vfs_lockf.c revision 1.53 1 /* $NetBSD: vfs_lockf.c,v 1.53 2006/05/20 12:19:30 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Scooter Morris at Genentech Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)ufs_lockf.c 8.4 (Berkeley) 10/26/94
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.53 2006/05/20 12:19:30 yamt Exp $");
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/file.h>
44 #include <sys/proc.h>
45 #include <sys/vnode.h>
46 #include <sys/pool.h>
47 #include <sys/fcntl.h>
48 #include <sys/lockf.h>
49 #include <sys/kauth.h>
50
51 /*
52 * The lockf structure is a kernel structure which contains the information
53 * associated with a byte range lock. The lockf structures are linked into
54 * the inode structure. Locks are sorted by the starting byte of the lock for
55 * efficiency.
56 *
57 * lf_next is used for two purposes, depending on whether the lock is
58 * being held, or is in conflict with an existing lock. If this lock
59 * is held, it indicates the next lock on the same vnode.
60 * For pending locks, if lock->lf_next is non-NULL, then lock->lf_block
61 * must be queued on the lf_blkhd TAILQ of lock->lf_next.
62 */
63
64 TAILQ_HEAD(locklist, lockf);
65
66 struct lockf {
67 short lf_flags; /* Lock semantics: F_POSIX, F_FLOCK, F_WAIT */
68 short lf_type; /* Lock type: F_RDLCK, F_WRLCK */
69 off_t lf_start; /* The byte # of the start of the lock */
70 off_t lf_end; /* The byte # of the end of the lock (-1=EOF)*/
71 void *lf_id; /* process or file description holding lock */
72 struct lockf **lf_head; /* Back pointer to the head of lockf list */
73 struct lockf *lf_next; /* Next lock on this vnode, or blocking lock */
74 struct locklist lf_blkhd; /* List of requests blocked on this lock */
75 TAILQ_ENTRY(lockf) lf_block;/* A request waiting for a lock */
76 uid_t lf_uid; /* User ID responsible */
77 };
78
79 /* Maximum length of sleep chains to traverse to try and detect deadlock. */
80 #define MAXDEPTH 50
81
82 static POOL_INIT(lockfpool, sizeof(struct lockf), 0, 0, 0, "lockfpl",
83 &pool_allocator_nointr);
84
85 /*
86 * This variable controls the maximum number of processes that will
87 * be checked in doing deadlock detection.
88 */
89 int maxlockdepth = MAXDEPTH;
90
91 #ifdef LOCKF_DEBUG
92 int lockf_debug = 0;
93 #endif
94
95 #define NOLOCKF (struct lockf *)0
96 #define SELF 0x1
97 #define OTHERS 0x2
98
99 /*
100 * XXX TODO
101 * Misc cleanups: "caddr_t id" should be visible in the API as a
102 * "struct proc *".
103 * (This requires rototilling all VFS's which support advisory locking).
104 */
105
106 /*
107 * If there's a lot of lock contention on a single vnode, locking
108 * schemes which allow for more paralleism would be needed. Given how
109 * infrequently byte-range locks are actually used in typical BSD
110 * code, a more complex approach probably isn't worth it.
111 */
112
113 /*
114 * We enforce a limit on locks by uid, so that a single user cannot
115 * run the kernel out of memory. For now, the limit is pretty coarse.
116 * There is no limit on root.
117 *
118 * Splitting a lock will always succeed, regardless of current allocations.
119 * If you're slightly above the limit, we still have to permit an allocation
120 * so that the unlock can succeed. If the unlocking causes too many splits,
121 * however, you're totally cutoff.
122 */
123 int maxlocksperuid = 1024;
124
125 #ifdef LOCKF_DEBUG
126 /*
127 * Print out a lock.
128 */
129 static void
130 lf_print(char *tag, struct lockf *lock)
131 {
132
133 printf("%s: lock %p for ", tag, lock);
134 if (lock->lf_flags & F_POSIX)
135 printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
136 else
137 printf("file %p", (struct file *)lock->lf_id);
138 printf(" %s, start %qx, end %qx",
139 lock->lf_type == F_RDLCK ? "shared" :
140 lock->lf_type == F_WRLCK ? "exclusive" :
141 lock->lf_type == F_UNLCK ? "unlock" :
142 "unknown", lock->lf_start, lock->lf_end);
143 if (TAILQ_FIRST(&lock->lf_blkhd))
144 printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
145 else
146 printf("\n");
147 }
148
149 static void
150 lf_printlist(char *tag, struct lockf *lock)
151 {
152 struct lockf *lf, *blk;
153
154 printf("%s: Lock list:\n", tag);
155 for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
156 printf("\tlock %p for ", lf);
157 if (lf->lf_flags & F_POSIX)
158 printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
159 else
160 printf("file %p", (struct file *)lf->lf_id);
161 printf(", %s, start %qx, end %qx",
162 lf->lf_type == F_RDLCK ? "shared" :
163 lf->lf_type == F_WRLCK ? "exclusive" :
164 lf->lf_type == F_UNLCK ? "unlock" :
165 "unknown", lf->lf_start, lf->lf_end);
166 TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
167 if (blk->lf_flags & F_POSIX)
168 printf("proc %d",
169 ((struct proc *)blk->lf_id)->p_pid);
170 else
171 printf("file %p", (struct file *)blk->lf_id);
172 printf(", %s, start %qx, end %qx",
173 blk->lf_type == F_RDLCK ? "shared" :
174 blk->lf_type == F_WRLCK ? "exclusive" :
175 blk->lf_type == F_UNLCK ? "unlock" :
176 "unknown", blk->lf_start, blk->lf_end);
177 if (TAILQ_FIRST(&blk->lf_blkhd))
178 panic("lf_printlist: bad list");
179 }
180 printf("\n");
181 }
182 }
183 #endif /* LOCKF_DEBUG */
184
185 /*
186 * 3 options for allowfail.
187 * 0 - always allocate. 1 - cutoff at limit. 2 - cutoff at double limit.
188 */
189 static struct lockf *
190 lf_alloc(uid_t uid, int allowfail)
191 {
192 struct uidinfo *uip;
193 struct lockf *lock;
194 int s;
195
196 uip = uid_find(uid);
197 UILOCK(uip, s);
198 if (uid && allowfail && uip->ui_lockcnt >
199 (allowfail == 1 ? maxlocksperuid : (maxlocksperuid * 2))) {
200 UIUNLOCK(uip, s);
201 return NULL;
202 }
203 uip->ui_lockcnt++;
204 UIUNLOCK(uip, s);
205 lock = pool_get(&lockfpool, PR_WAITOK);
206 lock->lf_uid = uid;
207 return lock;
208 }
209
210 static void
211 lf_free(struct lockf *lock)
212 {
213 struct uidinfo *uip;
214 int s;
215
216 uip = uid_find(lock->lf_uid);
217 UILOCK(uip, s);
218 uip->ui_lockcnt--;
219 UIUNLOCK(uip, s);
220 pool_put(&lockfpool, lock);
221 }
222
223 /*
224 * Walk the list of locks for an inode to
225 * find an overlapping lock (if any).
226 *
227 * NOTE: this returns only the FIRST overlapping lock. There
228 * may be more than one.
229 */
230 static int
231 lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
232 struct lockf ***prev, struct lockf **overlap)
233 {
234 off_t start, end;
235
236 *overlap = lf;
237 if (lf == NOLOCKF)
238 return 0;
239 #ifdef LOCKF_DEBUG
240 if (lockf_debug & 2)
241 lf_print("lf_findoverlap: looking for overlap in", lock);
242 #endif /* LOCKF_DEBUG */
243 start = lock->lf_start;
244 end = lock->lf_end;
245 while (lf != NOLOCKF) {
246 if (((type == SELF) && lf->lf_id != lock->lf_id) ||
247 ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
248 *prev = &lf->lf_next;
249 *overlap = lf = lf->lf_next;
250 continue;
251 }
252 #ifdef LOCKF_DEBUG
253 if (lockf_debug & 2)
254 lf_print("\tchecking", lf);
255 #endif /* LOCKF_DEBUG */
256 /*
257 * OK, check for overlap
258 *
259 * Six cases:
260 * 0) no overlap
261 * 1) overlap == lock
262 * 2) overlap contains lock
263 * 3) lock contains overlap
264 * 4) overlap starts before lock
265 * 5) overlap ends after lock
266 */
267 if ((lf->lf_end != -1 && start > lf->lf_end) ||
268 (end != -1 && lf->lf_start > end)) {
269 /* Case 0 */
270 #ifdef LOCKF_DEBUG
271 if (lockf_debug & 2)
272 printf("no overlap\n");
273 #endif /* LOCKF_DEBUG */
274 if ((type & SELF) && end != -1 && lf->lf_start > end)
275 return 0;
276 *prev = &lf->lf_next;
277 *overlap = lf = lf->lf_next;
278 continue;
279 }
280 if ((lf->lf_start == start) && (lf->lf_end == end)) {
281 /* Case 1 */
282 #ifdef LOCKF_DEBUG
283 if (lockf_debug & 2)
284 printf("overlap == lock\n");
285 #endif /* LOCKF_DEBUG */
286 return 1;
287 }
288 if ((lf->lf_start <= start) &&
289 (end != -1) &&
290 ((lf->lf_end >= end) || (lf->lf_end == -1))) {
291 /* Case 2 */
292 #ifdef LOCKF_DEBUG
293 if (lockf_debug & 2)
294 printf("overlap contains lock\n");
295 #endif /* LOCKF_DEBUG */
296 return 2;
297 }
298 if (start <= lf->lf_start &&
299 (end == -1 ||
300 (lf->lf_end != -1 && end >= lf->lf_end))) {
301 /* Case 3 */
302 #ifdef LOCKF_DEBUG
303 if (lockf_debug & 2)
304 printf("lock contains overlap\n");
305 #endif /* LOCKF_DEBUG */
306 return 3;
307 }
308 if ((lf->lf_start < start) &&
309 ((lf->lf_end >= start) || (lf->lf_end == -1))) {
310 /* Case 4 */
311 #ifdef LOCKF_DEBUG
312 if (lockf_debug & 2)
313 printf("overlap starts before lock\n");
314 #endif /* LOCKF_DEBUG */
315 return 4;
316 }
317 if ((lf->lf_start > start) &&
318 (end != -1) &&
319 ((lf->lf_end > end) || (lf->lf_end == -1))) {
320 /* Case 5 */
321 #ifdef LOCKF_DEBUG
322 if (lockf_debug & 2)
323 printf("overlap ends after lock\n");
324 #endif /* LOCKF_DEBUG */
325 return 5;
326 }
327 panic("lf_findoverlap: default");
328 }
329 return 0;
330 }
331
332 /*
333 * Split a lock and a contained region into
334 * two or three locks as necessary.
335 */
336 static void
337 lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
338 {
339 struct lockf *splitlock;
340
341 #ifdef LOCKF_DEBUG
342 if (lockf_debug & 2) {
343 lf_print("lf_split", lock1);
344 lf_print("splitting from", lock2);
345 }
346 #endif /* LOCKF_DEBUG */
347 /*
348 * Check to see if spliting into only two pieces.
349 */
350 if (lock1->lf_start == lock2->lf_start) {
351 lock1->lf_start = lock2->lf_end + 1;
352 lock2->lf_next = lock1;
353 return;
354 }
355 if (lock1->lf_end == lock2->lf_end) {
356 lock1->lf_end = lock2->lf_start - 1;
357 lock2->lf_next = lock1->lf_next;
358 lock1->lf_next = lock2;
359 return;
360 }
361 /*
362 * Make a new lock consisting of the last part of
363 * the encompassing lock
364 */
365 splitlock = *sparelock;
366 *sparelock = NULL;
367 memcpy(splitlock, lock1, sizeof(*splitlock));
368 splitlock->lf_start = lock2->lf_end + 1;
369 TAILQ_INIT(&splitlock->lf_blkhd);
370 lock1->lf_end = lock2->lf_start - 1;
371 /*
372 * OK, now link it in
373 */
374 splitlock->lf_next = lock1->lf_next;
375 lock2->lf_next = splitlock;
376 lock1->lf_next = lock2;
377 }
378
379 /*
380 * Wakeup a blocklist
381 */
382 static void
383 lf_wakelock(struct lockf *listhead)
384 {
385 struct lockf *wakelock;
386
387 while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
388 KASSERT(wakelock->lf_next == listhead);
389 TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
390 wakelock->lf_next = NOLOCKF;
391 #ifdef LOCKF_DEBUG
392 if (lockf_debug & 2)
393 lf_print("lf_wakelock: awakening", wakelock);
394 #endif
395 wakeup(wakelock);
396 }
397 }
398
399 /*
400 * Remove a byte-range lock on an inode.
401 *
402 * Generally, find the lock (or an overlap to that lock)
403 * and remove it (or shrink it), then wakeup anyone we can.
404 */
405 static int
406 lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
407 {
408 struct lockf **head = unlock->lf_head;
409 struct lockf *lf = *head;
410 struct lockf *overlap, **prev;
411 int ovcase;
412
413 if (lf == NOLOCKF)
414 return 0;
415 #ifdef LOCKF_DEBUG
416 if (unlock->lf_type != F_UNLCK)
417 panic("lf_clearlock: bad type");
418 if (lockf_debug & 1)
419 lf_print("lf_clearlock", unlock);
420 #endif /* LOCKF_DEBUG */
421 prev = head;
422 while ((ovcase = lf_findoverlap(lf, unlock, SELF,
423 &prev, &overlap)) != 0) {
424 /*
425 * Wakeup the list of locks to be retried.
426 */
427 lf_wakelock(overlap);
428
429 switch (ovcase) {
430
431 case 1: /* overlap == lock */
432 *prev = overlap->lf_next;
433 lf_free(overlap);
434 break;
435
436 case 2: /* overlap contains lock: split it */
437 if (overlap->lf_start == unlock->lf_start) {
438 overlap->lf_start = unlock->lf_end + 1;
439 break;
440 }
441 lf_split(overlap, unlock, sparelock);
442 overlap->lf_next = unlock->lf_next;
443 break;
444
445 case 3: /* lock contains overlap */
446 *prev = overlap->lf_next;
447 lf = overlap->lf_next;
448 lf_free(overlap);
449 continue;
450
451 case 4: /* overlap starts before lock */
452 overlap->lf_end = unlock->lf_start - 1;
453 prev = &overlap->lf_next;
454 lf = overlap->lf_next;
455 continue;
456
457 case 5: /* overlap ends after lock */
458 overlap->lf_start = unlock->lf_end + 1;
459 break;
460 }
461 break;
462 }
463 #ifdef LOCKF_DEBUG
464 if (lockf_debug & 1)
465 lf_printlist("lf_clearlock", unlock);
466 #endif /* LOCKF_DEBUG */
467 return 0;
468 }
469
470 /*
471 * Walk the list of locks for an inode and
472 * return the first blocking lock.
473 */
474 static struct lockf *
475 lf_getblock(struct lockf *lock)
476 {
477 struct lockf **prev, *overlap, *lf = *(lock->lf_head);
478
479 prev = lock->lf_head;
480 while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
481 /*
482 * We've found an overlap, see if it blocks us
483 */
484 if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
485 return overlap;
486 /*
487 * Nope, point to the next one on the list and
488 * see if it blocks us
489 */
490 lf = overlap->lf_next;
491 }
492 return NOLOCKF;
493 }
494
495 /*
496 * Set a byte-range lock.
497 */
498 static int
499 lf_setlock(struct lockf *lock, struct lockf **sparelock,
500 struct simplelock *interlock)
501 {
502 struct lockf *block;
503 struct lockf **head = lock->lf_head;
504 struct lockf **prev, *overlap, *ltmp;
505 static char lockstr[] = "lockf";
506 int ovcase, priority, needtolink, error;
507
508 #ifdef LOCKF_DEBUG
509 if (lockf_debug & 1)
510 lf_print("lf_setlock", lock);
511 #endif /* LOCKF_DEBUG */
512
513 /*
514 * Set the priority
515 */
516 priority = PLOCK;
517 if (lock->lf_type == F_WRLCK)
518 priority += 4;
519 priority |= PCATCH;
520 /*
521 * Scan lock list for this file looking for locks that would block us.
522 */
523 while ((block = lf_getblock(lock)) != NULL) {
524 /*
525 * Free the structure and return if nonblocking.
526 */
527 if ((lock->lf_flags & F_WAIT) == 0) {
528 lf_free(lock);
529 return EAGAIN;
530 }
531 /*
532 * We are blocked. Since flock style locks cover
533 * the whole file, there is no chance for deadlock.
534 * For byte-range locks we must check for deadlock.
535 *
536 * Deadlock detection is done by looking through the
537 * wait channels to see if there are any cycles that
538 * involve us. MAXDEPTH is set just to make sure we
539 * do not go off into neverneverland.
540 */
541 if ((lock->lf_flags & F_POSIX) &&
542 (block->lf_flags & F_POSIX)) {
543 struct lwp *wlwp;
544 volatile const struct lockf *waitblock;
545 int i = 0;
546 struct proc *p;
547
548 p = (struct proc *)block->lf_id;
549 KASSERT(p != NULL);
550 while (i++ < maxlockdepth) {
551 simple_lock(&p->p_lock);
552 if (p->p_nlwps > 1) {
553 simple_unlock(&p->p_lock);
554 break;
555 }
556 wlwp = LIST_FIRST(&p->p_lwps);
557 if (wlwp->l_wmesg != lockstr) {
558 simple_unlock(&p->p_lock);
559 break;
560 }
561 simple_unlock(&p->p_lock);
562 waitblock = wlwp->l_wchan;
563 if (waitblock == NULL) {
564 /*
565 * this lwp just got up but
566 * not returned from ltsleep yet.
567 */
568 break;
569 }
570 /* Get the owner of the blocking lock */
571 waitblock = waitblock->lf_next;
572 if ((waitblock->lf_flags & F_POSIX) == 0)
573 break;
574 p = (struct proc *)waitblock->lf_id;
575 if (p == curproc) {
576 lf_free(lock);
577 return EDEADLK;
578 }
579 }
580 /*
581 * If we're still following a dependency chain
582 * after maxlockdepth iterations, assume we're in
583 * a cycle to be safe.
584 */
585 if (i >= maxlockdepth) {
586 lf_free(lock);
587 return EDEADLK;
588 }
589 }
590 /*
591 * For flock type locks, we must first remove
592 * any shared locks that we hold before we sleep
593 * waiting for an exclusive lock.
594 */
595 if ((lock->lf_flags & F_FLOCK) &&
596 lock->lf_type == F_WRLCK) {
597 lock->lf_type = F_UNLCK;
598 (void) lf_clearlock(lock, NULL);
599 lock->lf_type = F_WRLCK;
600 }
601 /*
602 * Add our lock to the blocked list and sleep until we're free.
603 * Remember who blocked us (for deadlock detection).
604 */
605 lock->lf_next = block;
606 TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
607 #ifdef LOCKF_DEBUG
608 if (lockf_debug & 1) {
609 lf_print("lf_setlock: blocking on", block);
610 lf_printlist("lf_setlock", block);
611 }
612 #endif /* LOCKF_DEBUG */
613 error = ltsleep(lock, priority, lockstr, 0, interlock);
614
615 /*
616 * We may have been awakened by a signal (in
617 * which case we must remove ourselves from the
618 * blocked list) and/or by another process
619 * releasing a lock (in which case we have already
620 * been removed from the blocked list and our
621 * lf_next field set to NOLOCKF).
622 */
623 if (lock->lf_next != NOLOCKF) {
624 TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
625 lock->lf_next = NOLOCKF;
626 }
627 if (error) {
628 lf_free(lock);
629 return error;
630 }
631 }
632 /*
633 * No blocks!! Add the lock. Note that we will
634 * downgrade or upgrade any overlapping locks this
635 * process already owns.
636 *
637 * Skip over locks owned by other processes.
638 * Handle any locks that overlap and are owned by ourselves.
639 */
640 prev = head;
641 block = *head;
642 needtolink = 1;
643 for (;;) {
644 ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
645 if (ovcase)
646 block = overlap->lf_next;
647 /*
648 * Six cases:
649 * 0) no overlap
650 * 1) overlap == lock
651 * 2) overlap contains lock
652 * 3) lock contains overlap
653 * 4) overlap starts before lock
654 * 5) overlap ends after lock
655 */
656 switch (ovcase) {
657 case 0: /* no overlap */
658 if (needtolink) {
659 *prev = lock;
660 lock->lf_next = overlap;
661 }
662 break;
663
664 case 1: /* overlap == lock */
665 /*
666 * If downgrading lock, others may be
667 * able to acquire it.
668 */
669 if (lock->lf_type == F_RDLCK &&
670 overlap->lf_type == F_WRLCK)
671 lf_wakelock(overlap);
672 overlap->lf_type = lock->lf_type;
673 lf_free(lock);
674 lock = overlap; /* for debug output below */
675 break;
676
677 case 2: /* overlap contains lock */
678 /*
679 * Check for common starting point and different types.
680 */
681 if (overlap->lf_type == lock->lf_type) {
682 lf_free(lock);
683 lock = overlap; /* for debug output below */
684 break;
685 }
686 if (overlap->lf_start == lock->lf_start) {
687 *prev = lock;
688 lock->lf_next = overlap;
689 overlap->lf_start = lock->lf_end + 1;
690 } else
691 lf_split(overlap, lock, sparelock);
692 lf_wakelock(overlap);
693 break;
694
695 case 3: /* lock contains overlap */
696 /*
697 * If downgrading lock, others may be able to
698 * acquire it, otherwise take the list.
699 */
700 if (lock->lf_type == F_RDLCK &&
701 overlap->lf_type == F_WRLCK) {
702 lf_wakelock(overlap);
703 } else {
704 while ((ltmp = TAILQ_FIRST(&overlap->lf_blkhd))) {
705 KASSERT(ltmp->lf_next == overlap);
706 TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
707 lf_block);
708 ltmp->lf_next = lock;
709 TAILQ_INSERT_TAIL(&lock->lf_blkhd,
710 ltmp, lf_block);
711 }
712 }
713 /*
714 * Add the new lock if necessary and delete the overlap.
715 */
716 if (needtolink) {
717 *prev = lock;
718 lock->lf_next = overlap->lf_next;
719 prev = &lock->lf_next;
720 needtolink = 0;
721 } else
722 *prev = overlap->lf_next;
723 lf_free(overlap);
724 continue;
725
726 case 4: /* overlap starts before lock */
727 /*
728 * Add lock after overlap on the list.
729 */
730 lock->lf_next = overlap->lf_next;
731 overlap->lf_next = lock;
732 overlap->lf_end = lock->lf_start - 1;
733 prev = &lock->lf_next;
734 lf_wakelock(overlap);
735 needtolink = 0;
736 continue;
737
738 case 5: /* overlap ends after lock */
739 /*
740 * Add the new lock before overlap.
741 */
742 if (needtolink) {
743 *prev = lock;
744 lock->lf_next = overlap;
745 }
746 overlap->lf_start = lock->lf_end + 1;
747 lf_wakelock(overlap);
748 break;
749 }
750 break;
751 }
752 #ifdef LOCKF_DEBUG
753 if (lockf_debug & 1) {
754 lf_print("lf_setlock: got the lock", lock);
755 lf_printlist("lf_setlock", lock);
756 }
757 #endif /* LOCKF_DEBUG */
758 return 0;
759 }
760
761 /*
762 * Check whether there is a blocking lock,
763 * and if so return its process identifier.
764 */
765 static int
766 lf_getlock(struct lockf *lock, struct flock *fl)
767 {
768 struct lockf *block;
769
770 #ifdef LOCKF_DEBUG
771 if (lockf_debug & 1)
772 lf_print("lf_getlock", lock);
773 #endif /* LOCKF_DEBUG */
774
775 if ((block = lf_getblock(lock)) != NULL) {
776 fl->l_type = block->lf_type;
777 fl->l_whence = SEEK_SET;
778 fl->l_start = block->lf_start;
779 if (block->lf_end == -1)
780 fl->l_len = 0;
781 else
782 fl->l_len = block->lf_end - block->lf_start + 1;
783 if (block->lf_flags & F_POSIX)
784 fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
785 else
786 fl->l_pid = -1;
787 } else {
788 fl->l_type = F_UNLCK;
789 }
790 return 0;
791 }
792
793 /*
794 * Do an advisory lock operation.
795 */
796 int
797 lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
798 {
799 struct proc *p = curproc;
800 struct flock *fl = ap->a_fl;
801 struct lockf *lock = NULL;
802 struct lockf *sparelock;
803 struct simplelock *interlock = &ap->a_vp->v_interlock;
804 off_t start, end;
805 int error = 0;
806
807 /*
808 * Convert the flock structure into a start and end.
809 */
810 switch (fl->l_whence) {
811 case SEEK_SET:
812 case SEEK_CUR:
813 /*
814 * Caller is responsible for adding any necessary offset
815 * when SEEK_CUR is used.
816 */
817 start = fl->l_start;
818 break;
819
820 case SEEK_END:
821 start = size + fl->l_start;
822 break;
823
824 default:
825 return EINVAL;
826 }
827 if (start < 0)
828 return EINVAL;
829
830 /*
831 * allocate locks before acquire simple lock.
832 * we need two locks in the worst case.
833 */
834 switch (ap->a_op) {
835 case F_SETLK:
836 case F_UNLCK:
837 /*
838 * XXX for F_UNLCK case, we can re-use lock.
839 */
840 if ((ap->a_flags & F_FLOCK) == 0) {
841 /*
842 * byte-range lock might need one more lock.
843 */
844 sparelock = lf_alloc(kauth_cred_geteuid(p->p_cred), 0);
845 if (sparelock == NULL) {
846 error = ENOMEM;
847 goto quit;
848 }
849 break;
850 }
851 /* FALLTHROUGH */
852
853 case F_GETLK:
854 sparelock = NULL;
855 break;
856
857 default:
858 return EINVAL;
859 }
860
861 lock = lf_alloc(kauth_cred_geteuid(p->p_cred), ap->a_op != F_UNLCK ? 1 : 2);
862 if (lock == NULL) {
863 error = ENOMEM;
864 goto quit;
865 }
866
867 simple_lock(interlock);
868
869 /*
870 * Avoid the common case of unlocking when inode has no locks.
871 */
872 if (*head == (struct lockf *)0) {
873 if (ap->a_op != F_SETLK) {
874 fl->l_type = F_UNLCK;
875 error = 0;
876 goto quit_unlock;
877 }
878 }
879
880 if (fl->l_len == 0)
881 end = -1;
882 else
883 end = start + fl->l_len - 1;
884 /*
885 * Create the lockf structure.
886 */
887 lock->lf_start = start;
888 lock->lf_end = end;
889 /* XXX NJWLWP
890 * I don't want to make the entire VFS universe use LWPs, because
891 * they don't need them, for the most part. This is an exception,
892 * and a kluge.
893 */
894
895 lock->lf_head = head;
896 lock->lf_type = fl->l_type;
897 lock->lf_next = (struct lockf *)0;
898 TAILQ_INIT(&lock->lf_blkhd);
899 lock->lf_flags = ap->a_flags;
900 if (lock->lf_flags & F_POSIX) {
901 KASSERT(curproc == (struct proc *)ap->a_id);
902 }
903 lock->lf_id = (struct proc *)ap->a_id;
904
905 /*
906 * Do the requested operation.
907 */
908 switch (ap->a_op) {
909
910 case F_SETLK:
911 error = lf_setlock(lock, &sparelock, interlock);
912 lock = NULL; /* lf_setlock freed it */
913 break;
914
915 case F_UNLCK:
916 error = lf_clearlock(lock, &sparelock);
917 break;
918
919 case F_GETLK:
920 error = lf_getlock(lock, fl);
921 break;
922
923 default:
924 break;
925 /* NOTREACHED */
926 }
927
928 quit_unlock:
929 simple_unlock(interlock);
930 quit:
931 if (lock)
932 lf_free(lock);
933 if (sparelock)
934 lf_free(sparelock);
935
936 return error;
937 }
938