vfs_lockf.c revision 1.81 1 /* $NetBSD: vfs_lockf.c,v 1.81 2023/09/23 18:21:11 ad Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * This code is derived from software contributed to Berkeley by
8 * Scooter Morris at Genentech Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. Neither the name of the University nor the names of its contributors
19 * may be used to endorse or promote products derived from this software
20 * without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * @(#)ufs_lockf.c 8.4 (Berkeley) 10/26/94
35 */
36
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.81 2023/09/23 18:21:11 ad Exp $");
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/file.h>
44 #include <sys/proc.h>
45 #include <sys/vnode.h>
46 #include <sys/kmem.h>
47 #include <sys/fcntl.h>
48 #include <sys/lockf.h>
49 #include <sys/atomic.h>
50 #include <sys/kauth.h>
51 #include <sys/uidinfo.h>
52
53 /*
54 * The lockf structure is a kernel structure which contains the information
55 * associated with a byte range lock. The lockf structures are linked into
56 * the vnode structure. Locks are sorted by the starting byte of the lock for
57 * efficiency.
58 *
59 * lf_next is used for two purposes, depending on whether the lock is
60 * being held, or is in conflict with an existing lock. If this lock
61 * is held, it indicates the next lock on the same vnode.
62 * For pending locks, if lock->lf_next is non-NULL, then lock->lf_block
63 * must be queued on the lf_blkhd TAILQ of lock->lf_next.
64 */
65
66 TAILQ_HEAD(locklist, lockf);
67
68 struct lockf {
69 kcondvar_t lf_cv; /* Signalling */
70 short lf_flags; /* Lock semantics: F_POSIX, F_FLOCK, F_WAIT */
71 short lf_type; /* Lock type: F_RDLCK, F_WRLCK */
72 off_t lf_start; /* The byte # of the start of the lock */
73 off_t lf_end; /* The byte # of the end of the lock (-1=EOF)*/
74 void *lf_id; /* process or file description holding lock */
75 struct lockf **lf_head; /* Back pointer to the head of lockf list */
76 struct lockf *lf_next; /* Next lock on this vnode, or blocking lock */
77 struct locklist lf_blkhd; /* List of requests blocked on this lock */
78 TAILQ_ENTRY(lockf) lf_block;/* A request waiting for a lock */
79 struct uidinfo *lf_uip; /* Cached pointer to uidinfo */
80 };
81
82 /* Maximum length of sleep chains to traverse to try and detect deadlock. */
83 #define MAXDEPTH 50
84
85 static kmutex_t lockf_lock __cacheline_aligned;
86 static char lockstr[] = "lockf";
87
88 /*
89 * This variable controls the maximum number of processes that will
90 * be checked in doing deadlock detection.
91 */
92 int maxlockdepth = MAXDEPTH;
93
94 #ifdef LOCKF_DEBUG
95 int lockf_debug = 0;
96 #endif
97
98 #define SELF 0x1
99 #define OTHERS 0x2
100
101 /*
102 * XXX TODO
103 * Misc cleanups: "void *id" should be visible in the API as a
104 * "struct proc *".
105 * (This requires rototilling all VFS's which support advisory locking).
106 */
107
108 /*
109 * If there's a lot of lock contention on a single vnode, locking
110 * schemes which allow for more paralleism would be needed. Given how
111 * infrequently byte-range locks are actually used in typical BSD
112 * code, a more complex approach probably isn't worth it.
113 */
114
115 /*
116 * We enforce a limit on locks by uid, so that a single user cannot
117 * run the kernel out of memory. For now, the limit is pretty coarse.
118 * There is no limit on root.
119 *
120 * Splitting a lock will always succeed, regardless of current allocations.
121 * If you're slightly above the limit, we still have to permit an allocation
122 * so that the unlock can succeed. If the unlocking causes too many splits,
123 * however, you're totally cutoff.
124 */
125 #define MAXLOCKSPERUID (2 * maxfiles)
126
127 #ifdef LOCKF_DEBUG
128 /*
129 * Print out a lock.
130 */
131 static void
132 lf_print(const char *tag, struct lockf *lock)
133 {
134
135 printf("%s: lock %p for ", tag, lock);
136 if (lock->lf_flags & F_POSIX)
137 printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
138 else
139 printf("file %p", (struct file *)lock->lf_id);
140 printf(" %s, start %jd, end %jd",
141 lock->lf_type == F_RDLCK ? "shared" :
142 lock->lf_type == F_WRLCK ? "exclusive" :
143 lock->lf_type == F_UNLCK ? "unlock" :
144 "unknown", (intmax_t)lock->lf_start, (intmax_t)lock->lf_end);
145 if (TAILQ_FIRST(&lock->lf_blkhd))
146 printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
147 else
148 printf("\n");
149 }
150
151 static void
152 lf_printlist(const char *tag, struct lockf *lock)
153 {
154 struct lockf *lf, *blk;
155
156 printf("%s: Lock list:\n", tag);
157 for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
158 printf("\tlock %p for ", lf);
159 if (lf->lf_flags & F_POSIX)
160 printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
161 else
162 printf("file %p", (struct file *)lf->lf_id);
163 printf(", %s, start %jd, end %jd",
164 lf->lf_type == F_RDLCK ? "shared" :
165 lf->lf_type == F_WRLCK ? "exclusive" :
166 lf->lf_type == F_UNLCK ? "unlock" :
167 "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
168 TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
169 if (blk->lf_flags & F_POSIX)
170 printf("; proc %d",
171 ((struct proc *)blk->lf_id)->p_pid);
172 else
173 printf("; file %p", (struct file *)blk->lf_id);
174 printf(", %s, start %jd, end %jd",
175 blk->lf_type == F_RDLCK ? "shared" :
176 blk->lf_type == F_WRLCK ? "exclusive" :
177 blk->lf_type == F_UNLCK ? "unlock" :
178 "unknown", (intmax_t)blk->lf_start, (intmax_t)blk->lf_end);
179 if (TAILQ_FIRST(&blk->lf_blkhd))
180 panic("lf_printlist: bad list");
181 }
182 printf("\n");
183 }
184 }
185 #endif /* LOCKF_DEBUG */
186
187 /*
188 * 3 options for allowfail.
189 * 0 - always allocate. 1 - cutoff at limit. 2 - cutoff at double limit.
190 */
191 static struct lockf *
192 lf_alloc(int allowfail)
193 {
194 struct uidinfo *uip;
195 struct lockf *lock;
196 u_long lcnt;
197 const uid_t uid = kauth_cred_geteuid(kauth_cred_get());
198
199 uip = uid_find(uid);
200 lcnt = atomic_inc_ulong_nv(&uip->ui_lockcnt);
201 if (uid && allowfail && lcnt >
202 (allowfail == 1 ? MAXLOCKSPERUID : (MAXLOCKSPERUID * 2))) {
203 atomic_dec_ulong(&uip->ui_lockcnt);
204 return NULL;
205 }
206
207 lock = kmem_alloc(sizeof(*lock), KM_SLEEP);
208 lock->lf_uip = uip;
209 cv_init(&lock->lf_cv, lockstr);
210 return lock;
211 }
212
213 static void
214 lf_free(struct lockf *lock)
215 {
216
217 atomic_dec_ulong(&lock->lf_uip->ui_lockcnt);
218 cv_destroy(&lock->lf_cv);
219 kmem_free(lock, sizeof(*lock));
220 }
221
222 /*
223 * Walk the list of locks for an inode to
224 * find an overlapping lock (if any).
225 *
226 * NOTE: this returns only the FIRST overlapping lock. There
227 * may be more than one.
228 */
229 static int
230 lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
231 struct lockf ***prev, struct lockf **overlap)
232 {
233 off_t start, end;
234
235 *overlap = lf;
236 if (lf == NULL)
237 return 0;
238 #ifdef LOCKF_DEBUG
239 if (lockf_debug & 2)
240 lf_print("lf_findoverlap: looking for overlap in", lock);
241 #endif /* LOCKF_DEBUG */
242 start = lock->lf_start;
243 end = lock->lf_end;
244 while (lf != NULL) {
245 if (((type == SELF) && lf->lf_id != lock->lf_id) ||
246 ((type == OTHERS) && lf->lf_id == lock->lf_id)) {
247 *prev = &lf->lf_next;
248 *overlap = lf = lf->lf_next;
249 continue;
250 }
251 #ifdef LOCKF_DEBUG
252 if (lockf_debug & 2)
253 lf_print("\tchecking", lf);
254 #endif /* LOCKF_DEBUG */
255 /*
256 * OK, check for overlap
257 *
258 * Six cases:
259 * 0) no overlap
260 * 1) overlap == lock
261 * 2) overlap contains lock
262 * 3) lock contains overlap
263 * 4) overlap starts before lock
264 * 5) overlap ends after lock
265 */
266 if ((lf->lf_end != -1 && start > lf->lf_end) ||
267 (end != -1 && lf->lf_start > end)) {
268 /* Case 0 */
269 #ifdef LOCKF_DEBUG
270 if (lockf_debug & 2)
271 printf("no overlap\n");
272 #endif /* LOCKF_DEBUG */
273 if ((type & SELF) && end != -1 && lf->lf_start > end)
274 return 0;
275 *prev = &lf->lf_next;
276 *overlap = lf = lf->lf_next;
277 continue;
278 }
279 if ((lf->lf_start == start) && (lf->lf_end == end)) {
280 /* Case 1 */
281 #ifdef LOCKF_DEBUG
282 if (lockf_debug & 2)
283 printf("overlap == lock\n");
284 #endif /* LOCKF_DEBUG */
285 return 1;
286 }
287 if ((lf->lf_start <= start) &&
288 (end != -1) &&
289 ((lf->lf_end >= end) || (lf->lf_end == -1))) {
290 /* Case 2 */
291 #ifdef LOCKF_DEBUG
292 if (lockf_debug & 2)
293 printf("overlap contains lock\n");
294 #endif /* LOCKF_DEBUG */
295 return 2;
296 }
297 if (start <= lf->lf_start &&
298 (end == -1 ||
299 (lf->lf_end != -1 && end >= lf->lf_end))) {
300 /* Case 3 */
301 #ifdef LOCKF_DEBUG
302 if (lockf_debug & 2)
303 printf("lock contains overlap\n");
304 #endif /* LOCKF_DEBUG */
305 return 3;
306 }
307 if ((lf->lf_start < start) &&
308 ((lf->lf_end >= start) || (lf->lf_end == -1))) {
309 /* Case 4 */
310 #ifdef LOCKF_DEBUG
311 if (lockf_debug & 2)
312 printf("overlap starts before lock\n");
313 #endif /* LOCKF_DEBUG */
314 return 4;
315 }
316 if ((lf->lf_start > start) &&
317 (end != -1) &&
318 ((lf->lf_end > end) || (lf->lf_end == -1))) {
319 /* Case 5 */
320 #ifdef LOCKF_DEBUG
321 if (lockf_debug & 2)
322 printf("overlap ends after lock\n");
323 #endif /* LOCKF_DEBUG */
324 return 5;
325 }
326 panic("lf_findoverlap: default");
327 }
328 return 0;
329 }
330
331 /*
332 * Split a lock and a contained region into
333 * two or three locks as necessary.
334 */
335 static void
336 lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
337 {
338 struct lockf *splitlock;
339
340 #ifdef LOCKF_DEBUG
341 if (lockf_debug & 2) {
342 lf_print("lf_split", lock1);
343 lf_print("splitting from", lock2);
344 }
345 #endif /* LOCKF_DEBUG */
346 /*
347 * Check to see if splitting into only two pieces.
348 */
349 if (lock1->lf_start == lock2->lf_start) {
350 lock1->lf_start = lock2->lf_end + 1;
351 lock2->lf_next = lock1;
352 return;
353 }
354 if (lock1->lf_end == lock2->lf_end) {
355 lock1->lf_end = lock2->lf_start - 1;
356 lock2->lf_next = lock1->lf_next;
357 lock1->lf_next = lock2;
358 return;
359 }
360 /*
361 * Make a new lock consisting of the last part of
362 * the encompassing lock
363 */
364 splitlock = *sparelock;
365 *sparelock = NULL;
366 cv_destroy(&splitlock->lf_cv);
367 memcpy(splitlock, lock1, sizeof(*splitlock));
368 cv_init(&splitlock->lf_cv, lockstr);
369
370 splitlock->lf_start = lock2->lf_end + 1;
371 TAILQ_INIT(&splitlock->lf_blkhd);
372 lock1->lf_end = lock2->lf_start - 1;
373 /*
374 * OK, now link it in
375 */
376 splitlock->lf_next = lock1->lf_next;
377 lock2->lf_next = splitlock;
378 lock1->lf_next = lock2;
379 }
380
381 /*
382 * Wakeup a blocklist
383 */
384 static void
385 lf_wakelock(struct lockf *listhead)
386 {
387 struct lockf *wakelock;
388
389 while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
390 KASSERT(wakelock->lf_next == listhead);
391 TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
392 wakelock->lf_next = NULL;
393 #ifdef LOCKF_DEBUG
394 if (lockf_debug & 2)
395 lf_print("lf_wakelock: awakening", wakelock);
396 #endif
397 cv_broadcast(&wakelock->lf_cv);
398 }
399 }
400
401 /*
402 * Remove a byte-range lock on an inode.
403 *
404 * Generally, find the lock (or an overlap to that lock)
405 * and remove it (or shrink it), then wakeup anyone we can.
406 */
407 static int
408 lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
409 {
410 struct lockf **head = unlock->lf_head;
411 struct lockf *lf = *head;
412 struct lockf *overlap, **prev;
413 int ovcase;
414
415 if (lf == NULL)
416 return 0;
417 #ifdef LOCKF_DEBUG
418 if (unlock->lf_type != F_UNLCK)
419 panic("lf_clearlock: bad type");
420 if (lockf_debug & 1)
421 lf_print("lf_clearlock", unlock);
422 #endif /* LOCKF_DEBUG */
423 prev = head;
424 while ((ovcase = lf_findoverlap(lf, unlock, SELF,
425 &prev, &overlap)) != 0) {
426 /*
427 * Wakeup the list of locks to be retried.
428 */
429 lf_wakelock(overlap);
430
431 switch (ovcase) {
432
433 case 1: /* overlap == lock */
434 *prev = overlap->lf_next;
435 lf_free(overlap);
436 break;
437
438 case 2: /* overlap contains lock: split it */
439 if (overlap->lf_start == unlock->lf_start) {
440 overlap->lf_start = unlock->lf_end + 1;
441 break;
442 }
443 lf_split(overlap, unlock, sparelock);
444 overlap->lf_next = unlock->lf_next;
445 break;
446
447 case 3: /* lock contains overlap */
448 *prev = overlap->lf_next;
449 lf = overlap->lf_next;
450 lf_free(overlap);
451 continue;
452
453 case 4: /* overlap starts before lock */
454 overlap->lf_end = unlock->lf_start - 1;
455 prev = &overlap->lf_next;
456 lf = overlap->lf_next;
457 continue;
458
459 case 5: /* overlap ends after lock */
460 overlap->lf_start = unlock->lf_end + 1;
461 break;
462 }
463 break;
464 }
465 #ifdef LOCKF_DEBUG
466 if (lockf_debug & 1)
467 lf_printlist("lf_clearlock", unlock);
468 #endif /* LOCKF_DEBUG */
469 return 0;
470 }
471
472 /*
473 * Walk the list of locks for an inode and
474 * return the first blocking lock.
475 */
476 static struct lockf *
477 lf_getblock(struct lockf *lock)
478 {
479 struct lockf **prev, *overlap, *lf = *(lock->lf_head);
480
481 prev = lock->lf_head;
482 while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
483 /*
484 * We've found an overlap, see if it blocks us
485 */
486 if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
487 return overlap;
488 /*
489 * Nope, point to the next one on the list and
490 * see if it blocks us
491 */
492 lf = overlap->lf_next;
493 }
494 return NULL;
495 }
496
497 /*
498 * Set a byte-range lock.
499 */
500 static int
501 lf_setlock(struct lockf *lock, struct lockf **sparelock,
502 kmutex_t *interlock)
503 {
504 struct lockf *block;
505 struct lockf **head = lock->lf_head;
506 struct lockf **prev, *overlap, *ltmp;
507 int ovcase, needtolink, error;
508
509 #ifdef LOCKF_DEBUG
510 if (lockf_debug & 1)
511 lf_print("lf_setlock", lock);
512 #endif /* LOCKF_DEBUG */
513
514 /*
515 * Scan lock list for this file looking for locks that would block us.
516 */
517 while ((block = lf_getblock(lock)) != NULL) {
518 /*
519 * Free the structure and return if nonblocking.
520 */
521 if ((lock->lf_flags & F_WAIT) == 0) {
522 lf_free(lock);
523 return EAGAIN;
524 }
525 /*
526 * We are blocked. Since flock style locks cover
527 * the whole file, there is no chance for deadlock.
528 * For byte-range locks we must check for deadlock.
529 *
530 * Deadlock detection is done by looking through the
531 * wait channels to see if there are any cycles that
532 * involve us. MAXDEPTH is set just to make sure we
533 * do not go off into neverneverland.
534 */
535 if ((lock->lf_flags & F_POSIX) &&
536 (block->lf_flags & F_POSIX)) {
537 struct lwp *wlwp;
538 volatile const struct lockf *waitblock;
539 int i = 0;
540 struct proc *p;
541
542 p = (struct proc *)block->lf_id;
543 KASSERT(p != NULL);
544 while (i++ < maxlockdepth) {
545 mutex_enter(p->p_lock);
546 if (p->p_nlwps > 1) {
547 mutex_exit(p->p_lock);
548 break;
549 }
550 wlwp = LIST_FIRST(&p->p_lwps);
551 lwp_lock(wlwp);
552 if (wlwp->l_wchan == NULL ||
553 wlwp->l_wmesg != lockstr) {
554 lwp_unlock(wlwp);
555 mutex_exit(p->p_lock);
556 break;
557 }
558 waitblock = wlwp->l_wchan;
559 lwp_unlock(wlwp);
560 mutex_exit(p->p_lock);
561 /* Get the owner of the blocking lock */
562 waitblock = waitblock->lf_next;
563 if ((waitblock->lf_flags & F_POSIX) == 0)
564 break;
565 p = (struct proc *)waitblock->lf_id;
566 if (p == curproc) {
567 lf_free(lock);
568 return EDEADLK;
569 }
570 }
571 /*
572 * If we're still following a dependency chain
573 * after maxlockdepth iterations, assume we're in
574 * a cycle to be safe.
575 */
576 if (i >= maxlockdepth) {
577 lf_free(lock);
578 return EDEADLK;
579 }
580 }
581 /*
582 * For flock type locks, we must first remove
583 * any shared locks that we hold before we sleep
584 * waiting for an exclusive lock.
585 */
586 if ((lock->lf_flags & F_FLOCK) &&
587 lock->lf_type == F_WRLCK) {
588 lock->lf_type = F_UNLCK;
589 (void) lf_clearlock(lock, NULL);
590 lock->lf_type = F_WRLCK;
591 }
592 /*
593 * Add our lock to the blocked list and sleep until we're free.
594 * Remember who blocked us (for deadlock detection).
595 */
596 lock->lf_next = block;
597 TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
598 #ifdef LOCKF_DEBUG
599 if (lockf_debug & 1) {
600 lf_print("lf_setlock: blocking on", block);
601 lf_printlist("lf_setlock", block);
602 }
603 #endif /* LOCKF_DEBUG */
604 error = cv_wait_sig(&lock->lf_cv, interlock);
605
606 /*
607 * We may have been awoken by a signal (in
608 * which case we must remove ourselves from the
609 * blocked list) and/or by another process
610 * releasing a lock (in which case we have already
611 * been removed from the blocked list and our
612 * lf_next field set to NULL).
613 */
614 if (lock->lf_next != NULL) {
615 TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
616 lock->lf_next = NULL;
617 }
618 if (error) {
619 lf_free(lock);
620 return error;
621 }
622 }
623 /*
624 * No blocks!! Add the lock. Note that we will
625 * downgrade or upgrade any overlapping locks this
626 * process already owns.
627 *
628 * Skip over locks owned by other processes.
629 * Handle any locks that overlap and are owned by ourselves.
630 */
631 prev = head;
632 block = *head;
633 needtolink = 1;
634 for (;;) {
635 ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
636 if (ovcase)
637 block = overlap->lf_next;
638 /*
639 * Six cases:
640 * 0) no overlap
641 * 1) overlap == lock
642 * 2) overlap contains lock
643 * 3) lock contains overlap
644 * 4) overlap starts before lock
645 * 5) overlap ends after lock
646 */
647 switch (ovcase) {
648 case 0: /* no overlap */
649 if (needtolink) {
650 *prev = lock;
651 lock->lf_next = overlap;
652 }
653 break;
654
655 case 1: /* overlap == lock */
656 /*
657 * If downgrading lock, others may be
658 * able to acquire it.
659 */
660 if (lock->lf_type == F_RDLCK &&
661 overlap->lf_type == F_WRLCK)
662 lf_wakelock(overlap);
663 overlap->lf_type = lock->lf_type;
664 lf_free(lock);
665 lock = overlap; /* for debug output below */
666 break;
667
668 case 2: /* overlap contains lock */
669 /*
670 * Check for common starting point and different types.
671 */
672 if (overlap->lf_type == lock->lf_type) {
673 lf_free(lock);
674 lock = overlap; /* for debug output below */
675 break;
676 }
677 if (overlap->lf_start == lock->lf_start) {
678 *prev = lock;
679 lock->lf_next = overlap;
680 overlap->lf_start = lock->lf_end + 1;
681 } else
682 lf_split(overlap, lock, sparelock);
683 lf_wakelock(overlap);
684 break;
685
686 case 3: /* lock contains overlap */
687 /*
688 * If downgrading lock, others may be able to
689 * acquire it, otherwise take the list.
690 */
691 if (lock->lf_type == F_RDLCK &&
692 overlap->lf_type == F_WRLCK) {
693 lf_wakelock(overlap);
694 } else {
695 while ((ltmp = TAILQ_FIRST(&overlap->lf_blkhd))) {
696 KASSERT(ltmp->lf_next == overlap);
697 TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
698 lf_block);
699 ltmp->lf_next = lock;
700 TAILQ_INSERT_TAIL(&lock->lf_blkhd,
701 ltmp, lf_block);
702 }
703 }
704 /*
705 * Add the new lock if necessary and delete the overlap.
706 */
707 if (needtolink) {
708 *prev = lock;
709 lock->lf_next = overlap->lf_next;
710 prev = &lock->lf_next;
711 needtolink = 0;
712 } else
713 *prev = overlap->lf_next;
714 lf_free(overlap);
715 continue;
716
717 case 4: /* overlap starts before lock */
718 /*
719 * Add lock after overlap on the list.
720 */
721 lock->lf_next = overlap->lf_next;
722 overlap->lf_next = lock;
723 overlap->lf_end = lock->lf_start - 1;
724 prev = &lock->lf_next;
725 lf_wakelock(overlap);
726 needtolink = 0;
727 continue;
728
729 case 5: /* overlap ends after lock */
730 /*
731 * Add the new lock before overlap.
732 */
733 if (needtolink) {
734 *prev = lock;
735 lock->lf_next = overlap;
736 }
737 overlap->lf_start = lock->lf_end + 1;
738 lf_wakelock(overlap);
739 break;
740 }
741 break;
742 }
743 #ifdef LOCKF_DEBUG
744 if (lockf_debug & 1) {
745 lf_print("lf_setlock: got the lock", lock);
746 lf_printlist("lf_setlock", lock);
747 }
748 #endif /* LOCKF_DEBUG */
749 return 0;
750 }
751
752 /*
753 * Check whether there is a blocking lock,
754 * and if so return its process identifier.
755 */
756 static int
757 lf_getlock(struct lockf *lock, struct flock *fl)
758 {
759 struct lockf *block;
760
761 #ifdef LOCKF_DEBUG
762 if (lockf_debug & 1)
763 lf_print("lf_getlock", lock);
764 #endif /* LOCKF_DEBUG */
765
766 if ((block = lf_getblock(lock)) != NULL) {
767 fl->l_type = block->lf_type;
768 fl->l_whence = SEEK_SET;
769 fl->l_start = block->lf_start;
770 if (block->lf_end == -1)
771 fl->l_len = 0;
772 else
773 fl->l_len = block->lf_end - block->lf_start + 1;
774 if (block->lf_flags & F_POSIX)
775 fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
776 else
777 fl->l_pid = -1;
778 } else {
779 fl->l_type = F_UNLCK;
780 }
781 return 0;
782 }
783
784 /*
785 * Do an advisory lock operation.
786 */
787 int
788 lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
789 {
790 struct flock *fl = ap->a_fl;
791 struct lockf *lock = NULL;
792 struct lockf *sparelock;
793 kmutex_t *interlock = &lockf_lock;
794 off_t start, end;
795 int error = 0;
796
797 KASSERTMSG(size >= 0, "size=%jd", (intmax_t)size);
798
799 /*
800 * Convert the flock structure into a start and end.
801 */
802 switch (fl->l_whence) {
803 case SEEK_SET:
804 case SEEK_CUR:
805 /*
806 * Caller is responsible for adding any necessary offset
807 * when SEEK_CUR is used.
808 */
809 start = fl->l_start;
810 break;
811
812 case SEEK_END:
813 if (fl->l_start > __type_max(off_t) - size)
814 return EINVAL;
815 start = size + fl->l_start;
816 break;
817
818 default:
819 return EINVAL;
820 }
821
822 if (fl->l_len == 0)
823 end = -1;
824 else {
825 if (fl->l_len >= 0) {
826 if (start >= 0 &&
827 fl->l_len - 1 > __type_max(off_t) - start)
828 return EINVAL;
829 end = start + (fl->l_len - 1);
830 } else {
831 /* lockf() allows -ve lengths */
832 if (start < 0)
833 return EINVAL;
834 end = start - 1;
835 start += fl->l_len;
836 }
837 }
838 if (start < 0)
839 return EINVAL;
840
841 /*
842 * Allocate locks before acquiring the interlock. We need two
843 * locks in the worst case.
844 */
845 switch (ap->a_op) {
846 case F_SETLK:
847 case F_UNLCK:
848 /*
849 * XXX For F_UNLCK case, we can re-use the lock.
850 */
851 if ((ap->a_flags & F_FLOCK) == 0) {
852 /*
853 * Byte-range lock might need one more lock.
854 */
855 sparelock = lf_alloc(0);
856 if (sparelock == NULL) {
857 error = ENOMEM;
858 goto quit;
859 }
860 break;
861 }
862 /* FALLTHROUGH */
863
864 case F_GETLK:
865 sparelock = NULL;
866 break;
867
868 default:
869 return EINVAL;
870 }
871
872 switch (ap->a_op) {
873 case F_SETLK:
874 lock = lf_alloc(1);
875 break;
876 case F_UNLCK:
877 if (start == 0 || end == -1) {
878 /* never split */
879 lock = lf_alloc(0);
880 } else {
881 /* might split */
882 lock = lf_alloc(2);
883 }
884 break;
885 case F_GETLK:
886 lock = lf_alloc(0);
887 break;
888 }
889 if (lock == NULL) {
890 error = ENOMEM;
891 goto quit;
892 }
893
894 mutex_enter(interlock);
895
896 /*
897 * Avoid the common case of unlocking when inode has no locks.
898 */
899 if (*head == (struct lockf *)0) {
900 if (ap->a_op != F_SETLK) {
901 fl->l_type = F_UNLCK;
902 error = 0;
903 goto quit_unlock;
904 }
905 }
906
907 /*
908 * Create the lockf structure.
909 */
910 lock->lf_start = start;
911 lock->lf_end = end;
912 lock->lf_head = head;
913 lock->lf_type = fl->l_type;
914 lock->lf_next = (struct lockf *)0;
915 TAILQ_INIT(&lock->lf_blkhd);
916 lock->lf_flags = ap->a_flags;
917 if (lock->lf_flags & F_POSIX) {
918 KASSERT(curproc == (struct proc *)ap->a_id);
919 }
920 lock->lf_id = ap->a_id;
921
922 /*
923 * Do the requested operation.
924 */
925 switch (ap->a_op) {
926
927 case F_SETLK:
928 error = lf_setlock(lock, &sparelock, interlock);
929 lock = NULL; /* lf_setlock freed it */
930 break;
931
932 case F_UNLCK:
933 error = lf_clearlock(lock, &sparelock);
934 break;
935
936 case F_GETLK:
937 error = lf_getlock(lock, fl);
938 break;
939
940 default:
941 break;
942 /* NOTREACHED */
943 }
944
945 quit_unlock:
946 mutex_exit(interlock);
947 quit:
948 if (lock)
949 lf_free(lock);
950 if (sparelock)
951 lf_free(sparelock);
952
953 return error;
954 }
955
956 /*
957 * Initialize subsystem. XXX We use a global lock. This could be the
958 * vnode interlock, but the deadlock detection code may need to inspect
959 * locks belonging to other files.
960 */
961 void
962 lf_init(void)
963 {
964
965 mutex_init(&lockf_lock, MUTEX_DEFAULT, IPL_NONE);
966 }
967