vfs_lockf.c revision 1.61.6.4 1 /* $NetBSD: vfs_lockf.c,v 1.61.6.4 2009/01/17 13:29:20 mjf Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Scooter Morris at Genentech Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)ufs_lockf.c 8.4 (Berkeley) 10/26/94
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.61.6.4 2009/01/17 13:29:20 mjf Exp $");
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/file.h>
44 #include <sys/proc.h>
45 #include <sys/vnode.h>
46 #include <sys/pool.h>
47 #include <sys/fcntl.h>
48 #include <sys/lockf.h>
49 #include <sys/atomic.h>
50 #include <sys/kauth.h>
51 #include <sys/uidinfo.h>
52
53 /*
54 * The lockf structure is a kernel structure which contains the information
55 * associated with a byte range lock. The lockf structures are linked into
56 * the vnode structure. Locks are sorted by the starting byte of the lock for
57 * efficiency.
58 *
59 * lf_next is used for two purposes, depending on whether the lock is
60 * being held, or is in conflict with an existing lock. If this lock
61 * is held, it indicates the next lock on the same vnode.
62 * For pending locks, if lock->lf_next is non-NULL, then lock->lf_block
63 * must be queued on the lf_blkhd TAILQ of lock->lf_next.
64 */
65
66 TAILQ_HEAD(locklist, lockf);
67
68 struct lockf {
69 kcondvar_t lf_cv; /* Signalling */
70 short lf_flags; /* Lock semantics: F_POSIX, F_FLOCK, F_WAIT */
71 short lf_type; /* Lock type: F_RDLCK, F_WRLCK */
72 off_t lf_start; /* The byte # of the start of the lock */
73 off_t lf_end; /* The byte # of the end of the lock (-1=EOF)*/
74 void *lf_id; /* process or file description holding lock */
75 struct lockf **lf_head; /* Back pointer to the head of lockf list */
76 struct lockf *lf_next; /* Next lock on this vnode, or blocking lock */
77 struct locklist lf_blkhd; /* List of requests blocked on this lock */
78 TAILQ_ENTRY(lockf) lf_block;/* A request waiting for a lock */
79 uid_t lf_uid; /* User ID responsible */
80 };
81
82 /* Maximum length of sleep chains to traverse to try and detect deadlock. */
83 #define MAXDEPTH 50
84
85 static pool_cache_t lockf_cache;
86 static kmutex_t *lockf_lock;
87 static char lockstr[] = "lockf";
88
89 /*
90 * This variable controls the maximum number of processes that will
91 * be checked in doing deadlock detection.
92 */
93 int maxlockdepth = MAXDEPTH;
94
95 #ifdef LOCKF_DEBUG
96 int lockf_debug = 0;
97 #endif
98
99 #define SELF 0x1
100 #define OTHERS 0x2
101
102 /*
103 * XXX TODO
104 * Misc cleanups: "void *id" should be visible in the API as a
105 * "struct proc *".
106 * (This requires rototilling all VFS's which support advisory locking).
107 */
108
109 /*
110 * If there's a lot of lock contention on a single vnode, locking
111 * schemes which allow for more paralleism would be needed. Given how
112 * infrequently byte-range locks are actually used in typical BSD
113 * code, a more complex approach probably isn't worth it.
114 */
115
116 /*
117 * We enforce a limit on locks by uid, so that a single user cannot
118 * run the kernel out of memory. For now, the limit is pretty coarse.
119 * There is no limit on root.
120 *
121 * Splitting a lock will always succeed, regardless of current allocations.
122 * If you're slightly above the limit, we still have to permit an allocation
123 * so that the unlock can succeed. If the unlocking causes too many splits,
124 * however, you're totally cutoff.
125 */
126 int maxlocksperuid = 1024;
127
128 #ifdef LOCKF_DEBUG
129 /*
130 * Print out a lock.
131 */
132 static void
133 lf_print(const char *tag, struct lockf *lock)
134 {
135
136 printf("%s: lock %p for ", tag, lock);
137 if (lock->lf_flags & F_POSIX)
138 printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
139 else
140 printf("file %p", (struct file *)lock->lf_id);
141 printf(" %s, start %qx, end %qx",
142 lock->lf_type == F_RDLCK ? "shared" :
143 lock->lf_type == F_WRLCK ? "exclusive" :
144 lock->lf_type == F_UNLCK ? "unlock" :
145 "unknown", lock->lf_start, lock->lf_end);
146 if (TAILQ_FIRST(&lock->lf_blkhd))
147 printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
148 else
149 printf("\n");
150 }
151
152 static void
153 lf_printlist(const char *tag, struct lockf *lock)
154 {
155 struct lockf *lf, *blk;
156
157 printf("%s: Lock list:\n", tag);
158 for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
159 printf("\tlock %p for ", lf);
160 if (lf->lf_flags & F_POSIX)
161 printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
162 else
163 printf("file %p", (struct file *)lf->lf_id);
164 printf(", %s, start %qx, end %qx",
165 lf->lf_type == F_RDLCK ? "shared" :
166 lf->lf_type == F_WRLCK ? "exclusive" :
167 lf->lf_type == F_UNLCK ? "unlock" :
168 "unknown", lf->lf_start, lf->lf_end);
169 TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
170 if (blk->lf_flags & F_POSIX)
171 printf("; proc %d",
172 ((struct proc *)blk->lf_id)->p_pid);
173 else
174 printf("; file %p", (struct file *)blk->lf_id);
175 printf(", %s, start %qx, end %qx",
176 blk->lf_type == F_RDLCK ? "shared" :
177 blk->lf_type == F_WRLCK ? "exclusive" :
178 blk->lf_type == F_UNLCK ? "unlock" :
179 "unknown", blk->lf_start, blk->lf_end);
180 if (TAILQ_FIRST(&blk->lf_blkhd))
181 panic("lf_printlist: bad list");
182 }
183 printf("\n");
184 }
185 }
186 #endif /* LOCKF_DEBUG */
187
188 /*
189 * 3 options for allowfail.
190 * 0 - always allocate. 1 - cutoff at limit. 2 - cutoff at double limit.
191 */
192 static struct lockf *
193 lf_alloc(uid_t uid, int allowfail)
194 {
195 struct uidinfo *uip;
196 struct lockf *lock;
197 u_long lcnt;
198
199 uip = uid_find(uid);
200 lcnt = atomic_inc_ulong_nv(&uip->ui_lockcnt);
201 if (uid && allowfail && lcnt >
202 (allowfail == 1 ? maxlocksperuid : (maxlocksperuid * 2))) {
203 atomic_dec_ulong(&uip->ui_lockcnt);
204 return NULL;
205 }
206
207 lock = pool_cache_get(lockf_cache, PR_WAITOK);
208 lock->lf_uid = uid;
209 return lock;
210 }
211
212 static void
213 lf_free(struct lockf *lock)
214 {
215 struct uidinfo *uip;
216
217 uip = uid_find(lock->lf_uid);
218 atomic_dec_ulong(&uip->ui_lockcnt);
219 pool_cache_put(lockf_cache, lock);
220 }
221
222 static int
223 lf_ctor(void *arg, void *obj, int flag)
224 {
225 struct lockf *lock;
226
227 lock = obj;
228 cv_init(&lock->lf_cv, lockstr);
229
230 return 0;
231 }
232
233 static void
234 lf_dtor(void *arg, void *obj)
235 {
236 struct lockf *lock;
237
238 lock = obj;
239 cv_destroy(&lock->lf_cv);
240 }
241
242 /*
243 * Walk the list of locks for an inode to
244 * find an overlapping lock (if any).
245 *
246 * NOTE: this returns only the FIRST overlapping lock. There
247 * may be more than one.
248 */
249 static int
250 lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
251 struct lockf ***prev, struct lockf **overlap)
252 {
253 off_t start, end;
254
255 *overlap = lf;
256 if (lf == NULL)
257 return 0;
258 #ifdef LOCKF_DEBUG
259 if (lockf_debug & 2)
260 lf_print("lf_findoverlap: looking for overlap in", lock);
261 #endif /* LOCKF_DEBUG */
262 start = lock->lf_start;
263 end = lock->lf_end;
264 while (lf != NULL) {
265 if (((type == SELF) && lf->lf_id != lock->lf_id) ||
266 ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
267 *prev = &lf->lf_next;
268 *overlap = lf = lf->lf_next;
269 continue;
270 }
271 #ifdef LOCKF_DEBUG
272 if (lockf_debug & 2)
273 lf_print("\tchecking", lf);
274 #endif /* LOCKF_DEBUG */
275 /*
276 * OK, check for overlap
277 *
278 * Six cases:
279 * 0) no overlap
280 * 1) overlap == lock
281 * 2) overlap contains lock
282 * 3) lock contains overlap
283 * 4) overlap starts before lock
284 * 5) overlap ends after lock
285 */
286 if ((lf->lf_end != -1 && start > lf->lf_end) ||
287 (end != -1 && lf->lf_start > end)) {
288 /* Case 0 */
289 #ifdef LOCKF_DEBUG
290 if (lockf_debug & 2)
291 printf("no overlap\n");
292 #endif /* LOCKF_DEBUG */
293 if ((type & SELF) && end != -1 && lf->lf_start > end)
294 return 0;
295 *prev = &lf->lf_next;
296 *overlap = lf = lf->lf_next;
297 continue;
298 }
299 if ((lf->lf_start == start) && (lf->lf_end == end)) {
300 /* Case 1 */
301 #ifdef LOCKF_DEBUG
302 if (lockf_debug & 2)
303 printf("overlap == lock\n");
304 #endif /* LOCKF_DEBUG */
305 return 1;
306 }
307 if ((lf->lf_start <= start) &&
308 (end != -1) &&
309 ((lf->lf_end >= end) || (lf->lf_end == -1))) {
310 /* Case 2 */
311 #ifdef LOCKF_DEBUG
312 if (lockf_debug & 2)
313 printf("overlap contains lock\n");
314 #endif /* LOCKF_DEBUG */
315 return 2;
316 }
317 if (start <= lf->lf_start &&
318 (end == -1 ||
319 (lf->lf_end != -1 && end >= lf->lf_end))) {
320 /* Case 3 */
321 #ifdef LOCKF_DEBUG
322 if (lockf_debug & 2)
323 printf("lock contains overlap\n");
324 #endif /* LOCKF_DEBUG */
325 return 3;
326 }
327 if ((lf->lf_start < start) &&
328 ((lf->lf_end >= start) || (lf->lf_end == -1))) {
329 /* Case 4 */
330 #ifdef LOCKF_DEBUG
331 if (lockf_debug & 2)
332 printf("overlap starts before lock\n");
333 #endif /* LOCKF_DEBUG */
334 return 4;
335 }
336 if ((lf->lf_start > start) &&
337 (end != -1) &&
338 ((lf->lf_end > end) || (lf->lf_end == -1))) {
339 /* Case 5 */
340 #ifdef LOCKF_DEBUG
341 if (lockf_debug & 2)
342 printf("overlap ends after lock\n");
343 #endif /* LOCKF_DEBUG */
344 return 5;
345 }
346 panic("lf_findoverlap: default");
347 }
348 return 0;
349 }
350
351 /*
352 * Split a lock and a contained region into
353 * two or three locks as necessary.
354 */
355 static void
356 lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
357 {
358 struct lockf *splitlock;
359
360 #ifdef LOCKF_DEBUG
361 if (lockf_debug & 2) {
362 lf_print("lf_split", lock1);
363 lf_print("splitting from", lock2);
364 }
365 #endif /* LOCKF_DEBUG */
366 /*
367 * Check to see if spliting into only two pieces.
368 */
369 if (lock1->lf_start == lock2->lf_start) {
370 lock1->lf_start = lock2->lf_end + 1;
371 lock2->lf_next = lock1;
372 return;
373 }
374 if (lock1->lf_end == lock2->lf_end) {
375 lock1->lf_end = lock2->lf_start - 1;
376 lock2->lf_next = lock1->lf_next;
377 lock1->lf_next = lock2;
378 return;
379 }
380 /*
381 * Make a new lock consisting of the last part of
382 * the encompassing lock
383 */
384 splitlock = *sparelock;
385 *sparelock = NULL;
386 memcpy(splitlock, lock1, sizeof(*splitlock));
387 cv_init(&splitlock->lf_cv, lockstr);
388
389 splitlock->lf_start = lock2->lf_end + 1;
390 TAILQ_INIT(&splitlock->lf_blkhd);
391 lock1->lf_end = lock2->lf_start - 1;
392 /*
393 * OK, now link it in
394 */
395 splitlock->lf_next = lock1->lf_next;
396 lock2->lf_next = splitlock;
397 lock1->lf_next = lock2;
398 }
399
400 /*
401 * Wakeup a blocklist
402 */
403 static void
404 lf_wakelock(struct lockf *listhead)
405 {
406 struct lockf *wakelock;
407
408 while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
409 KASSERT(wakelock->lf_next == listhead);
410 TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
411 wakelock->lf_next = NULL;
412 #ifdef LOCKF_DEBUG
413 if (lockf_debug & 2)
414 lf_print("lf_wakelock: awakening", wakelock);
415 #endif
416 cv_broadcast(&wakelock->lf_cv);
417 }
418 }
419
420 /*
421 * Remove a byte-range lock on an inode.
422 *
423 * Generally, find the lock (or an overlap to that lock)
424 * and remove it (or shrink it), then wakeup anyone we can.
425 */
426 static int
427 lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
428 {
429 struct lockf **head = unlock->lf_head;
430 struct lockf *lf = *head;
431 struct lockf *overlap, **prev;
432 int ovcase;
433
434 if (lf == NULL)
435 return 0;
436 #ifdef LOCKF_DEBUG
437 if (unlock->lf_type != F_UNLCK)
438 panic("lf_clearlock: bad type");
439 if (lockf_debug & 1)
440 lf_print("lf_clearlock", unlock);
441 #endif /* LOCKF_DEBUG */
442 prev = head;
443 while ((ovcase = lf_findoverlap(lf, unlock, SELF,
444 &prev, &overlap)) != 0) {
445 /*
446 * Wakeup the list of locks to be retried.
447 */
448 lf_wakelock(overlap);
449
450 switch (ovcase) {
451
452 case 1: /* overlap == lock */
453 *prev = overlap->lf_next;
454 lf_free(overlap);
455 break;
456
457 case 2: /* overlap contains lock: split it */
458 if (overlap->lf_start == unlock->lf_start) {
459 overlap->lf_start = unlock->lf_end + 1;
460 break;
461 }
462 lf_split(overlap, unlock, sparelock);
463 overlap->lf_next = unlock->lf_next;
464 break;
465
466 case 3: /* lock contains overlap */
467 *prev = overlap->lf_next;
468 lf = overlap->lf_next;
469 lf_free(overlap);
470 continue;
471
472 case 4: /* overlap starts before lock */
473 overlap->lf_end = unlock->lf_start - 1;
474 prev = &overlap->lf_next;
475 lf = overlap->lf_next;
476 continue;
477
478 case 5: /* overlap ends after lock */
479 overlap->lf_start = unlock->lf_end + 1;
480 break;
481 }
482 break;
483 }
484 #ifdef LOCKF_DEBUG
485 if (lockf_debug & 1)
486 lf_printlist("lf_clearlock", unlock);
487 #endif /* LOCKF_DEBUG */
488 return 0;
489 }
490
491 /*
492 * Walk the list of locks for an inode and
493 * return the first blocking lock.
494 */
495 static struct lockf *
496 lf_getblock(struct lockf *lock)
497 {
498 struct lockf **prev, *overlap, *lf = *(lock->lf_head);
499
500 prev = lock->lf_head;
501 while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
502 /*
503 * We've found an overlap, see if it blocks us
504 */
505 if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
506 return overlap;
507 /*
508 * Nope, point to the next one on the list and
509 * see if it blocks us
510 */
511 lf = overlap->lf_next;
512 }
513 return NULL;
514 }
515
516 /*
517 * Set a byte-range lock.
518 */
519 static int
520 lf_setlock(struct lockf *lock, struct lockf **sparelock,
521 kmutex_t *interlock)
522 {
523 struct lockf *block;
524 struct lockf **head = lock->lf_head;
525 struct lockf **prev, *overlap, *ltmp;
526 int ovcase, needtolink, error;
527
528 #ifdef LOCKF_DEBUG
529 if (lockf_debug & 1)
530 lf_print("lf_setlock", lock);
531 #endif /* LOCKF_DEBUG */
532
533 /*
534 * Scan lock list for this file looking for locks that would block us.
535 */
536 while ((block = lf_getblock(lock)) != NULL) {
537 /*
538 * Free the structure and return if nonblocking.
539 */
540 if ((lock->lf_flags & F_WAIT) == 0) {
541 lf_free(lock);
542 return EAGAIN;
543 }
544 /*
545 * We are blocked. Since flock style locks cover
546 * the whole file, there is no chance for deadlock.
547 * For byte-range locks we must check for deadlock.
548 *
549 * Deadlock detection is done by looking through the
550 * wait channels to see if there are any cycles that
551 * involve us. MAXDEPTH is set just to make sure we
552 * do not go off into neverneverland.
553 */
554 if ((lock->lf_flags & F_POSIX) &&
555 (block->lf_flags & F_POSIX)) {
556 struct lwp *wlwp;
557 volatile const struct lockf *waitblock;
558 int i = 0;
559 struct proc *p;
560
561 p = (struct proc *)block->lf_id;
562 KASSERT(p != NULL);
563 while (i++ < maxlockdepth) {
564 mutex_enter(p->p_lock);
565 if (p->p_nlwps > 1) {
566 mutex_exit(p->p_lock);
567 break;
568 }
569 wlwp = LIST_FIRST(&p->p_lwps);
570 lwp_lock(wlwp);
571 if (wlwp->l_wchan == NULL ||
572 wlwp->l_wmesg != lockstr) {
573 lwp_unlock(wlwp);
574 mutex_exit(p->p_lock);
575 break;
576 }
577 waitblock = wlwp->l_wchan;
578 lwp_unlock(wlwp);
579 mutex_exit(p->p_lock);
580 /* Get the owner of the blocking lock */
581 waitblock = waitblock->lf_next;
582 if ((waitblock->lf_flags & F_POSIX) == 0)
583 break;
584 p = (struct proc *)waitblock->lf_id;
585 if (p == curproc) {
586 lf_free(lock);
587 return EDEADLK;
588 }
589 }
590 /*
591 * If we're still following a dependency chain
592 * after maxlockdepth iterations, assume we're in
593 * a cycle to be safe.
594 */
595 if (i >= maxlockdepth) {
596 lf_free(lock);
597 return EDEADLK;
598 }
599 }
600 /*
601 * For flock type locks, we must first remove
602 * any shared locks that we hold before we sleep
603 * waiting for an exclusive lock.
604 */
605 if ((lock->lf_flags & F_FLOCK) &&
606 lock->lf_type == F_WRLCK) {
607 lock->lf_type = F_UNLCK;
608 (void) lf_clearlock(lock, NULL);
609 lock->lf_type = F_WRLCK;
610 }
611 /*
612 * Add our lock to the blocked list and sleep until we're free.
613 * Remember who blocked us (for deadlock detection).
614 */
615 lock->lf_next = block;
616 TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
617 #ifdef LOCKF_DEBUG
618 if (lockf_debug & 1) {
619 lf_print("lf_setlock: blocking on", block);
620 lf_printlist("lf_setlock", block);
621 }
622 #endif /* LOCKF_DEBUG */
623 error = cv_wait_sig(&lock->lf_cv, interlock);
624
625 /*
626 * We may have been awoken by a signal (in
627 * which case we must remove ourselves from the
628 * blocked list) and/or by another process
629 * releasing a lock (in which case we have already
630 * been removed from the blocked list and our
631 * lf_next field set to NULL).
632 */
633 if (lock->lf_next != NULL) {
634 TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
635 lock->lf_next = NULL;
636 }
637 if (error) {
638 lf_free(lock);
639 return error;
640 }
641 }
642 /*
643 * No blocks!! Add the lock. Note that we will
644 * downgrade or upgrade any overlapping locks this
645 * process already owns.
646 *
647 * Skip over locks owned by other processes.
648 * Handle any locks that overlap and are owned by ourselves.
649 */
650 prev = head;
651 block = *head;
652 needtolink = 1;
653 for (;;) {
654 ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
655 if (ovcase)
656 block = overlap->lf_next;
657 /*
658 * Six cases:
659 * 0) no overlap
660 * 1) overlap == lock
661 * 2) overlap contains lock
662 * 3) lock contains overlap
663 * 4) overlap starts before lock
664 * 5) overlap ends after lock
665 */
666 switch (ovcase) {
667 case 0: /* no overlap */
668 if (needtolink) {
669 *prev = lock;
670 lock->lf_next = overlap;
671 }
672 break;
673
674 case 1: /* overlap == lock */
675 /*
676 * If downgrading lock, others may be
677 * able to acquire it.
678 */
679 if (lock->lf_type == F_RDLCK &&
680 overlap->lf_type == F_WRLCK)
681 lf_wakelock(overlap);
682 overlap->lf_type = lock->lf_type;
683 lf_free(lock);
684 lock = overlap; /* for debug output below */
685 break;
686
687 case 2: /* overlap contains lock */
688 /*
689 * Check for common starting point and different types.
690 */
691 if (overlap->lf_type == lock->lf_type) {
692 lf_free(lock);
693 lock = overlap; /* for debug output below */
694 break;
695 }
696 if (overlap->lf_start == lock->lf_start) {
697 *prev = lock;
698 lock->lf_next = overlap;
699 overlap->lf_start = lock->lf_end + 1;
700 } else
701 lf_split(overlap, lock, sparelock);
702 lf_wakelock(overlap);
703 break;
704
705 case 3: /* lock contains overlap */
706 /*
707 * If downgrading lock, others may be able to
708 * acquire it, otherwise take the list.
709 */
710 if (lock->lf_type == F_RDLCK &&
711 overlap->lf_type == F_WRLCK) {
712 lf_wakelock(overlap);
713 } else {
714 while ((ltmp = TAILQ_FIRST(&overlap->lf_blkhd))) {
715 KASSERT(ltmp->lf_next == overlap);
716 TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
717 lf_block);
718 ltmp->lf_next = lock;
719 TAILQ_INSERT_TAIL(&lock->lf_blkhd,
720 ltmp, lf_block);
721 }
722 }
723 /*
724 * Add the new lock if necessary and delete the overlap.
725 */
726 if (needtolink) {
727 *prev = lock;
728 lock->lf_next = overlap->lf_next;
729 prev = &lock->lf_next;
730 needtolink = 0;
731 } else
732 *prev = overlap->lf_next;
733 lf_free(overlap);
734 continue;
735
736 case 4: /* overlap starts before lock */
737 /*
738 * Add lock after overlap on the list.
739 */
740 lock->lf_next = overlap->lf_next;
741 overlap->lf_next = lock;
742 overlap->lf_end = lock->lf_start - 1;
743 prev = &lock->lf_next;
744 lf_wakelock(overlap);
745 needtolink = 0;
746 continue;
747
748 case 5: /* overlap ends after lock */
749 /*
750 * Add the new lock before overlap.
751 */
752 if (needtolink) {
753 *prev = lock;
754 lock->lf_next = overlap;
755 }
756 overlap->lf_start = lock->lf_end + 1;
757 lf_wakelock(overlap);
758 break;
759 }
760 break;
761 }
762 #ifdef LOCKF_DEBUG
763 if (lockf_debug & 1) {
764 lf_print("lf_setlock: got the lock", lock);
765 lf_printlist("lf_setlock", lock);
766 }
767 #endif /* LOCKF_DEBUG */
768 return 0;
769 }
770
771 /*
772 * Check whether there is a blocking lock,
773 * and if so return its process identifier.
774 */
775 static int
776 lf_getlock(struct lockf *lock, struct flock *fl)
777 {
778 struct lockf *block;
779
780 #ifdef LOCKF_DEBUG
781 if (lockf_debug & 1)
782 lf_print("lf_getlock", lock);
783 #endif /* LOCKF_DEBUG */
784
785 if ((block = lf_getblock(lock)) != NULL) {
786 fl->l_type = block->lf_type;
787 fl->l_whence = SEEK_SET;
788 fl->l_start = block->lf_start;
789 if (block->lf_end == -1)
790 fl->l_len = 0;
791 else
792 fl->l_len = block->lf_end - block->lf_start + 1;
793 if (block->lf_flags & F_POSIX)
794 fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
795 else
796 fl->l_pid = -1;
797 } else {
798 fl->l_type = F_UNLCK;
799 }
800 return 0;
801 }
802
803 /*
804 * Do an advisory lock operation.
805 */
806 int
807 lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
808 {
809 struct lwp *l = curlwp;
810 struct flock *fl = ap->a_fl;
811 struct lockf *lock = NULL;
812 struct lockf *sparelock;
813 kmutex_t *interlock = lockf_lock;
814 off_t start, end;
815 int error = 0;
816
817 /*
818 * Convert the flock structure into a start and end.
819 */
820 switch (fl->l_whence) {
821 case SEEK_SET:
822 case SEEK_CUR:
823 /*
824 * Caller is responsible for adding any necessary offset
825 * when SEEK_CUR is used.
826 */
827 start = fl->l_start;
828 break;
829
830 case SEEK_END:
831 start = size + fl->l_start;
832 break;
833
834 default:
835 return EINVAL;
836 }
837 if (start < 0)
838 return EINVAL;
839
840 /*
841 * Allocate locks before acquiring the interlock. We need two
842 * locks in the worst case.
843 */
844 switch (ap->a_op) {
845 case F_SETLK:
846 case F_UNLCK:
847 /*
848 * XXX For F_UNLCK case, we can re-use the lock.
849 */
850 if ((ap->a_flags & F_FLOCK) == 0) {
851 /*
852 * Byte-range lock might need one more lock.
853 */
854 sparelock = lf_alloc(kauth_cred_geteuid(l->l_cred), 0);
855 if (sparelock == NULL) {
856 error = ENOMEM;
857 goto quit;
858 }
859 break;
860 }
861 /* FALLTHROUGH */
862
863 case F_GETLK:
864 sparelock = NULL;
865 break;
866
867 default:
868 return EINVAL;
869 }
870
871 lock = lf_alloc(kauth_cred_geteuid(l->l_cred),
872 ap->a_op != F_UNLCK ? 1 : 2);
873 if (lock == NULL) {
874 error = ENOMEM;
875 goto quit;
876 }
877
878 mutex_enter(interlock);
879
880 /*
881 * Avoid the common case of unlocking when inode has no locks.
882 */
883 if (*head == (struct lockf *)0) {
884 if (ap->a_op != F_SETLK) {
885 fl->l_type = F_UNLCK;
886 error = 0;
887 goto quit_unlock;
888 }
889 }
890
891 if (fl->l_len == 0)
892 end = -1;
893 else
894 end = start + fl->l_len - 1;
895 /*
896 * Create the lockf structure.
897 */
898 lock->lf_start = start;
899 lock->lf_end = end;
900 lock->lf_head = head;
901 lock->lf_type = fl->l_type;
902 lock->lf_next = (struct lockf *)0;
903 TAILQ_INIT(&lock->lf_blkhd);
904 lock->lf_flags = ap->a_flags;
905 if (lock->lf_flags & F_POSIX) {
906 KASSERT(curproc == (struct proc *)ap->a_id);
907 }
908 lock->lf_id = (struct proc *)ap->a_id;
909
910 /*
911 * Do the requested operation.
912 */
913 switch (ap->a_op) {
914
915 case F_SETLK:
916 error = lf_setlock(lock, &sparelock, interlock);
917 lock = NULL; /* lf_setlock freed it */
918 break;
919
920 case F_UNLCK:
921 error = lf_clearlock(lock, &sparelock);
922 break;
923
924 case F_GETLK:
925 error = lf_getlock(lock, fl);
926 break;
927
928 default:
929 break;
930 /* NOTREACHED */
931 }
932
933 quit_unlock:
934 mutex_exit(interlock);
935 quit:
936 if (lock)
937 lf_free(lock);
938 if (sparelock)
939 lf_free(sparelock);
940
941 return error;
942 }
943
944 /*
945 * Initialize subsystem. XXX We use a global lock. This could be the
946 * vnode interlock, but the deadlock detection code may need to inspect
947 * locks belonging to other files.
948 */
949 void
950 lf_init(void)
951 {
952
953 lockf_cache = pool_cache_init(sizeof(struct lockf), 0, 0, 0, "lockf",
954 NULL, IPL_NONE, lf_ctor, lf_dtor, NULL);
955 lockf_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
956 }
957