vfs_lockf.c revision 1.58 1 /* $NetBSD: vfs_lockf.c,v 1.58 2007/03/04 06:03:11 christos Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Scooter Morris at Genentech Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)ufs_lockf.c 8.4 (Berkeley) 10/26/94
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.58 2007/03/04 06:03:11 christos Exp $");
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/file.h>
44 #include <sys/proc.h>
45 #include <sys/vnode.h>
46 #include <sys/pool.h>
47 #include <sys/fcntl.h>
48 #include <sys/lockf.h>
49 #include <sys/kauth.h>
50
51 /*
52 * The lockf structure is a kernel structure which contains the information
53 * associated with a byte range lock. The lockf structures are linked into
54 * the inode structure. Locks are sorted by the starting byte of the lock for
55 * efficiency.
56 *
57 * lf_next is used for two purposes, depending on whether the lock is
58 * being held, or is in conflict with an existing lock. If this lock
59 * is held, it indicates the next lock on the same vnode.
60 * For pending locks, if lock->lf_next is non-NULL, then lock->lf_block
61 * must be queued on the lf_blkhd TAILQ of lock->lf_next.
62 */
63
64 TAILQ_HEAD(locklist, lockf);
65
66 struct lockf {
67 short lf_flags; /* Lock semantics: F_POSIX, F_FLOCK, F_WAIT */
68 short lf_type; /* Lock type: F_RDLCK, F_WRLCK */
69 off_t lf_start; /* The byte # of the start of the lock */
70 off_t lf_end; /* The byte # of the end of the lock (-1=EOF)*/
71 void *lf_id; /* process or file description holding lock */
72 struct lockf **lf_head; /* Back pointer to the head of lockf list */
73 struct lockf *lf_next; /* Next lock on this vnode, or blocking lock */
74 struct locklist lf_blkhd; /* List of requests blocked on this lock */
75 TAILQ_ENTRY(lockf) lf_block;/* A request waiting for a lock */
76 uid_t lf_uid; /* User ID responsible */
77 };
78
79 /* Maximum length of sleep chains to traverse to try and detect deadlock. */
80 #define MAXDEPTH 50
81
82 static POOL_INIT(lockfpool, sizeof(struct lockf), 0, 0, 0, "lockfpl",
83 &pool_allocator_nointr);
84
85 /*
86 * This variable controls the maximum number of processes that will
87 * be checked in doing deadlock detection.
88 */
89 int maxlockdepth = MAXDEPTH;
90
91 #ifdef LOCKF_DEBUG
92 int lockf_debug = 0;
93 #endif
94
95 #define SELF 0x1
96 #define OTHERS 0x2
97
98 /*
99 * XXX TODO
100 * Misc cleanups: "void *id" should be visible in the API as a
101 * "struct proc *".
102 * (This requires rototilling all VFS's which support advisory locking).
103 */
104
105 /*
106 * If there's a lot of lock contention on a single vnode, locking
107 * schemes which allow for more paralleism would be needed. Given how
108 * infrequently byte-range locks are actually used in typical BSD
109 * code, a more complex approach probably isn't worth it.
110 */
111
112 /*
113 * We enforce a limit on locks by uid, so that a single user cannot
114 * run the kernel out of memory. For now, the limit is pretty coarse.
115 * There is no limit on root.
116 *
117 * Splitting a lock will always succeed, regardless of current allocations.
118 * If you're slightly above the limit, we still have to permit an allocation
119 * so that the unlock can succeed. If the unlocking causes too many splits,
120 * however, you're totally cutoff.
121 */
122 int maxlocksperuid = 1024;
123
124 #ifdef LOCKF_DEBUG
125 /*
126 * Print out a lock.
127 */
128 static void
129 lf_print(const char *tag, struct lockf *lock)
130 {
131
132 printf("%s: lock %p for ", tag, lock);
133 if (lock->lf_flags & F_POSIX)
134 printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
135 else
136 printf("file %p", (struct file *)lock->lf_id);
137 printf(" %s, start %qx, end %qx",
138 lock->lf_type == F_RDLCK ? "shared" :
139 lock->lf_type == F_WRLCK ? "exclusive" :
140 lock->lf_type == F_UNLCK ? "unlock" :
141 "unknown", lock->lf_start, lock->lf_end);
142 if (TAILQ_FIRST(&lock->lf_blkhd))
143 printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
144 else
145 printf("\n");
146 }
147
148 static void
149 lf_printlist(const char *tag, struct lockf *lock)
150 {
151 struct lockf *lf, *blk;
152
153 printf("%s: Lock list:\n", tag);
154 for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
155 printf("\tlock %p for ", lf);
156 if (lf->lf_flags & F_POSIX)
157 printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
158 else
159 printf("file %p", (struct file *)lf->lf_id);
160 printf(", %s, start %qx, end %qx",
161 lf->lf_type == F_RDLCK ? "shared" :
162 lf->lf_type == F_WRLCK ? "exclusive" :
163 lf->lf_type == F_UNLCK ? "unlock" :
164 "unknown", lf->lf_start, lf->lf_end);
165 TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
166 if (blk->lf_flags & F_POSIX)
167 printf("proc %d",
168 ((struct proc *)blk->lf_id)->p_pid);
169 else
170 printf("file %p", (struct file *)blk->lf_id);
171 printf(", %s, start %qx, end %qx",
172 blk->lf_type == F_RDLCK ? "shared" :
173 blk->lf_type == F_WRLCK ? "exclusive" :
174 blk->lf_type == F_UNLCK ? "unlock" :
175 "unknown", blk->lf_start, blk->lf_end);
176 if (TAILQ_FIRST(&blk->lf_blkhd))
177 panic("lf_printlist: bad list");
178 }
179 printf("\n");
180 }
181 }
182 #endif /* LOCKF_DEBUG */
183
184 /*
185 * 3 options for allowfail.
186 * 0 - always allocate. 1 - cutoff at limit. 2 - cutoff at double limit.
187 */
188 static struct lockf *
189 lf_alloc(uid_t uid, int allowfail)
190 {
191 struct uidinfo *uip;
192 struct lockf *lock;
193 int s;
194
195 uip = uid_find(uid);
196 UILOCK(uip, s);
197 if (uid && allowfail && uip->ui_lockcnt >
198 (allowfail == 1 ? maxlocksperuid : (maxlocksperuid * 2))) {
199 UIUNLOCK(uip, s);
200 return NULL;
201 }
202 uip->ui_lockcnt++;
203 UIUNLOCK(uip, s);
204 lock = pool_get(&lockfpool, PR_WAITOK);
205 lock->lf_uid = uid;
206 return lock;
207 }
208
209 static void
210 lf_free(struct lockf *lock)
211 {
212 struct uidinfo *uip;
213 int s;
214
215 uip = uid_find(lock->lf_uid);
216 UILOCK(uip, s);
217 uip->ui_lockcnt--;
218 UIUNLOCK(uip, s);
219 pool_put(&lockfpool, lock);
220 }
221
222 /*
223 * Walk the list of locks for an inode to
224 * find an overlapping lock (if any).
225 *
226 * NOTE: this returns only the FIRST overlapping lock. There
227 * may be more than one.
228 */
229 static int
230 lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
231 struct lockf ***prev, struct lockf **overlap)
232 {
233 off_t start, end;
234
235 *overlap = lf;
236 if (lf == NULL)
237 return 0;
238 #ifdef LOCKF_DEBUG
239 if (lockf_debug & 2)
240 lf_print("lf_findoverlap: looking for overlap in", lock);
241 #endif /* LOCKF_DEBUG */
242 start = lock->lf_start;
243 end = lock->lf_end;
244 while (lf != NULL) {
245 if (((type == SELF) && lf->lf_id != lock->lf_id) ||
246 ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
247 *prev = &lf->lf_next;
248 *overlap = lf = lf->lf_next;
249 continue;
250 }
251 #ifdef LOCKF_DEBUG
252 if (lockf_debug & 2)
253 lf_print("\tchecking", lf);
254 #endif /* LOCKF_DEBUG */
255 /*
256 * OK, check for overlap
257 *
258 * Six cases:
259 * 0) no overlap
260 * 1) overlap == lock
261 * 2) overlap contains lock
262 * 3) lock contains overlap
263 * 4) overlap starts before lock
264 * 5) overlap ends after lock
265 */
266 if ((lf->lf_end != -1 && start > lf->lf_end) ||
267 (end != -1 && lf->lf_start > end)) {
268 /* Case 0 */
269 #ifdef LOCKF_DEBUG
270 if (lockf_debug & 2)
271 printf("no overlap\n");
272 #endif /* LOCKF_DEBUG */
273 if ((type & SELF) && end != -1 && lf->lf_start > end)
274 return 0;
275 *prev = &lf->lf_next;
276 *overlap = lf = lf->lf_next;
277 continue;
278 }
279 if ((lf->lf_start == start) && (lf->lf_end == end)) {
280 /* Case 1 */
281 #ifdef LOCKF_DEBUG
282 if (lockf_debug & 2)
283 printf("overlap == lock\n");
284 #endif /* LOCKF_DEBUG */
285 return 1;
286 }
287 if ((lf->lf_start <= start) &&
288 (end != -1) &&
289 ((lf->lf_end >= end) || (lf->lf_end == -1))) {
290 /* Case 2 */
291 #ifdef LOCKF_DEBUG
292 if (lockf_debug & 2)
293 printf("overlap contains lock\n");
294 #endif /* LOCKF_DEBUG */
295 return 2;
296 }
297 if (start <= lf->lf_start &&
298 (end == -1 ||
299 (lf->lf_end != -1 && end >= lf->lf_end))) {
300 /* Case 3 */
301 #ifdef LOCKF_DEBUG
302 if (lockf_debug & 2)
303 printf("lock contains overlap\n");
304 #endif /* LOCKF_DEBUG */
305 return 3;
306 }
307 if ((lf->lf_start < start) &&
308 ((lf->lf_end >= start) || (lf->lf_end == -1))) {
309 /* Case 4 */
310 #ifdef LOCKF_DEBUG
311 if (lockf_debug & 2)
312 printf("overlap starts before lock\n");
313 #endif /* LOCKF_DEBUG */
314 return 4;
315 }
316 if ((lf->lf_start > start) &&
317 (end != -1) &&
318 ((lf->lf_end > end) || (lf->lf_end == -1))) {
319 /* Case 5 */
320 #ifdef LOCKF_DEBUG
321 if (lockf_debug & 2)
322 printf("overlap ends after lock\n");
323 #endif /* LOCKF_DEBUG */
324 return 5;
325 }
326 panic("lf_findoverlap: default");
327 }
328 return 0;
329 }
330
331 /*
332 * Split a lock and a contained region into
333 * two or three locks as necessary.
334 */
335 static void
336 lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
337 {
338 struct lockf *splitlock;
339
340 #ifdef LOCKF_DEBUG
341 if (lockf_debug & 2) {
342 lf_print("lf_split", lock1);
343 lf_print("splitting from", lock2);
344 }
345 #endif /* LOCKF_DEBUG */
346 /*
347 * Check to see if spliting into only two pieces.
348 */
349 if (lock1->lf_start == lock2->lf_start) {
350 lock1->lf_start = lock2->lf_end + 1;
351 lock2->lf_next = lock1;
352 return;
353 }
354 if (lock1->lf_end == lock2->lf_end) {
355 lock1->lf_end = lock2->lf_start - 1;
356 lock2->lf_next = lock1->lf_next;
357 lock1->lf_next = lock2;
358 return;
359 }
360 /*
361 * Make a new lock consisting of the last part of
362 * the encompassing lock
363 */
364 splitlock = *sparelock;
365 *sparelock = NULL;
366 memcpy(splitlock, lock1, sizeof(*splitlock));
367 splitlock->lf_start = lock2->lf_end + 1;
368 TAILQ_INIT(&splitlock->lf_blkhd);
369 lock1->lf_end = lock2->lf_start - 1;
370 /*
371 * OK, now link it in
372 */
373 splitlock->lf_next = lock1->lf_next;
374 lock2->lf_next = splitlock;
375 lock1->lf_next = lock2;
376 }
377
378 /*
379 * Wakeup a blocklist
380 */
381 static void
382 lf_wakelock(struct lockf *listhead)
383 {
384 struct lockf *wakelock;
385
386 while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
387 KASSERT(wakelock->lf_next == listhead);
388 TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
389 wakelock->lf_next = NULL;
390 #ifdef LOCKF_DEBUG
391 if (lockf_debug & 2)
392 lf_print("lf_wakelock: awakening", wakelock);
393 #endif
394 wakeup(wakelock);
395 }
396 }
397
398 /*
399 * Remove a byte-range lock on an inode.
400 *
401 * Generally, find the lock (or an overlap to that lock)
402 * and remove it (or shrink it), then wakeup anyone we can.
403 */
404 static int
405 lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
406 {
407 struct lockf **head = unlock->lf_head;
408 struct lockf *lf = *head;
409 struct lockf *overlap, **prev;
410 int ovcase;
411
412 if (lf == NULL)
413 return 0;
414 #ifdef LOCKF_DEBUG
415 if (unlock->lf_type != F_UNLCK)
416 panic("lf_clearlock: bad type");
417 if (lockf_debug & 1)
418 lf_print("lf_clearlock", unlock);
419 #endif /* LOCKF_DEBUG */
420 prev = head;
421 while ((ovcase = lf_findoverlap(lf, unlock, SELF,
422 &prev, &overlap)) != 0) {
423 /*
424 * Wakeup the list of locks to be retried.
425 */
426 lf_wakelock(overlap);
427
428 switch (ovcase) {
429
430 case 1: /* overlap == lock */
431 *prev = overlap->lf_next;
432 lf_free(overlap);
433 break;
434
435 case 2: /* overlap contains lock: split it */
436 if (overlap->lf_start == unlock->lf_start) {
437 overlap->lf_start = unlock->lf_end + 1;
438 break;
439 }
440 lf_split(overlap, unlock, sparelock);
441 overlap->lf_next = unlock->lf_next;
442 break;
443
444 case 3: /* lock contains overlap */
445 *prev = overlap->lf_next;
446 lf = overlap->lf_next;
447 lf_free(overlap);
448 continue;
449
450 case 4: /* overlap starts before lock */
451 overlap->lf_end = unlock->lf_start - 1;
452 prev = &overlap->lf_next;
453 lf = overlap->lf_next;
454 continue;
455
456 case 5: /* overlap ends after lock */
457 overlap->lf_start = unlock->lf_end + 1;
458 break;
459 }
460 break;
461 }
462 #ifdef LOCKF_DEBUG
463 if (lockf_debug & 1)
464 lf_printlist("lf_clearlock", unlock);
465 #endif /* LOCKF_DEBUG */
466 return 0;
467 }
468
469 /*
470 * Walk the list of locks for an inode and
471 * return the first blocking lock.
472 */
473 static struct lockf *
474 lf_getblock(struct lockf *lock)
475 {
476 struct lockf **prev, *overlap, *lf = *(lock->lf_head);
477
478 prev = lock->lf_head;
479 while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
480 /*
481 * We've found an overlap, see if it blocks us
482 */
483 if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
484 return overlap;
485 /*
486 * Nope, point to the next one on the list and
487 * see if it blocks us
488 */
489 lf = overlap->lf_next;
490 }
491 return NULL;
492 }
493
494 /*
495 * Set a byte-range lock.
496 */
497 static int
498 lf_setlock(struct lockf *lock, struct lockf **sparelock,
499 struct simplelock *interlock)
500 {
501 struct lockf *block;
502 struct lockf **head = lock->lf_head;
503 struct lockf **prev, *overlap, *ltmp;
504 static char lockstr[] = "lockf";
505 int ovcase, priority, needtolink, error;
506
507 #ifdef LOCKF_DEBUG
508 if (lockf_debug & 1)
509 lf_print("lf_setlock", lock);
510 #endif /* LOCKF_DEBUG */
511
512 /*
513 * Set the priority
514 */
515 priority = PLOCK;
516 if (lock->lf_type == F_WRLCK)
517 priority += 4;
518 priority |= PCATCH;
519 /*
520 * Scan lock list for this file looking for locks that would block us.
521 */
522 while ((block = lf_getblock(lock)) != NULL) {
523 /*
524 * Free the structure and return if nonblocking.
525 */
526 if ((lock->lf_flags & F_WAIT) == 0) {
527 lf_free(lock);
528 return EAGAIN;
529 }
530 /*
531 * We are blocked. Since flock style locks cover
532 * the whole file, there is no chance for deadlock.
533 * For byte-range locks we must check for deadlock.
534 *
535 * Deadlock detection is done by looking through the
536 * wait channels to see if there are any cycles that
537 * involve us. MAXDEPTH is set just to make sure we
538 * do not go off into neverneverland.
539 */
540 if ((lock->lf_flags & F_POSIX) &&
541 (block->lf_flags & F_POSIX)) {
542 struct lwp *wlwp;
543 volatile const struct lockf *waitblock;
544 int i = 0;
545 struct proc *p;
546
547 p = (struct proc *)block->lf_id;
548 KASSERT(p != NULL);
549 while (i++ < maxlockdepth) {
550 mutex_enter(&p->p_smutex);
551 if (p->p_nlwps > 1) {
552 mutex_exit(&p->p_smutex);
553 break;
554 }
555 wlwp = LIST_FIRST(&p->p_lwps);
556 lwp_lock(wlwp);
557 if (wlwp->l_wmesg != lockstr) {
558 lwp_unlock(wlwp);
559 mutex_exit(&p->p_smutex);
560 break;
561 }
562 waitblock = wlwp->l_wchan;
563 lwp_unlock(wlwp);
564 mutex_exit(&p->p_smutex);
565 if (waitblock == NULL) {
566 /*
567 * this lwp just got up but
568 * not returned from ltsleep yet.
569 */
570 break;
571 }
572 /* Get the owner of the blocking lock */
573 waitblock = waitblock->lf_next;
574 if ((waitblock->lf_flags & F_POSIX) == 0)
575 break;
576 p = (struct proc *)waitblock->lf_id;
577 if (p == curproc) {
578 lf_free(lock);
579 return EDEADLK;
580 }
581 }
582 /*
583 * If we're still following a dependency chain
584 * after maxlockdepth iterations, assume we're in
585 * a cycle to be safe.
586 */
587 if (i >= maxlockdepth) {
588 lf_free(lock);
589 return EDEADLK;
590 }
591 }
592 /*
593 * For flock type locks, we must first remove
594 * any shared locks that we hold before we sleep
595 * waiting for an exclusive lock.
596 */
597 if ((lock->lf_flags & F_FLOCK) &&
598 lock->lf_type == F_WRLCK) {
599 lock->lf_type = F_UNLCK;
600 (void) lf_clearlock(lock, NULL);
601 lock->lf_type = F_WRLCK;
602 }
603 /*
604 * Add our lock to the blocked list and sleep until we're free.
605 * Remember who blocked us (for deadlock detection).
606 */
607 lock->lf_next = block;
608 TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
609 #ifdef LOCKF_DEBUG
610 if (lockf_debug & 1) {
611 lf_print("lf_setlock: blocking on", block);
612 lf_printlist("lf_setlock", block);
613 }
614 #endif /* LOCKF_DEBUG */
615 error = ltsleep(lock, priority, lockstr, 0, interlock);
616
617 /*
618 * We may have been awakened by a signal (in
619 * which case we must remove ourselves from the
620 * blocked list) and/or by another process
621 * releasing a lock (in which case we have already
622 * been removed from the blocked list and our
623 * lf_next field set to NULL).
624 */
625 if (lock->lf_next != NULL) {
626 TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
627 lock->lf_next = NULL;
628 }
629 if (error) {
630 lf_free(lock);
631 return error;
632 }
633 }
634 /*
635 * No blocks!! Add the lock. Note that we will
636 * downgrade or upgrade any overlapping locks this
637 * process already owns.
638 *
639 * Skip over locks owned by other processes.
640 * Handle any locks that overlap and are owned by ourselves.
641 */
642 prev = head;
643 block = *head;
644 needtolink = 1;
645 for (;;) {
646 ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
647 if (ovcase)
648 block = overlap->lf_next;
649 /*
650 * Six cases:
651 * 0) no overlap
652 * 1) overlap == lock
653 * 2) overlap contains lock
654 * 3) lock contains overlap
655 * 4) overlap starts before lock
656 * 5) overlap ends after lock
657 */
658 switch (ovcase) {
659 case 0: /* no overlap */
660 if (needtolink) {
661 *prev = lock;
662 lock->lf_next = overlap;
663 }
664 break;
665
666 case 1: /* overlap == lock */
667 /*
668 * If downgrading lock, others may be
669 * able to acquire it.
670 */
671 if (lock->lf_type == F_RDLCK &&
672 overlap->lf_type == F_WRLCK)
673 lf_wakelock(overlap);
674 overlap->lf_type = lock->lf_type;
675 lf_free(lock);
676 lock = overlap; /* for debug output below */
677 break;
678
679 case 2: /* overlap contains lock */
680 /*
681 * Check for common starting point and different types.
682 */
683 if (overlap->lf_type == lock->lf_type) {
684 lf_free(lock);
685 lock = overlap; /* for debug output below */
686 break;
687 }
688 if (overlap->lf_start == lock->lf_start) {
689 *prev = lock;
690 lock->lf_next = overlap;
691 overlap->lf_start = lock->lf_end + 1;
692 } else
693 lf_split(overlap, lock, sparelock);
694 lf_wakelock(overlap);
695 break;
696
697 case 3: /* lock contains overlap */
698 /*
699 * If downgrading lock, others may be able to
700 * acquire it, otherwise take the list.
701 */
702 if (lock->lf_type == F_RDLCK &&
703 overlap->lf_type == F_WRLCK) {
704 lf_wakelock(overlap);
705 } else {
706 while ((ltmp = TAILQ_FIRST(&overlap->lf_blkhd))) {
707 KASSERT(ltmp->lf_next == overlap);
708 TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
709 lf_block);
710 ltmp->lf_next = lock;
711 TAILQ_INSERT_TAIL(&lock->lf_blkhd,
712 ltmp, lf_block);
713 }
714 }
715 /*
716 * Add the new lock if necessary and delete the overlap.
717 */
718 if (needtolink) {
719 *prev = lock;
720 lock->lf_next = overlap->lf_next;
721 prev = &lock->lf_next;
722 needtolink = 0;
723 } else
724 *prev = overlap->lf_next;
725 lf_free(overlap);
726 continue;
727
728 case 4: /* overlap starts before lock */
729 /*
730 * Add lock after overlap on the list.
731 */
732 lock->lf_next = overlap->lf_next;
733 overlap->lf_next = lock;
734 overlap->lf_end = lock->lf_start - 1;
735 prev = &lock->lf_next;
736 lf_wakelock(overlap);
737 needtolink = 0;
738 continue;
739
740 case 5: /* overlap ends after lock */
741 /*
742 * Add the new lock before overlap.
743 */
744 if (needtolink) {
745 *prev = lock;
746 lock->lf_next = overlap;
747 }
748 overlap->lf_start = lock->lf_end + 1;
749 lf_wakelock(overlap);
750 break;
751 }
752 break;
753 }
754 #ifdef LOCKF_DEBUG
755 if (lockf_debug & 1) {
756 lf_print("lf_setlock: got the lock", lock);
757 lf_printlist("lf_setlock", lock);
758 }
759 #endif /* LOCKF_DEBUG */
760 return 0;
761 }
762
763 /*
764 * Check whether there is a blocking lock,
765 * and if so return its process identifier.
766 */
767 static int
768 lf_getlock(struct lockf *lock, struct flock *fl)
769 {
770 struct lockf *block;
771
772 #ifdef LOCKF_DEBUG
773 if (lockf_debug & 1)
774 lf_print("lf_getlock", lock);
775 #endif /* LOCKF_DEBUG */
776
777 if ((block = lf_getblock(lock)) != NULL) {
778 fl->l_type = block->lf_type;
779 fl->l_whence = SEEK_SET;
780 fl->l_start = block->lf_start;
781 if (block->lf_end == -1)
782 fl->l_len = 0;
783 else
784 fl->l_len = block->lf_end - block->lf_start + 1;
785 if (block->lf_flags & F_POSIX)
786 fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
787 else
788 fl->l_pid = -1;
789 } else {
790 fl->l_type = F_UNLCK;
791 }
792 return 0;
793 }
794
795 /*
796 * Do an advisory lock operation.
797 */
798 int
799 lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
800 {
801 struct lwp *l = curlwp;
802 struct flock *fl = ap->a_fl;
803 struct lockf *lock = NULL;
804 struct lockf *sparelock;
805 struct simplelock *interlock = &ap->a_vp->v_interlock;
806 off_t start, end;
807 int error = 0;
808
809 /*
810 * Convert the flock structure into a start and end.
811 */
812 switch (fl->l_whence) {
813 case SEEK_SET:
814 case SEEK_CUR:
815 /*
816 * Caller is responsible for adding any necessary offset
817 * when SEEK_CUR is used.
818 */
819 start = fl->l_start;
820 break;
821
822 case SEEK_END:
823 start = size + fl->l_start;
824 break;
825
826 default:
827 return EINVAL;
828 }
829 if (start < 0)
830 return EINVAL;
831
832 /*
833 * Allocate locks before acquiring the simple lock. We need two
834 * locks in the worst case.
835 */
836 switch (ap->a_op) {
837 case F_SETLK:
838 case F_UNLCK:
839 /*
840 * XXX For F_UNLCK case, we can re-use the lock.
841 */
842 if ((ap->a_flags & F_FLOCK) == 0) {
843 /*
844 * Byte-range lock might need one more lock.
845 */
846 sparelock = lf_alloc(kauth_cred_geteuid(l->l_cred), 0);
847 if (sparelock == NULL) {
848 error = ENOMEM;
849 goto quit;
850 }
851 break;
852 }
853 /* FALLTHROUGH */
854
855 case F_GETLK:
856 sparelock = NULL;
857 break;
858
859 default:
860 return EINVAL;
861 }
862
863 lock = lf_alloc(kauth_cred_geteuid(l->l_cred),
864 ap->a_op != F_UNLCK ? 1 : 2);
865 if (lock == NULL) {
866 error = ENOMEM;
867 goto quit;
868 }
869
870 simple_lock(interlock);
871
872 /*
873 * Avoid the common case of unlocking when inode has no locks.
874 */
875 if (*head == (struct lockf *)0) {
876 if (ap->a_op != F_SETLK) {
877 fl->l_type = F_UNLCK;
878 error = 0;
879 goto quit_unlock;
880 }
881 }
882
883 if (fl->l_len == 0)
884 end = -1;
885 else
886 end = start + fl->l_len - 1;
887 /*
888 * Create the lockf structure.
889 */
890 lock->lf_start = start;
891 lock->lf_end = end;
892 /* XXX NJWLWP
893 * I don't want to make the entire VFS universe use LWPs, because
894 * they don't need them, for the most part. This is an exception,
895 * and a kluge.
896 */
897
898 lock->lf_head = head;
899 lock->lf_type = fl->l_type;
900 lock->lf_next = (struct lockf *)0;
901 TAILQ_INIT(&lock->lf_blkhd);
902 lock->lf_flags = ap->a_flags;
903 if (lock->lf_flags & F_POSIX) {
904 KASSERT(curproc == (struct proc *)ap->a_id);
905 }
906 lock->lf_id = (struct proc *)ap->a_id;
907
908 /*
909 * Do the requested operation.
910 */
911 switch (ap->a_op) {
912
913 case F_SETLK:
914 error = lf_setlock(lock, &sparelock, interlock);
915 lock = NULL; /* lf_setlock freed it */
916 break;
917
918 case F_UNLCK:
919 error = lf_clearlock(lock, &sparelock);
920 break;
921
922 case F_GETLK:
923 error = lf_getlock(lock, fl);
924 break;
925
926 default:
927 break;
928 /* NOTREACHED */
929 }
930
931 quit_unlock:
932 simple_unlock(interlock);
933 quit:
934 if (lock)
935 lf_free(lock);
936 if (sparelock)
937 lf_free(sparelock);
938
939 return error;
940 }
941