vfs_lockf.c revision 1.79 1 /* $NetBSD: vfs_lockf.c,v 1.79 2023/09/10 14:45:52 ad Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Scooter Morris at Genentech Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)ufs_lockf.c 8.4 (Berkeley) 10/26/94
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.79 2023/09/10 14:45:52 ad Exp $");
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/file.h>
44 #include <sys/proc.h>
45 #include <sys/vnode.h>
46 #include <sys/kmem.h>
47 #include <sys/fcntl.h>
48 #include <sys/lockf.h>
49 #include <sys/atomic.h>
50 #include <sys/kauth.h>
51 #include <sys/uidinfo.h>
52
53 /*
54 * The lockf structure is a kernel structure which contains the information
55 * associated with a byte range lock. The lockf structures are linked into
56 * the vnode structure. Locks are sorted by the starting byte of the lock for
57 * efficiency.
58 *
59 * lf_next is used for two purposes, depending on whether the lock is
60 * being held, or is in conflict with an existing lock. If this lock
61 * is held, it indicates the next lock on the same vnode.
62 * For pending locks, if lock->lf_next is non-NULL, then lock->lf_block
63 * must be queued on the lf_blkhd TAILQ of lock->lf_next.
64 */
65
66 TAILQ_HEAD(locklist, lockf);
67
68 struct lockf {
69 kcondvar_t lf_cv; /* Signalling */
70 short lf_flags; /* Lock semantics: F_POSIX, F_FLOCK, F_WAIT */
71 short lf_type; /* Lock type: F_RDLCK, F_WRLCK */
72 uid_t lf_uid; /* User ID responsible */
73 off_t lf_start; /* The byte # of the start of the lock */
74 off_t lf_end; /* The byte # of the end of the lock (-1=EOF)*/
75 void *lf_id; /* process or file description holding lock */
76 struct lockf **lf_head; /* Back pointer to the head of lockf list */
77 struct lockf *lf_next; /* Next lock on this vnode, or blocking lock */
78 struct locklist lf_blkhd; /* List of requests blocked on this lock */
79 TAILQ_ENTRY(lockf) lf_block;/* A request waiting for a lock */
80 struct uidinfo *lf_uip; /* Cached pointer to uidinfo */
81 };
82
83 /* Maximum length of sleep chains to traverse to try and detect deadlock. */
84 #define MAXDEPTH 50
85
86 static kmutex_t lockf_lock __cacheline_aligned;
87 static char lockstr[] = "lockf";
88
89 /*
90 * This variable controls the maximum number of processes that will
91 * be checked in doing deadlock detection.
92 */
93 int maxlockdepth = MAXDEPTH;
94
95 #ifdef LOCKF_DEBUG
96 int lockf_debug = 0;
97 #endif
98
99 #define SELF 0x1
100 #define OTHERS 0x2
101
102 /*
103 * XXX TODO
104 * Misc cleanups: "void *id" should be visible in the API as a
105 * "struct proc *".
106 * (This requires rototilling all VFS's which support advisory locking).
107 */
108
109 /*
110 * If there's a lot of lock contention on a single vnode, locking
111 * schemes which allow for more paralleism would be needed. Given how
112 * infrequently byte-range locks are actually used in typical BSD
113 * code, a more complex approach probably isn't worth it.
114 */
115
116 /*
117 * We enforce a limit on locks by uid, so that a single user cannot
118 * run the kernel out of memory. For now, the limit is pretty coarse.
119 * There is no limit on root.
120 *
121 * Splitting a lock will always succeed, regardless of current allocations.
122 * If you're slightly above the limit, we still have to permit an allocation
123 * so that the unlock can succeed. If the unlocking causes too many splits,
124 * however, you're totally cutoff.
125 */
126 #define MAXLOCKSPERUID (2 * maxfiles)
127
128 #ifdef LOCKF_DEBUG
129 /*
130 * Print out a lock.
131 */
132 static void
133 lf_print(const char *tag, struct lockf *lock)
134 {
135
136 printf("%s: lock %p for ", tag, lock);
137 if (lock->lf_flags & F_POSIX)
138 printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
139 else
140 printf("file %p", (struct file *)lock->lf_id);
141 printf(" %s, start %jd, end %jd",
142 lock->lf_type == F_RDLCK ? "shared" :
143 lock->lf_type == F_WRLCK ? "exclusive" :
144 lock->lf_type == F_UNLCK ? "unlock" :
145 "unknown", (intmax_t)lock->lf_start, (intmax_t)lock->lf_end);
146 if (TAILQ_FIRST(&lock->lf_blkhd))
147 printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
148 else
149 printf("\n");
150 }
151
152 static void
153 lf_printlist(const char *tag, struct lockf *lock)
154 {
155 struct lockf *lf, *blk;
156
157 printf("%s: Lock list:\n", tag);
158 for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
159 printf("\tlock %p for ", lf);
160 if (lf->lf_flags & F_POSIX)
161 printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
162 else
163 printf("file %p", (struct file *)lf->lf_id);
164 printf(", %s, start %jd, end %jd",
165 lf->lf_type == F_RDLCK ? "shared" :
166 lf->lf_type == F_WRLCK ? "exclusive" :
167 lf->lf_type == F_UNLCK ? "unlock" :
168 "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
169 TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
170 if (blk->lf_flags & F_POSIX)
171 printf("; proc %d",
172 ((struct proc *)blk->lf_id)->p_pid);
173 else
174 printf("; file %p", (struct file *)blk->lf_id);
175 printf(", %s, start %jd, end %jd",
176 blk->lf_type == F_RDLCK ? "shared" :
177 blk->lf_type == F_WRLCK ? "exclusive" :
178 blk->lf_type == F_UNLCK ? "unlock" :
179 "unknown", (intmax_t)blk->lf_start, (intmax_t)blk->lf_end);
180 if (TAILQ_FIRST(&blk->lf_blkhd))
181 panic("lf_printlist: bad list");
182 }
183 printf("\n");
184 }
185 }
186 #endif /* LOCKF_DEBUG */
187
188 /*
189 * 3 options for allowfail.
190 * 0 - always allocate. 1 - cutoff at limit. 2 - cutoff at double limit.
191 */
192 static struct lockf *
193 lf_alloc(int allowfail)
194 {
195 struct uidinfo *uip;
196 struct lockf *lock;
197 u_long lcnt;
198 const uid_t uid = kauth_cred_geteuid(kauth_cred_get());
199
200 uip = uid_find(uid);
201 lcnt = atomic_inc_ulong_nv(&uip->ui_lockcnt);
202 if (uid && allowfail && lcnt >
203 (allowfail == 1 ? MAXLOCKSPERUID : (MAXLOCKSPERUID * 2))) {
204 atomic_dec_ulong(&uip->ui_lockcnt);
205 return NULL;
206 }
207
208 lock = kmem_alloc(sizeof(*lock), KM_SLEEP);
209 lock->lf_uid = uid;
210 lock->lf_uip = uip;
211 cv_init(&lock->lf_cv, lockstr);
212 return lock;
213 }
214
215 static void
216 lf_free(struct lockf *lock)
217 {
218
219 atomic_dec_ulong(&lock->lf_uip->ui_lockcnt);
220 cv_destroy(&lock->lf_cv);
221 kmem_free(lock, sizeof(*lock));
222 }
223
224 /*
225 * Walk the list of locks for an inode to
226 * find an overlapping lock (if any).
227 *
228 * NOTE: this returns only the FIRST overlapping lock. There
229 * may be more than one.
230 */
231 static int
232 lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
233 struct lockf ***prev, struct lockf **overlap)
234 {
235 off_t start, end;
236
237 *overlap = lf;
238 if (lf == NULL)
239 return 0;
240 #ifdef LOCKF_DEBUG
241 if (lockf_debug & 2)
242 lf_print("lf_findoverlap: looking for overlap in", lock);
243 #endif /* LOCKF_DEBUG */
244 start = lock->lf_start;
245 end = lock->lf_end;
246 while (lf != NULL) {
247 if (((type == SELF) && lf->lf_id != lock->lf_id) ||
248 ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
249 *prev = &lf->lf_next;
250 *overlap = lf = lf->lf_next;
251 continue;
252 }
253 #ifdef LOCKF_DEBUG
254 if (lockf_debug & 2)
255 lf_print("\tchecking", lf);
256 #endif /* LOCKF_DEBUG */
257 /*
258 * OK, check for overlap
259 *
260 * Six cases:
261 * 0) no overlap
262 * 1) overlap == lock
263 * 2) overlap contains lock
264 * 3) lock contains overlap
265 * 4) overlap starts before lock
266 * 5) overlap ends after lock
267 */
268 if ((lf->lf_end != -1 && start > lf->lf_end) ||
269 (end != -1 && lf->lf_start > end)) {
270 /* Case 0 */
271 #ifdef LOCKF_DEBUG
272 if (lockf_debug & 2)
273 printf("no overlap\n");
274 #endif /* LOCKF_DEBUG */
275 if ((type & SELF) && end != -1 && lf->lf_start > end)
276 return 0;
277 *prev = &lf->lf_next;
278 *overlap = lf = lf->lf_next;
279 continue;
280 }
281 if ((lf->lf_start == start) && (lf->lf_end == end)) {
282 /* Case 1 */
283 #ifdef LOCKF_DEBUG
284 if (lockf_debug & 2)
285 printf("overlap == lock\n");
286 #endif /* LOCKF_DEBUG */
287 return 1;
288 }
289 if ((lf->lf_start <= start) &&
290 (end != -1) &&
291 ((lf->lf_end >= end) || (lf->lf_end == -1))) {
292 /* Case 2 */
293 #ifdef LOCKF_DEBUG
294 if (lockf_debug & 2)
295 printf("overlap contains lock\n");
296 #endif /* LOCKF_DEBUG */
297 return 2;
298 }
299 if (start <= lf->lf_start &&
300 (end == -1 ||
301 (lf->lf_end != -1 && end >= lf->lf_end))) {
302 /* Case 3 */
303 #ifdef LOCKF_DEBUG
304 if (lockf_debug & 2)
305 printf("lock contains overlap\n");
306 #endif /* LOCKF_DEBUG */
307 return 3;
308 }
309 if ((lf->lf_start < start) &&
310 ((lf->lf_end >= start) || (lf->lf_end == -1))) {
311 /* Case 4 */
312 #ifdef LOCKF_DEBUG
313 if (lockf_debug & 2)
314 printf("overlap starts before lock\n");
315 #endif /* LOCKF_DEBUG */
316 return 4;
317 }
318 if ((lf->lf_start > start) &&
319 (end != -1) &&
320 ((lf->lf_end > end) || (lf->lf_end == -1))) {
321 /* Case 5 */
322 #ifdef LOCKF_DEBUG
323 if (lockf_debug & 2)
324 printf("overlap ends after lock\n");
325 #endif /* LOCKF_DEBUG */
326 return 5;
327 }
328 panic("lf_findoverlap: default");
329 }
330 return 0;
331 }
332
333 /*
334 * Split a lock and a contained region into
335 * two or three locks as necessary.
336 */
337 static void
338 lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
339 {
340 struct lockf *splitlock;
341
342 #ifdef LOCKF_DEBUG
343 if (lockf_debug & 2) {
344 lf_print("lf_split", lock1);
345 lf_print("splitting from", lock2);
346 }
347 #endif /* LOCKF_DEBUG */
348 /*
349 * Check to see if splitting into only two pieces.
350 */
351 if (lock1->lf_start == lock2->lf_start) {
352 lock1->lf_start = lock2->lf_end + 1;
353 lock2->lf_next = lock1;
354 return;
355 }
356 if (lock1->lf_end == lock2->lf_end) {
357 lock1->lf_end = lock2->lf_start - 1;
358 lock2->lf_next = lock1->lf_next;
359 lock1->lf_next = lock2;
360 return;
361 }
362 /*
363 * Make a new lock consisting of the last part of
364 * the encompassing lock
365 */
366 splitlock = *sparelock;
367 *sparelock = NULL;
368 cv_destroy(&splitlock->lf_cv);
369 memcpy(splitlock, lock1, sizeof(*splitlock));
370 cv_init(&splitlock->lf_cv, lockstr);
371
372 splitlock->lf_start = lock2->lf_end + 1;
373 TAILQ_INIT(&splitlock->lf_blkhd);
374 lock1->lf_end = lock2->lf_start - 1;
375 /*
376 * OK, now link it in
377 */
378 splitlock->lf_next = lock1->lf_next;
379 lock2->lf_next = splitlock;
380 lock1->lf_next = lock2;
381 }
382
383 /*
384 * Wakeup a blocklist
385 */
386 static void
387 lf_wakelock(struct lockf *listhead)
388 {
389 struct lockf *wakelock;
390
391 while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
392 KASSERT(wakelock->lf_next == listhead);
393 TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
394 wakelock->lf_next = NULL;
395 #ifdef LOCKF_DEBUG
396 if (lockf_debug & 2)
397 lf_print("lf_wakelock: awakening", wakelock);
398 #endif
399 cv_broadcast(&wakelock->lf_cv);
400 }
401 }
402
403 /*
404 * Remove a byte-range lock on an inode.
405 *
406 * Generally, find the lock (or an overlap to that lock)
407 * and remove it (or shrink it), then wakeup anyone we can.
408 */
409 static int
410 lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
411 {
412 struct lockf **head = unlock->lf_head;
413 struct lockf *lf = *head;
414 struct lockf *overlap, **prev;
415 int ovcase;
416
417 if (lf == NULL)
418 return 0;
419 #ifdef LOCKF_DEBUG
420 if (unlock->lf_type != F_UNLCK)
421 panic("lf_clearlock: bad type");
422 if (lockf_debug & 1)
423 lf_print("lf_clearlock", unlock);
424 #endif /* LOCKF_DEBUG */
425 prev = head;
426 while ((ovcase = lf_findoverlap(lf, unlock, SELF,
427 &prev, &overlap)) != 0) {
428 /*
429 * Wakeup the list of locks to be retried.
430 */
431 lf_wakelock(overlap);
432
433 switch (ovcase) {
434
435 case 1: /* overlap == lock */
436 *prev = overlap->lf_next;
437 lf_free(overlap);
438 break;
439
440 case 2: /* overlap contains lock: split it */
441 if (overlap->lf_start == unlock->lf_start) {
442 overlap->lf_start = unlock->lf_end + 1;
443 break;
444 }
445 lf_split(overlap, unlock, sparelock);
446 overlap->lf_next = unlock->lf_next;
447 break;
448
449 case 3: /* lock contains overlap */
450 *prev = overlap->lf_next;
451 lf = overlap->lf_next;
452 lf_free(overlap);
453 continue;
454
455 case 4: /* overlap starts before lock */
456 overlap->lf_end = unlock->lf_start - 1;
457 prev = &overlap->lf_next;
458 lf = overlap->lf_next;
459 continue;
460
461 case 5: /* overlap ends after lock */
462 overlap->lf_start = unlock->lf_end + 1;
463 break;
464 }
465 break;
466 }
467 #ifdef LOCKF_DEBUG
468 if (lockf_debug & 1)
469 lf_printlist("lf_clearlock", unlock);
470 #endif /* LOCKF_DEBUG */
471 return 0;
472 }
473
474 /*
475 * Walk the list of locks for an inode and
476 * return the first blocking lock.
477 */
478 static struct lockf *
479 lf_getblock(struct lockf *lock)
480 {
481 struct lockf **prev, *overlap, *lf = *(lock->lf_head);
482
483 prev = lock->lf_head;
484 while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
485 /*
486 * We've found an overlap, see if it blocks us
487 */
488 if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
489 return overlap;
490 /*
491 * Nope, point to the next one on the list and
492 * see if it blocks us
493 */
494 lf = overlap->lf_next;
495 }
496 return NULL;
497 }
498
499 /*
500 * Set a byte-range lock.
501 */
502 static int
503 lf_setlock(struct lockf *lock, struct lockf **sparelock,
504 kmutex_t *interlock)
505 {
506 struct lockf *block;
507 struct lockf **head = lock->lf_head;
508 struct lockf **prev, *overlap, *ltmp;
509 int ovcase, needtolink, error;
510
511 #ifdef LOCKF_DEBUG
512 if (lockf_debug & 1)
513 lf_print("lf_setlock", lock);
514 #endif /* LOCKF_DEBUG */
515
516 /*
517 * Scan lock list for this file looking for locks that would block us.
518 */
519 while ((block = lf_getblock(lock)) != NULL) {
520 /*
521 * Free the structure and return if nonblocking.
522 */
523 if ((lock->lf_flags & F_WAIT) == 0) {
524 lf_free(lock);
525 return EAGAIN;
526 }
527 /*
528 * We are blocked. Since flock style locks cover
529 * the whole file, there is no chance for deadlock.
530 * For byte-range locks we must check for deadlock.
531 *
532 * Deadlock detection is done by looking through the
533 * wait channels to see if there are any cycles that
534 * involve us. MAXDEPTH is set just to make sure we
535 * do not go off into neverneverland.
536 */
537 if ((lock->lf_flags & F_POSIX) &&
538 (block->lf_flags & F_POSIX)) {
539 struct lwp *wlwp;
540 volatile const struct lockf *waitblock;
541 int i = 0;
542 struct proc *p;
543
544 p = (struct proc *)block->lf_id;
545 KASSERT(p != NULL);
546 while (i++ < maxlockdepth) {
547 mutex_enter(p->p_lock);
548 if (p->p_nlwps > 1) {
549 mutex_exit(p->p_lock);
550 break;
551 }
552 wlwp = LIST_FIRST(&p->p_lwps);
553 lwp_lock(wlwp);
554 if (wlwp->l_wchan == NULL ||
555 wlwp->l_wmesg != lockstr) {
556 lwp_unlock(wlwp);
557 mutex_exit(p->p_lock);
558 break;
559 }
560 waitblock = wlwp->l_wchan;
561 lwp_unlock(wlwp);
562 mutex_exit(p->p_lock);
563 /* Get the owner of the blocking lock */
564 waitblock = waitblock->lf_next;
565 if ((waitblock->lf_flags & F_POSIX) == 0)
566 break;
567 p = (struct proc *)waitblock->lf_id;
568 if (p == curproc) {
569 lf_free(lock);
570 return EDEADLK;
571 }
572 }
573 /*
574 * If we're still following a dependency chain
575 * after maxlockdepth iterations, assume we're in
576 * a cycle to be safe.
577 */
578 if (i >= maxlockdepth) {
579 lf_free(lock);
580 return EDEADLK;
581 }
582 }
583 /*
584 * For flock type locks, we must first remove
585 * any shared locks that we hold before we sleep
586 * waiting for an exclusive lock.
587 */
588 if ((lock->lf_flags & F_FLOCK) &&
589 lock->lf_type == F_WRLCK) {
590 lock->lf_type = F_UNLCK;
591 (void) lf_clearlock(lock, NULL);
592 lock->lf_type = F_WRLCK;
593 }
594 /*
595 * Add our lock to the blocked list and sleep until we're free.
596 * Remember who blocked us (for deadlock detection).
597 */
598 lock->lf_next = block;
599 TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
600 #ifdef LOCKF_DEBUG
601 if (lockf_debug & 1) {
602 lf_print("lf_setlock: blocking on", block);
603 lf_printlist("lf_setlock", block);
604 }
605 #endif /* LOCKF_DEBUG */
606 error = cv_wait_sig(&lock->lf_cv, interlock);
607
608 /*
609 * We may have been awoken by a signal (in
610 * which case we must remove ourselves from the
611 * blocked list) and/or by another process
612 * releasing a lock (in which case we have already
613 * been removed from the blocked list and our
614 * lf_next field set to NULL).
615 */
616 if (lock->lf_next != NULL) {
617 TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
618 lock->lf_next = NULL;
619 }
620 if (error) {
621 lf_free(lock);
622 return error;
623 }
624 }
625 /*
626 * No blocks!! Add the lock. Note that we will
627 * downgrade or upgrade any overlapping locks this
628 * process already owns.
629 *
630 * Skip over locks owned by other processes.
631 * Handle any locks that overlap and are owned by ourselves.
632 */
633 prev = head;
634 block = *head;
635 needtolink = 1;
636 for (;;) {
637 ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
638 if (ovcase)
639 block = overlap->lf_next;
640 /*
641 * Six cases:
642 * 0) no overlap
643 * 1) overlap == lock
644 * 2) overlap contains lock
645 * 3) lock contains overlap
646 * 4) overlap starts before lock
647 * 5) overlap ends after lock
648 */
649 switch (ovcase) {
650 case 0: /* no overlap */
651 if (needtolink) {
652 *prev = lock;
653 lock->lf_next = overlap;
654 }
655 break;
656
657 case 1: /* overlap == lock */
658 /*
659 * If downgrading lock, others may be
660 * able to acquire it.
661 */
662 if (lock->lf_type == F_RDLCK &&
663 overlap->lf_type == F_WRLCK)
664 lf_wakelock(overlap);
665 overlap->lf_type = lock->lf_type;
666 lf_free(lock);
667 lock = overlap; /* for debug output below */
668 break;
669
670 case 2: /* overlap contains lock */
671 /*
672 * Check for common starting point and different types.
673 */
674 if (overlap->lf_type == lock->lf_type) {
675 lf_free(lock);
676 lock = overlap; /* for debug output below */
677 break;
678 }
679 if (overlap->lf_start == lock->lf_start) {
680 *prev = lock;
681 lock->lf_next = overlap;
682 overlap->lf_start = lock->lf_end + 1;
683 } else
684 lf_split(overlap, lock, sparelock);
685 lf_wakelock(overlap);
686 break;
687
688 case 3: /* lock contains overlap */
689 /*
690 * If downgrading lock, others may be able to
691 * acquire it, otherwise take the list.
692 */
693 if (lock->lf_type == F_RDLCK &&
694 overlap->lf_type == F_WRLCK) {
695 lf_wakelock(overlap);
696 } else {
697 while ((ltmp = TAILQ_FIRST(&overlap->lf_blkhd))) {
698 KASSERT(ltmp->lf_next == overlap);
699 TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
700 lf_block);
701 ltmp->lf_next = lock;
702 TAILQ_INSERT_TAIL(&lock->lf_blkhd,
703 ltmp, lf_block);
704 }
705 }
706 /*
707 * Add the new lock if necessary and delete the overlap.
708 */
709 if (needtolink) {
710 *prev = lock;
711 lock->lf_next = overlap->lf_next;
712 prev = &lock->lf_next;
713 needtolink = 0;
714 } else
715 *prev = overlap->lf_next;
716 lf_free(overlap);
717 continue;
718
719 case 4: /* overlap starts before lock */
720 /*
721 * Add lock after overlap on the list.
722 */
723 lock->lf_next = overlap->lf_next;
724 overlap->lf_next = lock;
725 overlap->lf_end = lock->lf_start - 1;
726 prev = &lock->lf_next;
727 lf_wakelock(overlap);
728 needtolink = 0;
729 continue;
730
731 case 5: /* overlap ends after lock */
732 /*
733 * Add the new lock before overlap.
734 */
735 if (needtolink) {
736 *prev = lock;
737 lock->lf_next = overlap;
738 }
739 overlap->lf_start = lock->lf_end + 1;
740 lf_wakelock(overlap);
741 break;
742 }
743 break;
744 }
745 #ifdef LOCKF_DEBUG
746 if (lockf_debug & 1) {
747 lf_print("lf_setlock: got the lock", lock);
748 lf_printlist("lf_setlock", lock);
749 }
750 #endif /* LOCKF_DEBUG */
751 return 0;
752 }
753
754 /*
755 * Check whether there is a blocking lock,
756 * and if so return its process identifier.
757 */
758 static int
759 lf_getlock(struct lockf *lock, struct flock *fl)
760 {
761 struct lockf *block;
762
763 #ifdef LOCKF_DEBUG
764 if (lockf_debug & 1)
765 lf_print("lf_getlock", lock);
766 #endif /* LOCKF_DEBUG */
767
768 if ((block = lf_getblock(lock)) != NULL) {
769 fl->l_type = block->lf_type;
770 fl->l_whence = SEEK_SET;
771 fl->l_start = block->lf_start;
772 if (block->lf_end == -1)
773 fl->l_len = 0;
774 else
775 fl->l_len = block->lf_end - block->lf_start + 1;
776 if (block->lf_flags & F_POSIX)
777 fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
778 else
779 fl->l_pid = -1;
780 } else {
781 fl->l_type = F_UNLCK;
782 }
783 return 0;
784 }
785
786 /*
787 * Do an advisory lock operation.
788 */
789 int
790 lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
791 {
792 struct flock *fl = ap->a_fl;
793 struct lockf *lock = NULL;
794 struct lockf *sparelock;
795 kmutex_t *interlock = &lockf_lock;
796 off_t start, end;
797 int error = 0;
798
799 KASSERTMSG(size >= 0, "size=%jd", (intmax_t)size);
800
801 /*
802 * Convert the flock structure into a start and end.
803 */
804 switch (fl->l_whence) {
805 case SEEK_SET:
806 case SEEK_CUR:
807 /*
808 * Caller is responsible for adding any necessary offset
809 * when SEEK_CUR is used.
810 */
811 start = fl->l_start;
812 break;
813
814 case SEEK_END:
815 if (fl->l_start > __type_max(off_t) - size)
816 return EINVAL;
817 start = size + fl->l_start;
818 break;
819
820 default:
821 return EINVAL;
822 }
823
824 if (fl->l_len == 0)
825 end = -1;
826 else {
827 if (fl->l_len >= 0) {
828 if (start >= 0 &&
829 fl->l_len - 1 > __type_max(off_t) - start)
830 return EINVAL;
831 end = start + (fl->l_len - 1);
832 } else {
833 /* lockf() allows -ve lengths */
834 if (start < 0)
835 return EINVAL;
836 end = start - 1;
837 start += fl->l_len;
838 }
839 }
840 if (start < 0)
841 return EINVAL;
842
843 /*
844 * Allocate locks before acquiring the interlock. We need two
845 * locks in the worst case.
846 */
847 switch (ap->a_op) {
848 case F_SETLK:
849 case F_UNLCK:
850 /*
851 * XXX For F_UNLCK case, we can re-use the lock.
852 */
853 if ((ap->a_flags & F_FLOCK) == 0) {
854 /*
855 * Byte-range lock might need one more lock.
856 */
857 sparelock = lf_alloc(0);
858 if (sparelock == NULL) {
859 error = ENOMEM;
860 goto quit;
861 }
862 break;
863 }
864 /* FALLTHROUGH */
865
866 case F_GETLK:
867 sparelock = NULL;
868 break;
869
870 default:
871 return EINVAL;
872 }
873
874 switch (ap->a_op) {
875 case F_SETLK:
876 lock = lf_alloc(1);
877 break;
878 case F_UNLCK:
879 if (start == 0 || end == -1) {
880 /* never split */
881 lock = lf_alloc(0);
882 } else {
883 /* might split */
884 lock = lf_alloc(2);
885 }
886 break;
887 case F_GETLK:
888 lock = lf_alloc(0);
889 break;
890 }
891 if (lock == NULL) {
892 error = ENOMEM;
893 goto quit;
894 }
895
896 mutex_enter(interlock);
897
898 /*
899 * Avoid the common case of unlocking when inode has no locks.
900 */
901 if (*head == (struct lockf *)0) {
902 if (ap->a_op != F_SETLK) {
903 fl->l_type = F_UNLCK;
904 error = 0;
905 goto quit_unlock;
906 }
907 }
908
909 /*
910 * Create the lockf structure.
911 */
912 lock->lf_start = start;
913 lock->lf_end = end;
914 lock->lf_head = head;
915 lock->lf_type = fl->l_type;
916 lock->lf_next = (struct lockf *)0;
917 TAILQ_INIT(&lock->lf_blkhd);
918 lock->lf_flags = ap->a_flags;
919 if (lock->lf_flags & F_POSIX) {
920 KASSERT(curproc == (struct proc *)ap->a_id);
921 }
922 lock->lf_id = ap->a_id;
923
924 /*
925 * Do the requested operation.
926 */
927 switch (ap->a_op) {
928
929 case F_SETLK:
930 error = lf_setlock(lock, &sparelock, interlock);
931 lock = NULL; /* lf_setlock freed it */
932 break;
933
934 case F_UNLCK:
935 error = lf_clearlock(lock, &sparelock);
936 break;
937
938 case F_GETLK:
939 error = lf_getlock(lock, fl);
940 break;
941
942 default:
943 break;
944 /* NOTREACHED */
945 }
946
947 quit_unlock:
948 mutex_exit(interlock);
949 quit:
950 if (lock)
951 lf_free(lock);
952 if (sparelock)
953 lf_free(sparelock);
954
955 return error;
956 }
957