vfs_lockf.c revision 1.60 1 /* $NetBSD: vfs_lockf.c,v 1.60 2007/07/09 21:10:57 ad Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Scooter Morris at Genentech Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)ufs_lockf.c 8.4 (Berkeley) 10/26/94
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.60 2007/07/09 21:10:57 ad Exp $");
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/file.h>
44 #include <sys/proc.h>
45 #include <sys/vnode.h>
46 #include <sys/pool.h>
47 #include <sys/fcntl.h>
48 #include <sys/lockf.h>
49 #include <sys/kauth.h>
50
51 /*
52 * The lockf structure is a kernel structure which contains the information
53 * associated with a byte range lock. The lockf structures are linked into
54 * the vnode structure. Locks are sorted by the starting byte of the lock for
55 * efficiency.
56 *
57 * lf_next is used for two purposes, depending on whether the lock is
58 * being held, or is in conflict with an existing lock. If this lock
59 * is held, it indicates the next lock on the same vnode.
60 * For pending locks, if lock->lf_next is non-NULL, then lock->lf_block
61 * must be queued on the lf_blkhd TAILQ of lock->lf_next.
62 */
63
64 TAILQ_HEAD(locklist, lockf);
65
66 struct lockf {
67 short lf_flags; /* Lock semantics: F_POSIX, F_FLOCK, F_WAIT */
68 short lf_type; /* Lock type: F_RDLCK, F_WRLCK */
69 off_t lf_start; /* The byte # of the start of the lock */
70 off_t lf_end; /* The byte # of the end of the lock (-1=EOF)*/
71 void *lf_id; /* process or file description holding lock */
72 struct lockf **lf_head; /* Back pointer to the head of lockf list */
73 struct lockf *lf_next; /* Next lock on this vnode, or blocking lock */
74 struct locklist lf_blkhd; /* List of requests blocked on this lock */
75 TAILQ_ENTRY(lockf) lf_block;/* A request waiting for a lock */
76 uid_t lf_uid; /* User ID responsible */
77 };
78
79 /* Maximum length of sleep chains to traverse to try and detect deadlock. */
80 #define MAXDEPTH 50
81
82 static POOL_INIT(lockfpool, sizeof(struct lockf), 0, 0, 0, "lockfpl",
83 &pool_allocator_nointr, IPL_NONE);
84
85 /*
86 * This variable controls the maximum number of processes that will
87 * be checked in doing deadlock detection.
88 */
89 int maxlockdepth = MAXDEPTH;
90
91 #ifdef LOCKF_DEBUG
92 int lockf_debug = 0;
93 #endif
94
95 #define SELF 0x1
96 #define OTHERS 0x2
97
98 /*
99 * XXX TODO
100 * Misc cleanups: "void *id" should be visible in the API as a
101 * "struct proc *".
102 * (This requires rototilling all VFS's which support advisory locking).
103 */
104
105 /*
106 * If there's a lot of lock contention on a single vnode, locking
107 * schemes which allow for more paralleism would be needed. Given how
108 * infrequently byte-range locks are actually used in typical BSD
109 * code, a more complex approach probably isn't worth it.
110 */
111
112 /*
113 * We enforce a limit on locks by uid, so that a single user cannot
114 * run the kernel out of memory. For now, the limit is pretty coarse.
115 * There is no limit on root.
116 *
117 * Splitting a lock will always succeed, regardless of current allocations.
118 * If you're slightly above the limit, we still have to permit an allocation
119 * so that the unlock can succeed. If the unlocking causes too many splits,
120 * however, you're totally cutoff.
121 */
122 int maxlocksperuid = 1024;
123
124 #ifdef LOCKF_DEBUG
125 /*
126 * Print out a lock.
127 */
128 static void
129 lf_print(const char *tag, struct lockf *lock)
130 {
131
132 printf("%s: lock %p for ", tag, lock);
133 if (lock->lf_flags & F_POSIX)
134 printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
135 else
136 printf("file %p", (struct file *)lock->lf_id);
137 printf(" %s, start %qx, end %qx",
138 lock->lf_type == F_RDLCK ? "shared" :
139 lock->lf_type == F_WRLCK ? "exclusive" :
140 lock->lf_type == F_UNLCK ? "unlock" :
141 "unknown", lock->lf_start, lock->lf_end);
142 if (TAILQ_FIRST(&lock->lf_blkhd))
143 printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
144 else
145 printf("\n");
146 }
147
148 static void
149 lf_printlist(const char *tag, struct lockf *lock)
150 {
151 struct lockf *lf, *blk;
152
153 printf("%s: Lock list:\n", tag);
154 for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
155 printf("\tlock %p for ", lf);
156 if (lf->lf_flags & F_POSIX)
157 printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
158 else
159 printf("file %p", (struct file *)lf->lf_id);
160 printf(", %s, start %qx, end %qx",
161 lf->lf_type == F_RDLCK ? "shared" :
162 lf->lf_type == F_WRLCK ? "exclusive" :
163 lf->lf_type == F_UNLCK ? "unlock" :
164 "unknown", lf->lf_start, lf->lf_end);
165 TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
166 if (blk->lf_flags & F_POSIX)
167 printf("proc %d",
168 ((struct proc *)blk->lf_id)->p_pid);
169 else
170 printf("file %p", (struct file *)blk->lf_id);
171 printf(", %s, start %qx, end %qx",
172 blk->lf_type == F_RDLCK ? "shared" :
173 blk->lf_type == F_WRLCK ? "exclusive" :
174 blk->lf_type == F_UNLCK ? "unlock" :
175 "unknown", blk->lf_start, blk->lf_end);
176 if (TAILQ_FIRST(&blk->lf_blkhd))
177 panic("lf_printlist: bad list");
178 }
179 printf("\n");
180 }
181 }
182 #endif /* LOCKF_DEBUG */
183
184 /*
185 * 3 options for allowfail.
186 * 0 - always allocate. 1 - cutoff at limit. 2 - cutoff at double limit.
187 */
188 static struct lockf *
189 lf_alloc(uid_t uid, int allowfail)
190 {
191 struct uidinfo *uip;
192 struct lockf *lock;
193
194 uip = uid_find(uid);
195 mutex_enter(&uip->ui_lock);
196 if (uid && allowfail && uip->ui_lockcnt >
197 (allowfail == 1 ? maxlocksperuid : (maxlocksperuid * 2))) {
198 mutex_exit(&uip->ui_lock);
199 return NULL;
200 }
201 uip->ui_lockcnt++;
202 mutex_exit(&uip->ui_lock);
203 lock = pool_get(&lockfpool, PR_WAITOK);
204 lock->lf_uid = uid;
205 return lock;
206 }
207
208 static void
209 lf_free(struct lockf *lock)
210 {
211 struct uidinfo *uip;
212
213 uip = uid_find(lock->lf_uid);
214 mutex_enter(&uip->ui_lock);
215 uip->ui_lockcnt--;
216 mutex_exit(&uip->ui_lock);
217 pool_put(&lockfpool, lock);
218 }
219
220 /*
221 * Walk the list of locks for an inode to
222 * find an overlapping lock (if any).
223 *
224 * NOTE: this returns only the FIRST overlapping lock. There
225 * may be more than one.
226 */
227 static int
228 lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
229 struct lockf ***prev, struct lockf **overlap)
230 {
231 off_t start, end;
232
233 *overlap = lf;
234 if (lf == NULL)
235 return 0;
236 #ifdef LOCKF_DEBUG
237 if (lockf_debug & 2)
238 lf_print("lf_findoverlap: looking for overlap in", lock);
239 #endif /* LOCKF_DEBUG */
240 start = lock->lf_start;
241 end = lock->lf_end;
242 while (lf != NULL) {
243 if (((type == SELF) && lf->lf_id != lock->lf_id) ||
244 ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
245 *prev = &lf->lf_next;
246 *overlap = lf = lf->lf_next;
247 continue;
248 }
249 #ifdef LOCKF_DEBUG
250 if (lockf_debug & 2)
251 lf_print("\tchecking", lf);
252 #endif /* LOCKF_DEBUG */
253 /*
254 * OK, check for overlap
255 *
256 * Six cases:
257 * 0) no overlap
258 * 1) overlap == lock
259 * 2) overlap contains lock
260 * 3) lock contains overlap
261 * 4) overlap starts before lock
262 * 5) overlap ends after lock
263 */
264 if ((lf->lf_end != -1 && start > lf->lf_end) ||
265 (end != -1 && lf->lf_start > end)) {
266 /* Case 0 */
267 #ifdef LOCKF_DEBUG
268 if (lockf_debug & 2)
269 printf("no overlap\n");
270 #endif /* LOCKF_DEBUG */
271 if ((type & SELF) && end != -1 && lf->lf_start > end)
272 return 0;
273 *prev = &lf->lf_next;
274 *overlap = lf = lf->lf_next;
275 continue;
276 }
277 if ((lf->lf_start == start) && (lf->lf_end == end)) {
278 /* Case 1 */
279 #ifdef LOCKF_DEBUG
280 if (lockf_debug & 2)
281 printf("overlap == lock\n");
282 #endif /* LOCKF_DEBUG */
283 return 1;
284 }
285 if ((lf->lf_start <= start) &&
286 (end != -1) &&
287 ((lf->lf_end >= end) || (lf->lf_end == -1))) {
288 /* Case 2 */
289 #ifdef LOCKF_DEBUG
290 if (lockf_debug & 2)
291 printf("overlap contains lock\n");
292 #endif /* LOCKF_DEBUG */
293 return 2;
294 }
295 if (start <= lf->lf_start &&
296 (end == -1 ||
297 (lf->lf_end != -1 && end >= lf->lf_end))) {
298 /* Case 3 */
299 #ifdef LOCKF_DEBUG
300 if (lockf_debug & 2)
301 printf("lock contains overlap\n");
302 #endif /* LOCKF_DEBUG */
303 return 3;
304 }
305 if ((lf->lf_start < start) &&
306 ((lf->lf_end >= start) || (lf->lf_end == -1))) {
307 /* Case 4 */
308 #ifdef LOCKF_DEBUG
309 if (lockf_debug & 2)
310 printf("overlap starts before lock\n");
311 #endif /* LOCKF_DEBUG */
312 return 4;
313 }
314 if ((lf->lf_start > start) &&
315 (end != -1) &&
316 ((lf->lf_end > end) || (lf->lf_end == -1))) {
317 /* Case 5 */
318 #ifdef LOCKF_DEBUG
319 if (lockf_debug & 2)
320 printf("overlap ends after lock\n");
321 #endif /* LOCKF_DEBUG */
322 return 5;
323 }
324 panic("lf_findoverlap: default");
325 }
326 return 0;
327 }
328
329 /*
330 * Split a lock and a contained region into
331 * two or three locks as necessary.
332 */
333 static void
334 lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
335 {
336 struct lockf *splitlock;
337
338 #ifdef LOCKF_DEBUG
339 if (lockf_debug & 2) {
340 lf_print("lf_split", lock1);
341 lf_print("splitting from", lock2);
342 }
343 #endif /* LOCKF_DEBUG */
344 /*
345 * Check to see if spliting into only two pieces.
346 */
347 if (lock1->lf_start == lock2->lf_start) {
348 lock1->lf_start = lock2->lf_end + 1;
349 lock2->lf_next = lock1;
350 return;
351 }
352 if (lock1->lf_end == lock2->lf_end) {
353 lock1->lf_end = lock2->lf_start - 1;
354 lock2->lf_next = lock1->lf_next;
355 lock1->lf_next = lock2;
356 return;
357 }
358 /*
359 * Make a new lock consisting of the last part of
360 * the encompassing lock
361 */
362 splitlock = *sparelock;
363 *sparelock = NULL;
364 memcpy(splitlock, lock1, sizeof(*splitlock));
365 splitlock->lf_start = lock2->lf_end + 1;
366 TAILQ_INIT(&splitlock->lf_blkhd);
367 lock1->lf_end = lock2->lf_start - 1;
368 /*
369 * OK, now link it in
370 */
371 splitlock->lf_next = lock1->lf_next;
372 lock2->lf_next = splitlock;
373 lock1->lf_next = lock2;
374 }
375
376 /*
377 * Wakeup a blocklist
378 */
379 static void
380 lf_wakelock(struct lockf *listhead)
381 {
382 struct lockf *wakelock;
383
384 while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
385 KASSERT(wakelock->lf_next == listhead);
386 TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
387 wakelock->lf_next = NULL;
388 #ifdef LOCKF_DEBUG
389 if (lockf_debug & 2)
390 lf_print("lf_wakelock: awakening", wakelock);
391 #endif
392 wakeup(wakelock);
393 }
394 }
395
396 /*
397 * Remove a byte-range lock on an inode.
398 *
399 * Generally, find the lock (or an overlap to that lock)
400 * and remove it (or shrink it), then wakeup anyone we can.
401 */
402 static int
403 lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
404 {
405 struct lockf **head = unlock->lf_head;
406 struct lockf *lf = *head;
407 struct lockf *overlap, **prev;
408 int ovcase;
409
410 if (lf == NULL)
411 return 0;
412 #ifdef LOCKF_DEBUG
413 if (unlock->lf_type != F_UNLCK)
414 panic("lf_clearlock: bad type");
415 if (lockf_debug & 1)
416 lf_print("lf_clearlock", unlock);
417 #endif /* LOCKF_DEBUG */
418 prev = head;
419 while ((ovcase = lf_findoverlap(lf, unlock, SELF,
420 &prev, &overlap)) != 0) {
421 /*
422 * Wakeup the list of locks to be retried.
423 */
424 lf_wakelock(overlap);
425
426 switch (ovcase) {
427
428 case 1: /* overlap == lock */
429 *prev = overlap->lf_next;
430 lf_free(overlap);
431 break;
432
433 case 2: /* overlap contains lock: split it */
434 if (overlap->lf_start == unlock->lf_start) {
435 overlap->lf_start = unlock->lf_end + 1;
436 break;
437 }
438 lf_split(overlap, unlock, sparelock);
439 overlap->lf_next = unlock->lf_next;
440 break;
441
442 case 3: /* lock contains overlap */
443 *prev = overlap->lf_next;
444 lf = overlap->lf_next;
445 lf_free(overlap);
446 continue;
447
448 case 4: /* overlap starts before lock */
449 overlap->lf_end = unlock->lf_start - 1;
450 prev = &overlap->lf_next;
451 lf = overlap->lf_next;
452 continue;
453
454 case 5: /* overlap ends after lock */
455 overlap->lf_start = unlock->lf_end + 1;
456 break;
457 }
458 break;
459 }
460 #ifdef LOCKF_DEBUG
461 if (lockf_debug & 1)
462 lf_printlist("lf_clearlock", unlock);
463 #endif /* LOCKF_DEBUG */
464 return 0;
465 }
466
467 /*
468 * Walk the list of locks for an inode and
469 * return the first blocking lock.
470 */
471 static struct lockf *
472 lf_getblock(struct lockf *lock)
473 {
474 struct lockf **prev, *overlap, *lf = *(lock->lf_head);
475
476 prev = lock->lf_head;
477 while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
478 /*
479 * We've found an overlap, see if it blocks us
480 */
481 if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
482 return overlap;
483 /*
484 * Nope, point to the next one on the list and
485 * see if it blocks us
486 */
487 lf = overlap->lf_next;
488 }
489 return NULL;
490 }
491
492 /*
493 * Set a byte-range lock.
494 */
495 static int
496 lf_setlock(struct lockf *lock, struct lockf **sparelock,
497 struct simplelock *interlock)
498 {
499 struct lockf *block;
500 struct lockf **head = lock->lf_head;
501 struct lockf **prev, *overlap, *ltmp;
502 static char lockstr[] = "lockf";
503 int ovcase, priority, needtolink, error;
504
505 #ifdef LOCKF_DEBUG
506 if (lockf_debug & 1)
507 lf_print("lf_setlock", lock);
508 #endif /* LOCKF_DEBUG */
509
510 /*
511 * Set the priority
512 */
513 priority = PLOCK;
514 if (lock->lf_type == F_WRLCK)
515 priority += 4;
516 priority |= PCATCH;
517 /*
518 * Scan lock list for this file looking for locks that would block us.
519 */
520 while ((block = lf_getblock(lock)) != NULL) {
521 /*
522 * Free the structure and return if nonblocking.
523 */
524 if ((lock->lf_flags & F_WAIT) == 0) {
525 lf_free(lock);
526 return EAGAIN;
527 }
528 /*
529 * We are blocked. Since flock style locks cover
530 * the whole file, there is no chance for deadlock.
531 * For byte-range locks we must check for deadlock.
532 *
533 * Deadlock detection is done by looking through the
534 * wait channels to see if there are any cycles that
535 * involve us. MAXDEPTH is set just to make sure we
536 * do not go off into neverneverland.
537 */
538 if ((lock->lf_flags & F_POSIX) &&
539 (block->lf_flags & F_POSIX)) {
540 struct lwp *wlwp;
541 volatile const struct lockf *waitblock;
542 int i = 0;
543 struct proc *p;
544
545 p = (struct proc *)block->lf_id;
546 KASSERT(p != NULL);
547 while (i++ < maxlockdepth) {
548 mutex_enter(&p->p_smutex);
549 if (p->p_nlwps > 1) {
550 mutex_exit(&p->p_smutex);
551 break;
552 }
553 wlwp = LIST_FIRST(&p->p_lwps);
554 lwp_lock(wlwp);
555 if (wlwp->l_wmesg != lockstr) {
556 lwp_unlock(wlwp);
557 mutex_exit(&p->p_smutex);
558 break;
559 }
560 waitblock = wlwp->l_wchan;
561 lwp_unlock(wlwp);
562 mutex_exit(&p->p_smutex);
563 if (waitblock == NULL) {
564 /*
565 * this lwp just got up but
566 * not returned from ltsleep yet.
567 */
568 break;
569 }
570 /* Get the owner of the blocking lock */
571 waitblock = waitblock->lf_next;
572 if ((waitblock->lf_flags & F_POSIX) == 0)
573 break;
574 p = (struct proc *)waitblock->lf_id;
575 if (p == curproc) {
576 lf_free(lock);
577 return EDEADLK;
578 }
579 }
580 /*
581 * If we're still following a dependency chain
582 * after maxlockdepth iterations, assume we're in
583 * a cycle to be safe.
584 */
585 if (i >= maxlockdepth) {
586 lf_free(lock);
587 return EDEADLK;
588 }
589 }
590 /*
591 * For flock type locks, we must first remove
592 * any shared locks that we hold before we sleep
593 * waiting for an exclusive lock.
594 */
595 if ((lock->lf_flags & F_FLOCK) &&
596 lock->lf_type == F_WRLCK) {
597 lock->lf_type = F_UNLCK;
598 (void) lf_clearlock(lock, NULL);
599 lock->lf_type = F_WRLCK;
600 }
601 /*
602 * Add our lock to the blocked list and sleep until we're free.
603 * Remember who blocked us (for deadlock detection).
604 */
605 lock->lf_next = block;
606 TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
607 #ifdef LOCKF_DEBUG
608 if (lockf_debug & 1) {
609 lf_print("lf_setlock: blocking on", block);
610 lf_printlist("lf_setlock", block);
611 }
612 #endif /* LOCKF_DEBUG */
613 error = ltsleep(lock, priority, lockstr, 0, interlock);
614
615 /*
616 * We may have been awakened by a signal (in
617 * which case we must remove ourselves from the
618 * blocked list) and/or by another process
619 * releasing a lock (in which case we have already
620 * been removed from the blocked list and our
621 * lf_next field set to NULL).
622 */
623 if (lock->lf_next != NULL) {
624 TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
625 lock->lf_next = NULL;
626 }
627 if (error) {
628 lf_free(lock);
629 return error;
630 }
631 }
632 /*
633 * No blocks!! Add the lock. Note that we will
634 * downgrade or upgrade any overlapping locks this
635 * process already owns.
636 *
637 * Skip over locks owned by other processes.
638 * Handle any locks that overlap and are owned by ourselves.
639 */
640 prev = head;
641 block = *head;
642 needtolink = 1;
643 for (;;) {
644 ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
645 if (ovcase)
646 block = overlap->lf_next;
647 /*
648 * Six cases:
649 * 0) no overlap
650 * 1) overlap == lock
651 * 2) overlap contains lock
652 * 3) lock contains overlap
653 * 4) overlap starts before lock
654 * 5) overlap ends after lock
655 */
656 switch (ovcase) {
657 case 0: /* no overlap */
658 if (needtolink) {
659 *prev = lock;
660 lock->lf_next = overlap;
661 }
662 break;
663
664 case 1: /* overlap == lock */
665 /*
666 * If downgrading lock, others may be
667 * able to acquire it.
668 */
669 if (lock->lf_type == F_RDLCK &&
670 overlap->lf_type == F_WRLCK)
671 lf_wakelock(overlap);
672 overlap->lf_type = lock->lf_type;
673 lf_free(lock);
674 lock = overlap; /* for debug output below */
675 break;
676
677 case 2: /* overlap contains lock */
678 /*
679 * Check for common starting point and different types.
680 */
681 if (overlap->lf_type == lock->lf_type) {
682 lf_free(lock);
683 lock = overlap; /* for debug output below */
684 break;
685 }
686 if (overlap->lf_start == lock->lf_start) {
687 *prev = lock;
688 lock->lf_next = overlap;
689 overlap->lf_start = lock->lf_end + 1;
690 } else
691 lf_split(overlap, lock, sparelock);
692 lf_wakelock(overlap);
693 break;
694
695 case 3: /* lock contains overlap */
696 /*
697 * If downgrading lock, others may be able to
698 * acquire it, otherwise take the list.
699 */
700 if (lock->lf_type == F_RDLCK &&
701 overlap->lf_type == F_WRLCK) {
702 lf_wakelock(overlap);
703 } else {
704 while ((ltmp = TAILQ_FIRST(&overlap->lf_blkhd))) {
705 KASSERT(ltmp->lf_next == overlap);
706 TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
707 lf_block);
708 ltmp->lf_next = lock;
709 TAILQ_INSERT_TAIL(&lock->lf_blkhd,
710 ltmp, lf_block);
711 }
712 }
713 /*
714 * Add the new lock if necessary and delete the overlap.
715 */
716 if (needtolink) {
717 *prev = lock;
718 lock->lf_next = overlap->lf_next;
719 prev = &lock->lf_next;
720 needtolink = 0;
721 } else
722 *prev = overlap->lf_next;
723 lf_free(overlap);
724 continue;
725
726 case 4: /* overlap starts before lock */
727 /*
728 * Add lock after overlap on the list.
729 */
730 lock->lf_next = overlap->lf_next;
731 overlap->lf_next = lock;
732 overlap->lf_end = lock->lf_start - 1;
733 prev = &lock->lf_next;
734 lf_wakelock(overlap);
735 needtolink = 0;
736 continue;
737
738 case 5: /* overlap ends after lock */
739 /*
740 * Add the new lock before overlap.
741 */
742 if (needtolink) {
743 *prev = lock;
744 lock->lf_next = overlap;
745 }
746 overlap->lf_start = lock->lf_end + 1;
747 lf_wakelock(overlap);
748 break;
749 }
750 break;
751 }
752 #ifdef LOCKF_DEBUG
753 if (lockf_debug & 1) {
754 lf_print("lf_setlock: got the lock", lock);
755 lf_printlist("lf_setlock", lock);
756 }
757 #endif /* LOCKF_DEBUG */
758 return 0;
759 }
760
761 /*
762 * Check whether there is a blocking lock,
763 * and if so return its process identifier.
764 */
765 static int
766 lf_getlock(struct lockf *lock, struct flock *fl)
767 {
768 struct lockf *block;
769
770 #ifdef LOCKF_DEBUG
771 if (lockf_debug & 1)
772 lf_print("lf_getlock", lock);
773 #endif /* LOCKF_DEBUG */
774
775 if ((block = lf_getblock(lock)) != NULL) {
776 fl->l_type = block->lf_type;
777 fl->l_whence = SEEK_SET;
778 fl->l_start = block->lf_start;
779 if (block->lf_end == -1)
780 fl->l_len = 0;
781 else
782 fl->l_len = block->lf_end - block->lf_start + 1;
783 if (block->lf_flags & F_POSIX)
784 fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
785 else
786 fl->l_pid = -1;
787 } else {
788 fl->l_type = F_UNLCK;
789 }
790 return 0;
791 }
792
793 /*
794 * Do an advisory lock operation.
795 */
796 int
797 lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
798 {
799 struct lwp *l = curlwp;
800 struct flock *fl = ap->a_fl;
801 struct lockf *lock = NULL;
802 struct lockf *sparelock;
803 struct simplelock *interlock = &ap->a_vp->v_interlock;
804 off_t start, end;
805 int error = 0;
806
807 /*
808 * Convert the flock structure into a start and end.
809 */
810 switch (fl->l_whence) {
811 case SEEK_SET:
812 case SEEK_CUR:
813 /*
814 * Caller is responsible for adding any necessary offset
815 * when SEEK_CUR is used.
816 */
817 start = fl->l_start;
818 break;
819
820 case SEEK_END:
821 start = size + fl->l_start;
822 break;
823
824 default:
825 return EINVAL;
826 }
827 if (start < 0)
828 return EINVAL;
829
830 /*
831 * Allocate locks before acquiring the simple lock. We need two
832 * locks in the worst case.
833 */
834 switch (ap->a_op) {
835 case F_SETLK:
836 case F_UNLCK:
837 /*
838 * XXX For F_UNLCK case, we can re-use the lock.
839 */
840 if ((ap->a_flags & F_FLOCK) == 0) {
841 /*
842 * Byte-range lock might need one more lock.
843 */
844 sparelock = lf_alloc(kauth_cred_geteuid(l->l_cred), 0);
845 if (sparelock == NULL) {
846 error = ENOMEM;
847 goto quit;
848 }
849 break;
850 }
851 /* FALLTHROUGH */
852
853 case F_GETLK:
854 sparelock = NULL;
855 break;
856
857 default:
858 return EINVAL;
859 }
860
861 lock = lf_alloc(kauth_cred_geteuid(l->l_cred),
862 ap->a_op != F_UNLCK ? 1 : 2);
863 if (lock == NULL) {
864 error = ENOMEM;
865 goto quit;
866 }
867
868 simple_lock(interlock);
869
870 /*
871 * Avoid the common case of unlocking when inode has no locks.
872 */
873 if (*head == (struct lockf *)0) {
874 if (ap->a_op != F_SETLK) {
875 fl->l_type = F_UNLCK;
876 error = 0;
877 goto quit_unlock;
878 }
879 }
880
881 if (fl->l_len == 0)
882 end = -1;
883 else
884 end = start + fl->l_len - 1;
885 /*
886 * Create the lockf structure.
887 */
888 lock->lf_start = start;
889 lock->lf_end = end;
890 /* XXX NJWLWP
891 * I don't want to make the entire VFS universe use LWPs, because
892 * they don't need them, for the most part. This is an exception,
893 * and a kluge.
894 */
895
896 lock->lf_head = head;
897 lock->lf_type = fl->l_type;
898 lock->lf_next = (struct lockf *)0;
899 TAILQ_INIT(&lock->lf_blkhd);
900 lock->lf_flags = ap->a_flags;
901 if (lock->lf_flags & F_POSIX) {
902 KASSERT(curproc == (struct proc *)ap->a_id);
903 }
904 lock->lf_id = (struct proc *)ap->a_id;
905
906 /*
907 * Do the requested operation.
908 */
909 switch (ap->a_op) {
910
911 case F_SETLK:
912 error = lf_setlock(lock, &sparelock, interlock);
913 lock = NULL; /* lf_setlock freed it */
914 break;
915
916 case F_UNLCK:
917 error = lf_clearlock(lock, &sparelock);
918 break;
919
920 case F_GETLK:
921 error = lf_getlock(lock, fl);
922 break;
923
924 default:
925 break;
926 /* NOTREACHED */
927 }
928
929 quit_unlock:
930 simple_unlock(interlock);
931 quit:
932 if (lock)
933 lf_free(lock);
934 if (sparelock)
935 lf_free(sparelock);
936
937 return error;
938 }
939