vfs_lockf.c revision 1.49 1 /* $NetBSD: vfs_lockf.c,v 1.49 2006/05/14 21:15:12 elad Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Scooter Morris at Genentech Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)ufs_lockf.c 8.4 (Berkeley) 10/26/94
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.49 2006/05/14 21:15:12 elad Exp $");
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/file.h>
44 #include <sys/proc.h>
45 #include <sys/vnode.h>
46 #include <sys/pool.h>
47 #include <sys/fcntl.h>
48 #include <sys/lockf.h>
49 #include <sys/kauth.h>
50
51 POOL_INIT(lockfpool, sizeof(struct lockf), 0, 0, 0, "lockfpl",
52 &pool_allocator_nointr);
53
54 /*
55 * This variable controls the maximum number of processes that will
56 * be checked in doing deadlock detection.
57 */
58 int maxlockdepth = MAXDEPTH;
59
60 #ifdef LOCKF_DEBUG
61 int lockf_debug = 0;
62 #endif
63
64 #define NOLOCKF (struct lockf *)0
65 #define SELF 0x1
66 #define OTHERS 0x2
67
68 /*
69 * XXX TODO
70 * Misc cleanups: "caddr_t id" should be visible in the API as a
71 * "struct proc *".
72 * (This requires rototilling all VFS's which support advisory locking).
73 */
74
75 /*
76 * If there's a lot of lock contention on a single vnode, locking
77 * schemes which allow for more paralleism would be needed. Given how
78 * infrequently byte-range locks are actually used in typical BSD
79 * code, a more complex approach probably isn't worth it.
80 */
81
82 /*
83 * We enforce a limit on locks by uid, so that a single user cannot
84 * run the kernel out of memory. For now, the limit is pretty coarse.
85 * There is no limit on root.
86 *
87 * Splitting a lock will always succeed, regardless of current allocations.
88 * If you're slightly above the limit, we still have to permit an allocation
89 * so that the unlock can succeed. If the unlocking causes too many splits,
90 * however, you're totally cutoff.
91 */
92 int maxlocksperuid = 1024;
93
94 #ifdef LOCKF_DEBUG
95 /*
96 * Print out a lock.
97 */
98 static void
99 lf_print(char *tag, struct lockf *lock)
100 {
101
102 printf("%s: lock %p for ", tag, lock);
103 if (lock->lf_flags & F_POSIX)
104 printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
105 else
106 printf("file %p", (struct file *)lock->lf_id);
107 printf(" %s, start %qx, end %qx",
108 lock->lf_type == F_RDLCK ? "shared" :
109 lock->lf_type == F_WRLCK ? "exclusive" :
110 lock->lf_type == F_UNLCK ? "unlock" :
111 "unknown", lock->lf_start, lock->lf_end);
112 if (TAILQ_FIRST(&lock->lf_blkhd))
113 printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
114 else
115 printf("\n");
116 }
117
118 static void
119 lf_printlist(char *tag, struct lockf *lock)
120 {
121 struct lockf *lf, *blk;
122
123 printf("%s: Lock list:\n", tag);
124 for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
125 printf("\tlock %p for ", lf);
126 if (lf->lf_flags & F_POSIX)
127 printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
128 else
129 printf("file %p", (struct file *)lf->lf_id);
130 printf(", %s, start %qx, end %qx",
131 lf->lf_type == F_RDLCK ? "shared" :
132 lf->lf_type == F_WRLCK ? "exclusive" :
133 lf->lf_type == F_UNLCK ? "unlock" :
134 "unknown", lf->lf_start, lf->lf_end);
135 TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
136 if (blk->lf_flags & F_POSIX)
137 printf("proc %d",
138 ((struct proc *)blk->lf_id)->p_pid);
139 else
140 printf("file %p", (struct file *)blk->lf_id);
141 printf(", %s, start %qx, end %qx",
142 blk->lf_type == F_RDLCK ? "shared" :
143 blk->lf_type == F_WRLCK ? "exclusive" :
144 blk->lf_type == F_UNLCK ? "unlock" :
145 "unknown", blk->lf_start, blk->lf_end);
146 if (TAILQ_FIRST(&blk->lf_blkhd))
147 panic("lf_printlist: bad list");
148 }
149 printf("\n");
150 }
151 }
152 #endif /* LOCKF_DEBUG */
153
154 /*
155 * 3 options for allowfail.
156 * 0 - always allocate. 1 - cutoff at limit. 2 - cutoff at double limit.
157 */
158 static struct lockf *
159 lf_alloc(uid_t uid, int allowfail)
160 {
161 struct uidinfo *uip;
162 struct lockf *lock;
163 int s;
164
165 uip = uid_find(uid);
166 UILOCK(uip, s);
167 if (uid && allowfail && uip->ui_lockcnt >
168 (allowfail == 1 ? maxlocksperuid : (maxlocksperuid * 2))) {
169 UIUNLOCK(uip, s);
170 return NULL;
171 }
172 uip->ui_lockcnt++;
173 UIUNLOCK(uip, s);
174 lock = pool_get(&lockfpool, PR_WAITOK);
175 lock->lf_uid = uid;
176 return lock;
177 }
178
179 static void
180 lf_free(struct lockf *lock)
181 {
182 struct uidinfo *uip;
183 int s;
184
185 uip = uid_find(lock->lf_uid);
186 UILOCK(uip, s);
187 uip->ui_lockcnt--;
188 UIUNLOCK(uip, s);
189 pool_put(&lockfpool, lock);
190 }
191
192 /*
193 * Walk the list of locks for an inode to
194 * find an overlapping lock (if any).
195 *
196 * NOTE: this returns only the FIRST overlapping lock. There
197 * may be more than one.
198 */
199 static int
200 lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
201 struct lockf ***prev, struct lockf **overlap)
202 {
203 off_t start, end;
204
205 *overlap = lf;
206 if (lf == NOLOCKF)
207 return 0;
208 #ifdef LOCKF_DEBUG
209 if (lockf_debug & 2)
210 lf_print("lf_findoverlap: looking for overlap in", lock);
211 #endif /* LOCKF_DEBUG */
212 start = lock->lf_start;
213 end = lock->lf_end;
214 while (lf != NOLOCKF) {
215 if (((type == SELF) && lf->lf_id != lock->lf_id) ||
216 ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
217 *prev = &lf->lf_next;
218 *overlap = lf = lf->lf_next;
219 continue;
220 }
221 #ifdef LOCKF_DEBUG
222 if (lockf_debug & 2)
223 lf_print("\tchecking", lf);
224 #endif /* LOCKF_DEBUG */
225 /*
226 * OK, check for overlap
227 *
228 * Six cases:
229 * 0) no overlap
230 * 1) overlap == lock
231 * 2) overlap contains lock
232 * 3) lock contains overlap
233 * 4) overlap starts before lock
234 * 5) overlap ends after lock
235 */
236 if ((lf->lf_end != -1 && start > lf->lf_end) ||
237 (end != -1 && lf->lf_start > end)) {
238 /* Case 0 */
239 #ifdef LOCKF_DEBUG
240 if (lockf_debug & 2)
241 printf("no overlap\n");
242 #endif /* LOCKF_DEBUG */
243 if ((type & SELF) && end != -1 && lf->lf_start > end)
244 return 0;
245 *prev = &lf->lf_next;
246 *overlap = lf = lf->lf_next;
247 continue;
248 }
249 if ((lf->lf_start == start) && (lf->lf_end == end)) {
250 /* Case 1 */
251 #ifdef LOCKF_DEBUG
252 if (lockf_debug & 2)
253 printf("overlap == lock\n");
254 #endif /* LOCKF_DEBUG */
255 return 1;
256 }
257 if ((lf->lf_start <= start) &&
258 (end != -1) &&
259 ((lf->lf_end >= end) || (lf->lf_end == -1))) {
260 /* Case 2 */
261 #ifdef LOCKF_DEBUG
262 if (lockf_debug & 2)
263 printf("overlap contains lock\n");
264 #endif /* LOCKF_DEBUG */
265 return 2;
266 }
267 if (start <= lf->lf_start &&
268 (end == -1 ||
269 (lf->lf_end != -1 && end >= lf->lf_end))) {
270 /* Case 3 */
271 #ifdef LOCKF_DEBUG
272 if (lockf_debug & 2)
273 printf("lock contains overlap\n");
274 #endif /* LOCKF_DEBUG */
275 return 3;
276 }
277 if ((lf->lf_start < start) &&
278 ((lf->lf_end >= start) || (lf->lf_end == -1))) {
279 /* Case 4 */
280 #ifdef LOCKF_DEBUG
281 if (lockf_debug & 2)
282 printf("overlap starts before lock\n");
283 #endif /* LOCKF_DEBUG */
284 return 4;
285 }
286 if ((lf->lf_start > start) &&
287 (end != -1) &&
288 ((lf->lf_end > end) || (lf->lf_end == -1))) {
289 /* Case 5 */
290 #ifdef LOCKF_DEBUG
291 if (lockf_debug & 2)
292 printf("overlap ends after lock\n");
293 #endif /* LOCKF_DEBUG */
294 return 5;
295 }
296 panic("lf_findoverlap: default");
297 }
298 return 0;
299 }
300
301 /*
302 * Split a lock and a contained region into
303 * two or three locks as necessary.
304 */
305 static void
306 lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
307 {
308 struct lockf *splitlock;
309
310 #ifdef LOCKF_DEBUG
311 if (lockf_debug & 2) {
312 lf_print("lf_split", lock1);
313 lf_print("splitting from", lock2);
314 }
315 #endif /* LOCKF_DEBUG */
316 /*
317 * Check to see if spliting into only two pieces.
318 */
319 if (lock1->lf_start == lock2->lf_start) {
320 lock1->lf_start = lock2->lf_end + 1;
321 lock2->lf_next = lock1;
322 return;
323 }
324 if (lock1->lf_end == lock2->lf_end) {
325 lock1->lf_end = lock2->lf_start - 1;
326 lock2->lf_next = lock1->lf_next;
327 lock1->lf_next = lock2;
328 return;
329 }
330 /*
331 * Make a new lock consisting of the last part of
332 * the encompassing lock
333 */
334 splitlock = *sparelock;
335 *sparelock = NULL;
336 memcpy(splitlock, lock1, sizeof(*splitlock));
337 splitlock->lf_start = lock2->lf_end + 1;
338 TAILQ_INIT(&splitlock->lf_blkhd);
339 lock1->lf_end = lock2->lf_start - 1;
340 /*
341 * OK, now link it in
342 */
343 splitlock->lf_next = lock1->lf_next;
344 lock2->lf_next = splitlock;
345 lock1->lf_next = lock2;
346 }
347
348 /*
349 * Wakeup a blocklist
350 */
351 static void
352 lf_wakelock(struct lockf *listhead)
353 {
354 struct lockf *wakelock;
355
356 while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
357 KASSERT(wakelock->lf_next == listhead);
358 TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
359 wakelock->lf_next = NOLOCKF;
360 #ifdef LOCKF_DEBUG
361 if (lockf_debug & 2)
362 lf_print("lf_wakelock: awakening", wakelock);
363 #endif
364 wakeup(wakelock);
365 }
366 }
367
368 /*
369 * Remove a byte-range lock on an inode.
370 *
371 * Generally, find the lock (or an overlap to that lock)
372 * and remove it (or shrink it), then wakeup anyone we can.
373 */
374 static int
375 lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
376 {
377 struct lockf **head = unlock->lf_head;
378 struct lockf *lf = *head;
379 struct lockf *overlap, **prev;
380 int ovcase;
381
382 if (lf == NOLOCKF)
383 return 0;
384 #ifdef LOCKF_DEBUG
385 if (unlock->lf_type != F_UNLCK)
386 panic("lf_clearlock: bad type");
387 if (lockf_debug & 1)
388 lf_print("lf_clearlock", unlock);
389 #endif /* LOCKF_DEBUG */
390 prev = head;
391 while ((ovcase = lf_findoverlap(lf, unlock, SELF,
392 &prev, &overlap)) != 0) {
393 /*
394 * Wakeup the list of locks to be retried.
395 */
396 lf_wakelock(overlap);
397
398 switch (ovcase) {
399
400 case 1: /* overlap == lock */
401 *prev = overlap->lf_next;
402 lf_free(overlap);
403 break;
404
405 case 2: /* overlap contains lock: split it */
406 if (overlap->lf_start == unlock->lf_start) {
407 overlap->lf_start = unlock->lf_end + 1;
408 break;
409 }
410 lf_split(overlap, unlock, sparelock);
411 overlap->lf_next = unlock->lf_next;
412 break;
413
414 case 3: /* lock contains overlap */
415 *prev = overlap->lf_next;
416 lf = overlap->lf_next;
417 lf_free(overlap);
418 continue;
419
420 case 4: /* overlap starts before lock */
421 overlap->lf_end = unlock->lf_start - 1;
422 prev = &overlap->lf_next;
423 lf = overlap->lf_next;
424 continue;
425
426 case 5: /* overlap ends after lock */
427 overlap->lf_start = unlock->lf_end + 1;
428 break;
429 }
430 break;
431 }
432 #ifdef LOCKF_DEBUG
433 if (lockf_debug & 1)
434 lf_printlist("lf_clearlock", unlock);
435 #endif /* LOCKF_DEBUG */
436 return 0;
437 }
438
439 /*
440 * Walk the list of locks for an inode and
441 * return the first blocking lock.
442 */
443 static struct lockf *
444 lf_getblock(struct lockf *lock)
445 {
446 struct lockf **prev, *overlap, *lf = *(lock->lf_head);
447
448 prev = lock->lf_head;
449 while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
450 /*
451 * We've found an overlap, see if it blocks us
452 */
453 if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
454 return overlap;
455 /*
456 * Nope, point to the next one on the list and
457 * see if it blocks us
458 */
459 lf = overlap->lf_next;
460 }
461 return NOLOCKF;
462 }
463
464 /*
465 * Set a byte-range lock.
466 */
467 static int
468 lf_setlock(struct lockf *lock, struct lockf **sparelock,
469 struct simplelock *interlock)
470 {
471 struct lockf *block;
472 struct lockf **head = lock->lf_head;
473 struct lockf **prev, *overlap, *ltmp;
474 static char lockstr[] = "lockf";
475 int ovcase, priority, needtolink, error;
476
477 #ifdef LOCKF_DEBUG
478 if (lockf_debug & 1)
479 lf_print("lf_setlock", lock);
480 #endif /* LOCKF_DEBUG */
481
482 /*
483 * Set the priority
484 */
485 priority = PLOCK;
486 if (lock->lf_type == F_WRLCK)
487 priority += 4;
488 priority |= PCATCH;
489 /*
490 * Scan lock list for this file looking for locks that would block us.
491 */
492 while ((block = lf_getblock(lock)) != NULL) {
493 /*
494 * Free the structure and return if nonblocking.
495 */
496 if ((lock->lf_flags & F_WAIT) == 0) {
497 lf_free(lock);
498 return EAGAIN;
499 }
500 /*
501 * We are blocked. Since flock style locks cover
502 * the whole file, there is no chance for deadlock.
503 * For byte-range locks we must check for deadlock.
504 *
505 * Deadlock detection is done by looking through the
506 * wait channels to see if there are any cycles that
507 * involve us. MAXDEPTH is set just to make sure we
508 * do not go off into neverneverland.
509 */
510 if ((lock->lf_flags & F_POSIX) &&
511 (block->lf_flags & F_POSIX)) {
512 struct lwp *wlwp;
513 volatile const struct lockf *waitblock;
514 int i = 0;
515
516 /*
517 * The block is waiting on something. if_lwp will be
518 * 0 once the lock is granted, so we terminate the
519 * loop if we find this.
520 */
521 wlwp = block->lf_lwp;
522 while (wlwp && (i++ < maxlockdepth)) {
523 waitblock = wlwp->l_wchan;
524 /* Get the owner of the blocking lock */
525 waitblock = waitblock->lf_next;
526 if ((waitblock->lf_flags & F_POSIX) == 0)
527 break;
528 wlwp = waitblock->lf_lwp;
529 if (wlwp == lock->lf_lwp) {
530 lf_free(lock);
531 return EDEADLK;
532 }
533 }
534 /*
535 * If we're still following a dependency chain
536 * after maxlockdepth iterations, assume we're in
537 * a cycle to be safe.
538 */
539 if (i >= maxlockdepth) {
540 lf_free(lock);
541 return EDEADLK;
542 }
543 }
544 /*
545 * For flock type locks, we must first remove
546 * any shared locks that we hold before we sleep
547 * waiting for an exclusive lock.
548 */
549 if ((lock->lf_flags & F_FLOCK) &&
550 lock->lf_type == F_WRLCK) {
551 lock->lf_type = F_UNLCK;
552 (void) lf_clearlock(lock, NULL);
553 lock->lf_type = F_WRLCK;
554 }
555 /*
556 * Add our lock to the blocked list and sleep until we're free.
557 * Remember who blocked us (for deadlock detection).
558 */
559 lock->lf_next = block;
560 TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
561 #ifdef LOCKF_DEBUG
562 if (lockf_debug & 1) {
563 lf_print("lf_setlock: blocking on", block);
564 lf_printlist("lf_setlock", block);
565 }
566 #endif /* LOCKF_DEBUG */
567 error = ltsleep(lock, priority, lockstr, 0, interlock);
568
569 /*
570 * We may have been awakened by a signal (in
571 * which case we must remove ourselves from the
572 * blocked list) and/or by another process
573 * releasing a lock (in which case we have already
574 * been removed from the blocked list and our
575 * lf_next field set to NOLOCKF).
576 */
577 if (lock->lf_next != NOLOCKF) {
578 TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
579 lock->lf_next = NOLOCKF;
580 }
581 if (error) {
582 lf_free(lock);
583 return error;
584 }
585 }
586 /*
587 * No blocks!! Add the lock. Note that we will
588 * downgrade or upgrade any overlapping locks this
589 * process already owns.
590 *
591 * Skip over locks owned by other processes.
592 * Handle any locks that overlap and are owned by ourselves.
593 */
594 lock->lf_lwp = 0;
595 prev = head;
596 block = *head;
597 needtolink = 1;
598 for (;;) {
599 ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
600 if (ovcase)
601 block = overlap->lf_next;
602 /*
603 * Six cases:
604 * 0) no overlap
605 * 1) overlap == lock
606 * 2) overlap contains lock
607 * 3) lock contains overlap
608 * 4) overlap starts before lock
609 * 5) overlap ends after lock
610 */
611 switch (ovcase) {
612 case 0: /* no overlap */
613 if (needtolink) {
614 *prev = lock;
615 lock->lf_next = overlap;
616 }
617 break;
618
619 case 1: /* overlap == lock */
620 /*
621 * If downgrading lock, others may be
622 * able to acquire it.
623 */
624 if (lock->lf_type == F_RDLCK &&
625 overlap->lf_type == F_WRLCK)
626 lf_wakelock(overlap);
627 overlap->lf_type = lock->lf_type;
628 lf_free(lock);
629 lock = overlap; /* for debug output below */
630 break;
631
632 case 2: /* overlap contains lock */
633 /*
634 * Check for common starting point and different types.
635 */
636 if (overlap->lf_type == lock->lf_type) {
637 lf_free(lock);
638 lock = overlap; /* for debug output below */
639 break;
640 }
641 if (overlap->lf_start == lock->lf_start) {
642 *prev = lock;
643 lock->lf_next = overlap;
644 overlap->lf_start = lock->lf_end + 1;
645 } else
646 lf_split(overlap, lock, sparelock);
647 lf_wakelock(overlap);
648 break;
649
650 case 3: /* lock contains overlap */
651 /*
652 * If downgrading lock, others may be able to
653 * acquire it, otherwise take the list.
654 */
655 if (lock->lf_type == F_RDLCK &&
656 overlap->lf_type == F_WRLCK) {
657 lf_wakelock(overlap);
658 } else {
659 while ((ltmp = TAILQ_FIRST(&overlap->lf_blkhd))) {
660 KASSERT(ltmp->lf_next == overlap);
661 TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
662 lf_block);
663 ltmp->lf_next = lock;
664 TAILQ_INSERT_TAIL(&lock->lf_blkhd,
665 ltmp, lf_block);
666 }
667 }
668 /*
669 * Add the new lock if necessary and delete the overlap.
670 */
671 if (needtolink) {
672 *prev = lock;
673 lock->lf_next = overlap->lf_next;
674 prev = &lock->lf_next;
675 needtolink = 0;
676 } else
677 *prev = overlap->lf_next;
678 lf_free(overlap);
679 continue;
680
681 case 4: /* overlap starts before lock */
682 /*
683 * Add lock after overlap on the list.
684 */
685 lock->lf_next = overlap->lf_next;
686 overlap->lf_next = lock;
687 overlap->lf_end = lock->lf_start - 1;
688 prev = &lock->lf_next;
689 lf_wakelock(overlap);
690 needtolink = 0;
691 continue;
692
693 case 5: /* overlap ends after lock */
694 /*
695 * Add the new lock before overlap.
696 */
697 if (needtolink) {
698 *prev = lock;
699 lock->lf_next = overlap;
700 }
701 overlap->lf_start = lock->lf_end + 1;
702 lf_wakelock(overlap);
703 break;
704 }
705 break;
706 }
707 #ifdef LOCKF_DEBUG
708 if (lockf_debug & 1) {
709 lf_print("lf_setlock: got the lock", lock);
710 lf_printlist("lf_setlock", lock);
711 }
712 #endif /* LOCKF_DEBUG */
713 return 0;
714 }
715
716 /*
717 * Check whether there is a blocking lock,
718 * and if so return its process identifier.
719 */
720 static int
721 lf_getlock(struct lockf *lock, struct flock *fl)
722 {
723 struct lockf *block;
724
725 #ifdef LOCKF_DEBUG
726 if (lockf_debug & 1)
727 lf_print("lf_getlock", lock);
728 #endif /* LOCKF_DEBUG */
729
730 if ((block = lf_getblock(lock)) != NULL) {
731 fl->l_type = block->lf_type;
732 fl->l_whence = SEEK_SET;
733 fl->l_start = block->lf_start;
734 if (block->lf_end == -1)
735 fl->l_len = 0;
736 else
737 fl->l_len = block->lf_end - block->lf_start + 1;
738 if (block->lf_flags & F_POSIX)
739 fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
740 else
741 fl->l_pid = -1;
742 } else {
743 fl->l_type = F_UNLCK;
744 }
745 return 0;
746 }
747
748 /*
749 * Do an advisory lock operation.
750 */
751 int
752 lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
753 {
754 struct proc *p = curproc;
755 struct flock *fl = ap->a_fl;
756 struct lockf *lock = NULL;
757 struct lockf *sparelock;
758 struct simplelock *interlock = &ap->a_vp->v_interlock;
759 off_t start, end;
760 int error = 0;
761
762 /*
763 * Convert the flock structure into a start and end.
764 */
765 switch (fl->l_whence) {
766 case SEEK_SET:
767 case SEEK_CUR:
768 /*
769 * Caller is responsible for adding any necessary offset
770 * when SEEK_CUR is used.
771 */
772 start = fl->l_start;
773 break;
774
775 case SEEK_END:
776 start = size + fl->l_start;
777 break;
778
779 default:
780 return EINVAL;
781 }
782 if (start < 0)
783 return EINVAL;
784
785 /*
786 * allocate locks before acquire simple lock.
787 * we need two locks in the worst case.
788 */
789 switch (ap->a_op) {
790 case F_SETLK:
791 case F_UNLCK:
792 /*
793 * XXX for F_UNLCK case, we can re-use lock.
794 */
795 if ((ap->a_flags & F_FLOCK) == 0) {
796 /*
797 * byte-range lock might need one more lock.
798 */
799 sparelock = lf_alloc(kauth_cred_geteuid(p->p_cred), 0);
800 if (sparelock == NULL) {
801 error = ENOMEM;
802 goto quit;
803 }
804 break;
805 }
806 /* FALLTHROUGH */
807
808 case F_GETLK:
809 sparelock = NULL;
810 break;
811
812 default:
813 return EINVAL;
814 }
815
816 lock = lf_alloc(kauth_cred_geteuid(p->p_cred), ap->a_op != F_UNLCK ? 1 : 2);
817 if (lock == NULL) {
818 error = ENOMEM;
819 goto quit;
820 }
821
822 simple_lock(interlock);
823
824 /*
825 * Avoid the common case of unlocking when inode has no locks.
826 */
827 if (*head == (struct lockf *)0) {
828 if (ap->a_op != F_SETLK) {
829 fl->l_type = F_UNLCK;
830 error = 0;
831 goto quit_unlock;
832 }
833 }
834
835 if (fl->l_len == 0)
836 end = -1;
837 else
838 end = start + fl->l_len - 1;
839 /*
840 * Create the lockf structure.
841 */
842 lock->lf_start = start;
843 lock->lf_end = end;
844 /* XXX NJWLWP
845 * I don't want to make the entire VFS universe use LWPs, because
846 * they don't need them, for the most part. This is an exception,
847 * and a kluge.
848 */
849
850 lock->lf_head = head;
851 lock->lf_type = fl->l_type;
852 lock->lf_next = (struct lockf *)0;
853 TAILQ_INIT(&lock->lf_blkhd);
854 lock->lf_flags = ap->a_flags;
855 if (lock->lf_flags & F_POSIX) {
856 KASSERT(curproc == (struct proc *)ap->a_id);
857 }
858 lock->lf_id = (struct proc *)ap->a_id;
859 lock->lf_lwp = curlwp;
860
861 /*
862 * Do the requested operation.
863 */
864 switch (ap->a_op) {
865
866 case F_SETLK:
867 error = lf_setlock(lock, &sparelock, interlock);
868 lock = NULL; /* lf_setlock freed it */
869 break;
870
871 case F_UNLCK:
872 error = lf_clearlock(lock, &sparelock);
873 break;
874
875 case F_GETLK:
876 error = lf_getlock(lock, fl);
877 break;
878
879 default:
880 break;
881 /* NOTREACHED */
882 }
883
884 quit_unlock:
885 simple_unlock(interlock);
886 quit:
887 if (lock)
888 lf_free(lock);
889 if (sparelock)
890 lf_free(sparelock);
891
892 return error;
893 }
894