vfs_lockf.c revision 1.63 1 /* $NetBSD: vfs_lockf.c,v 1.63 2008/03/18 02:49:15 mrg Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Scooter Morris at Genentech Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)ufs_lockf.c 8.4 (Berkeley) 10/26/94
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.63 2008/03/18 02:49:15 mrg Exp $");
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/file.h>
44 #include <sys/proc.h>
45 #include <sys/vnode.h>
46 #include <sys/pool.h>
47 #include <sys/fcntl.h>
48 #include <sys/lockf.h>
49 #include <sys/atomic.h>
50 #include <sys/kauth.h>
51
52 /*
53 * The lockf structure is a kernel structure which contains the information
54 * associated with a byte range lock. The lockf structures are linked into
55 * the vnode structure. Locks are sorted by the starting byte of the lock for
56 * efficiency.
57 *
58 * lf_next is used for two purposes, depending on whether the lock is
59 * being held, or is in conflict with an existing lock. If this lock
60 * is held, it indicates the next lock on the same vnode.
61 * For pending locks, if lock->lf_next is non-NULL, then lock->lf_block
62 * must be queued on the lf_blkhd TAILQ of lock->lf_next.
63 */
64
65 TAILQ_HEAD(locklist, lockf);
66
67 struct lockf {
68 short lf_flags; /* Lock semantics: F_POSIX, F_FLOCK, F_WAIT */
69 short lf_type; /* Lock type: F_RDLCK, F_WRLCK */
70 off_t lf_start; /* The byte # of the start of the lock */
71 off_t lf_end; /* The byte # of the end of the lock (-1=EOF)*/
72 void *lf_id; /* process or file description holding lock */
73 struct lockf **lf_head; /* Back pointer to the head of lockf list */
74 struct lockf *lf_next; /* Next lock on this vnode, or blocking lock */
75 struct locklist lf_blkhd; /* List of requests blocked on this lock */
76 TAILQ_ENTRY(lockf) lf_block;/* A request waiting for a lock */
77 uid_t lf_uid; /* User ID responsible */
78 kcondvar_t lf_cv; /* Signalling */
79 };
80
81 /* Maximum length of sleep chains to traverse to try and detect deadlock. */
82 #define MAXDEPTH 50
83
84 static POOL_INIT(lockfpool, sizeof(struct lockf), 0, 0, 0, "lockfpl",
85 &pool_allocator_nointr, IPL_NONE);
86
87 /*
88 * This variable controls the maximum number of processes that will
89 * be checked in doing deadlock detection.
90 */
91 int maxlockdepth = MAXDEPTH;
92
93 #ifdef LOCKF_DEBUG
94 int lockf_debug = 0;
95 #endif
96
97 #define SELF 0x1
98 #define OTHERS 0x2
99
100 /*
101 * XXX TODO
102 * Misc cleanups: "void *id" should be visible in the API as a
103 * "struct proc *".
104 * (This requires rototilling all VFS's which support advisory locking).
105 */
106
107 /*
108 * If there's a lot of lock contention on a single vnode, locking
109 * schemes which allow for more paralleism would be needed. Given how
110 * infrequently byte-range locks are actually used in typical BSD
111 * code, a more complex approach probably isn't worth it.
112 */
113
114 /*
115 * We enforce a limit on locks by uid, so that a single user cannot
116 * run the kernel out of memory. For now, the limit is pretty coarse.
117 * There is no limit on root.
118 *
119 * Splitting a lock will always succeed, regardless of current allocations.
120 * If you're slightly above the limit, we still have to permit an allocation
121 * so that the unlock can succeed. If the unlocking causes too many splits,
122 * however, you're totally cutoff.
123 */
124 int maxlocksperuid = 1024;
125
126 #ifdef LOCKF_DEBUG
127 /*
128 * Print out a lock.
129 */
130 static void
131 lf_print(const char *tag, struct lockf *lock)
132 {
133
134 printf("%s: lock %p for ", tag, lock);
135 if (lock->lf_flags & F_POSIX)
136 printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
137 else
138 printf("file %p", (struct file *)lock->lf_id);
139 printf(" %s, start %qx, end %qx",
140 lock->lf_type == F_RDLCK ? "shared" :
141 lock->lf_type == F_WRLCK ? "exclusive" :
142 lock->lf_type == F_UNLCK ? "unlock" :
143 "unknown", lock->lf_start, lock->lf_end);
144 if (TAILQ_FIRST(&lock->lf_blkhd))
145 printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
146 else
147 printf("\n");
148 }
149
150 static void
151 lf_printlist(const char *tag, struct lockf *lock)
152 {
153 struct lockf *lf, *blk;
154
155 printf("%s: Lock list:\n", tag);
156 for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
157 printf("\tlock %p for ", lf);
158 if (lf->lf_flags & F_POSIX)
159 printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
160 else
161 printf("file %p", (struct file *)lf->lf_id);
162 printf(", %s, start %qx, end %qx",
163 lf->lf_type == F_RDLCK ? "shared" :
164 lf->lf_type == F_WRLCK ? "exclusive" :
165 lf->lf_type == F_UNLCK ? "unlock" :
166 "unknown", lf->lf_start, lf->lf_end);
167 TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
168 if (blk->lf_flags & F_POSIX)
169 printf("proc %d",
170 ((struct proc *)blk->lf_id)->p_pid);
171 else
172 printf("file %p", (struct file *)blk->lf_id);
173 printf(", %s, start %qx, end %qx",
174 blk->lf_type == F_RDLCK ? "shared" :
175 blk->lf_type == F_WRLCK ? "exclusive" :
176 blk->lf_type == F_UNLCK ? "unlock" :
177 "unknown", blk->lf_start, blk->lf_end);
178 if (TAILQ_FIRST(&blk->lf_blkhd))
179 panic("lf_printlist: bad list");
180 }
181 printf("\n");
182 }
183 }
184 #endif /* LOCKF_DEBUG */
185
186 /*
187 * 3 options for allowfail.
188 * 0 - always allocate. 1 - cutoff at limit. 2 - cutoff at double limit.
189 */
190 static struct lockf *
191 lf_alloc(uid_t uid, int allowfail)
192 {
193 struct uidinfo *uip;
194 struct lockf *lock;
195 u_long lcnt;
196
197 uip = uid_find(uid);
198 lcnt = atomic_inc_ulong_nv(&uip->ui_lockcnt);
199 if (uid && allowfail && lcnt >
200 (allowfail == 1 ? maxlocksperuid : (maxlocksperuid * 2))) {
201 atomic_dec_ulong(&uip->ui_lockcnt);
202 return NULL;
203 }
204
205 lock = pool_get(&lockfpool, PR_WAITOK);
206 lock->lf_uid = uid;
207 cv_init(&lock->lf_cv, "lockf");
208 return lock;
209 }
210
211 static void
212 lf_free(struct lockf *lock)
213 {
214 struct uidinfo *uip;
215
216 uip = uid_find(lock->lf_uid);
217 atomic_dec_ulong(&uip->ui_lockcnt);
218
219 cv_destroy(&lock->lf_cv);
220 pool_put(&lockfpool, lock);
221 }
222
223 /*
224 * Walk the list of locks for an inode to
225 * find an overlapping lock (if any).
226 *
227 * NOTE: this returns only the FIRST overlapping lock. There
228 * may be more than one.
229 */
230 static int
231 lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
232 struct lockf ***prev, struct lockf **overlap)
233 {
234 off_t start, end;
235
236 *overlap = lf;
237 if (lf == NULL)
238 return 0;
239 #ifdef LOCKF_DEBUG
240 if (lockf_debug & 2)
241 lf_print("lf_findoverlap: looking for overlap in", lock);
242 #endif /* LOCKF_DEBUG */
243 start = lock->lf_start;
244 end = lock->lf_end;
245 while (lf != NULL) {
246 if (((type == SELF) && lf->lf_id != lock->lf_id) ||
247 ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
248 *prev = &lf->lf_next;
249 *overlap = lf = lf->lf_next;
250 continue;
251 }
252 #ifdef LOCKF_DEBUG
253 if (lockf_debug & 2)
254 lf_print("\tchecking", lf);
255 #endif /* LOCKF_DEBUG */
256 /*
257 * OK, check for overlap
258 *
259 * Six cases:
260 * 0) no overlap
261 * 1) overlap == lock
262 * 2) overlap contains lock
263 * 3) lock contains overlap
264 * 4) overlap starts before lock
265 * 5) overlap ends after lock
266 */
267 if ((lf->lf_end != -1 && start > lf->lf_end) ||
268 (end != -1 && lf->lf_start > end)) {
269 /* Case 0 */
270 #ifdef LOCKF_DEBUG
271 if (lockf_debug & 2)
272 printf("no overlap\n");
273 #endif /* LOCKF_DEBUG */
274 if ((type & SELF) && end != -1 && lf->lf_start > end)
275 return 0;
276 *prev = &lf->lf_next;
277 *overlap = lf = lf->lf_next;
278 continue;
279 }
280 if ((lf->lf_start == start) && (lf->lf_end == end)) {
281 /* Case 1 */
282 #ifdef LOCKF_DEBUG
283 if (lockf_debug & 2)
284 printf("overlap == lock\n");
285 #endif /* LOCKF_DEBUG */
286 return 1;
287 }
288 if ((lf->lf_start <= start) &&
289 (end != -1) &&
290 ((lf->lf_end >= end) || (lf->lf_end == -1))) {
291 /* Case 2 */
292 #ifdef LOCKF_DEBUG
293 if (lockf_debug & 2)
294 printf("overlap contains lock\n");
295 #endif /* LOCKF_DEBUG */
296 return 2;
297 }
298 if (start <= lf->lf_start &&
299 (end == -1 ||
300 (lf->lf_end != -1 && end >= lf->lf_end))) {
301 /* Case 3 */
302 #ifdef LOCKF_DEBUG
303 if (lockf_debug & 2)
304 printf("lock contains overlap\n");
305 #endif /* LOCKF_DEBUG */
306 return 3;
307 }
308 if ((lf->lf_start < start) &&
309 ((lf->lf_end >= start) || (lf->lf_end == -1))) {
310 /* Case 4 */
311 #ifdef LOCKF_DEBUG
312 if (lockf_debug & 2)
313 printf("overlap starts before lock\n");
314 #endif /* LOCKF_DEBUG */
315 return 4;
316 }
317 if ((lf->lf_start > start) &&
318 (end != -1) &&
319 ((lf->lf_end > end) || (lf->lf_end == -1))) {
320 /* Case 5 */
321 #ifdef LOCKF_DEBUG
322 if (lockf_debug & 2)
323 printf("overlap ends after lock\n");
324 #endif /* LOCKF_DEBUG */
325 return 5;
326 }
327 panic("lf_findoverlap: default");
328 }
329 return 0;
330 }
331
332 /*
333 * Split a lock and a contained region into
334 * two or three locks as necessary.
335 */
336 static void
337 lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
338 {
339 struct lockf *splitlock;
340
341 #ifdef LOCKF_DEBUG
342 if (lockf_debug & 2) {
343 lf_print("lf_split", lock1);
344 lf_print("splitting from", lock2);
345 }
346 #endif /* LOCKF_DEBUG */
347 /*
348 * Check to see if spliting into only two pieces.
349 */
350 if (lock1->lf_start == lock2->lf_start) {
351 lock1->lf_start = lock2->lf_end + 1;
352 lock2->lf_next = lock1;
353 return;
354 }
355 if (lock1->lf_end == lock2->lf_end) {
356 lock1->lf_end = lock2->lf_start - 1;
357 lock2->lf_next = lock1->lf_next;
358 lock1->lf_next = lock2;
359 return;
360 }
361 /*
362 * Make a new lock consisting of the last part of
363 * the encompassing lock
364 */
365 splitlock = *sparelock;
366 *sparelock = NULL;
367 memcpy(splitlock, lock1, sizeof(*splitlock));
368 splitlock->lf_start = lock2->lf_end + 1;
369 TAILQ_INIT(&splitlock->lf_blkhd);
370 lock1->lf_end = lock2->lf_start - 1;
371 /*
372 * OK, now link it in
373 */
374 splitlock->lf_next = lock1->lf_next;
375 lock2->lf_next = splitlock;
376 lock1->lf_next = lock2;
377 }
378
379 /*
380 * Wakeup a blocklist
381 */
382 static void
383 lf_wakelock(struct lockf *listhead)
384 {
385 struct lockf *wakelock;
386
387 while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
388 KASSERT(wakelock->lf_next == listhead);
389 TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
390 wakelock->lf_next = NULL;
391 #ifdef LOCKF_DEBUG
392 if (lockf_debug & 2)
393 lf_print("lf_wakelock: awakening", wakelock);
394 #endif
395 cv_broadcast(&wakelock->lf_cv);
396 }
397 }
398
399 /*
400 * Remove a byte-range lock on an inode.
401 *
402 * Generally, find the lock (or an overlap to that lock)
403 * and remove it (or shrink it), then wakeup anyone we can.
404 */
405 static int
406 lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
407 {
408 struct lockf **head = unlock->lf_head;
409 struct lockf *lf = *head;
410 struct lockf *overlap, **prev;
411 int ovcase;
412
413 if (lf == NULL)
414 return 0;
415 #ifdef LOCKF_DEBUG
416 if (unlock->lf_type != F_UNLCK)
417 panic("lf_clearlock: bad type");
418 if (lockf_debug & 1)
419 lf_print("lf_clearlock", unlock);
420 #endif /* LOCKF_DEBUG */
421 prev = head;
422 while ((ovcase = lf_findoverlap(lf, unlock, SELF,
423 &prev, &overlap)) != 0) {
424 /*
425 * Wakeup the list of locks to be retried.
426 */
427 lf_wakelock(overlap);
428
429 switch (ovcase) {
430
431 case 1: /* overlap == lock */
432 *prev = overlap->lf_next;
433 lf_free(overlap);
434 break;
435
436 case 2: /* overlap contains lock: split it */
437 if (overlap->lf_start == unlock->lf_start) {
438 overlap->lf_start = unlock->lf_end + 1;
439 break;
440 }
441 lf_split(overlap, unlock, sparelock);
442 overlap->lf_next = unlock->lf_next;
443 break;
444
445 case 3: /* lock contains overlap */
446 *prev = overlap->lf_next;
447 lf = overlap->lf_next;
448 lf_free(overlap);
449 continue;
450
451 case 4: /* overlap starts before lock */
452 overlap->lf_end = unlock->lf_start - 1;
453 prev = &overlap->lf_next;
454 lf = overlap->lf_next;
455 continue;
456
457 case 5: /* overlap ends after lock */
458 overlap->lf_start = unlock->lf_end + 1;
459 break;
460 }
461 break;
462 }
463 #ifdef LOCKF_DEBUG
464 if (lockf_debug & 1)
465 lf_printlist("lf_clearlock", unlock);
466 #endif /* LOCKF_DEBUG */
467 return 0;
468 }
469
470 /*
471 * Walk the list of locks for an inode and
472 * return the first blocking lock.
473 */
474 static struct lockf *
475 lf_getblock(struct lockf *lock)
476 {
477 struct lockf **prev, *overlap, *lf = *(lock->lf_head);
478
479 prev = lock->lf_head;
480 while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
481 /*
482 * We've found an overlap, see if it blocks us
483 */
484 if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
485 return overlap;
486 /*
487 * Nope, point to the next one on the list and
488 * see if it blocks us
489 */
490 lf = overlap->lf_next;
491 }
492 return NULL;
493 }
494
495 /*
496 * Set a byte-range lock.
497 */
498 static int
499 lf_setlock(struct lockf *lock, struct lockf **sparelock,
500 kmutex_t *interlock)
501 {
502 struct lockf *block;
503 struct lockf **head = lock->lf_head;
504 struct lockf **prev, *overlap, *ltmp;
505 static char lockstr[] = "lockf";
506 int ovcase, needtolink, error;
507
508 #ifdef LOCKF_DEBUG
509 if (lockf_debug & 1)
510 lf_print("lf_setlock", lock);
511 #endif /* LOCKF_DEBUG */
512
513 /*
514 * XXX Here we used to set the sleep priority so that writers
515 * took priority. That's of dubious use, and is not possible
516 * with condition variables. Need to find a better way to ensure
517 * fairness.
518 */
519
520 /*
521 * Scan lock list for this file looking for locks that would block us.
522 */
523 while ((block = lf_getblock(lock)) != NULL) {
524 /*
525 * Free the structure and return if nonblocking.
526 */
527 if ((lock->lf_flags & F_WAIT) == 0) {
528 lf_free(lock);
529 return EAGAIN;
530 }
531 /*
532 * We are blocked. Since flock style locks cover
533 * the whole file, there is no chance for deadlock.
534 * For byte-range locks we must check for deadlock.
535 *
536 * Deadlock detection is done by looking through the
537 * wait channels to see if there are any cycles that
538 * involve us. MAXDEPTH is set just to make sure we
539 * do not go off into neverneverland.
540 */
541 if ((lock->lf_flags & F_POSIX) &&
542 (block->lf_flags & F_POSIX)) {
543 struct lwp *wlwp;
544 volatile const struct lockf *waitblock;
545 int i = 0;
546 struct proc *p;
547
548 p = (struct proc *)block->lf_id;
549 KASSERT(p != NULL);
550 while (i++ < maxlockdepth) {
551 mutex_enter(&p->p_smutex);
552 if (p->p_nlwps > 1) {
553 mutex_exit(&p->p_smutex);
554 break;
555 }
556 wlwp = LIST_FIRST(&p->p_lwps);
557 lwp_lock(wlwp);
558 if (wlwp->l_wmesg != lockstr) {
559 lwp_unlock(wlwp);
560 mutex_exit(&p->p_smutex);
561 break;
562 }
563 waitblock = wlwp->l_wchan;
564 lwp_unlock(wlwp);
565 mutex_exit(&p->p_smutex);
566 if (waitblock == NULL) {
567 /*
568 * this lwp just got up but
569 * not returned from ltsleep yet.
570 */
571 break;
572 }
573 /* Get the owner of the blocking lock */
574 waitblock = waitblock->lf_next;
575 if ((waitblock->lf_flags & F_POSIX) == 0)
576 break;
577 p = (struct proc *)waitblock->lf_id;
578 if (p == curproc) {
579 lf_free(lock);
580 return EDEADLK;
581 }
582 }
583 /*
584 * If we're still following a dependency chain
585 * after maxlockdepth iterations, assume we're in
586 * a cycle to be safe.
587 */
588 if (i >= maxlockdepth) {
589 lf_free(lock);
590 return EDEADLK;
591 }
592 }
593 /*
594 * For flock type locks, we must first remove
595 * any shared locks that we hold before we sleep
596 * waiting for an exclusive lock.
597 */
598 if ((lock->lf_flags & F_FLOCK) &&
599 lock->lf_type == F_WRLCK) {
600 lock->lf_type = F_UNLCK;
601 (void) lf_clearlock(lock, NULL);
602 lock->lf_type = F_WRLCK;
603 }
604 /*
605 * Add our lock to the blocked list and sleep until we're free.
606 * Remember who blocked us (for deadlock detection).
607 */
608 lock->lf_next = block;
609 TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
610 #ifdef LOCKF_DEBUG
611 if (lockf_debug & 1) {
612 lf_print("lf_setlock: blocking on", block);
613 lf_printlist("lf_setlock", block);
614 }
615 #endif /* LOCKF_DEBUG */
616 error = cv_wait_sig(&lock->lf_cv, interlock);
617
618 /*
619 * We may have been awakened by a signal (in
620 * which case we must remove ourselves from the
621 * blocked list) and/or by another process
622 * releasing a lock (in which case we have already
623 * been removed from the blocked list and our
624 * lf_next field set to NULL).
625 */
626 if (lock->lf_next != NULL) {
627 TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
628 lock->lf_next = NULL;
629 }
630 if (error) {
631 lf_free(lock);
632 return error;
633 }
634 }
635 /*
636 * No blocks!! Add the lock. Note that we will
637 * downgrade or upgrade any overlapping locks this
638 * process already owns.
639 *
640 * Skip over locks owned by other processes.
641 * Handle any locks that overlap and are owned by ourselves.
642 */
643 prev = head;
644 block = *head;
645 needtolink = 1;
646 for (;;) {
647 ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
648 if (ovcase)
649 block = overlap->lf_next;
650 /*
651 * Six cases:
652 * 0) no overlap
653 * 1) overlap == lock
654 * 2) overlap contains lock
655 * 3) lock contains overlap
656 * 4) overlap starts before lock
657 * 5) overlap ends after lock
658 */
659 switch (ovcase) {
660 case 0: /* no overlap */
661 if (needtolink) {
662 *prev = lock;
663 lock->lf_next = overlap;
664 }
665 break;
666
667 case 1: /* overlap == lock */
668 /*
669 * If downgrading lock, others may be
670 * able to acquire it.
671 */
672 if (lock->lf_type == F_RDLCK &&
673 overlap->lf_type == F_WRLCK)
674 lf_wakelock(overlap);
675 overlap->lf_type = lock->lf_type;
676 lf_free(lock);
677 lock = overlap; /* for debug output below */
678 break;
679
680 case 2: /* overlap contains lock */
681 /*
682 * Check for common starting point and different types.
683 */
684 if (overlap->lf_type == lock->lf_type) {
685 lf_free(lock);
686 lock = overlap; /* for debug output below */
687 break;
688 }
689 if (overlap->lf_start == lock->lf_start) {
690 *prev = lock;
691 lock->lf_next = overlap;
692 overlap->lf_start = lock->lf_end + 1;
693 } else
694 lf_split(overlap, lock, sparelock);
695 lf_wakelock(overlap);
696 break;
697
698 case 3: /* lock contains overlap */
699 /*
700 * If downgrading lock, others may be able to
701 * acquire it, otherwise take the list.
702 */
703 if (lock->lf_type == F_RDLCK &&
704 overlap->lf_type == F_WRLCK) {
705 lf_wakelock(overlap);
706 } else {
707 while ((ltmp = TAILQ_FIRST(&overlap->lf_blkhd))) {
708 KASSERT(ltmp->lf_next == overlap);
709 TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
710 lf_block);
711 ltmp->lf_next = lock;
712 TAILQ_INSERT_TAIL(&lock->lf_blkhd,
713 ltmp, lf_block);
714 }
715 }
716 /*
717 * Add the new lock if necessary and delete the overlap.
718 */
719 if (needtolink) {
720 *prev = lock;
721 lock->lf_next = overlap->lf_next;
722 prev = &lock->lf_next;
723 needtolink = 0;
724 } else
725 *prev = overlap->lf_next;
726 lf_free(overlap);
727 continue;
728
729 case 4: /* overlap starts before lock */
730 /*
731 * Add lock after overlap on the list.
732 */
733 lock->lf_next = overlap->lf_next;
734 overlap->lf_next = lock;
735 overlap->lf_end = lock->lf_start - 1;
736 prev = &lock->lf_next;
737 lf_wakelock(overlap);
738 needtolink = 0;
739 continue;
740
741 case 5: /* overlap ends after lock */
742 /*
743 * Add the new lock before overlap.
744 */
745 if (needtolink) {
746 *prev = lock;
747 lock->lf_next = overlap;
748 }
749 overlap->lf_start = lock->lf_end + 1;
750 lf_wakelock(overlap);
751 break;
752 }
753 break;
754 }
755 #ifdef LOCKF_DEBUG
756 if (lockf_debug & 1) {
757 lf_print("lf_setlock: got the lock", lock);
758 lf_printlist("lf_setlock", lock);
759 }
760 #endif /* LOCKF_DEBUG */
761 return 0;
762 }
763
764 /*
765 * Check whether there is a blocking lock,
766 * and if so return its process identifier.
767 */
768 static int
769 lf_getlock(struct lockf *lock, struct flock *fl)
770 {
771 struct lockf *block;
772
773 #ifdef LOCKF_DEBUG
774 if (lockf_debug & 1)
775 lf_print("lf_getlock", lock);
776 #endif /* LOCKF_DEBUG */
777
778 if ((block = lf_getblock(lock)) != NULL) {
779 fl->l_type = block->lf_type;
780 fl->l_whence = SEEK_SET;
781 fl->l_start = block->lf_start;
782 if (block->lf_end == -1)
783 fl->l_len = 0;
784 else
785 fl->l_len = block->lf_end - block->lf_start + 1;
786 if (block->lf_flags & F_POSIX)
787 fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
788 else
789 fl->l_pid = -1;
790 } else {
791 fl->l_type = F_UNLCK;
792 }
793 return 0;
794 }
795
796 /*
797 * Do an advisory lock operation.
798 */
799 int
800 lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
801 {
802 struct lwp *l = curlwp;
803 struct flock *fl = ap->a_fl;
804 struct lockf *lock = NULL;
805 struct lockf *sparelock;
806 kmutex_t *interlock = &ap->a_vp->v_interlock;
807 off_t start, end;
808 int error = 0;
809
810 /*
811 * Convert the flock structure into a start and end.
812 */
813 switch (fl->l_whence) {
814 case SEEK_SET:
815 case SEEK_CUR:
816 /*
817 * Caller is responsible for adding any necessary offset
818 * when SEEK_CUR is used.
819 */
820 start = fl->l_start;
821 break;
822
823 case SEEK_END:
824 start = size + fl->l_start;
825 break;
826
827 default:
828 return EINVAL;
829 }
830 if (start < 0)
831 return EINVAL;
832
833 /*
834 * Allocate locks before acquiring the interlock. We need two
835 * locks in the worst case.
836 */
837 switch (ap->a_op) {
838 case F_SETLK:
839 case F_UNLCK:
840 /*
841 * XXX For F_UNLCK case, we can re-use the lock.
842 */
843 if ((ap->a_flags & F_FLOCK) == 0) {
844 /*
845 * Byte-range lock might need one more lock.
846 */
847 sparelock = lf_alloc(kauth_cred_geteuid(l->l_cred), 0);
848 if (sparelock == NULL) {
849 error = ENOMEM;
850 goto quit;
851 }
852 break;
853 }
854 /* FALLTHROUGH */
855
856 case F_GETLK:
857 sparelock = NULL;
858 break;
859
860 default:
861 return EINVAL;
862 }
863
864 lock = lf_alloc(kauth_cred_geteuid(l->l_cred),
865 ap->a_op != F_UNLCK ? 1 : 2);
866 if (lock == NULL) {
867 error = ENOMEM;
868 goto quit;
869 }
870
871 mutex_enter(interlock);
872
873 /*
874 * Avoid the common case of unlocking when inode has no locks.
875 */
876 if (*head == (struct lockf *)0) {
877 if (ap->a_op != F_SETLK) {
878 fl->l_type = F_UNLCK;
879 error = 0;
880 goto quit_unlock;
881 }
882 }
883
884 if (fl->l_len == 0)
885 end = -1;
886 else
887 end = start + fl->l_len - 1;
888 /*
889 * Create the lockf structure.
890 */
891 lock->lf_start = start;
892 lock->lf_end = end;
893 /* XXX NJWLWP
894 * I don't want to make the entire VFS universe use LWPs, because
895 * they don't need them, for the most part. This is an exception,
896 * and a kluge.
897 */
898
899 lock->lf_head = head;
900 lock->lf_type = fl->l_type;
901 lock->lf_next = (struct lockf *)0;
902 TAILQ_INIT(&lock->lf_blkhd);
903 lock->lf_flags = ap->a_flags;
904 if (lock->lf_flags & F_POSIX) {
905 KASSERT(curproc == (struct proc *)ap->a_id);
906 }
907 lock->lf_id = (struct proc *)ap->a_id;
908
909 /*
910 * Do the requested operation.
911 */
912 switch (ap->a_op) {
913
914 case F_SETLK:
915 error = lf_setlock(lock, &sparelock, interlock);
916 lock = NULL; /* lf_setlock freed it */
917 break;
918
919 case F_UNLCK:
920 error = lf_clearlock(lock, &sparelock);
921 break;
922
923 case F_GETLK:
924 error = lf_getlock(lock, fl);
925 break;
926
927 default:
928 break;
929 /* NOTREACHED */
930 }
931
932 quit_unlock:
933 mutex_exit(interlock);
934 quit:
935 if (lock)
936 lf_free(lock);
937 if (sparelock)
938 lf_free(sparelock);
939
940 return error;
941 }
942