shared" :
890 lf->lf_type == F_WRLCK ? "exclusive" :
891 lf->lf_type == F_UNLCK ? "unlock" :
892 "unknown", lf->lf_start, lf->lf_end);
893 TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
894 if (blk->lf_flags & F_POSIX)
895 printf("proc %d",
896 ((struct proc *)blk->lf_id)->p_pid);
897 else
898 printf("file 0x%p", (struct file *)blk->lf_id);
899 printf(", %s, start %qx, end %qx",
900 blk->lf_type == F_RDLCK ? "shared" :
901 blk->lf_type == F_WRLCK ? "exclusive" :
902 blk->lf_type == F_UNLCK ? "unlock" :
903 "unknown", blk->lf_start, blk->lf_end);
904 if (TAILQ_FIRST(&blk->lf_blkhd))
905 panic("lf_printlist: bad list");
906 }
907 printf("\n");
908 }
909 }
910 #endif /* LOCKF_DEBUG */
911