Home | History | Annotate | Line # | Download | only in kern
vfs_lockf.c revision 1.60
      1 /*	$NetBSD: vfs_lockf.c,v 1.60 2007/07/09 21:10:57 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Scooter Morris at Genentech Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  *
     34  *	@(#)ufs_lockf.c	8.4 (Berkeley) 10/26/94
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.60 2007/07/09 21:10:57 ad Exp $");
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/kernel.h>
     43 #include <sys/file.h>
     44 #include <sys/proc.h>
     45 #include <sys/vnode.h>
     46 #include <sys/pool.h>
     47 #include <sys/fcntl.h>
     48 #include <sys/lockf.h>
     49 #include <sys/kauth.h>
     50 
     51 /*
     52  * The lockf structure is a kernel structure which contains the information
     53  * associated with a byte range lock.  The lockf structures are linked into
     54  * the vnode structure.  Locks are sorted by the starting byte of the lock for
     55  * efficiency.
     56  *
     57  * lf_next is used for two purposes, depending on whether the lock is
     58  * being held, or is in conflict with an existing lock.  If this lock
     59  * is held, it indicates the next lock on the same vnode.
     60  * For pending locks, if lock->lf_next is non-NULL, then lock->lf_block
     61  * must be queued on the lf_blkhd TAILQ of lock->lf_next.
     62  */
     63 
     64 TAILQ_HEAD(locklist, lockf);
     65 
     66 struct lockf {
     67 	short	lf_flags;	 /* Lock semantics: F_POSIX, F_FLOCK, F_WAIT */
     68 	short	lf_type;	 /* Lock type: F_RDLCK, F_WRLCK */
     69 	off_t	lf_start;	 /* The byte # of the start of the lock */
     70 	off_t	lf_end;		 /* The byte # of the end of the lock (-1=EOF)*/
     71 	void	*lf_id;		 /* process or file description holding lock */
     72 	struct	lockf **lf_head; /* Back pointer to the head of lockf list */
     73 	struct	lockf *lf_next;	 /* Next lock on this vnode, or blocking lock */
     74 	struct  locklist lf_blkhd; /* List of requests blocked on this lock */
     75 	TAILQ_ENTRY(lockf) lf_block;/* A request waiting for a lock */
     76 	uid_t	lf_uid;		 /* User ID responsible */
     77 };
     78 
     79 /* Maximum length of sleep chains to traverse to try and detect deadlock. */
     80 #define MAXDEPTH 50
     81 
     82 static POOL_INIT(lockfpool, sizeof(struct lockf), 0, 0, 0, "lockfpl",
     83     &pool_allocator_nointr, IPL_NONE);
     84 
     85 /*
     86  * This variable controls the maximum number of processes that will
     87  * be checked in doing deadlock detection.
     88  */
     89 int maxlockdepth = MAXDEPTH;
     90 
     91 #ifdef LOCKF_DEBUG
     92 int	lockf_debug = 0;
     93 #endif
     94 
     95 #define SELF	0x1
     96 #define OTHERS	0x2
     97 
     98 /*
     99  * XXX TODO
    100  * Misc cleanups: "void *id" should be visible in the API as a
    101  * "struct proc *".
    102  * (This requires rototilling all VFS's which support advisory locking).
    103  */
    104 
    105 /*
    106  * If there's a lot of lock contention on a single vnode, locking
    107  * schemes which allow for more paralleism would be needed.  Given how
    108  * infrequently byte-range locks are actually used in typical BSD
    109  * code, a more complex approach probably isn't worth it.
    110  */
    111 
    112 /*
    113  * We enforce a limit on locks by uid, so that a single user cannot
    114  * run the kernel out of memory.  For now, the limit is pretty coarse.
    115  * There is no limit on root.
    116  *
    117  * Splitting a lock will always succeed, regardless of current allocations.
    118  * If you're slightly above the limit, we still have to permit an allocation
    119  * so that the unlock can succeed.  If the unlocking causes too many splits,
    120  * however, you're totally cutoff.
    121  */
    122 int maxlocksperuid = 1024;
    123 
    124 #ifdef LOCKF_DEBUG
    125 /*
    126  * Print out a lock.
    127  */
    128 static void
    129 lf_print(const char *tag, struct lockf *lock)
    130 {
    131 
    132 	printf("%s: lock %p for ", tag, lock);
    133 	if (lock->lf_flags & F_POSIX)
    134 		printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
    135 	else
    136 		printf("file %p", (struct file *)lock->lf_id);
    137 	printf(" %s, start %qx, end %qx",
    138 		lock->lf_type == F_RDLCK ? "shared" :
    139 		lock->lf_type == F_WRLCK ? "exclusive" :
    140 		lock->lf_type == F_UNLCK ? "unlock" :
    141 		"unknown", lock->lf_start, lock->lf_end);
    142 	if (TAILQ_FIRST(&lock->lf_blkhd))
    143 		printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
    144 	else
    145 		printf("\n");
    146 }
    147 
    148 static void
    149 lf_printlist(const char *tag, struct lockf *lock)
    150 {
    151 	struct lockf *lf, *blk;
    152 
    153 	printf("%s: Lock list:\n", tag);
    154 	for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
    155 		printf("\tlock %p for ", lf);
    156 		if (lf->lf_flags & F_POSIX)
    157 			printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
    158 		else
    159 			printf("file %p", (struct file *)lf->lf_id);
    160 		printf(", %s, start %qx, end %qx",
    161 			lf->lf_type == F_RDLCK ? "shared" :
    162 			lf->lf_type == F_WRLCK ? "exclusive" :
    163 			lf->lf_type == F_UNLCK ? "unlock" :
    164 			"unknown", lf->lf_start, lf->lf_end);
    165 		TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
    166 			if (blk->lf_flags & F_POSIX)
    167 				printf("proc %d",
    168 				    ((struct proc *)blk->lf_id)->p_pid);
    169 			else
    170 				printf("file %p", (struct file *)blk->lf_id);
    171 			printf(", %s, start %qx, end %qx",
    172 				blk->lf_type == F_RDLCK ? "shared" :
    173 				blk->lf_type == F_WRLCK ? "exclusive" :
    174 				blk->lf_type == F_UNLCK ? "unlock" :
    175 				"unknown", blk->lf_start, blk->lf_end);
    176 			if (TAILQ_FIRST(&blk->lf_blkhd))
    177 				 panic("lf_printlist: bad list");
    178 		}
    179 		printf("\n");
    180 	}
    181 }
    182 #endif /* LOCKF_DEBUG */
    183 
    184 /*
    185  * 3 options for allowfail.
    186  * 0 - always allocate.  1 - cutoff at limit.  2 - cutoff at double limit.
    187  */
    188 static struct lockf *
    189 lf_alloc(uid_t uid, int allowfail)
    190 {
    191 	struct uidinfo *uip;
    192 	struct lockf *lock;
    193 
    194 	uip = uid_find(uid);
    195 	mutex_enter(&uip->ui_lock);
    196 	if (uid && allowfail && uip->ui_lockcnt >
    197 	    (allowfail == 1 ? maxlocksperuid : (maxlocksperuid * 2))) {
    198 		mutex_exit(&uip->ui_lock);
    199 		return NULL;
    200 	}
    201 	uip->ui_lockcnt++;
    202 	mutex_exit(&uip->ui_lock);
    203 	lock = pool_get(&lockfpool, PR_WAITOK);
    204 	lock->lf_uid = uid;
    205 	return lock;
    206 }
    207 
    208 static void
    209 lf_free(struct lockf *lock)
    210 {
    211 	struct uidinfo *uip;
    212 
    213 	uip = uid_find(lock->lf_uid);
    214 	mutex_enter(&uip->ui_lock);
    215 	uip->ui_lockcnt--;
    216 	mutex_exit(&uip->ui_lock);
    217 	pool_put(&lockfpool, lock);
    218 }
    219 
    220 /*
    221  * Walk the list of locks for an inode to
    222  * find an overlapping lock (if any).
    223  *
    224  * NOTE: this returns only the FIRST overlapping lock.  There
    225  *	 may be more than one.
    226  */
    227 static int
    228 lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
    229     struct lockf ***prev, struct lockf **overlap)
    230 {
    231 	off_t start, end;
    232 
    233 	*overlap = lf;
    234 	if (lf == NULL)
    235 		return 0;
    236 #ifdef LOCKF_DEBUG
    237 	if (lockf_debug & 2)
    238 		lf_print("lf_findoverlap: looking for overlap in", lock);
    239 #endif /* LOCKF_DEBUG */
    240 	start = lock->lf_start;
    241 	end = lock->lf_end;
    242 	while (lf != NULL) {
    243 		if (((type == SELF) && lf->lf_id != lock->lf_id) ||
    244 		    ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
    245 			*prev = &lf->lf_next;
    246 			*overlap = lf = lf->lf_next;
    247 			continue;
    248 		}
    249 #ifdef LOCKF_DEBUG
    250 		if (lockf_debug & 2)
    251 			lf_print("\tchecking", lf);
    252 #endif /* LOCKF_DEBUG */
    253 		/*
    254 		 * OK, check for overlap
    255 		 *
    256 		 * Six cases:
    257 		 *	0) no overlap
    258 		 *	1) overlap == lock
    259 		 *	2) overlap contains lock
    260 		 *	3) lock contains overlap
    261 		 *	4) overlap starts before lock
    262 		 *	5) overlap ends after lock
    263 		 */
    264 		if ((lf->lf_end != -1 && start > lf->lf_end) ||
    265 		    (end != -1 && lf->lf_start > end)) {
    266 			/* Case 0 */
    267 #ifdef LOCKF_DEBUG
    268 			if (lockf_debug & 2)
    269 				printf("no overlap\n");
    270 #endif /* LOCKF_DEBUG */
    271 			if ((type & SELF) && end != -1 && lf->lf_start > end)
    272 				return 0;
    273 			*prev = &lf->lf_next;
    274 			*overlap = lf = lf->lf_next;
    275 			continue;
    276 		}
    277 		if ((lf->lf_start == start) && (lf->lf_end == end)) {
    278 			/* Case 1 */
    279 #ifdef LOCKF_DEBUG
    280 			if (lockf_debug & 2)
    281 				printf("overlap == lock\n");
    282 #endif /* LOCKF_DEBUG */
    283 			return 1;
    284 		}
    285 		if ((lf->lf_start <= start) &&
    286 		    (end != -1) &&
    287 		    ((lf->lf_end >= end) || (lf->lf_end == -1))) {
    288 			/* Case 2 */
    289 #ifdef LOCKF_DEBUG
    290 			if (lockf_debug & 2)
    291 				printf("overlap contains lock\n");
    292 #endif /* LOCKF_DEBUG */
    293 			return 2;
    294 		}
    295 		if (start <= lf->lf_start &&
    296 		           (end == -1 ||
    297 			   (lf->lf_end != -1 && end >= lf->lf_end))) {
    298 			/* Case 3 */
    299 #ifdef LOCKF_DEBUG
    300 			if (lockf_debug & 2)
    301 				printf("lock contains overlap\n");
    302 #endif /* LOCKF_DEBUG */
    303 			return 3;
    304 		}
    305 		if ((lf->lf_start < start) &&
    306 			((lf->lf_end >= start) || (lf->lf_end == -1))) {
    307 			/* Case 4 */
    308 #ifdef LOCKF_DEBUG
    309 			if (lockf_debug & 2)
    310 				printf("overlap starts before lock\n");
    311 #endif /* LOCKF_DEBUG */
    312 			return 4;
    313 		}
    314 		if ((lf->lf_start > start) &&
    315 			(end != -1) &&
    316 			((lf->lf_end > end) || (lf->lf_end == -1))) {
    317 			/* Case 5 */
    318 #ifdef LOCKF_DEBUG
    319 			if (lockf_debug & 2)
    320 				printf("overlap ends after lock\n");
    321 #endif /* LOCKF_DEBUG */
    322 			return 5;
    323 		}
    324 		panic("lf_findoverlap: default");
    325 	}
    326 	return 0;
    327 }
    328 
    329 /*
    330  * Split a lock and a contained region into
    331  * two or three locks as necessary.
    332  */
    333 static void
    334 lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
    335 {
    336 	struct lockf *splitlock;
    337 
    338 #ifdef LOCKF_DEBUG
    339 	if (lockf_debug & 2) {
    340 		lf_print("lf_split", lock1);
    341 		lf_print("splitting from", lock2);
    342 	}
    343 #endif /* LOCKF_DEBUG */
    344 	/*
    345 	 * Check to see if spliting into only two pieces.
    346 	 */
    347 	if (lock1->lf_start == lock2->lf_start) {
    348 		lock1->lf_start = lock2->lf_end + 1;
    349 		lock2->lf_next = lock1;
    350 		return;
    351 	}
    352 	if (lock1->lf_end == lock2->lf_end) {
    353 		lock1->lf_end = lock2->lf_start - 1;
    354 		lock2->lf_next = lock1->lf_next;
    355 		lock1->lf_next = lock2;
    356 		return;
    357 	}
    358 	/*
    359 	 * Make a new lock consisting of the last part of
    360 	 * the encompassing lock
    361 	 */
    362 	splitlock = *sparelock;
    363 	*sparelock = NULL;
    364 	memcpy(splitlock, lock1, sizeof(*splitlock));
    365 	splitlock->lf_start = lock2->lf_end + 1;
    366 	TAILQ_INIT(&splitlock->lf_blkhd);
    367 	lock1->lf_end = lock2->lf_start - 1;
    368 	/*
    369 	 * OK, now link it in
    370 	 */
    371 	splitlock->lf_next = lock1->lf_next;
    372 	lock2->lf_next = splitlock;
    373 	lock1->lf_next = lock2;
    374 }
    375 
    376 /*
    377  * Wakeup a blocklist
    378  */
    379 static void
    380 lf_wakelock(struct lockf *listhead)
    381 {
    382 	struct lockf *wakelock;
    383 
    384 	while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
    385 		KASSERT(wakelock->lf_next == listhead);
    386 		TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
    387 		wakelock->lf_next = NULL;
    388 #ifdef LOCKF_DEBUG
    389 		if (lockf_debug & 2)
    390 			lf_print("lf_wakelock: awakening", wakelock);
    391 #endif
    392 		wakeup(wakelock);
    393 	}
    394 }
    395 
    396 /*
    397  * Remove a byte-range lock on an inode.
    398  *
    399  * Generally, find the lock (or an overlap to that lock)
    400  * and remove it (or shrink it), then wakeup anyone we can.
    401  */
    402 static int
    403 lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
    404 {
    405 	struct lockf **head = unlock->lf_head;
    406 	struct lockf *lf = *head;
    407 	struct lockf *overlap, **prev;
    408 	int ovcase;
    409 
    410 	if (lf == NULL)
    411 		return 0;
    412 #ifdef LOCKF_DEBUG
    413 	if (unlock->lf_type != F_UNLCK)
    414 		panic("lf_clearlock: bad type");
    415 	if (lockf_debug & 1)
    416 		lf_print("lf_clearlock", unlock);
    417 #endif /* LOCKF_DEBUG */
    418 	prev = head;
    419 	while ((ovcase = lf_findoverlap(lf, unlock, SELF,
    420 					&prev, &overlap)) != 0) {
    421 		/*
    422 		 * Wakeup the list of locks to be retried.
    423 		 */
    424 		lf_wakelock(overlap);
    425 
    426 		switch (ovcase) {
    427 
    428 		case 1: /* overlap == lock */
    429 			*prev = overlap->lf_next;
    430 			lf_free(overlap);
    431 			break;
    432 
    433 		case 2: /* overlap contains lock: split it */
    434 			if (overlap->lf_start == unlock->lf_start) {
    435 				overlap->lf_start = unlock->lf_end + 1;
    436 				break;
    437 			}
    438 			lf_split(overlap, unlock, sparelock);
    439 			overlap->lf_next = unlock->lf_next;
    440 			break;
    441 
    442 		case 3: /* lock contains overlap */
    443 			*prev = overlap->lf_next;
    444 			lf = overlap->lf_next;
    445 			lf_free(overlap);
    446 			continue;
    447 
    448 		case 4: /* overlap starts before lock */
    449 			overlap->lf_end = unlock->lf_start - 1;
    450 			prev = &overlap->lf_next;
    451 			lf = overlap->lf_next;
    452 			continue;
    453 
    454 		case 5: /* overlap ends after lock */
    455 			overlap->lf_start = unlock->lf_end + 1;
    456 			break;
    457 		}
    458 		break;
    459 	}
    460 #ifdef LOCKF_DEBUG
    461 	if (lockf_debug & 1)
    462 		lf_printlist("lf_clearlock", unlock);
    463 #endif /* LOCKF_DEBUG */
    464 	return 0;
    465 }
    466 
    467 /*
    468  * Walk the list of locks for an inode and
    469  * return the first blocking lock.
    470  */
    471 static struct lockf *
    472 lf_getblock(struct lockf *lock)
    473 {
    474 	struct lockf **prev, *overlap, *lf = *(lock->lf_head);
    475 
    476 	prev = lock->lf_head;
    477 	while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
    478 		/*
    479 		 * We've found an overlap, see if it blocks us
    480 		 */
    481 		if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
    482 			return overlap;
    483 		/*
    484 		 * Nope, point to the next one on the list and
    485 		 * see if it blocks us
    486 		 */
    487 		lf = overlap->lf_next;
    488 	}
    489 	return NULL;
    490 }
    491 
    492 /*
    493  * Set a byte-range lock.
    494  */
    495 static int
    496 lf_setlock(struct lockf *lock, struct lockf **sparelock,
    497     struct simplelock *interlock)
    498 {
    499 	struct lockf *block;
    500 	struct lockf **head = lock->lf_head;
    501 	struct lockf **prev, *overlap, *ltmp;
    502 	static char lockstr[] = "lockf";
    503 	int ovcase, priority, needtolink, error;
    504 
    505 #ifdef LOCKF_DEBUG
    506 	if (lockf_debug & 1)
    507 		lf_print("lf_setlock", lock);
    508 #endif /* LOCKF_DEBUG */
    509 
    510 	/*
    511 	 * Set the priority
    512 	 */
    513 	priority = PLOCK;
    514 	if (lock->lf_type == F_WRLCK)
    515 		priority += 4;
    516 	priority |= PCATCH;
    517 	/*
    518 	 * Scan lock list for this file looking for locks that would block us.
    519 	 */
    520 	while ((block = lf_getblock(lock)) != NULL) {
    521 		/*
    522 		 * Free the structure and return if nonblocking.
    523 		 */
    524 		if ((lock->lf_flags & F_WAIT) == 0) {
    525 			lf_free(lock);
    526 			return EAGAIN;
    527 		}
    528 		/*
    529 		 * We are blocked. Since flock style locks cover
    530 		 * the whole file, there is no chance for deadlock.
    531 		 * For byte-range locks we must check for deadlock.
    532 		 *
    533 		 * Deadlock detection is done by looking through the
    534 		 * wait channels to see if there are any cycles that
    535 		 * involve us. MAXDEPTH is set just to make sure we
    536 		 * do not go off into neverneverland.
    537 		 */
    538 		if ((lock->lf_flags & F_POSIX) &&
    539 		    (block->lf_flags & F_POSIX)) {
    540 			struct lwp *wlwp;
    541 			volatile const struct lockf *waitblock;
    542 			int i = 0;
    543 			struct proc *p;
    544 
    545 			p = (struct proc *)block->lf_id;
    546 			KASSERT(p != NULL);
    547 			while (i++ < maxlockdepth) {
    548 				mutex_enter(&p->p_smutex);
    549 				if (p->p_nlwps > 1) {
    550 					mutex_exit(&p->p_smutex);
    551 					break;
    552 				}
    553 				wlwp = LIST_FIRST(&p->p_lwps);
    554 				lwp_lock(wlwp);
    555 				if (wlwp->l_wmesg != lockstr) {
    556 					lwp_unlock(wlwp);
    557 					mutex_exit(&p->p_smutex);
    558 					break;
    559 				}
    560 				waitblock = wlwp->l_wchan;
    561 				lwp_unlock(wlwp);
    562 				mutex_exit(&p->p_smutex);
    563 				if (waitblock == NULL) {
    564 					/*
    565 					 * this lwp just got up but
    566 					 * not returned from ltsleep yet.
    567 					 */
    568 					break;
    569 				}
    570 				/* Get the owner of the blocking lock */
    571 				waitblock = waitblock->lf_next;
    572 				if ((waitblock->lf_flags & F_POSIX) == 0)
    573 					break;
    574 				p = (struct proc *)waitblock->lf_id;
    575 				if (p == curproc) {
    576 					lf_free(lock);
    577 					return EDEADLK;
    578 				}
    579 			}
    580 			/*
    581 			 * If we're still following a dependency chain
    582 			 * after maxlockdepth iterations, assume we're in
    583 			 * a cycle to be safe.
    584 			 */
    585 			if (i >= maxlockdepth) {
    586 				lf_free(lock);
    587 				return EDEADLK;
    588 			}
    589 		}
    590 		/*
    591 		 * For flock type locks, we must first remove
    592 		 * any shared locks that we hold before we sleep
    593 		 * waiting for an exclusive lock.
    594 		 */
    595 		if ((lock->lf_flags & F_FLOCK) &&
    596 		    lock->lf_type == F_WRLCK) {
    597 			lock->lf_type = F_UNLCK;
    598 			(void) lf_clearlock(lock, NULL);
    599 			lock->lf_type = F_WRLCK;
    600 		}
    601 		/*
    602 		 * Add our lock to the blocked list and sleep until we're free.
    603 		 * Remember who blocked us (for deadlock detection).
    604 		 */
    605 		lock->lf_next = block;
    606 		TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
    607 #ifdef LOCKF_DEBUG
    608 		if (lockf_debug & 1) {
    609 			lf_print("lf_setlock: blocking on", block);
    610 			lf_printlist("lf_setlock", block);
    611 		}
    612 #endif /* LOCKF_DEBUG */
    613 		error = ltsleep(lock, priority, lockstr, 0, interlock);
    614 
    615 		/*
    616 		 * We may have been awakened by a signal (in
    617 		 * which case we must remove ourselves from the
    618 		 * blocked list) and/or by another process
    619 		 * releasing a lock (in which case we have already
    620 		 * been removed from the blocked list and our
    621 		 * lf_next field set to NULL).
    622 		 */
    623 		if (lock->lf_next != NULL) {
    624 			TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
    625 			lock->lf_next = NULL;
    626 		}
    627 		if (error) {
    628 			lf_free(lock);
    629 			return error;
    630 		}
    631 	}
    632 	/*
    633 	 * No blocks!!  Add the lock.  Note that we will
    634 	 * downgrade or upgrade any overlapping locks this
    635 	 * process already owns.
    636 	 *
    637 	 * Skip over locks owned by other processes.
    638 	 * Handle any locks that overlap and are owned by ourselves.
    639 	 */
    640 	prev = head;
    641 	block = *head;
    642 	needtolink = 1;
    643 	for (;;) {
    644 		ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
    645 		if (ovcase)
    646 			block = overlap->lf_next;
    647 		/*
    648 		 * Six cases:
    649 		 *	0) no overlap
    650 		 *	1) overlap == lock
    651 		 *	2) overlap contains lock
    652 		 *	3) lock contains overlap
    653 		 *	4) overlap starts before lock
    654 		 *	5) overlap ends after lock
    655 		 */
    656 		switch (ovcase) {
    657 		case 0: /* no overlap */
    658 			if (needtolink) {
    659 				*prev = lock;
    660 				lock->lf_next = overlap;
    661 			}
    662 			break;
    663 
    664 		case 1: /* overlap == lock */
    665 			/*
    666 			 * If downgrading lock, others may be
    667 			 * able to acquire it.
    668 			 */
    669 			if (lock->lf_type == F_RDLCK &&
    670 			    overlap->lf_type == F_WRLCK)
    671 				lf_wakelock(overlap);
    672 			overlap->lf_type = lock->lf_type;
    673 			lf_free(lock);
    674 			lock = overlap; /* for debug output below */
    675 			break;
    676 
    677 		case 2: /* overlap contains lock */
    678 			/*
    679 			 * Check for common starting point and different types.
    680 			 */
    681 			if (overlap->lf_type == lock->lf_type) {
    682 				lf_free(lock);
    683 				lock = overlap; /* for debug output below */
    684 				break;
    685 			}
    686 			if (overlap->lf_start == lock->lf_start) {
    687 				*prev = lock;
    688 				lock->lf_next = overlap;
    689 				overlap->lf_start = lock->lf_end + 1;
    690 			} else
    691 				lf_split(overlap, lock, sparelock);
    692 			lf_wakelock(overlap);
    693 			break;
    694 
    695 		case 3: /* lock contains overlap */
    696 			/*
    697 			 * If downgrading lock, others may be able to
    698 			 * acquire it, otherwise take the list.
    699 			 */
    700 			if (lock->lf_type == F_RDLCK &&
    701 			    overlap->lf_type == F_WRLCK) {
    702 				lf_wakelock(overlap);
    703 			} else {
    704 				while ((ltmp = TAILQ_FIRST(&overlap->lf_blkhd))) {
    705 					KASSERT(ltmp->lf_next == overlap);
    706 					TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
    707 					    lf_block);
    708 					ltmp->lf_next = lock;
    709 					TAILQ_INSERT_TAIL(&lock->lf_blkhd,
    710 					    ltmp, lf_block);
    711 				}
    712 			}
    713 			/*
    714 			 * Add the new lock if necessary and delete the overlap.
    715 			 */
    716 			if (needtolink) {
    717 				*prev = lock;
    718 				lock->lf_next = overlap->lf_next;
    719 				prev = &lock->lf_next;
    720 				needtolink = 0;
    721 			} else
    722 				*prev = overlap->lf_next;
    723 			lf_free(overlap);
    724 			continue;
    725 
    726 		case 4: /* overlap starts before lock */
    727 			/*
    728 			 * Add lock after overlap on the list.
    729 			 */
    730 			lock->lf_next = overlap->lf_next;
    731 			overlap->lf_next = lock;
    732 			overlap->lf_end = lock->lf_start - 1;
    733 			prev = &lock->lf_next;
    734 			lf_wakelock(overlap);
    735 			needtolink = 0;
    736 			continue;
    737 
    738 		case 5: /* overlap ends after lock */
    739 			/*
    740 			 * Add the new lock before overlap.
    741 			 */
    742 			if (needtolink) {
    743 				*prev = lock;
    744 				lock->lf_next = overlap;
    745 			}
    746 			overlap->lf_start = lock->lf_end + 1;
    747 			lf_wakelock(overlap);
    748 			break;
    749 		}
    750 		break;
    751 	}
    752 #ifdef LOCKF_DEBUG
    753 	if (lockf_debug & 1) {
    754 		lf_print("lf_setlock: got the lock", lock);
    755 		lf_printlist("lf_setlock", lock);
    756 	}
    757 #endif /* LOCKF_DEBUG */
    758 	return 0;
    759 }
    760 
    761 /*
    762  * Check whether there is a blocking lock,
    763  * and if so return its process identifier.
    764  */
    765 static int
    766 lf_getlock(struct lockf *lock, struct flock *fl)
    767 {
    768 	struct lockf *block;
    769 
    770 #ifdef LOCKF_DEBUG
    771 	if (lockf_debug & 1)
    772 		lf_print("lf_getlock", lock);
    773 #endif /* LOCKF_DEBUG */
    774 
    775 	if ((block = lf_getblock(lock)) != NULL) {
    776 		fl->l_type = block->lf_type;
    777 		fl->l_whence = SEEK_SET;
    778 		fl->l_start = block->lf_start;
    779 		if (block->lf_end == -1)
    780 			fl->l_len = 0;
    781 		else
    782 			fl->l_len = block->lf_end - block->lf_start + 1;
    783 		if (block->lf_flags & F_POSIX)
    784 			fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
    785 		else
    786 			fl->l_pid = -1;
    787 	} else {
    788 		fl->l_type = F_UNLCK;
    789 	}
    790 	return 0;
    791 }
    792 
    793 /*
    794  * Do an advisory lock operation.
    795  */
    796 int
    797 lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
    798 {
    799 	struct lwp *l = curlwp;
    800 	struct flock *fl = ap->a_fl;
    801 	struct lockf *lock = NULL;
    802 	struct lockf *sparelock;
    803 	struct simplelock *interlock = &ap->a_vp->v_interlock;
    804 	off_t start, end;
    805 	int error = 0;
    806 
    807 	/*
    808 	 * Convert the flock structure into a start and end.
    809 	 */
    810 	switch (fl->l_whence) {
    811 	case SEEK_SET:
    812 	case SEEK_CUR:
    813 		/*
    814 		 * Caller is responsible for adding any necessary offset
    815 		 * when SEEK_CUR is used.
    816 		 */
    817 		start = fl->l_start;
    818 		break;
    819 
    820 	case SEEK_END:
    821 		start = size + fl->l_start;
    822 		break;
    823 
    824 	default:
    825 		return EINVAL;
    826 	}
    827 	if (start < 0)
    828 		return EINVAL;
    829 
    830 	/*
    831 	 * Allocate locks before acquiring the simple lock.  We need two
    832 	 * locks in the worst case.
    833 	 */
    834 	switch (ap->a_op) {
    835 	case F_SETLK:
    836 	case F_UNLCK:
    837 		/*
    838 		 * XXX For F_UNLCK case, we can re-use the lock.
    839 		 */
    840 		if ((ap->a_flags & F_FLOCK) == 0) {
    841 			/*
    842 			 * Byte-range lock might need one more lock.
    843 			 */
    844 			sparelock = lf_alloc(kauth_cred_geteuid(l->l_cred), 0);
    845 			if (sparelock == NULL) {
    846 				error = ENOMEM;
    847 				goto quit;
    848 			}
    849 			break;
    850 		}
    851 		/* FALLTHROUGH */
    852 
    853 	case F_GETLK:
    854 		sparelock = NULL;
    855 		break;
    856 
    857 	default:
    858 		return EINVAL;
    859 	}
    860 
    861 	lock = lf_alloc(kauth_cred_geteuid(l->l_cred),
    862 	    ap->a_op != F_UNLCK ? 1 : 2);
    863 	if (lock == NULL) {
    864 		error = ENOMEM;
    865 		goto quit;
    866 	}
    867 
    868 	simple_lock(interlock);
    869 
    870 	/*
    871 	 * Avoid the common case of unlocking when inode has no locks.
    872 	 */
    873 	if (*head == (struct lockf *)0) {
    874 		if (ap->a_op != F_SETLK) {
    875 			fl->l_type = F_UNLCK;
    876 			error = 0;
    877 			goto quit_unlock;
    878 		}
    879 	}
    880 
    881 	if (fl->l_len == 0)
    882 		end = -1;
    883 	else
    884 		end = start + fl->l_len - 1;
    885 	/*
    886 	 * Create the lockf structure.
    887 	 */
    888 	lock->lf_start = start;
    889 	lock->lf_end = end;
    890 	/* XXX NJWLWP
    891 	 * I don't want to make the entire VFS universe use LWPs, because
    892 	 * they don't need them, for the most part. This is an exception,
    893 	 * and a kluge.
    894 	 */
    895 
    896 	lock->lf_head = head;
    897 	lock->lf_type = fl->l_type;
    898 	lock->lf_next = (struct lockf *)0;
    899 	TAILQ_INIT(&lock->lf_blkhd);
    900 	lock->lf_flags = ap->a_flags;
    901 	if (lock->lf_flags & F_POSIX) {
    902 		KASSERT(curproc == (struct proc *)ap->a_id);
    903 	}
    904 	lock->lf_id = (struct proc *)ap->a_id;
    905 
    906 	/*
    907 	 * Do the requested operation.
    908 	 */
    909 	switch (ap->a_op) {
    910 
    911 	case F_SETLK:
    912 		error = lf_setlock(lock, &sparelock, interlock);
    913 		lock = NULL; /* lf_setlock freed it */
    914 		break;
    915 
    916 	case F_UNLCK:
    917 		error = lf_clearlock(lock, &sparelock);
    918 		break;
    919 
    920 	case F_GETLK:
    921 		error = lf_getlock(lock, fl);
    922 		break;
    923 
    924 	default:
    925 		break;
    926 		/* NOTREACHED */
    927 	}
    928 
    929 quit_unlock:
    930 	simple_unlock(interlock);
    931 quit:
    932 	if (lock)
    933 		lf_free(lock);
    934 	if (sparelock)
    935 		lf_free(sparelock);
    936 
    937 	return error;
    938 }
    939