vfs_lockf.c revision 1.58.2.3 1 /* $NetBSD: vfs_lockf.c,v 1.58.2.3 2007/04/13 15:41:07 ad Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Scooter Morris at Genentech Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)ufs_lockf.c 8.4 (Berkeley) 10/26/94
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.58.2.3 2007/04/13 15:41:07 ad Exp $");
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/file.h>
44 #include <sys/proc.h>
45 #include <sys/vnode.h>
46 #include <sys/pool.h>
47 #include <sys/fcntl.h>
48 #include <sys/lockf.h>
49 #include <sys/kauth.h>
50
51 /*
52 * The lockf structure is a kernel structure which contains the information
53 * associated with a byte range lock. The lockf structures are linked into
54 * the inode structure. Locks are sorted by the starting byte of the lock for
55 * efficiency.
56 *
57 * lf_next is used for two purposes, depending on whether the lock is
58 * being held, or is in conflict with an existing lock. If this lock
59 * is held, it indicates the next lock on the same vnode.
60 * For pending locks, if lock->lf_next is non-NULL, then lock->lf_block
61 * must be queued on the lf_blkhd TAILQ of lock->lf_next.
62 */
63
64 TAILQ_HEAD(locklist, lockf);
65
66 struct lockf {
67 short lf_flags; /* Lock semantics: F_POSIX, F_FLOCK, F_WAIT */
68 short lf_type; /* Lock type: F_RDLCK, F_WRLCK */
69 off_t lf_start; /* The byte # of the start of the lock */
70 off_t lf_end; /* The byte # of the end of the lock (-1=EOF)*/
71 void *lf_id; /* process or file description holding lock */
72 struct lockf **lf_head; /* Back pointer to the head of lockf list */
73 struct lockf *lf_next; /* Next lock on this vnode, or blocking lock */
74 struct locklist lf_blkhd; /* List of requests blocked on this lock */
75 TAILQ_ENTRY(lockf) lf_block;/* A request waiting for a lock */
76 uid_t lf_uid; /* User ID responsible */
77 kcondvar_t lf_cv; /* Signalling */
78 };
79
80 /* Maximum length of sleep chains to traverse to try and detect deadlock. */
81 #define MAXDEPTH 50
82
83 static POOL_INIT(lockfpool, sizeof(struct lockf), 0, 0, 0, "lockfpl",
84 &pool_allocator_nointr, IPL_NONE);
85
86 /*
87 * This variable controls the maximum number of processes that will
88 * be checked in doing deadlock detection.
89 */
90 int maxlockdepth = MAXDEPTH;
91
92 #ifdef LOCKF_DEBUG
93 int lockf_debug = 0;
94 #endif
95
96 #define SELF 0x1
97 #define OTHERS 0x2
98
99 /*
100 * XXX TODO
101 * Misc cleanups: "void *id" should be visible in the API as a
102 * "struct proc *".
103 * (This requires rototilling all VFS's which support advisory locking).
104 */
105
106 /*
107 * If there's a lot of lock contention on a single vnode, locking
108 * schemes which allow for more paralleism would be needed. Given how
109 * infrequently byte-range locks are actually used in typical BSD
110 * code, a more complex approach probably isn't worth it.
111 */
112
113 /*
114 * We enforce a limit on locks by uid, so that a single user cannot
115 * run the kernel out of memory. For now, the limit is pretty coarse.
116 * There is no limit on root.
117 *
118 * Splitting a lock will always succeed, regardless of current allocations.
119 * If you're slightly above the limit, we still have to permit an allocation
120 * so that the unlock can succeed. If the unlocking causes too many splits,
121 * however, you're totally cutoff.
122 */
123 int maxlocksperuid = 1024;
124
125 #ifdef LOCKF_DEBUG
126 /*
127 * Print out a lock.
128 */
129 static void
130 lf_print(const char *tag, struct lockf *lock)
131 {
132
133 printf("%s: lock %p for ", tag, lock);
134 if (lock->lf_flags & F_POSIX)
135 printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
136 else
137 printf("file %p", (struct file *)lock->lf_id);
138 printf(" %s, start %qx, end %qx",
139 lock->lf_type == F_RDLCK ? "shared" :
140 lock->lf_type == F_WRLCK ? "exclusive" :
141 lock->lf_type == F_UNLCK ? "unlock" :
142 "unknown", lock->lf_start, lock->lf_end);
143 if (TAILQ_FIRST(&lock->lf_blkhd))
144 printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
145 else
146 printf("\n");
147 }
148
149 static void
150 lf_printlist(const char *tag, struct lockf *lock)
151 {
152 struct lockf *lf, *blk;
153
154 printf("%s: Lock list:\n", tag);
155 for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
156 printf("\tlock %p for ", lf);
157 if (lf->lf_flags & F_POSIX)
158 printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
159 else
160 printf("file %p", (struct file *)lf->lf_id);
161 printf(", %s, start %qx, end %qx",
162 lf->lf_type == F_RDLCK ? "shared" :
163 lf->lf_type == F_WRLCK ? "exclusive" :
164 lf->lf_type == F_UNLCK ? "unlock" :
165 "unknown", lf->lf_start, lf->lf_end);
166 TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
167 if (blk->lf_flags & F_POSIX)
168 printf("proc %d",
169 ((struct proc *)blk->lf_id)->p_pid);
170 else
171 printf("file %p", (struct file *)blk->lf_id);
172 printf(", %s, start %qx, end %qx",
173 blk->lf_type == F_RDLCK ? "shared" :
174 blk->lf_type == F_WRLCK ? "exclusive" :
175 blk->lf_type == F_UNLCK ? "unlock" :
176 "unknown", blk->lf_start, blk->lf_end);
177 if (TAILQ_FIRST(&blk->lf_blkhd))
178 panic("lf_printlist: bad list");
179 }
180 printf("\n");
181 }
182 }
183 #endif /* LOCKF_DEBUG */
184
185 /*
186 * 3 options for allowfail.
187 * 0 - always allocate. 1 - cutoff at limit. 2 - cutoff at double limit.
188 */
189 static struct lockf *
190 lf_alloc(uid_t uid, int allowfail)
191 {
192 struct uidinfo *uip;
193 struct lockf *lock;
194 int s;
195
196 uip = uid_find(uid);
197 UILOCK(uip, s);
198 if (uid && allowfail && uip->ui_lockcnt >
199 (allowfail == 1 ? maxlocksperuid : (maxlocksperuid * 2))) {
200 UIUNLOCK(uip, s);
201 return NULL;
202 }
203 uip->ui_lockcnt++;
204 UIUNLOCK(uip, s);
205 lock = pool_get(&lockfpool, PR_WAITOK);
206 lock->lf_uid = uid;
207 cv_init(&lock->lf_cv, "lockf");
208 return lock;
209 }
210
211 static void
212 lf_free(struct lockf *lock)
213 {
214 struct uidinfo *uip;
215 int s;
216
217 uip = uid_find(lock->lf_uid);
218 UILOCK(uip, s);
219 uip->ui_lockcnt--;
220 UIUNLOCK(uip, s);
221 cv_destroy(&lock->lf_cv);
222 pool_put(&lockfpool, lock);
223 }
224
225 /*
226 * Walk the list of locks for an inode to
227 * find an overlapping lock (if any).
228 *
229 * NOTE: this returns only the FIRST overlapping lock. There
230 * may be more than one.
231 */
232 static int
233 lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
234 struct lockf ***prev, struct lockf **overlap)
235 {
236 off_t start, end;
237
238 *overlap = lf;
239 if (lf == NULL)
240 return 0;
241 #ifdef LOCKF_DEBUG
242 if (lockf_debug & 2)
243 lf_print("lf_findoverlap: looking for overlap in", lock);
244 #endif /* LOCKF_DEBUG */
245 start = lock->lf_start;
246 end = lock->lf_end;
247 while (lf != NULL) {
248 if (((type == SELF) && lf->lf_id != lock->lf_id) ||
249 ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
250 *prev = &lf->lf_next;
251 *overlap = lf = lf->lf_next;
252 continue;
253 }
254 #ifdef LOCKF_DEBUG
255 if (lockf_debug & 2)
256 lf_print("\tchecking", lf);
257 #endif /* LOCKF_DEBUG */
258 /*
259 * OK, check for overlap
260 *
261 * Six cases:
262 * 0) no overlap
263 * 1) overlap == lock
264 * 2) overlap contains lock
265 * 3) lock contains overlap
266 * 4) overlap starts before lock
267 * 5) overlap ends after lock
268 */
269 if ((lf->lf_end != -1 && start > lf->lf_end) ||
270 (end != -1 && lf->lf_start > end)) {
271 /* Case 0 */
272 #ifdef LOCKF_DEBUG
273 if (lockf_debug & 2)
274 printf("no overlap\n");
275 #endif /* LOCKF_DEBUG */
276 if ((type & SELF) && end != -1 && lf->lf_start > end)
277 return 0;
278 *prev = &lf->lf_next;
279 *overlap = lf = lf->lf_next;
280 continue;
281 }
282 if ((lf->lf_start == start) && (lf->lf_end == end)) {
283 /* Case 1 */
284 #ifdef LOCKF_DEBUG
285 if (lockf_debug & 2)
286 printf("overlap == lock\n");
287 #endif /* LOCKF_DEBUG */
288 return 1;
289 }
290 if ((lf->lf_start <= start) &&
291 (end != -1) &&
292 ((lf->lf_end >= end) || (lf->lf_end == -1))) {
293 /* Case 2 */
294 #ifdef LOCKF_DEBUG
295 if (lockf_debug & 2)
296 printf("overlap contains lock\n");
297 #endif /* LOCKF_DEBUG */
298 return 2;
299 }
300 if (start <= lf->lf_start &&
301 (end == -1 ||
302 (lf->lf_end != -1 && end >= lf->lf_end))) {
303 /* Case 3 */
304 #ifdef LOCKF_DEBUG
305 if (lockf_debug & 2)
306 printf("lock contains overlap\n");
307 #endif /* LOCKF_DEBUG */
308 return 3;
309 }
310 if ((lf->lf_start < start) &&
311 ((lf->lf_end >= start) || (lf->lf_end == -1))) {
312 /* Case 4 */
313 #ifdef LOCKF_DEBUG
314 if (lockf_debug & 2)
315 printf("overlap starts before lock\n");
316 #endif /* LOCKF_DEBUG */
317 return 4;
318 }
319 if ((lf->lf_start > start) &&
320 (end != -1) &&
321 ((lf->lf_end > end) || (lf->lf_end == -1))) {
322 /* Case 5 */
323 #ifdef LOCKF_DEBUG
324 if (lockf_debug & 2)
325 printf("overlap ends after lock\n");
326 #endif /* LOCKF_DEBUG */
327 return 5;
328 }
329 panic("lf_findoverlap: default");
330 }
331 return 0;
332 }
333
334 /*
335 * Split a lock and a contained region into
336 * two or three locks as necessary.
337 */
338 static void
339 lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
340 {
341 struct lockf *splitlock;
342
343 #ifdef LOCKF_DEBUG
344 if (lockf_debug & 2) {
345 lf_print("lf_split", lock1);
346 lf_print("splitting from", lock2);
347 }
348 #endif /* LOCKF_DEBUG */
349 /*
350 * Check to see if spliting into only two pieces.
351 */
352 if (lock1->lf_start == lock2->lf_start) {
353 lock1->lf_start = lock2->lf_end + 1;
354 lock2->lf_next = lock1;
355 return;
356 }
357 if (lock1->lf_end == lock2->lf_end) {
358 lock1->lf_end = lock2->lf_start - 1;
359 lock2->lf_next = lock1->lf_next;
360 lock1->lf_next = lock2;
361 return;
362 }
363 /*
364 * Make a new lock consisting of the last part of
365 * the encompassing lock
366 */
367 splitlock = *sparelock;
368 *sparelock = NULL;
369 memcpy(splitlock, lock1, sizeof(*splitlock));
370 splitlock->lf_start = lock2->lf_end + 1;
371 TAILQ_INIT(&splitlock->lf_blkhd);
372 lock1->lf_end = lock2->lf_start - 1;
373 /*
374 * OK, now link it in
375 */
376 splitlock->lf_next = lock1->lf_next;
377 lock2->lf_next = splitlock;
378 lock1->lf_next = lock2;
379 }
380
381 /*
382 * Wakeup a blocklist
383 */
384 static void
385 lf_wakelock(struct lockf *listhead)
386 {
387 struct lockf *wakelock;
388
389 while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
390 KASSERT(wakelock->lf_next == listhead);
391 TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
392 wakelock->lf_next = NULL;
393 #ifdef LOCKF_DEBUG
394 if (lockf_debug & 2)
395 lf_print("lf_wakelock: awakening", wakelock);
396 #endif
397 cv_broadcast(&wakelock->lf_cv);
398 }
399 }
400
401 /*
402 * Remove a byte-range lock on an inode.
403 *
404 * Generally, find the lock (or an overlap to that lock)
405 * and remove it (or shrink it), then wakeup anyone we can.
406 */
407 static int
408 lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
409 {
410 struct lockf **head = unlock->lf_head;
411 struct lockf *lf = *head;
412 struct lockf *overlap, **prev;
413 int ovcase;
414
415 if (lf == NULL)
416 return 0;
417 #ifdef LOCKF_DEBUG
418 if (unlock->lf_type != F_UNLCK)
419 panic("lf_clearlock: bad type");
420 if (lockf_debug & 1)
421 lf_print("lf_clearlock", unlock);
422 #endif /* LOCKF_DEBUG */
423 prev = head;
424 while ((ovcase = lf_findoverlap(lf, unlock, SELF,
425 &prev, &overlap)) != 0) {
426 /*
427 * Wakeup the list of locks to be retried.
428 */
429 lf_wakelock(overlap);
430
431 switch (ovcase) {
432
433 case 1: /* overlap == lock */
434 *prev = overlap->lf_next;
435 lf_free(overlap);
436 break;
437
438 case 2: /* overlap contains lock: split it */
439 if (overlap->lf_start == unlock->lf_start) {
440 overlap->lf_start = unlock->lf_end + 1;
441 break;
442 }
443 lf_split(overlap, unlock, sparelock);
444 overlap->lf_next = unlock->lf_next;
445 break;
446
447 case 3: /* lock contains overlap */
448 *prev = overlap->lf_next;
449 lf = overlap->lf_next;
450 lf_free(overlap);
451 continue;
452
453 case 4: /* overlap starts before lock */
454 overlap->lf_end = unlock->lf_start - 1;
455 prev = &overlap->lf_next;
456 lf = overlap->lf_next;
457 continue;
458
459 case 5: /* overlap ends after lock */
460 overlap->lf_start = unlock->lf_end + 1;
461 break;
462 }
463 break;
464 }
465 #ifdef LOCKF_DEBUG
466 if (lockf_debug & 1)
467 lf_printlist("lf_clearlock", unlock);
468 #endif /* LOCKF_DEBUG */
469 return 0;
470 }
471
472 /*
473 * Walk the list of locks for an inode and
474 * return the first blocking lock.
475 */
476 static struct lockf *
477 lf_getblock(struct lockf *lock)
478 {
479 struct lockf **prev, *overlap, *lf = *(lock->lf_head);
480
481 prev = lock->lf_head;
482 while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
483 /*
484 * We've found an overlap, see if it blocks us
485 */
486 if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
487 return overlap;
488 /*
489 * Nope, point to the next one on the list and
490 * see if it blocks us
491 */
492 lf = overlap->lf_next;
493 }
494 return NULL;
495 }
496
497 /*
498 * Set a byte-range lock.
499 */
500 static int
501 lf_setlock(struct lockf *lock, struct lockf **sparelock,
502 kmutex_t *interlock)
503 {
504 struct lockf *block;
505 struct lockf **head = lock->lf_head;
506 struct lockf **prev, *overlap, *ltmp;
507 static char lockstr[] = "lockf";
508 int ovcase, needtolink, error;
509
510 #ifdef LOCKF_DEBUG
511 if (lockf_debug & 1)
512 lf_print("lf_setlock", lock);
513 #endif /* LOCKF_DEBUG */
514
515 /*
516 * XXX Here we used to set the sleep priority so that writers
517 * took priority. That's of dubious use, and is not possible
518 * with condition variables. Need to find a better way to ensure
519 * fairness.
520 */
521
522 /*
523 * Scan lock list for this file looking for locks that would block us.
524 */
525 while ((block = lf_getblock(lock)) != NULL) {
526 /*
527 * Free the structure and return if nonblocking.
528 */
529 if ((lock->lf_flags & F_WAIT) == 0) {
530 lf_free(lock);
531 return EAGAIN;
532 }
533 /*
534 * We are blocked. Since flock style locks cover
535 * the whole file, there is no chance for deadlock.
536 * For byte-range locks we must check for deadlock.
537 *
538 * Deadlock detection is done by looking through the
539 * wait channels to see if there are any cycles that
540 * involve us. MAXDEPTH is set just to make sure we
541 * do not go off into neverneverland.
542 */
543 if ((lock->lf_flags & F_POSIX) &&
544 (block->lf_flags & F_POSIX)) {
545 struct lwp *wlwp;
546 volatile const struct lockf *waitblock;
547 int i = 0;
548 struct proc *p;
549
550 p = (struct proc *)block->lf_id;
551 KASSERT(p != NULL);
552 while (i++ < maxlockdepth) {
553 mutex_enter(&p->p_smutex);
554 if (p->p_nlwps > 1) {
555 mutex_exit(&p->p_smutex);
556 break;
557 }
558 wlwp = LIST_FIRST(&p->p_lwps);
559 lwp_lock(wlwp);
560 if (wlwp->l_wmesg != lockstr) {
561 lwp_unlock(wlwp);
562 mutex_exit(&p->p_smutex);
563 break;
564 }
565 waitblock = wlwp->l_wchan;
566 lwp_unlock(wlwp);
567 mutex_exit(&p->p_smutex);
568 if (waitblock == NULL) {
569 /*
570 * this lwp just got up but
571 * not returned from ltsleep yet.
572 */
573 break;
574 }
575 /* Get the owner of the blocking lock */
576 waitblock = waitblock->lf_next;
577 if ((waitblock->lf_flags & F_POSIX) == 0)
578 break;
579 p = (struct proc *)waitblock->lf_id;
580 if (p == curproc) {
581 lf_free(lock);
582 return EDEADLK;
583 }
584 }
585 /*
586 * If we're still following a dependency chain
587 * after maxlockdepth iterations, assume we're in
588 * a cycle to be safe.
589 */
590 if (i >= maxlockdepth) {
591 lf_free(lock);
592 return EDEADLK;
593 }
594 }
595 /*
596 * For flock type locks, we must first remove
597 * any shared locks that we hold before we sleep
598 * waiting for an exclusive lock.
599 */
600 if ((lock->lf_flags & F_FLOCK) &&
601 lock->lf_type == F_WRLCK) {
602 lock->lf_type = F_UNLCK;
603 (void) lf_clearlock(lock, NULL);
604 lock->lf_type = F_WRLCK;
605 }
606 /*
607 * Add our lock to the blocked list and sleep until we're free.
608 * Remember who blocked us (for deadlock detection).
609 */
610 lock->lf_next = block;
611 TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
612 #ifdef LOCKF_DEBUG
613 if (lockf_debug & 1) {
614 lf_print("lf_setlock: blocking on", block);
615 lf_printlist("lf_setlock", block);
616 }
617 #endif /* LOCKF_DEBUG */
618 error = cv_wait_sig(&lock->lf_cv, interlock);
619
620 /*
621 * We may have been awakened by a signal (in
622 * which case we must remove ourselves from the
623 * blocked list) and/or by another process
624 * releasing a lock (in which case we have already
625 * been removed from the blocked list and our
626 * lf_next field set to NULL).
627 */
628 if (lock->lf_next != NULL) {
629 TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
630 lock->lf_next = NULL;
631 }
632 if (error) {
633 lf_free(lock);
634 return error;
635 }
636 }
637 /*
638 * No blocks!! Add the lock. Note that we will
639 * downgrade or upgrade any overlapping locks this
640 * process already owns.
641 *
642 * Skip over locks owned by other processes.
643 * Handle any locks that overlap and are owned by ourselves.
644 */
645 prev = head;
646 block = *head;
647 needtolink = 1;
648 for (;;) {
649 ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
650 if (ovcase)
651 block = overlap->lf_next;
652 /*
653 * Six cases:
654 * 0) no overlap
655 * 1) overlap == lock
656 * 2) overlap contains lock
657 * 3) lock contains overlap
658 * 4) overlap starts before lock
659 * 5) overlap ends after lock
660 */
661 switch (ovcase) {
662 case 0: /* no overlap */
663 if (needtolink) {
664 *prev = lock;
665 lock->lf_next = overlap;
666 }
667 break;
668
669 case 1: /* overlap == lock */
670 /*
671 * If downgrading lock, others may be
672 * able to acquire it.
673 */
674 if (lock->lf_type == F_RDLCK &&
675 overlap->lf_type == F_WRLCK)
676 lf_wakelock(overlap);
677 overlap->lf_type = lock->lf_type;
678 lf_free(lock);
679 lock = overlap; /* for debug output below */
680 break;
681
682 case 2: /* overlap contains lock */
683 /*
684 * Check for common starting point and different types.
685 */
686 if (overlap->lf_type == lock->lf_type) {
687 lf_free(lock);
688 lock = overlap; /* for debug output below */
689 break;
690 }
691 if (overlap->lf_start == lock->lf_start) {
692 *prev = lock;
693 lock->lf_next = overlap;
694 overlap->lf_start = lock->lf_end + 1;
695 } else
696 lf_split(overlap, lock, sparelock);
697 lf_wakelock(overlap);
698 break;
699
700 case 3: /* lock contains overlap */
701 /*
702 * If downgrading lock, others may be able to
703 * acquire it, otherwise take the list.
704 */
705 if (lock->lf_type == F_RDLCK &&
706 overlap->lf_type == F_WRLCK) {
707 lf_wakelock(overlap);
708 } else {
709 while ((ltmp = TAILQ_FIRST(&overlap->lf_blkhd))) {
710 KASSERT(ltmp->lf_next == overlap);
711 TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
712 lf_block);
713 ltmp->lf_next = lock;
714 TAILQ_INSERT_TAIL(&lock->lf_blkhd,
715 ltmp, lf_block);
716 }
717 }
718 /*
719 * Add the new lock if necessary and delete the overlap.
720 */
721 if (needtolink) {
722 *prev = lock;
723 lock->lf_next = overlap->lf_next;
724 prev = &lock->lf_next;
725 needtolink = 0;
726 } else
727 *prev = overlap->lf_next;
728 lf_free(overlap);
729 continue;
730
731 case 4: /* overlap starts before lock */
732 /*
733 * Add lock after overlap on the list.
734 */
735 lock->lf_next = overlap->lf_next;
736 overlap->lf_next = lock;
737 overlap->lf_end = lock->lf_start - 1;
738 prev = &lock->lf_next;
739 lf_wakelock(overlap);
740 needtolink = 0;
741 continue;
742
743 case 5: /* overlap ends after lock */
744 /*
745 * Add the new lock before overlap.
746 */
747 if (needtolink) {
748 *prev = lock;
749 lock->lf_next = overlap;
750 }
751 overlap->lf_start = lock->lf_end + 1;
752 lf_wakelock(overlap);
753 break;
754 }
755 break;
756 }
757 #ifdef LOCKF_DEBUG
758 if (lockf_debug & 1) {
759 lf_print("lf_setlock: got the lock", lock);
760 lf_printlist("lf_setlock", lock);
761 }
762 #endif /* LOCKF_DEBUG */
763 return 0;
764 }
765
766 /*
767 * Check whether there is a blocking lock,
768 * and if so return its process identifier.
769 */
770 static int
771 lf_getlock(struct lockf *lock, struct flock *fl)
772 {
773 struct lockf *block;
774
775 #ifdef LOCKF_DEBUG
776 if (lockf_debug & 1)
777 lf_print("lf_getlock", lock);
778 #endif /* LOCKF_DEBUG */
779
780 if ((block = lf_getblock(lock)) != NULL) {
781 fl->l_type = block->lf_type;
782 fl->l_whence = SEEK_SET;
783 fl->l_start = block->lf_start;
784 if (block->lf_end == -1)
785 fl->l_len = 0;
786 else
787 fl->l_len = block->lf_end - block->lf_start + 1;
788 if (block->lf_flags & F_POSIX)
789 fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
790 else
791 fl->l_pid = -1;
792 } else {
793 fl->l_type = F_UNLCK;
794 }
795 return 0;
796 }
797
798 /*
799 * Do an advisory lock operation.
800 */
801 int
802 lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
803 {
804 struct lwp *l = curlwp;
805 struct flock *fl = ap->a_fl;
806 struct lockf *lock = NULL;
807 struct lockf *sparelock;
808 kmutex_t *interlock = &ap->a_vp->v_interlock;
809 off_t start, end;
810 int error = 0;
811
812 /*
813 * Convert the flock structure into a start and end.
814 */
815 switch (fl->l_whence) {
816 case SEEK_SET:
817 case SEEK_CUR:
818 /*
819 * Caller is responsible for adding any necessary offset
820 * when SEEK_CUR is used.
821 */
822 start = fl->l_start;
823 break;
824
825 case SEEK_END:
826 start = size + fl->l_start;
827 break;
828
829 default:
830 return EINVAL;
831 }
832 if (start < 0)
833 return EINVAL;
834
835 /*
836 * Allocate locks before acquiring the simple lock. We need two
837 * locks in the worst case.
838 */
839 switch (ap->a_op) {
840 case F_SETLK:
841 case F_UNLCK:
842 /*
843 * XXX For F_UNLCK case, we can re-use the lock.
844 */
845 if ((ap->a_flags & F_FLOCK) == 0) {
846 /*
847 * Byte-range lock might need one more lock.
848 */
849 sparelock = lf_alloc(kauth_cred_geteuid(l->l_cred), 0);
850 if (sparelock == NULL) {
851 error = ENOMEM;
852 goto quit;
853 }
854 break;
855 }
856 /* FALLTHROUGH */
857
858 case F_GETLK:
859 sparelock = NULL;
860 break;
861
862 default:
863 return EINVAL;
864 }
865
866 lock = lf_alloc(kauth_cred_geteuid(l->l_cred),
867 ap->a_op != F_UNLCK ? 1 : 2);
868 if (lock == NULL) {
869 error = ENOMEM;
870 goto quit;
871 }
872
873 mutex_enter(interlock);
874
875 /*
876 * Avoid the common case of unlocking when inode has no locks.
877 */
878 if (*head == (struct lockf *)0) {
879 if (ap->a_op != F_SETLK) {
880 fl->l_type = F_UNLCK;
881 error = 0;
882 goto quit_unlock;
883 }
884 }
885
886 if (fl->l_len == 0)
887 end = -1;
888 else
889 end = start + fl->l_len - 1;
890 /*
891 * Create the lockf structure.
892 */
893 lock->lf_start = start;
894 lock->lf_end = end;
895 /* XXX NJWLWP
896 * I don't want to make the entire VFS universe use LWPs, because
897 * they don't need them, for the most part. This is an exception,
898 * and a kluge.
899 */
900
901 lock->lf_head = head;
902 lock->lf_type = fl->l_type;
903 lock->lf_next = (struct lockf *)0;
904 TAILQ_INIT(&lock->lf_blkhd);
905 lock->lf_flags = ap->a_flags;
906 if (lock->lf_flags & F_POSIX) {
907 KASSERT(curproc == (struct proc *)ap->a_id);
908 }
909 lock->lf_id = (struct proc *)ap->a_id;
910
911 /*
912 * Do the requested operation.
913 */
914 switch (ap->a_op) {
915
916 case F_SETLK:
917 error = lf_setlock(lock, &sparelock, interlock);
918 lock = NULL; /* lf_setlock freed it */
919 break;
920
921 case F_UNLCK:
922 error = lf_clearlock(lock, &sparelock);
923 break;
924
925 case F_GETLK:
926 error = lf_getlock(lock, fl);
927 break;
928
929 default:
930 break;
931 /* NOTREACHED */
932 }
933
934 quit_unlock:
935 mutex_exit(interlock);
936 quit:
937 if (lock)
938 lf_free(lock);
939 if (sparelock)
940 lf_free(sparelock);
941
942 return error;
943 }
944