Home | History | Annotate | Line # | Download | only in kern
vfs_lockf.c revision 1.63
      1 /*	$NetBSD: vfs_lockf.c,v 1.63 2008/03/18 02:49:15 mrg Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * This code is derived from software contributed to Berkeley by
      8  * Scooter Morris at Genentech Inc.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. Neither the name of the University nor the names of its contributors
     19  *    may be used to endorse or promote products derived from this software
     20  *    without specific prior written permission.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     32  * SUCH DAMAGE.
     33  *
     34  *	@(#)ufs_lockf.c	8.4 (Berkeley) 10/26/94
     35  */
     36 
     37 #include <sys/cdefs.h>
     38 __KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.63 2008/03/18 02:49:15 mrg Exp $");
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/kernel.h>
     43 #include <sys/file.h>
     44 #include <sys/proc.h>
     45 #include <sys/vnode.h>
     46 #include <sys/pool.h>
     47 #include <sys/fcntl.h>
     48 #include <sys/lockf.h>
     49 #include <sys/atomic.h>
     50 #include <sys/kauth.h>
     51 
     52 /*
     53  * The lockf structure is a kernel structure which contains the information
     54  * associated with a byte range lock.  The lockf structures are linked into
     55  * the vnode structure.  Locks are sorted by the starting byte of the lock for
     56  * efficiency.
     57  *
     58  * lf_next is used for two purposes, depending on whether the lock is
     59  * being held, or is in conflict with an existing lock.  If this lock
     60  * is held, it indicates the next lock on the same vnode.
     61  * For pending locks, if lock->lf_next is non-NULL, then lock->lf_block
     62  * must be queued on the lf_blkhd TAILQ of lock->lf_next.
     63  */
     64 
     65 TAILQ_HEAD(locklist, lockf);
     66 
     67 struct lockf {
     68 	short	lf_flags;	 /* Lock semantics: F_POSIX, F_FLOCK, F_WAIT */
     69 	short	lf_type;	 /* Lock type: F_RDLCK, F_WRLCK */
     70 	off_t	lf_start;	 /* The byte # of the start of the lock */
     71 	off_t	lf_end;		 /* The byte # of the end of the lock (-1=EOF)*/
     72 	void	*lf_id;		 /* process or file description holding lock */
     73 	struct	lockf **lf_head; /* Back pointer to the head of lockf list */
     74 	struct	lockf *lf_next;	 /* Next lock on this vnode, or blocking lock */
     75 	struct  locklist lf_blkhd; /* List of requests blocked on this lock */
     76 	TAILQ_ENTRY(lockf) lf_block;/* A request waiting for a lock */
     77 	uid_t	lf_uid;		 /* User ID responsible */
     78 	kcondvar_t lf_cv;	 /* Signalling */
     79 };
     80 
     81 /* Maximum length of sleep chains to traverse to try and detect deadlock. */
     82 #define MAXDEPTH 50
     83 
     84 static POOL_INIT(lockfpool, sizeof(struct lockf), 0, 0, 0, "lockfpl",
     85     &pool_allocator_nointr, IPL_NONE);
     86 
     87 /*
     88  * This variable controls the maximum number of processes that will
     89  * be checked in doing deadlock detection.
     90  */
     91 int maxlockdepth = MAXDEPTH;
     92 
     93 #ifdef LOCKF_DEBUG
     94 int	lockf_debug = 0;
     95 #endif
     96 
     97 #define SELF	0x1
     98 #define OTHERS	0x2
     99 
    100 /*
    101  * XXX TODO
    102  * Misc cleanups: "void *id" should be visible in the API as a
    103  * "struct proc *".
    104  * (This requires rototilling all VFS's which support advisory locking).
    105  */
    106 
    107 /*
    108  * If there's a lot of lock contention on a single vnode, locking
    109  * schemes which allow for more paralleism would be needed.  Given how
    110  * infrequently byte-range locks are actually used in typical BSD
    111  * code, a more complex approach probably isn't worth it.
    112  */
    113 
    114 /*
    115  * We enforce a limit on locks by uid, so that a single user cannot
    116  * run the kernel out of memory.  For now, the limit is pretty coarse.
    117  * There is no limit on root.
    118  *
    119  * Splitting a lock will always succeed, regardless of current allocations.
    120  * If you're slightly above the limit, we still have to permit an allocation
    121  * so that the unlock can succeed.  If the unlocking causes too many splits,
    122  * however, you're totally cutoff.
    123  */
    124 int maxlocksperuid = 1024;
    125 
    126 #ifdef LOCKF_DEBUG
    127 /*
    128  * Print out a lock.
    129  */
    130 static void
    131 lf_print(const char *tag, struct lockf *lock)
    132 {
    133 
    134 	printf("%s: lock %p for ", tag, lock);
    135 	if (lock->lf_flags & F_POSIX)
    136 		printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
    137 	else
    138 		printf("file %p", (struct file *)lock->lf_id);
    139 	printf(" %s, start %qx, end %qx",
    140 		lock->lf_type == F_RDLCK ? "shared" :
    141 		lock->lf_type == F_WRLCK ? "exclusive" :
    142 		lock->lf_type == F_UNLCK ? "unlock" :
    143 		"unknown", lock->lf_start, lock->lf_end);
    144 	if (TAILQ_FIRST(&lock->lf_blkhd))
    145 		printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
    146 	else
    147 		printf("\n");
    148 }
    149 
    150 static void
    151 lf_printlist(const char *tag, struct lockf *lock)
    152 {
    153 	struct lockf *lf, *blk;
    154 
    155 	printf("%s: Lock list:\n", tag);
    156 	for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
    157 		printf("\tlock %p for ", lf);
    158 		if (lf->lf_flags & F_POSIX)
    159 			printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
    160 		else
    161 			printf("file %p", (struct file *)lf->lf_id);
    162 		printf(", %s, start %qx, end %qx",
    163 			lf->lf_type == F_RDLCK ? "shared" :
    164 			lf->lf_type == F_WRLCK ? "exclusive" :
    165 			lf->lf_type == F_UNLCK ? "unlock" :
    166 			"unknown", lf->lf_start, lf->lf_end);
    167 		TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
    168 			if (blk->lf_flags & F_POSIX)
    169 				printf("proc %d",
    170 				    ((struct proc *)blk->lf_id)->p_pid);
    171 			else
    172 				printf("file %p", (struct file *)blk->lf_id);
    173 			printf(", %s, start %qx, end %qx",
    174 				blk->lf_type == F_RDLCK ? "shared" :
    175 				blk->lf_type == F_WRLCK ? "exclusive" :
    176 				blk->lf_type == F_UNLCK ? "unlock" :
    177 				"unknown", blk->lf_start, blk->lf_end);
    178 			if (TAILQ_FIRST(&blk->lf_blkhd))
    179 				 panic("lf_printlist: bad list");
    180 		}
    181 		printf("\n");
    182 	}
    183 }
    184 #endif /* LOCKF_DEBUG */
    185 
    186 /*
    187  * 3 options for allowfail.
    188  * 0 - always allocate.  1 - cutoff at limit.  2 - cutoff at double limit.
    189  */
    190 static struct lockf *
    191 lf_alloc(uid_t uid, int allowfail)
    192 {
    193 	struct uidinfo *uip;
    194 	struct lockf *lock;
    195 	u_long lcnt;
    196 
    197 	uip = uid_find(uid);
    198 	lcnt = atomic_inc_ulong_nv(&uip->ui_lockcnt);
    199 	if (uid && allowfail && lcnt >
    200 	    (allowfail == 1 ? maxlocksperuid : (maxlocksperuid * 2))) {
    201 		atomic_dec_ulong(&uip->ui_lockcnt);
    202 		return NULL;
    203 	}
    204 
    205 	lock = pool_get(&lockfpool, PR_WAITOK);
    206 	lock->lf_uid = uid;
    207 	cv_init(&lock->lf_cv, "lockf");
    208 	return lock;
    209 }
    210 
    211 static void
    212 lf_free(struct lockf *lock)
    213 {
    214 	struct uidinfo *uip;
    215 
    216 	uip = uid_find(lock->lf_uid);
    217 	atomic_dec_ulong(&uip->ui_lockcnt);
    218 
    219 	cv_destroy(&lock->lf_cv);
    220 	pool_put(&lockfpool, lock);
    221 }
    222 
    223 /*
    224  * Walk the list of locks for an inode to
    225  * find an overlapping lock (if any).
    226  *
    227  * NOTE: this returns only the FIRST overlapping lock.  There
    228  *	 may be more than one.
    229  */
    230 static int
    231 lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
    232     struct lockf ***prev, struct lockf **overlap)
    233 {
    234 	off_t start, end;
    235 
    236 	*overlap = lf;
    237 	if (lf == NULL)
    238 		return 0;
    239 #ifdef LOCKF_DEBUG
    240 	if (lockf_debug & 2)
    241 		lf_print("lf_findoverlap: looking for overlap in", lock);
    242 #endif /* LOCKF_DEBUG */
    243 	start = lock->lf_start;
    244 	end = lock->lf_end;
    245 	while (lf != NULL) {
    246 		if (((type == SELF) && lf->lf_id != lock->lf_id) ||
    247 		    ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
    248 			*prev = &lf->lf_next;
    249 			*overlap = lf = lf->lf_next;
    250 			continue;
    251 		}
    252 #ifdef LOCKF_DEBUG
    253 		if (lockf_debug & 2)
    254 			lf_print("\tchecking", lf);
    255 #endif /* LOCKF_DEBUG */
    256 		/*
    257 		 * OK, check for overlap
    258 		 *
    259 		 * Six cases:
    260 		 *	0) no overlap
    261 		 *	1) overlap == lock
    262 		 *	2) overlap contains lock
    263 		 *	3) lock contains overlap
    264 		 *	4) overlap starts before lock
    265 		 *	5) overlap ends after lock
    266 		 */
    267 		if ((lf->lf_end != -1 && start > lf->lf_end) ||
    268 		    (end != -1 && lf->lf_start > end)) {
    269 			/* Case 0 */
    270 #ifdef LOCKF_DEBUG
    271 			if (lockf_debug & 2)
    272 				printf("no overlap\n");
    273 #endif /* LOCKF_DEBUG */
    274 			if ((type & SELF) && end != -1 && lf->lf_start > end)
    275 				return 0;
    276 			*prev = &lf->lf_next;
    277 			*overlap = lf = lf->lf_next;
    278 			continue;
    279 		}
    280 		if ((lf->lf_start == start) && (lf->lf_end == end)) {
    281 			/* Case 1 */
    282 #ifdef LOCKF_DEBUG
    283 			if (lockf_debug & 2)
    284 				printf("overlap == lock\n");
    285 #endif /* LOCKF_DEBUG */
    286 			return 1;
    287 		}
    288 		if ((lf->lf_start <= start) &&
    289 		    (end != -1) &&
    290 		    ((lf->lf_end >= end) || (lf->lf_end == -1))) {
    291 			/* Case 2 */
    292 #ifdef LOCKF_DEBUG
    293 			if (lockf_debug & 2)
    294 				printf("overlap contains lock\n");
    295 #endif /* LOCKF_DEBUG */
    296 			return 2;
    297 		}
    298 		if (start <= lf->lf_start &&
    299 		           (end == -1 ||
    300 			   (lf->lf_end != -1 && end >= lf->lf_end))) {
    301 			/* Case 3 */
    302 #ifdef LOCKF_DEBUG
    303 			if (lockf_debug & 2)
    304 				printf("lock contains overlap\n");
    305 #endif /* LOCKF_DEBUG */
    306 			return 3;
    307 		}
    308 		if ((lf->lf_start < start) &&
    309 			((lf->lf_end >= start) || (lf->lf_end == -1))) {
    310 			/* Case 4 */
    311 #ifdef LOCKF_DEBUG
    312 			if (lockf_debug & 2)
    313 				printf("overlap starts before lock\n");
    314 #endif /* LOCKF_DEBUG */
    315 			return 4;
    316 		}
    317 		if ((lf->lf_start > start) &&
    318 			(end != -1) &&
    319 			((lf->lf_end > end) || (lf->lf_end == -1))) {
    320 			/* Case 5 */
    321 #ifdef LOCKF_DEBUG
    322 			if (lockf_debug & 2)
    323 				printf("overlap ends after lock\n");
    324 #endif /* LOCKF_DEBUG */
    325 			return 5;
    326 		}
    327 		panic("lf_findoverlap: default");
    328 	}
    329 	return 0;
    330 }
    331 
    332 /*
    333  * Split a lock and a contained region into
    334  * two or three locks as necessary.
    335  */
    336 static void
    337 lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
    338 {
    339 	struct lockf *splitlock;
    340 
    341 #ifdef LOCKF_DEBUG
    342 	if (lockf_debug & 2) {
    343 		lf_print("lf_split", lock1);
    344 		lf_print("splitting from", lock2);
    345 	}
    346 #endif /* LOCKF_DEBUG */
    347 	/*
    348 	 * Check to see if spliting into only two pieces.
    349 	 */
    350 	if (lock1->lf_start == lock2->lf_start) {
    351 		lock1->lf_start = lock2->lf_end + 1;
    352 		lock2->lf_next = lock1;
    353 		return;
    354 	}
    355 	if (lock1->lf_end == lock2->lf_end) {
    356 		lock1->lf_end = lock2->lf_start - 1;
    357 		lock2->lf_next = lock1->lf_next;
    358 		lock1->lf_next = lock2;
    359 		return;
    360 	}
    361 	/*
    362 	 * Make a new lock consisting of the last part of
    363 	 * the encompassing lock
    364 	 */
    365 	splitlock = *sparelock;
    366 	*sparelock = NULL;
    367 	memcpy(splitlock, lock1, sizeof(*splitlock));
    368 	splitlock->lf_start = lock2->lf_end + 1;
    369 	TAILQ_INIT(&splitlock->lf_blkhd);
    370 	lock1->lf_end = lock2->lf_start - 1;
    371 	/*
    372 	 * OK, now link it in
    373 	 */
    374 	splitlock->lf_next = lock1->lf_next;
    375 	lock2->lf_next = splitlock;
    376 	lock1->lf_next = lock2;
    377 }
    378 
    379 /*
    380  * Wakeup a blocklist
    381  */
    382 static void
    383 lf_wakelock(struct lockf *listhead)
    384 {
    385 	struct lockf *wakelock;
    386 
    387 	while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
    388 		KASSERT(wakelock->lf_next == listhead);
    389 		TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
    390 		wakelock->lf_next = NULL;
    391 #ifdef LOCKF_DEBUG
    392 		if (lockf_debug & 2)
    393 			lf_print("lf_wakelock: awakening", wakelock);
    394 #endif
    395 		cv_broadcast(&wakelock->lf_cv);
    396 	}
    397 }
    398 
    399 /*
    400  * Remove a byte-range lock on an inode.
    401  *
    402  * Generally, find the lock (or an overlap to that lock)
    403  * and remove it (or shrink it), then wakeup anyone we can.
    404  */
    405 static int
    406 lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
    407 {
    408 	struct lockf **head = unlock->lf_head;
    409 	struct lockf *lf = *head;
    410 	struct lockf *overlap, **prev;
    411 	int ovcase;
    412 
    413 	if (lf == NULL)
    414 		return 0;
    415 #ifdef LOCKF_DEBUG
    416 	if (unlock->lf_type != F_UNLCK)
    417 		panic("lf_clearlock: bad type");
    418 	if (lockf_debug & 1)
    419 		lf_print("lf_clearlock", unlock);
    420 #endif /* LOCKF_DEBUG */
    421 	prev = head;
    422 	while ((ovcase = lf_findoverlap(lf, unlock, SELF,
    423 	    &prev, &overlap)) != 0) {
    424 		/*
    425 		 * Wakeup the list of locks to be retried.
    426 		 */
    427 		lf_wakelock(overlap);
    428 
    429 		switch (ovcase) {
    430 
    431 		case 1: /* overlap == lock */
    432 			*prev = overlap->lf_next;
    433 			lf_free(overlap);
    434 			break;
    435 
    436 		case 2: /* overlap contains lock: split it */
    437 			if (overlap->lf_start == unlock->lf_start) {
    438 				overlap->lf_start = unlock->lf_end + 1;
    439 				break;
    440 			}
    441 			lf_split(overlap, unlock, sparelock);
    442 			overlap->lf_next = unlock->lf_next;
    443 			break;
    444 
    445 		case 3: /* lock contains overlap */
    446 			*prev = overlap->lf_next;
    447 			lf = overlap->lf_next;
    448 			lf_free(overlap);
    449 			continue;
    450 
    451 		case 4: /* overlap starts before lock */
    452 			overlap->lf_end = unlock->lf_start - 1;
    453 			prev = &overlap->lf_next;
    454 			lf = overlap->lf_next;
    455 			continue;
    456 
    457 		case 5: /* overlap ends after lock */
    458 			overlap->lf_start = unlock->lf_end + 1;
    459 			break;
    460 		}
    461 		break;
    462 	}
    463 #ifdef LOCKF_DEBUG
    464 	if (lockf_debug & 1)
    465 		lf_printlist("lf_clearlock", unlock);
    466 #endif /* LOCKF_DEBUG */
    467 	return 0;
    468 }
    469 
    470 /*
    471  * Walk the list of locks for an inode and
    472  * return the first blocking lock.
    473  */
    474 static struct lockf *
    475 lf_getblock(struct lockf *lock)
    476 {
    477 	struct lockf **prev, *overlap, *lf = *(lock->lf_head);
    478 
    479 	prev = lock->lf_head;
    480 	while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
    481 		/*
    482 		 * We've found an overlap, see if it blocks us
    483 		 */
    484 		if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
    485 			return overlap;
    486 		/*
    487 		 * Nope, point to the next one on the list and
    488 		 * see if it blocks us
    489 		 */
    490 		lf = overlap->lf_next;
    491 	}
    492 	return NULL;
    493 }
    494 
    495 /*
    496  * Set a byte-range lock.
    497  */
    498 static int
    499 lf_setlock(struct lockf *lock, struct lockf **sparelock,
    500     kmutex_t *interlock)
    501 {
    502 	struct lockf *block;
    503 	struct lockf **head = lock->lf_head;
    504 	struct lockf **prev, *overlap, *ltmp;
    505 	static char lockstr[] = "lockf";
    506 	int ovcase, needtolink, error;
    507 
    508 #ifdef LOCKF_DEBUG
    509 	if (lockf_debug & 1)
    510 		lf_print("lf_setlock", lock);
    511 #endif /* LOCKF_DEBUG */
    512 
    513 	/*
    514 	 * XXX Here we used to set the sleep priority so that writers
    515 	 * took priority.  That's of dubious use, and is not possible
    516 	 * with condition variables.  Need to find a better way to ensure
    517 	 * fairness.
    518 	 */
    519 
    520 	/*
    521 	 * Scan lock list for this file looking for locks that would block us.
    522 	 */
    523 	while ((block = lf_getblock(lock)) != NULL) {
    524 		/*
    525 		 * Free the structure and return if nonblocking.
    526 		 */
    527 		if ((lock->lf_flags & F_WAIT) == 0) {
    528 			lf_free(lock);
    529 			return EAGAIN;
    530 		}
    531 		/*
    532 		 * We are blocked. Since flock style locks cover
    533 		 * the whole file, there is no chance for deadlock.
    534 		 * For byte-range locks we must check for deadlock.
    535 		 *
    536 		 * Deadlock detection is done by looking through the
    537 		 * wait channels to see if there are any cycles that
    538 		 * involve us. MAXDEPTH is set just to make sure we
    539 		 * do not go off into neverneverland.
    540 		 */
    541 		if ((lock->lf_flags & F_POSIX) &&
    542 		    (block->lf_flags & F_POSIX)) {
    543 			struct lwp *wlwp;
    544 			volatile const struct lockf *waitblock;
    545 			int i = 0;
    546 			struct proc *p;
    547 
    548 			p = (struct proc *)block->lf_id;
    549 			KASSERT(p != NULL);
    550 			while (i++ < maxlockdepth) {
    551 				mutex_enter(&p->p_smutex);
    552 				if (p->p_nlwps > 1) {
    553 					mutex_exit(&p->p_smutex);
    554 					break;
    555 				}
    556 				wlwp = LIST_FIRST(&p->p_lwps);
    557 				lwp_lock(wlwp);
    558 				if (wlwp->l_wmesg != lockstr) {
    559 					lwp_unlock(wlwp);
    560 					mutex_exit(&p->p_smutex);
    561 					break;
    562 				}
    563 				waitblock = wlwp->l_wchan;
    564 				lwp_unlock(wlwp);
    565 				mutex_exit(&p->p_smutex);
    566 				if (waitblock == NULL) {
    567 					/*
    568 					 * this lwp just got up but
    569 					 * not returned from ltsleep yet.
    570 					 */
    571 					break;
    572 				}
    573 				/* Get the owner of the blocking lock */
    574 				waitblock = waitblock->lf_next;
    575 				if ((waitblock->lf_flags & F_POSIX) == 0)
    576 					break;
    577 				p = (struct proc *)waitblock->lf_id;
    578 				if (p == curproc) {
    579 					lf_free(lock);
    580 					return EDEADLK;
    581 				}
    582 			}
    583 			/*
    584 			 * If we're still following a dependency chain
    585 			 * after maxlockdepth iterations, assume we're in
    586 			 * a cycle to be safe.
    587 			 */
    588 			if (i >= maxlockdepth) {
    589 				lf_free(lock);
    590 				return EDEADLK;
    591 			}
    592 		}
    593 		/*
    594 		 * For flock type locks, we must first remove
    595 		 * any shared locks that we hold before we sleep
    596 		 * waiting for an exclusive lock.
    597 		 */
    598 		if ((lock->lf_flags & F_FLOCK) &&
    599 		    lock->lf_type == F_WRLCK) {
    600 			lock->lf_type = F_UNLCK;
    601 			(void) lf_clearlock(lock, NULL);
    602 			lock->lf_type = F_WRLCK;
    603 		}
    604 		/*
    605 		 * Add our lock to the blocked list and sleep until we're free.
    606 		 * Remember who blocked us (for deadlock detection).
    607 		 */
    608 		lock->lf_next = block;
    609 		TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
    610 #ifdef LOCKF_DEBUG
    611 		if (lockf_debug & 1) {
    612 			lf_print("lf_setlock: blocking on", block);
    613 			lf_printlist("lf_setlock", block);
    614 		}
    615 #endif /* LOCKF_DEBUG */
    616 		error = cv_wait_sig(&lock->lf_cv, interlock);
    617 
    618 		/*
    619 		 * We may have been awakened by a signal (in
    620 		 * which case we must remove ourselves from the
    621 		 * blocked list) and/or by another process
    622 		 * releasing a lock (in which case we have already
    623 		 * been removed from the blocked list and our
    624 		 * lf_next field set to NULL).
    625 		 */
    626 		if (lock->lf_next != NULL) {
    627 			TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
    628 			lock->lf_next = NULL;
    629 		}
    630 		if (error) {
    631 			lf_free(lock);
    632 			return error;
    633 		}
    634 	}
    635 	/*
    636 	 * No blocks!!  Add the lock.  Note that we will
    637 	 * downgrade or upgrade any overlapping locks this
    638 	 * process already owns.
    639 	 *
    640 	 * Skip over locks owned by other processes.
    641 	 * Handle any locks that overlap and are owned by ourselves.
    642 	 */
    643 	prev = head;
    644 	block = *head;
    645 	needtolink = 1;
    646 	for (;;) {
    647 		ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
    648 		if (ovcase)
    649 			block = overlap->lf_next;
    650 		/*
    651 		 * Six cases:
    652 		 *	0) no overlap
    653 		 *	1) overlap == lock
    654 		 *	2) overlap contains lock
    655 		 *	3) lock contains overlap
    656 		 *	4) overlap starts before lock
    657 		 *	5) overlap ends after lock
    658 		 */
    659 		switch (ovcase) {
    660 		case 0: /* no overlap */
    661 			if (needtolink) {
    662 				*prev = lock;
    663 				lock->lf_next = overlap;
    664 			}
    665 			break;
    666 
    667 		case 1: /* overlap == lock */
    668 			/*
    669 			 * If downgrading lock, others may be
    670 			 * able to acquire it.
    671 			 */
    672 			if (lock->lf_type == F_RDLCK &&
    673 			    overlap->lf_type == F_WRLCK)
    674 				lf_wakelock(overlap);
    675 			overlap->lf_type = lock->lf_type;
    676 			lf_free(lock);
    677 			lock = overlap; /* for debug output below */
    678 			break;
    679 
    680 		case 2: /* overlap contains lock */
    681 			/*
    682 			 * Check for common starting point and different types.
    683 			 */
    684 			if (overlap->lf_type == lock->lf_type) {
    685 				lf_free(lock);
    686 				lock = overlap; /* for debug output below */
    687 				break;
    688 			}
    689 			if (overlap->lf_start == lock->lf_start) {
    690 				*prev = lock;
    691 				lock->lf_next = overlap;
    692 				overlap->lf_start = lock->lf_end + 1;
    693 			} else
    694 				lf_split(overlap, lock, sparelock);
    695 			lf_wakelock(overlap);
    696 			break;
    697 
    698 		case 3: /* lock contains overlap */
    699 			/*
    700 			 * If downgrading lock, others may be able to
    701 			 * acquire it, otherwise take the list.
    702 			 */
    703 			if (lock->lf_type == F_RDLCK &&
    704 			    overlap->lf_type == F_WRLCK) {
    705 				lf_wakelock(overlap);
    706 			} else {
    707 				while ((ltmp = TAILQ_FIRST(&overlap->lf_blkhd))) {
    708 					KASSERT(ltmp->lf_next == overlap);
    709 					TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
    710 					    lf_block);
    711 					ltmp->lf_next = lock;
    712 					TAILQ_INSERT_TAIL(&lock->lf_blkhd,
    713 					    ltmp, lf_block);
    714 				}
    715 			}
    716 			/*
    717 			 * Add the new lock if necessary and delete the overlap.
    718 			 */
    719 			if (needtolink) {
    720 				*prev = lock;
    721 				lock->lf_next = overlap->lf_next;
    722 				prev = &lock->lf_next;
    723 				needtolink = 0;
    724 			} else
    725 				*prev = overlap->lf_next;
    726 			lf_free(overlap);
    727 			continue;
    728 
    729 		case 4: /* overlap starts before lock */
    730 			/*
    731 			 * Add lock after overlap on the list.
    732 			 */
    733 			lock->lf_next = overlap->lf_next;
    734 			overlap->lf_next = lock;
    735 			overlap->lf_end = lock->lf_start - 1;
    736 			prev = &lock->lf_next;
    737 			lf_wakelock(overlap);
    738 			needtolink = 0;
    739 			continue;
    740 
    741 		case 5: /* overlap ends after lock */
    742 			/*
    743 			 * Add the new lock before overlap.
    744 			 */
    745 			if (needtolink) {
    746 				*prev = lock;
    747 				lock->lf_next = overlap;
    748 			}
    749 			overlap->lf_start = lock->lf_end + 1;
    750 			lf_wakelock(overlap);
    751 			break;
    752 		}
    753 		break;
    754 	}
    755 #ifdef LOCKF_DEBUG
    756 	if (lockf_debug & 1) {
    757 		lf_print("lf_setlock: got the lock", lock);
    758 		lf_printlist("lf_setlock", lock);
    759 	}
    760 #endif /* LOCKF_DEBUG */
    761 	return 0;
    762 }
    763 
    764 /*
    765  * Check whether there is a blocking lock,
    766  * and if so return its process identifier.
    767  */
    768 static int
    769 lf_getlock(struct lockf *lock, struct flock *fl)
    770 {
    771 	struct lockf *block;
    772 
    773 #ifdef LOCKF_DEBUG
    774 	if (lockf_debug & 1)
    775 		lf_print("lf_getlock", lock);
    776 #endif /* LOCKF_DEBUG */
    777 
    778 	if ((block = lf_getblock(lock)) != NULL) {
    779 		fl->l_type = block->lf_type;
    780 		fl->l_whence = SEEK_SET;
    781 		fl->l_start = block->lf_start;
    782 		if (block->lf_end == -1)
    783 			fl->l_len = 0;
    784 		else
    785 			fl->l_len = block->lf_end - block->lf_start + 1;
    786 		if (block->lf_flags & F_POSIX)
    787 			fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
    788 		else
    789 			fl->l_pid = -1;
    790 	} else {
    791 		fl->l_type = F_UNLCK;
    792 	}
    793 	return 0;
    794 }
    795 
    796 /*
    797  * Do an advisory lock operation.
    798  */
    799 int
    800 lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
    801 {
    802 	struct lwp *l = curlwp;
    803 	struct flock *fl = ap->a_fl;
    804 	struct lockf *lock = NULL;
    805 	struct lockf *sparelock;
    806 	kmutex_t *interlock = &ap->a_vp->v_interlock;
    807 	off_t start, end;
    808 	int error = 0;
    809 
    810 	/*
    811 	 * Convert the flock structure into a start and end.
    812 	 */
    813 	switch (fl->l_whence) {
    814 	case SEEK_SET:
    815 	case SEEK_CUR:
    816 		/*
    817 		 * Caller is responsible for adding any necessary offset
    818 		 * when SEEK_CUR is used.
    819 		 */
    820 		start = fl->l_start;
    821 		break;
    822 
    823 	case SEEK_END:
    824 		start = size + fl->l_start;
    825 		break;
    826 
    827 	default:
    828 		return EINVAL;
    829 	}
    830 	if (start < 0)
    831 		return EINVAL;
    832 
    833 	/*
    834 	 * Allocate locks before acquiring the interlock.  We need two
    835 	 * locks in the worst case.
    836 	 */
    837 	switch (ap->a_op) {
    838 	case F_SETLK:
    839 	case F_UNLCK:
    840 		/*
    841 		 * XXX For F_UNLCK case, we can re-use the lock.
    842 		 */
    843 		if ((ap->a_flags & F_FLOCK) == 0) {
    844 			/*
    845 			 * Byte-range lock might need one more lock.
    846 			 */
    847 			sparelock = lf_alloc(kauth_cred_geteuid(l->l_cred), 0);
    848 			if (sparelock == NULL) {
    849 				error = ENOMEM;
    850 				goto quit;
    851 			}
    852 			break;
    853 		}
    854 		/* FALLTHROUGH */
    855 
    856 	case F_GETLK:
    857 		sparelock = NULL;
    858 		break;
    859 
    860 	default:
    861 		return EINVAL;
    862 	}
    863 
    864 	lock = lf_alloc(kauth_cred_geteuid(l->l_cred),
    865 	    ap->a_op != F_UNLCK ? 1 : 2);
    866 	if (lock == NULL) {
    867 		error = ENOMEM;
    868 		goto quit;
    869 	}
    870 
    871 	mutex_enter(interlock);
    872 
    873 	/*
    874 	 * Avoid the common case of unlocking when inode has no locks.
    875 	 */
    876 	if (*head == (struct lockf *)0) {
    877 		if (ap->a_op != F_SETLK) {
    878 			fl->l_type = F_UNLCK;
    879 			error = 0;
    880 			goto quit_unlock;
    881 		}
    882 	}
    883 
    884 	if (fl->l_len == 0)
    885 		end = -1;
    886 	else
    887 		end = start + fl->l_len - 1;
    888 	/*
    889 	 * Create the lockf structure.
    890 	 */
    891 	lock->lf_start = start;
    892 	lock->lf_end = end;
    893 	/* XXX NJWLWP
    894 	 * I don't want to make the entire VFS universe use LWPs, because
    895 	 * they don't need them, for the most part. This is an exception,
    896 	 * and a kluge.
    897 	 */
    898 
    899 	lock->lf_head = head;
    900 	lock->lf_type = fl->l_type;
    901 	lock->lf_next = (struct lockf *)0;
    902 	TAILQ_INIT(&lock->lf_blkhd);
    903 	lock->lf_flags = ap->a_flags;
    904 	if (lock->lf_flags & F_POSIX) {
    905 		KASSERT(curproc == (struct proc *)ap->a_id);
    906 	}
    907 	lock->lf_id = (struct proc *)ap->a_id;
    908 
    909 	/*
    910 	 * Do the requested operation.
    911 	 */
    912 	switch (ap->a_op) {
    913 
    914 	case F_SETLK:
    915 		error = lf_setlock(lock, &sparelock, interlock);
    916 		lock = NULL; /* lf_setlock freed it */
    917 		break;
    918 
    919 	case F_UNLCK:
    920 		error = lf_clearlock(lock, &sparelock);
    921 		break;
    922 
    923 	case F_GETLK:
    924 		error = lf_getlock(lock, fl);
    925 		break;
    926 
    927 	default:
    928 		break;
    929 		/* NOTREACHED */
    930 	}
    931 
    932 quit_unlock:
    933 	mutex_exit(interlock);
    934 quit:
    935 	if (lock)
    936 		lf_free(lock);
    937 	if (sparelock)
    938 		lf_free(sparelock);
    939 
    940 	return error;
    941 }
    942