Home | History | Annotate | Line # | Download | only in kern
vfs_lockf.c revision 1.49
      1 /*	$NetBSD: vfs_lockf.c,v 1.49 2006/05/14 21:15:12 elad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Scooter Morris at Genentech Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  *
     34  *	@(#)ufs_lockf.c	8.4 (Berkeley) 10/26/94
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.49 2006/05/14 21:15:12 elad Exp $");
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/kernel.h>
     43 #include <sys/file.h>
     44 #include <sys/proc.h>
     45 #include <sys/vnode.h>
     46 #include <sys/pool.h>
     47 #include <sys/fcntl.h>
     48 #include <sys/lockf.h>
     49 #include <sys/kauth.h>
     50 
     51 POOL_INIT(lockfpool, sizeof(struct lockf), 0, 0, 0, "lockfpl",
     52     &pool_allocator_nointr);
     53 
     54 /*
     55  * This variable controls the maximum number of processes that will
     56  * be checked in doing deadlock detection.
     57  */
     58 int maxlockdepth = MAXDEPTH;
     59 
     60 #ifdef LOCKF_DEBUG
     61 int	lockf_debug = 0;
     62 #endif
     63 
     64 #define NOLOCKF (struct lockf *)0
     65 #define SELF	0x1
     66 #define OTHERS	0x2
     67 
     68 /*
     69  * XXX TODO
     70  * Misc cleanups: "caddr_t id" should be visible in the API as a
     71  * "struct proc *".
     72  * (This requires rototilling all VFS's which support advisory locking).
     73  */
     74 
     75 /*
     76  * If there's a lot of lock contention on a single vnode, locking
     77  * schemes which allow for more paralleism would be needed.  Given how
     78  * infrequently byte-range locks are actually used in typical BSD
     79  * code, a more complex approach probably isn't worth it.
     80  */
     81 
     82 /*
     83  * We enforce a limit on locks by uid, so that a single user cannot
     84  * run the kernel out of memory.  For now, the limit is pretty coarse.
     85  * There is no limit on root.
     86  *
     87  * Splitting a lock will always succeed, regardless of current allocations.
     88  * If you're slightly above the limit, we still have to permit an allocation
     89  * so that the unlock can succeed.  If the unlocking causes too many splits,
     90  * however, you're totally cutoff.
     91  */
     92 int maxlocksperuid = 1024;
     93 
     94 #ifdef LOCKF_DEBUG
     95 /*
     96  * Print out a lock.
     97  */
     98 static void
     99 lf_print(char *tag, struct lockf *lock)
    100 {
    101 
    102 	printf("%s: lock %p for ", tag, lock);
    103 	if (lock->lf_flags & F_POSIX)
    104 		printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
    105 	else
    106 		printf("file %p", (struct file *)lock->lf_id);
    107 	printf(" %s, start %qx, end %qx",
    108 		lock->lf_type == F_RDLCK ? "shared" :
    109 		lock->lf_type == F_WRLCK ? "exclusive" :
    110 		lock->lf_type == F_UNLCK ? "unlock" :
    111 		"unknown", lock->lf_start, lock->lf_end);
    112 	if (TAILQ_FIRST(&lock->lf_blkhd))
    113 		printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
    114 	else
    115 		printf("\n");
    116 }
    117 
    118 static void
    119 lf_printlist(char *tag, struct lockf *lock)
    120 {
    121 	struct lockf *lf, *blk;
    122 
    123 	printf("%s: Lock list:\n", tag);
    124 	for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
    125 		printf("\tlock %p for ", lf);
    126 		if (lf->lf_flags & F_POSIX)
    127 			printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
    128 		else
    129 			printf("file %p", (struct file *)lf->lf_id);
    130 		printf(", %s, start %qx, end %qx",
    131 			lf->lf_type == F_RDLCK ? "shared" :
    132 			lf->lf_type == F_WRLCK ? "exclusive" :
    133 			lf->lf_type == F_UNLCK ? "unlock" :
    134 			"unknown", lf->lf_start, lf->lf_end);
    135 		TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
    136 			if (blk->lf_flags & F_POSIX)
    137 				printf("proc %d",
    138 				    ((struct proc *)blk->lf_id)->p_pid);
    139 			else
    140 				printf("file %p", (struct file *)blk->lf_id);
    141 			printf(", %s, start %qx, end %qx",
    142 				blk->lf_type == F_RDLCK ? "shared" :
    143 				blk->lf_type == F_WRLCK ? "exclusive" :
    144 				blk->lf_type == F_UNLCK ? "unlock" :
    145 				"unknown", blk->lf_start, blk->lf_end);
    146 			if (TAILQ_FIRST(&blk->lf_blkhd))
    147 				 panic("lf_printlist: bad list");
    148 		}
    149 		printf("\n");
    150 	}
    151 }
    152 #endif /* LOCKF_DEBUG */
    153 
    154 /*
    155  * 3 options for allowfail.
    156  * 0 - always allocate.  1 - cutoff at limit.  2 - cutoff at double limit.
    157  */
    158 static struct lockf *
    159 lf_alloc(uid_t uid, int allowfail)
    160 {
    161 	struct uidinfo *uip;
    162 	struct lockf *lock;
    163 	int s;
    164 
    165 	uip = uid_find(uid);
    166 	UILOCK(uip, s);
    167 	if (uid && allowfail && uip->ui_lockcnt >
    168 	    (allowfail == 1 ? maxlocksperuid : (maxlocksperuid * 2))) {
    169 		UIUNLOCK(uip, s);
    170 		return NULL;
    171 	}
    172 	uip->ui_lockcnt++;
    173 	UIUNLOCK(uip, s);
    174 	lock = pool_get(&lockfpool, PR_WAITOK);
    175 	lock->lf_uid = uid;
    176 	return lock;
    177 }
    178 
    179 static void
    180 lf_free(struct lockf *lock)
    181 {
    182 	struct uidinfo *uip;
    183 	int s;
    184 
    185 	uip = uid_find(lock->lf_uid);
    186 	UILOCK(uip, s);
    187 	uip->ui_lockcnt--;
    188 	UIUNLOCK(uip, s);
    189 	pool_put(&lockfpool, lock);
    190 }
    191 
    192 /*
    193  * Walk the list of locks for an inode to
    194  * find an overlapping lock (if any).
    195  *
    196  * NOTE: this returns only the FIRST overlapping lock.  There
    197  *	 may be more than one.
    198  */
    199 static int
    200 lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
    201     struct lockf ***prev, struct lockf **overlap)
    202 {
    203 	off_t start, end;
    204 
    205 	*overlap = lf;
    206 	if (lf == NOLOCKF)
    207 		return 0;
    208 #ifdef LOCKF_DEBUG
    209 	if (lockf_debug & 2)
    210 		lf_print("lf_findoverlap: looking for overlap in", lock);
    211 #endif /* LOCKF_DEBUG */
    212 	start = lock->lf_start;
    213 	end = lock->lf_end;
    214 	while (lf != NOLOCKF) {
    215 		if (((type == SELF) && lf->lf_id != lock->lf_id) ||
    216 		    ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
    217 			*prev = &lf->lf_next;
    218 			*overlap = lf = lf->lf_next;
    219 			continue;
    220 		}
    221 #ifdef LOCKF_DEBUG
    222 		if (lockf_debug & 2)
    223 			lf_print("\tchecking", lf);
    224 #endif /* LOCKF_DEBUG */
    225 		/*
    226 		 * OK, check for overlap
    227 		 *
    228 		 * Six cases:
    229 		 *	0) no overlap
    230 		 *	1) overlap == lock
    231 		 *	2) overlap contains lock
    232 		 *	3) lock contains overlap
    233 		 *	4) overlap starts before lock
    234 		 *	5) overlap ends after lock
    235 		 */
    236 		if ((lf->lf_end != -1 && start > lf->lf_end) ||
    237 		    (end != -1 && lf->lf_start > end)) {
    238 			/* Case 0 */
    239 #ifdef LOCKF_DEBUG
    240 			if (lockf_debug & 2)
    241 				printf("no overlap\n");
    242 #endif /* LOCKF_DEBUG */
    243 			if ((type & SELF) && end != -1 && lf->lf_start > end)
    244 				return 0;
    245 			*prev = &lf->lf_next;
    246 			*overlap = lf = lf->lf_next;
    247 			continue;
    248 		}
    249 		if ((lf->lf_start == start) && (lf->lf_end == end)) {
    250 			/* Case 1 */
    251 #ifdef LOCKF_DEBUG
    252 			if (lockf_debug & 2)
    253 				printf("overlap == lock\n");
    254 #endif /* LOCKF_DEBUG */
    255 			return 1;
    256 		}
    257 		if ((lf->lf_start <= start) &&
    258 		    (end != -1) &&
    259 		    ((lf->lf_end >= end) || (lf->lf_end == -1))) {
    260 			/* Case 2 */
    261 #ifdef LOCKF_DEBUG
    262 			if (lockf_debug & 2)
    263 				printf("overlap contains lock\n");
    264 #endif /* LOCKF_DEBUG */
    265 			return 2;
    266 		}
    267 		if (start <= lf->lf_start &&
    268 		           (end == -1 ||
    269 			   (lf->lf_end != -1 && end >= lf->lf_end))) {
    270 			/* Case 3 */
    271 #ifdef LOCKF_DEBUG
    272 			if (lockf_debug & 2)
    273 				printf("lock contains overlap\n");
    274 #endif /* LOCKF_DEBUG */
    275 			return 3;
    276 		}
    277 		if ((lf->lf_start < start) &&
    278 			((lf->lf_end >= start) || (lf->lf_end == -1))) {
    279 			/* Case 4 */
    280 #ifdef LOCKF_DEBUG
    281 			if (lockf_debug & 2)
    282 				printf("overlap starts before lock\n");
    283 #endif /* LOCKF_DEBUG */
    284 			return 4;
    285 		}
    286 		if ((lf->lf_start > start) &&
    287 			(end != -1) &&
    288 			((lf->lf_end > end) || (lf->lf_end == -1))) {
    289 			/* Case 5 */
    290 #ifdef LOCKF_DEBUG
    291 			if (lockf_debug & 2)
    292 				printf("overlap ends after lock\n");
    293 #endif /* LOCKF_DEBUG */
    294 			return 5;
    295 		}
    296 		panic("lf_findoverlap: default");
    297 	}
    298 	return 0;
    299 }
    300 
    301 /*
    302  * Split a lock and a contained region into
    303  * two or three locks as necessary.
    304  */
    305 static void
    306 lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
    307 {
    308 	struct lockf *splitlock;
    309 
    310 #ifdef LOCKF_DEBUG
    311 	if (lockf_debug & 2) {
    312 		lf_print("lf_split", lock1);
    313 		lf_print("splitting from", lock2);
    314 	}
    315 #endif /* LOCKF_DEBUG */
    316 	/*
    317 	 * Check to see if spliting into only two pieces.
    318 	 */
    319 	if (lock1->lf_start == lock2->lf_start) {
    320 		lock1->lf_start = lock2->lf_end + 1;
    321 		lock2->lf_next = lock1;
    322 		return;
    323 	}
    324 	if (lock1->lf_end == lock2->lf_end) {
    325 		lock1->lf_end = lock2->lf_start - 1;
    326 		lock2->lf_next = lock1->lf_next;
    327 		lock1->lf_next = lock2;
    328 		return;
    329 	}
    330 	/*
    331 	 * Make a new lock consisting of the last part of
    332 	 * the encompassing lock
    333 	 */
    334 	splitlock = *sparelock;
    335 	*sparelock = NULL;
    336 	memcpy(splitlock, lock1, sizeof(*splitlock));
    337 	splitlock->lf_start = lock2->lf_end + 1;
    338 	TAILQ_INIT(&splitlock->lf_blkhd);
    339 	lock1->lf_end = lock2->lf_start - 1;
    340 	/*
    341 	 * OK, now link it in
    342 	 */
    343 	splitlock->lf_next = lock1->lf_next;
    344 	lock2->lf_next = splitlock;
    345 	lock1->lf_next = lock2;
    346 }
    347 
    348 /*
    349  * Wakeup a blocklist
    350  */
    351 static void
    352 lf_wakelock(struct lockf *listhead)
    353 {
    354 	struct lockf *wakelock;
    355 
    356 	while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
    357 		KASSERT(wakelock->lf_next == listhead);
    358 		TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
    359 		wakelock->lf_next = NOLOCKF;
    360 #ifdef LOCKF_DEBUG
    361 		if (lockf_debug & 2)
    362 			lf_print("lf_wakelock: awakening", wakelock);
    363 #endif
    364 		wakeup(wakelock);
    365 	}
    366 }
    367 
    368 /*
    369  * Remove a byte-range lock on an inode.
    370  *
    371  * Generally, find the lock (or an overlap to that lock)
    372  * and remove it (or shrink it), then wakeup anyone we can.
    373  */
    374 static int
    375 lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
    376 {
    377 	struct lockf **head = unlock->lf_head;
    378 	struct lockf *lf = *head;
    379 	struct lockf *overlap, **prev;
    380 	int ovcase;
    381 
    382 	if (lf == NOLOCKF)
    383 		return 0;
    384 #ifdef LOCKF_DEBUG
    385 	if (unlock->lf_type != F_UNLCK)
    386 		panic("lf_clearlock: bad type");
    387 	if (lockf_debug & 1)
    388 		lf_print("lf_clearlock", unlock);
    389 #endif /* LOCKF_DEBUG */
    390 	prev = head;
    391 	while ((ovcase = lf_findoverlap(lf, unlock, SELF,
    392 					&prev, &overlap)) != 0) {
    393 		/*
    394 		 * Wakeup the list of locks to be retried.
    395 		 */
    396 		lf_wakelock(overlap);
    397 
    398 		switch (ovcase) {
    399 
    400 		case 1: /* overlap == lock */
    401 			*prev = overlap->lf_next;
    402 			lf_free(overlap);
    403 			break;
    404 
    405 		case 2: /* overlap contains lock: split it */
    406 			if (overlap->lf_start == unlock->lf_start) {
    407 				overlap->lf_start = unlock->lf_end + 1;
    408 				break;
    409 			}
    410 			lf_split(overlap, unlock, sparelock);
    411 			overlap->lf_next = unlock->lf_next;
    412 			break;
    413 
    414 		case 3: /* lock contains overlap */
    415 			*prev = overlap->lf_next;
    416 			lf = overlap->lf_next;
    417 			lf_free(overlap);
    418 			continue;
    419 
    420 		case 4: /* overlap starts before lock */
    421 			overlap->lf_end = unlock->lf_start - 1;
    422 			prev = &overlap->lf_next;
    423 			lf = overlap->lf_next;
    424 			continue;
    425 
    426 		case 5: /* overlap ends after lock */
    427 			overlap->lf_start = unlock->lf_end + 1;
    428 			break;
    429 		}
    430 		break;
    431 	}
    432 #ifdef LOCKF_DEBUG
    433 	if (lockf_debug & 1)
    434 		lf_printlist("lf_clearlock", unlock);
    435 #endif /* LOCKF_DEBUG */
    436 	return 0;
    437 }
    438 
    439 /*
    440  * Walk the list of locks for an inode and
    441  * return the first blocking lock.
    442  */
    443 static struct lockf *
    444 lf_getblock(struct lockf *lock)
    445 {
    446 	struct lockf **prev, *overlap, *lf = *(lock->lf_head);
    447 
    448 	prev = lock->lf_head;
    449 	while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
    450 		/*
    451 		 * We've found an overlap, see if it blocks us
    452 		 */
    453 		if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
    454 			return overlap;
    455 		/*
    456 		 * Nope, point to the next one on the list and
    457 		 * see if it blocks us
    458 		 */
    459 		lf = overlap->lf_next;
    460 	}
    461 	return NOLOCKF;
    462 }
    463 
    464 /*
    465  * Set a byte-range lock.
    466  */
    467 static int
    468 lf_setlock(struct lockf *lock, struct lockf **sparelock,
    469     struct simplelock *interlock)
    470 {
    471 	struct lockf *block;
    472 	struct lockf **head = lock->lf_head;
    473 	struct lockf **prev, *overlap, *ltmp;
    474 	static char lockstr[] = "lockf";
    475 	int ovcase, priority, needtolink, error;
    476 
    477 #ifdef LOCKF_DEBUG
    478 	if (lockf_debug & 1)
    479 		lf_print("lf_setlock", lock);
    480 #endif /* LOCKF_DEBUG */
    481 
    482 	/*
    483 	 * Set the priority
    484 	 */
    485 	priority = PLOCK;
    486 	if (lock->lf_type == F_WRLCK)
    487 		priority += 4;
    488 	priority |= PCATCH;
    489 	/*
    490 	 * Scan lock list for this file looking for locks that would block us.
    491 	 */
    492 	while ((block = lf_getblock(lock)) != NULL) {
    493 		/*
    494 		 * Free the structure and return if nonblocking.
    495 		 */
    496 		if ((lock->lf_flags & F_WAIT) == 0) {
    497 			lf_free(lock);
    498 			return EAGAIN;
    499 		}
    500 		/*
    501 		 * We are blocked. Since flock style locks cover
    502 		 * the whole file, there is no chance for deadlock.
    503 		 * For byte-range locks we must check for deadlock.
    504 		 *
    505 		 * Deadlock detection is done by looking through the
    506 		 * wait channels to see if there are any cycles that
    507 		 * involve us. MAXDEPTH is set just to make sure we
    508 		 * do not go off into neverneverland.
    509 		 */
    510 		if ((lock->lf_flags & F_POSIX) &&
    511 		    (block->lf_flags & F_POSIX)) {
    512 			struct lwp *wlwp;
    513 			volatile const struct lockf *waitblock;
    514 			int i = 0;
    515 
    516 			/*
    517 			 * The block is waiting on something.  if_lwp will be
    518 			 * 0 once the lock is granted, so we terminate the
    519 			 * loop if we find this.
    520 			 */
    521 			wlwp = block->lf_lwp;
    522 			while (wlwp && (i++ < maxlockdepth)) {
    523 				waitblock = wlwp->l_wchan;
    524 				/* Get the owner of the blocking lock */
    525 				waitblock = waitblock->lf_next;
    526 				if ((waitblock->lf_flags & F_POSIX) == 0)
    527 					break;
    528 				wlwp = waitblock->lf_lwp;
    529 				if (wlwp == lock->lf_lwp) {
    530 					lf_free(lock);
    531 					return EDEADLK;
    532 				}
    533 			}
    534 			/*
    535 			 * If we're still following a dependency chain
    536 			 * after maxlockdepth iterations, assume we're in
    537 			 * a cycle to be safe.
    538 			 */
    539 			if (i >= maxlockdepth) {
    540 				lf_free(lock);
    541 				return EDEADLK;
    542 			}
    543 		}
    544 		/*
    545 		 * For flock type locks, we must first remove
    546 		 * any shared locks that we hold before we sleep
    547 		 * waiting for an exclusive lock.
    548 		 */
    549 		if ((lock->lf_flags & F_FLOCK) &&
    550 		    lock->lf_type == F_WRLCK) {
    551 			lock->lf_type = F_UNLCK;
    552 			(void) lf_clearlock(lock, NULL);
    553 			lock->lf_type = F_WRLCK;
    554 		}
    555 		/*
    556 		 * Add our lock to the blocked list and sleep until we're free.
    557 		 * Remember who blocked us (for deadlock detection).
    558 		 */
    559 		lock->lf_next = block;
    560 		TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
    561 #ifdef LOCKF_DEBUG
    562 		if (lockf_debug & 1) {
    563 			lf_print("lf_setlock: blocking on", block);
    564 			lf_printlist("lf_setlock", block);
    565 		}
    566 #endif /* LOCKF_DEBUG */
    567 		error = ltsleep(lock, priority, lockstr, 0, interlock);
    568 
    569 		/*
    570 		 * We may have been awakened by a signal (in
    571 		 * which case we must remove ourselves from the
    572 		 * blocked list) and/or by another process
    573 		 * releasing a lock (in which case we have already
    574 		 * been removed from the blocked list and our
    575 		 * lf_next field set to NOLOCKF).
    576 		 */
    577 		if (lock->lf_next != NOLOCKF) {
    578 			TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
    579 			lock->lf_next = NOLOCKF;
    580 		}
    581 		if (error) {
    582 			lf_free(lock);
    583 			return error;
    584 		}
    585 	}
    586 	/*
    587 	 * No blocks!!  Add the lock.  Note that we will
    588 	 * downgrade or upgrade any overlapping locks this
    589 	 * process already owns.
    590 	 *
    591 	 * Skip over locks owned by other processes.
    592 	 * Handle any locks that overlap and are owned by ourselves.
    593 	 */
    594 	lock->lf_lwp = 0;
    595 	prev = head;
    596 	block = *head;
    597 	needtolink = 1;
    598 	for (;;) {
    599 		ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
    600 		if (ovcase)
    601 			block = overlap->lf_next;
    602 		/*
    603 		 * Six cases:
    604 		 *	0) no overlap
    605 		 *	1) overlap == lock
    606 		 *	2) overlap contains lock
    607 		 *	3) lock contains overlap
    608 		 *	4) overlap starts before lock
    609 		 *	5) overlap ends after lock
    610 		 */
    611 		switch (ovcase) {
    612 		case 0: /* no overlap */
    613 			if (needtolink) {
    614 				*prev = lock;
    615 				lock->lf_next = overlap;
    616 			}
    617 			break;
    618 
    619 		case 1: /* overlap == lock */
    620 			/*
    621 			 * If downgrading lock, others may be
    622 			 * able to acquire it.
    623 			 */
    624 			if (lock->lf_type == F_RDLCK &&
    625 			    overlap->lf_type == F_WRLCK)
    626 				lf_wakelock(overlap);
    627 			overlap->lf_type = lock->lf_type;
    628 			lf_free(lock);
    629 			lock = overlap; /* for debug output below */
    630 			break;
    631 
    632 		case 2: /* overlap contains lock */
    633 			/*
    634 			 * Check for common starting point and different types.
    635 			 */
    636 			if (overlap->lf_type == lock->lf_type) {
    637 				lf_free(lock);
    638 				lock = overlap; /* for debug output below */
    639 				break;
    640 			}
    641 			if (overlap->lf_start == lock->lf_start) {
    642 				*prev = lock;
    643 				lock->lf_next = overlap;
    644 				overlap->lf_start = lock->lf_end + 1;
    645 			} else
    646 				lf_split(overlap, lock, sparelock);
    647 			lf_wakelock(overlap);
    648 			break;
    649 
    650 		case 3: /* lock contains overlap */
    651 			/*
    652 			 * If downgrading lock, others may be able to
    653 			 * acquire it, otherwise take the list.
    654 			 */
    655 			if (lock->lf_type == F_RDLCK &&
    656 			    overlap->lf_type == F_WRLCK) {
    657 				lf_wakelock(overlap);
    658 			} else {
    659 				while ((ltmp = TAILQ_FIRST(&overlap->lf_blkhd))) {
    660 					KASSERT(ltmp->lf_next == overlap);
    661 					TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
    662 					    lf_block);
    663 					ltmp->lf_next = lock;
    664 					TAILQ_INSERT_TAIL(&lock->lf_blkhd,
    665 					    ltmp, lf_block);
    666 				}
    667 			}
    668 			/*
    669 			 * Add the new lock if necessary and delete the overlap.
    670 			 */
    671 			if (needtolink) {
    672 				*prev = lock;
    673 				lock->lf_next = overlap->lf_next;
    674 				prev = &lock->lf_next;
    675 				needtolink = 0;
    676 			} else
    677 				*prev = overlap->lf_next;
    678 			lf_free(overlap);
    679 			continue;
    680 
    681 		case 4: /* overlap starts before lock */
    682 			/*
    683 			 * Add lock after overlap on the list.
    684 			 */
    685 			lock->lf_next = overlap->lf_next;
    686 			overlap->lf_next = lock;
    687 			overlap->lf_end = lock->lf_start - 1;
    688 			prev = &lock->lf_next;
    689 			lf_wakelock(overlap);
    690 			needtolink = 0;
    691 			continue;
    692 
    693 		case 5: /* overlap ends after lock */
    694 			/*
    695 			 * Add the new lock before overlap.
    696 			 */
    697 			if (needtolink) {
    698 				*prev = lock;
    699 				lock->lf_next = overlap;
    700 			}
    701 			overlap->lf_start = lock->lf_end + 1;
    702 			lf_wakelock(overlap);
    703 			break;
    704 		}
    705 		break;
    706 	}
    707 #ifdef LOCKF_DEBUG
    708 	if (lockf_debug & 1) {
    709 		lf_print("lf_setlock: got the lock", lock);
    710 		lf_printlist("lf_setlock", lock);
    711 	}
    712 #endif /* LOCKF_DEBUG */
    713 	return 0;
    714 }
    715 
    716 /*
    717  * Check whether there is a blocking lock,
    718  * and if so return its process identifier.
    719  */
    720 static int
    721 lf_getlock(struct lockf *lock, struct flock *fl)
    722 {
    723 	struct lockf *block;
    724 
    725 #ifdef LOCKF_DEBUG
    726 	if (lockf_debug & 1)
    727 		lf_print("lf_getlock", lock);
    728 #endif /* LOCKF_DEBUG */
    729 
    730 	if ((block = lf_getblock(lock)) != NULL) {
    731 		fl->l_type = block->lf_type;
    732 		fl->l_whence = SEEK_SET;
    733 		fl->l_start = block->lf_start;
    734 		if (block->lf_end == -1)
    735 			fl->l_len = 0;
    736 		else
    737 			fl->l_len = block->lf_end - block->lf_start + 1;
    738 		if (block->lf_flags & F_POSIX)
    739 			fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
    740 		else
    741 			fl->l_pid = -1;
    742 	} else {
    743 		fl->l_type = F_UNLCK;
    744 	}
    745 	return 0;
    746 }
    747 
    748 /*
    749  * Do an advisory lock operation.
    750  */
    751 int
    752 lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
    753 {
    754 	struct proc *p = curproc;
    755 	struct flock *fl = ap->a_fl;
    756 	struct lockf *lock = NULL;
    757 	struct lockf *sparelock;
    758 	struct simplelock *interlock = &ap->a_vp->v_interlock;
    759 	off_t start, end;
    760 	int error = 0;
    761 
    762 	/*
    763 	 * Convert the flock structure into a start and end.
    764 	 */
    765 	switch (fl->l_whence) {
    766 	case SEEK_SET:
    767 	case SEEK_CUR:
    768 		/*
    769 		 * Caller is responsible for adding any necessary offset
    770 		 * when SEEK_CUR is used.
    771 		 */
    772 		start = fl->l_start;
    773 		break;
    774 
    775 	case SEEK_END:
    776 		start = size + fl->l_start;
    777 		break;
    778 
    779 	default:
    780 		return EINVAL;
    781 	}
    782 	if (start < 0)
    783 		return EINVAL;
    784 
    785 	/*
    786 	 * allocate locks before acquire simple lock.
    787 	 * we need two locks in the worst case.
    788 	 */
    789 	switch (ap->a_op) {
    790 	case F_SETLK:
    791 	case F_UNLCK:
    792 		/*
    793 		 * XXX for F_UNLCK case, we can re-use lock.
    794 		 */
    795 		if ((ap->a_flags & F_FLOCK) == 0) {
    796 			/*
    797 			 * byte-range lock might need one more lock.
    798 			 */
    799 			sparelock = lf_alloc(kauth_cred_geteuid(p->p_cred), 0);
    800 			if (sparelock == NULL) {
    801 				error = ENOMEM;
    802 				goto quit;
    803 			}
    804 			break;
    805 		}
    806 		/* FALLTHROUGH */
    807 
    808 	case F_GETLK:
    809 		sparelock = NULL;
    810 		break;
    811 
    812 	default:
    813 		return EINVAL;
    814 	}
    815 
    816 	lock = lf_alloc(kauth_cred_geteuid(p->p_cred), ap->a_op != F_UNLCK ? 1 : 2);
    817 	if (lock == NULL) {
    818 		error = ENOMEM;
    819 		goto quit;
    820 	}
    821 
    822 	simple_lock(interlock);
    823 
    824 	/*
    825 	 * Avoid the common case of unlocking when inode has no locks.
    826 	 */
    827 	if (*head == (struct lockf *)0) {
    828 		if (ap->a_op != F_SETLK) {
    829 			fl->l_type = F_UNLCK;
    830 			error = 0;
    831 			goto quit_unlock;
    832 		}
    833 	}
    834 
    835 	if (fl->l_len == 0)
    836 		end = -1;
    837 	else
    838 		end = start + fl->l_len - 1;
    839 	/*
    840 	 * Create the lockf structure.
    841 	 */
    842 	lock->lf_start = start;
    843 	lock->lf_end = end;
    844 	/* XXX NJWLWP
    845 	 * I don't want to make the entire VFS universe use LWPs, because
    846 	 * they don't need them, for the most part. This is an exception,
    847 	 * and a kluge.
    848 	 */
    849 
    850 	lock->lf_head = head;
    851 	lock->lf_type = fl->l_type;
    852 	lock->lf_next = (struct lockf *)0;
    853 	TAILQ_INIT(&lock->lf_blkhd);
    854 	lock->lf_flags = ap->a_flags;
    855 	if (lock->lf_flags & F_POSIX) {
    856 		KASSERT(curproc == (struct proc *)ap->a_id);
    857 	}
    858 	lock->lf_id = (struct proc *)ap->a_id;
    859 	lock->lf_lwp = curlwp;
    860 
    861 	/*
    862 	 * Do the requested operation.
    863 	 */
    864 	switch (ap->a_op) {
    865 
    866 	case F_SETLK:
    867 		error = lf_setlock(lock, &sparelock, interlock);
    868 		lock = NULL; /* lf_setlock freed it */
    869 		break;
    870 
    871 	case F_UNLCK:
    872 		error = lf_clearlock(lock, &sparelock);
    873 		break;
    874 
    875 	case F_GETLK:
    876 		error = lf_getlock(lock, fl);
    877 		break;
    878 
    879 	default:
    880 		break;
    881 		/* NOTREACHED */
    882 	}
    883 
    884 quit_unlock:
    885 	simple_unlock(interlock);
    886 quit:
    887 	if (lock)
    888 		lf_free(lock);
    889 	if (sparelock)
    890 		lf_free(sparelock);
    891 
    892 	return error;
    893 }
    894